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Highlights

Constitutive equations for thermo-elasto-plastic metallic materials
undergoing large temperature variations

Charles Mareau

• A framework for the development of constitutive relations for metals is
proposed

• The contributions of elasticity, plasticity and thermal expansions are
included

• The temperature-dependence of thermomechanical properties is con-
sidered

• The proposed framework is well-suited for processes with large temper-
ature variations
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Abstract

In the present work, a framework for the development of constitutive
models for metallic materials in a thermomechanical context is proposed.
Such a framework provides some guidelines to deal with processes involving
large temperature variations, which is typical of manufacturing operations
or severe service situations. The proposed framework relies on the additive
decomposition of the logarithmic strain tensor to include the contributions of
elasticity, plasticity and thermal expansion to deformation. Also, the classical
internal variable concept is used to describe the history effects (e.g., harden-
ing and recovery) associated with the development of plasticity. Particular
attention is given to considering the impact of temperature on thermophysical
properties. For the purpose of illustration, the proposed framework is used
to build a constitutive model for polycrystalline copper. The resulting set of
constitutive equations allows investigating the thermomechanical behavior
of this specific material for some simple deformation histories. The corre-
sponding results are finally used to evaluate the temperature-dependence of
common thermophysical properties. The importance of the different heat
sources that contribute to the heat diffusion equation is also discussed.

Keywords:
Thermomechanics, Constitutive model, Plasticity, Metals

1. Introduction

In many situations, the life of metallic products can be assimilated to
a sequence of thermomechanical processes that affect both their shape and
microstructure. Such a sequence includes manufacturing operations (e.g.,
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forging, machining) as well as in-service loading events (e.g., fatigue, im-
pact). As a result of thermomechanical couplings, some of these processes
are difficult to apprehend in the sense that the motion and temperature his-
tories are interdependent. While the impact of processing parameters can
be evaluated with numerical or analytical simulation tools, reliable results
require an accurate description of the constitutive behavior in a wide tem-
perature range.

For metallic materials, the thermodynamics of irreversible processes with
internal state variables (Valanis, 1971) provides a convenient framework for
the development of constitutive models. Indeed, internal state variables, with
the corresponding evolution equations, allow constructing a large variety of
constitutive models that consider history effects (Maugin and Muschik, 1994).
In contrast with formulations relying on history functionals, internal variable-
based constitutive models can easily be enriched to include additional effects
resulting from different physical phenomena affecting the behavior of materi-
als (Papenfuß, 2020). Such a framework has notably been used to construct
an important number of thermo-elasto-plastic constitutive models in the con-
text of either infinitesimal (Houlsby and Puzrin, 2000; Benallal and Bigoni,
2004; Egner and Egner, 2014) or finite (Simo and Miehe, 1992; Xiao et al.,
2007; Mareau, 2020) strains. Since the aforementioned models are compati-
ble with the fundamental laws of thermodynamics, they allow (i) computing
the different heat sources that control the temperature evolution and (ii)
considering the impact of temperature on the thermomechanical behavior.
However, such constitutive models often ignore the temperature-dependence
of thermophysical properties such as the specific heat capacity or the thermal
expansion tensor. As a consequence, these constitutive models are limited to
quasi-isothermal processes, i.e., with small temperature variations. However,
many practical applications of metallic materials involve important temper-
ature variations. For instance, as a result of heat dissipation caused by
plasticity and friction, the temperature in the cutting zone during machining
operations can increase from room temperature to a few hundreds of degrees
(Shaw, 2005; Harzallah et al., 2018). Also, the heat treatment of metallic
materials often involve significant temperature variations, hence important
changes of thermophysical properties (Zeng et al., 2021).

In the present manuscript, a general framework that allows describing the
thermo-elasto-plastic behavior of metallic materials under arbitrary temper-
ature variations is proposed. The additive decomposition of the logarithmic
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strain tensor1 (Hencky, 1928) into elastic, thermal and plastic contributions
is first briefly presented. The general form of constitutive equations, which
relies on the internal variable concept to consider the history effects (e.g.,
hardening, recovery) that affect the development of plasticity, is then de-
tailed. Particular attention is given to considering the impact of tempera-
ture on thermophysical properties. Specifically, some strategies that comply
with the restrictions from the third law of thermodynamics are presented to
include the temperature-dependence of common thermophysical properties.
For the purpose of illustration, the proposed framework is finally used to
build a set of constitutive relations for polycrystalline copper.

2. Constitutive equations

2.1. Decomposition of the logarithmic strain tensor

The present work aims at presenting a general strategy to develop consti-
tutive equations for thermo-elasto-plastic metallic solids. For this purpose,
a material point with initial position X is considered. For such a material
point, the position x and temperature T at time t are obtained from the
functions ξ and θ that define the motion and temperature histories with:

x = ξ[X, t] and T = θ[X, t] (1)

For any regular material point, the deformation gradient tensor F is given
by:

F = ξ ⊗∇0 (2)

= R ·U (3)

where R and U are respectively the rotation tensor and right stretch tensor
obtained from the polar decomposition of the deformation gradient tensor.
Also, ∇0 is the differential operator indicating differentiation with respect
to the initial position X. For the construction of constitutive relations, the
logarithmic strain tensor E is used as a strain measure. The logarithmic
strain tensor is obtained from the right stretch tensor U according to:

E = ln[U ] (4)

1The logarithmic strain tensor is also known as the Hencky or true strain tensor.
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The logarithmic strain tensor can be additively decomposed to include the
contributions of the different deformation mechanisms. Such a decomposition
is adopted in different implementations of elastic-plastic constitutive models
in the context of finite strains, e.g., (Papadopoulos and Lu, 2001; Miehe et
al., 2002; Sansour and Wagner, 2001). As discussed by Miehe et al. (2002),
the additive decomposition of the logarithmic strain tensor provides numer-
ical results that are close to those obtained with the reference framework of
multiplicative plasticity. For thermo-elasto-plastic solids, the strain tensor
includes elastic (subscript e), thermal (subscript th) and plastic (subscript
p) contributions:

E = Ee +Eth +Ep (5)

The thermal contribution, which solely depends on the temperature, is ob-
tained from the stress-free thermal expansion tensor ᾱ with:

Eth =

∫ T

T0

ᾱ[T ′] dT ′ (6)

where T0 is a reference temperature for which the thermal strain tensor van-
ishes.

2.2. Logarithmic stress tensor

During a deformation process, the specific power developed by internal
forces p is obtained from:

p =
1

%0
P : Ḟ (7)

where %0 is the mass density in the initial configuration and P is the first
Piola-Kirchoff stress tensor.

For the construction of constitutive relations, it is preferable to work with
the stress tensor Σ, which is the power-conjugate to the logarithmic strain
rate tensor in the sense that:

p =
1

%0
Σ : Ė (8)

Adopting the terminology of Caminero et al. (2011), the tensor Σ is referred
to as the logarithmic stress tensor in the following. Also, since the above
relations should be equivalent, the first Piola-Kirchoff and logarithmic stress
tensors are related to each other according to:

P = R · (Σ : M) (9)

4



Primal state variable Dual state variable
E Σ
T −s
Ep −Σ
A χ
Z R

Table 1: List of primal and dual state variables.

where the fourth-rank tensor M is obtained from:

M =
∂E

∂U
(10)

2.3. State equations

At a given time t, the state of the material point is uniquely defined from
a set of state variables that are listed in Table 1 with their corresponding dual
variables. The external state variables are the total strain tensor E and the
absolute temperature T . For the description of the deformation behavior,
some additional internal state variables are introduced. First, the plastic
strain tensor Ep, which depends on the thermomechanical history, is treated
as a tensorial internal variable. Also, to consider hardening, a scalar and a
tensorial hardening variable, denoted by Z and A, are introduced2. While
the former allows incorporating the contribution of isotropic hardening, the
latter allows describing the effects of kinematic hardening.

Using the above set of state variables, the specific free energy f is decom-
posed into three contributions:

f = fe + fth + fh (11)

The elastic contribution fe is obtained from:

fe =
1

2%0
Ee : C : Ee (12)

2Though this option is not explored here for simplicity, the present framework can
easily be extended to consider multiple (isotropic or kinematic) hardening variables.
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where C is the temperature-dependent stiffness tensor. The thermal contri-
bution to free energy fth solely depends on temperature :

fth = −
∫ T

T0

(∫ T ′

T0

c̄p
T ′′
dT ′′

)
dT ′ − s0 (T − T0) + f0 (13)

In the above equation, f0 and s0 are the specific free energy and entropy at the
reference temperature in the absence of elastic strain and hardening. Also,
as discussed hereafter, c̄p is the specific heat capacity at constant stress that
would be obtained in the absence of applied stress and hardening. Finally,
the contribution of hardening to free energy fh includes the separate effects
of isotropic hardening and kinematic hardening:

fh =
1

2%0
HZ2 +

1

2%0
A : K : A (14)

where K is the temperature-dependent kinematic hardening moduli tensor
and H is the temperature-dependent isotropic hardening modulus.

In the absence of viscous contribution, the logarithmic stress tensor Σ is
given by:

Σ = %0
∂f

∂E
= −%0

∂f

∂Ep

(15)

= C : Ee (16)

To incorporate the effect of kinematic hardening, it is convenient to introduce
the backstress tensor χ, which is the conjugate variable of the kinematic
hardening variable A. The corresponding state equation is:

χ = %0
∂f

∂A
(17)

= K : A (18)

The differentiation of Equation (14) with respect to the isotropic hardening
variable provides the state equation for the yield stress increase R:

R = %0
∂f

∂Z
(19)

= HZ (20)
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The specific entropy s is obtained from the specific free energy f with:

s = − ∂f
∂T

(21)

=

∫ T

T0

c̄p
T ′
dT ′ +

1

%0
Ee : C : ᾱ− 1

2%0
Ee :

∂C
∂T

: Ee

− 1

2%0

∂H

∂T
Z2 − 1

2%0
A :

∂K
∂T

: A+ s0

(22)

To comply with the third law of thermodynamics, the following temperature-
dependent quantities should vanish at absolute zero:

c̄p[0] = 0, ᾱ[0] = 0,
∂C
∂T

∣∣∣∣
0

= O,
∂K
∂T

∣∣∣∣
0

= O,
∂H

∂T

∣∣∣∣
0

= 0 (23)

The specific internal energy e, which, upon integration, allows evaluat-
ing the total internal energy of the system of interest, is obtained from the
different state variables with:

e = f + sT (24)

=
1

%0
Ee : C : ᾱT +

1

2%0
Ee :

(
C− ∂C

∂T
T

)
: Ee

+
1

2%0

(
H − ∂H

∂T
T

)
Z2 +

1

2%0
A :

(
K− ∂K

∂T
T

)
: A

+

∫ T

T0

c̄p dT
′ + e0

(25)

where e0 = f0 + s0T0 is the specific internal energy at the reference temper-
ature in the absence of elastic strain and hardening.

2.4. Thermal expansion tensor and specific heat capacity

According to Equation (16), the total logarithmic strain tensor E can be
expressed as a function of the logarithmic stress tensor Σ with:

E = S : Σ +Eth +Ep (26)

where S = C−1 is the temperature-dependent elastic compliance tensor. The
thermal expansion tensor α is obtained by differentiating the total strain
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tensor with respect to temperature for a fixed stress state and a fixed internal
state, which leads to3:

α =
∂E

∂T

∣∣∣∣
Σ,int

(27)

=
∂S
∂T

: Σ + ᾱ (28)

= −S :
∂C
∂T

: Ee + ᾱ (29)

The above equation indicates that the current thermal expansion tensor α is
equal to the stress-free thermal expansion tensor ᾱ in the absence of applied
stress or when stiffness properties do not depend on temperature.

For a fixed internal state and a constant strain state, the differentiation
of the specific entropy with respect to temperature leads to the expression of
the specific heat capacity at constant strain cv with:

cv = T
∂s

∂T

∣∣∣∣
E,int

(30)

= c̄v +
2

%0
Ee :

∂C
∂T

: ᾱT +
1

%0
Ee : C :

∂ᾱ

∂T
T

− 1

2%0
Ee :

∂2C
∂T 2

: EeT −
1

2%0

∂2H

∂T 2
Z2T

− 1

2%0
A :

∂2K
∂T 2

: AT

(31)

where c̄v = c̄p− ᾱ : C : ᾱT/%0 is the specific heat capacity at constant strain
that would be obtained in the absence of applied stress (i.e., Ee = 0) and
without any contribution from hardening (i.e., A = 0 and Z = 0).

From an experimental point of view, common thermoanalytical tech-
niques, such as differential scanning calorimetry, provide the specific heat
capacity at constant stress rather than constant strain. The specific heat

3The subscript “int” is used to emphasize that the differentiation is carried out at
a constant internal state, i.e., for a fixed plastic strain tensor and fixed kinematic and
isotropic hardening variables.
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capacity at constant stress cp is given by:

cp = T
∂s

∂T

∣∣∣∣
Σ,int

(32)

= cv +
1

%0
α : C : αT (33)

= c̄p −
1

%0
Ee :

∂C
∂T

: αT +
1

%0
Ee : C :

∂α

∂T
T

+
1

2%0
Ee :

∂2C
∂T 2

: EeT −
1

%0
Ee :

∂C
∂T

: S :
∂C
∂T

: EeT

− 1

2%0

∂2H

∂T 2
Z2T − 1

2%0
A :

∂2K
∂T 2

: AT

(34)

According to the above equation, the reference specific heat capacity at con-
stant stress c̄p can be determined from thermoanalytical experiments con-
ducted in the absence of applied stress and hardening.

2.5. Evolution equations

2.5.1. Dissipation source

According to classical thermodynamics, the specific dissipation source d
is given by:

d =
1

%0
Σ : Ė − ȧ− sṪ − 1

%0
Q · ∇0T

T
(35)

where Q is the heat flux vector in the reference configuration. Using the
state equations (16), (18), (20) and (22), the specific dissipation source is
conveniently written under the following form:

d =
1

%0
Σ : Ėp −

1

%0
RŻ − 1

%0
χ : Ȧ− 1

%0
Q · ∇0T

T
(36)

The specific dissipation source can be separated into two contributions such
that:

d = din + dth (37)

with:

din =
1

%0
Σ : Ėp −

1

%0
RŻ − 1

%0
χ : Ȧ (38)

dth = − 1

%0
Q · ∇0T

T
(39)
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As indicated by the above equations, the thermal dissipation source dth in-
cludes the contribution of heat conduction while the intrinsic dissipation
source din is the result of the microstructural changes associated with plas-
ticity and hardening.

To comply with the restrictions of the second law of thermodynamics, it
is common to require both the thermal and intrinsic dissipation sources to
be non-negative (Nguyen, 2000):

dth ≥ 0 and din ≥ 0 (40)

A locally reversible process corresponds to the specific case where the thermal
and intrinsic dissipation sources both vanish.

The Taylor-Quinney coefficient (Taylor, 1934) is commonly used as a
measure of the efficiency of the dissipation of mechanical power into heat.
Following the terminology of Rittel et al. (2017), the differential Taylor-
Quinney coefficient β is defined as the ratio between the intrinsic dissipation
source and the specific plastic work rate:

β = %0
din

Σ : Ėp

(41)

=
Σ : Ėp −RŻ − χ : Ȧ

Σ : Ėp

(42)

The above equation indicates that in the absence of hardening, the plastic
work rate is entirely dissipated into heat, in which case the Taylor-Quinney
coefficient β takes a unit value. Depending on the evolution of a material
point, the hardening contribution to the intrinsic dissipation source may par-
ticipate in energy storage or energy dissipation. The former case typically
corresponds to the situation where internal energy increases because crystal-
lographic defects are created. The latter case is encountered when static or
dynamic recovery phenomena contribute to the release of internal energy.

2.5.2. Evolution equations

The expression of the specific dissipation source (36) indicates that the
constitutive model must include some evolution equations for the plastic
strain rate tensor, the kinematic variable rate, the isotropic variable rate and
the heat flux density vector. Such evolution equations should comply with
the second law of thermodynamics, i.e., the thermal and intrinsic dissipation
sources must be non-negative.
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For most metallic alloys, the heat flux vector is commonly obtained from
the Fourier’s law of heat conduction:

Q = −κ ·∇0T (43)

where κ is the temperature-dependent heat conductivity tensor. Since heat
conduction is impacted by the concentration of defects (e.g., Wasserbäh
(1978)), one may assume that the heat conductivity tensor also depends on
the isotropic hardening variable. Also, for the thermal contribution to the
dissipation source to be non-negative, the heat conductivity tensor should be
positive semi-definite.

To determine whether the conditions for plastic flow are met or not, it
is convenient to introduce a first order homogeneous function σ that returns
an equivalent stress Σeq from the effective stress tensor, i.e., Σ− χ, with:

Σeq = σ [Σ− χ] (44)

To construct the evolution equation for the plastic strain rate tensor, most
plasticity theories use the following decomposition:

Ėp = ṖN (45)

where Ṗ is the plastic multiplier, which measures the intensity of plastic flow,
and N is the plastic flow direction. When the normality rule is adopted, the
plastic flow direction is given by:

N =
∂Σeq

∂Σ
(46)

The evolution of the isotropic hardening variable is controlled by two con-
tributions denoted by Żp and Żr. The contribution Żp includes the effects
of strain hardening and dynamic recovery while the contribution Żr incor-
porates the effect of static recovery. The evolution equation for the isotropic
variable thus takes the following form:

Ż = Żp + Żr (47)

with:

Żp = Fp[E,Ep,A, Z, T ]Ṗ (48)

Żr = Fr[E,Ep,A, Z, T ] (49)
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While the contribution of strain hardening and dynamic recovery necessarily
vanishes when the conditions for plastic flow are not met, that of static
recovery may exist in the absence of plastic flow.

The evolution equation for the kinematic hardening variable displays a
form similar to that of the isotropic hardening variable. Specifically, the
evolution of the kinematic hardening variable depends on a plastic term Ȧp

and a static recovery term Ȧr, whose effect is expected to be significant at
high temperature:

Ȧ = Ȧp + Ȧr (50)

with:

Ȧp = Gp[E,Ep,A, Z, T ]Ṗ (51)

Ȧr = Gr[E,Ep,A, Z, T ] (52)

As for the evolution equation for the isotropic hardening variable, the plastic
contribution vanishes when the conditions for plastic flow are not met.

2.6. Heat diffusion equation

For each material point, the temperature evolution is obtained from the
heat diffusion equation whose derivation for the specific case of thermo-elasto-
plastic solids is detailed hereafter.

According to the first law of thermodynamics, the evolution of the specific
internal energy e is given by:

ė =
1

%0
Σ : Ė − 1

%0
∇0 ·Q+ r (53)

Also, from the relation between the specific internal energy, the specific free
energy, the specific entropy and the absolute temperature, one obtains:

ė = ȧ+ T ṡ+ sṪ (54)

Combining the above equations and using the expression of the specific in-
trinsic dissipation source leads to:

T ṡ =
1

%0
Σ : Ė − 1

%0
∇0 ·Q+ r − ȧ− sṪ (55)

= din −
1

%0
∇0 ·Q+ r (56)
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The evolution of the specific entropy is given by:

ṡ =
∂s

∂T
Ṫ +

∂s

∂E
: Ė +

∂s

∂Ep

: Ėp +
∂s

∂A
: Ȧ+

∂s

∂Z
Ż (57)

=
∂s

∂T
Ṫ +

∂s

∂Ee

:
(
Ė − Ėp

)
+

∂s

∂A
: Ȧ+

∂s

∂Z
Ż (58)

=
1

T

(
cvṪ − ϕθ − ϕic

)
(59)

In the above equation, ϕθ is the specific thermoelastic heat source:

ϕθ = −T ∂s

∂Ee

:
(
Ė − Ėp

)
(60)

= − 1

%0
Tα :

(
Σ̇ + C : αṪ

)
(61)

Also, ϕic is the internal coupling source that results from the dependence
of the internal state on the absolute temperature. In the present context,
the internal state is represented by the isotropic and kinematic hardening
variables. The resulting expression of the internal coupling source is:

ϕic = −T ∂s

∂A
: Ȧ− T ∂s

∂Z
Ż (62)

=
1

%0
T
∂χ

∂T
: Ȧ+

1

%0
T
∂R

∂T
Ż (63)

With the above definitions of the different heat sources, the heat diffusion
equation is conveniently written as:

cvṪ = din + ϕθ + ϕic −
1

%0
∇0 ·Q+ r (64)

The above equation indicates that the temperature evolution of a material
point is controlled by heat transfer (−∇0 ·Q/%0 +r), heat dissipation caused
by irreversible microstructural changes (din) and heat sources due to the
impact of temperature on the stress state (ϕθ) and hardening (ϕic).

2.7. Temperature dependence of thermomechanical properties

For most metallic materials, physical properties such as the specific heat
capacity or the thermal conductivity vary significantly with temperature. As
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a result, for applications with important temperature variations, the temper-
ature dependence of these properties must be considered to accurately de-
scribe the thermomechanical behavior of metallic materials. Different strate-
gies to describe the impact of temperature on thermomechanical properties
are proposed in this section.

2.7.1. Specific heat capacity

For most metallic materials, the impact of temperature on the specific
heat capacity at zero stress is correctly described with a function that includes
two contributions:

c̄p = C∞

(
T

Td

)3 ∫ Td/T

0

x4 expx

(expx− 1)2
dx+

nc∑
i=1

CiT
i (65)

The temperature-dependent phonon contribution to the specific heat is de-
scribed according to the Debye model (Debye, 1912). It involves two material
parameters: the Debye temperature Td and the asymptotic specific heat ca-
pacity C∞4. The polynomial function of order nc includes the contribution
of free electrons as well as the deviations from the Debye model. For such
a polynomial function, the coefficient of the term of order i is denoted by
Ci. Also, to comply with the third law of thermodynamics, the polynomial
function must be zero at origin, i.e., it should not include a zeroth order
term.

The experimental values of the specific heat capacity at constant stress
are compared with those obtained from Equation (65) for different metallic
materials in Figure 1. The fitting function provides a reasonable description
of experimental data for most materials in both low and high temperature
regimes. A notable exception is the Ti6Al4V alloy for which, as a result of
the α → β phase transition, significant discrepancies are observed around
the β transus temperature. This specific example highlights the need to
incorporate additional contributions in Equation (65) when solid state phase
transitions exist.

2.7.2. Thermal expansion coefficient

As discussed by Tang et al. (2021), there is a strong connection between
the heat capacity at constant stress and the thermal expansion coefficient for

4According to the Debye model, the asymptotic specific heat capacity is given by C∞ =
3R/M where R is the molar gas constant and M is the molar mass.
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Figure 1: Temperature dependence of the specific heat capacity of several metallic mate-
rials. Dots correspond to the experimental data taken from (Miločević and Aleksić, 2012;
Ziegler et al., 1963; Kim, 1975; Touloukian and Ho, 1977; White and Collocott, 1984;
Brooks and Bingham, 1968). Numerical data obtained from Equation (65) is represented
with solid lines.

many solid materials, including pure metals. As a consequence, the thermal
expansion coefficient of most metallic materials is well depicted by a relation
similar to that used for the specific heat capacity:

ᾱ = A∞

(
T

Td

)3 ∫ Td/T

0

x4 expx

(expx− 1)2
dx+

nα∑
i=1

AiT
i (66)

In the above equation, A∞ is asymptotic value of the thermal expansion
coefficient while the Ai coefficient controls the effect of the ith order term of
the polynomial contribution.

For the purpose of illustration, the thermal expansion coefficients of dif-
ferent metallic materials are plotted as a function of temperature in Figure
2. The values obtained from Equation (66) are also provided. According to
the results, the impact of temperature on the thermal expansion coefficient is
correctly depicted with Equation (66). Specifically, the thermal thermal ex-
pansion approaches a zero value when the absolute temperature tends toward
absolute zero, which is in agreement with the third law of thermodynamics.
Also, it is worth mentioning that, as for the specific heat capacity, additional
contributions to the thermal expansion coefficient should be included to re-
produce the effect of phase transitions. As illustrated by the work of (Zhang
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and Baxevanis, 2022), this effect is particularly visible in shape memory al-
loys.

2.7.3. Thermal conductivity

For pure metals, the impact of temperature on heat conductivity is usually
well described by the following equation, which is a modified version of the
model proposed by Cezairliyan and Touloukian (1965):

κ =

(
1

κp
+

1

κd
+K7

1

κd + κp

)−1
(67)

where the contribution κd (respectively κp) accounts for the effect of electron-
defect (respectively electron-phonon) interactions. These temperature-dependent
contributions are described according to:

κd =
T

K0

(68)

κp =
1 +K1K3T

K2+K4 exp
[
−(K5/T )K6

]
K1TK2

(69)

In the above equations, the Ki coefficients (with i = 0 to 7) are material
parameters.
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Figure 3: Temperature dependence of the thermal conductivity of several metallic mate-
rials. Dots correspond to the experimental data taken from (Touloukian and Ho, 1977;
Godfrey et al., 1964; Hust, 1969, 1984). Numerical data obtained from Equations (67)
(copper and iron), (70) (X5CrNi18-10 stainless steel) and (71) (Ti6Al4V alloy) are repre-
sented with solid lines.

An alternative option consists of using the following expression to consider
the temperature dependence of heat conductivity:

κ = exp

[
−
(
T

K5

)K6
]
K1T

K2 +

(
1− exp

[
−
(
T

K5

)K6
])

K3T
K4 (70)

The above expression assumes that the impact of temperature on thermal
conductivity is the weighted sum of two power functions. While the former
dominates the low temperature behavior (T < K5), the latter controls the
high temperature behavior (T > K5).

Finally, in some cases, a single power function provides a reasonable de-
scription of the impact on temperature on thermal conductivity:

κ = K1T
K2 (71)

Such a function, which requires only two material parameters, is a specific
case of (70) for which the K5 takes an infinite value.

The thermal conductivities of different materials are plotted as a func-
tion of temperature in Figure 3. For pure metals (Fe and Cu), the impact
of temperature is correctly depicted with Equation (67). It is worth men-
tioning that for pure metals, the thermal conductivity at low temperatures
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depends on the concentration of defects. As a consequence, the K0 param-
eter, which controls the low temperature behavior, should be adjusted for
each specific situation. For metallic alloys, the temperature-dependence of
thermal conductivity is reasonably described with either Equation (70) (e.g.,
X2CrNi18-9) or (71) (e.g., Ti6Al4V).

2.7.4. Stiffness properties

As discussed by Ledbetter (1982), the impact of temperature on the
Young’s modulus of most metallic materials can be represented by the rela-
tion proposed by Varshni (1970):

E = E0

(
1− E1Te

exp[Te/T ]− 1

)
(72)

An alternative strategy to describe the temperature dependence of stiffness
properties consists of using the expression proposed by Wachtman et al.
(1961):

E = E0

(
1− E1T exp

[
−Te
T

])
(73)

In the above equations, E0, E1 and Te are material parameters. Specifically,
E0 is the Young’s modulus at absolute zero, Te is a characteristic temperature
and E1 controls the derivative of the Young’s modulus with respect to tem-
perature when temperature approaches infinity. The above relations, which
can be applied to other elastic constants (e.g., bulk modulus, shear modulus),
are consistent with the third law of thermodynamics in the sense that the
derivative with respect to temperature vanishes at absolute zero. Also, they
both rely on the assumption that the stiffness properties exhibit an affine
relationship with respect to temperature in the high temperature regime. It
is worth mentioning that Li et al. (2019) proposed a temperature-dependent
elastic modulus model that uses a limited number of parameters. According
to this model, both the specific heat capacity and the thermal expansion
coefficient need to be integrated with respect to temperature for the eval-
uation of the Young’s modulus. While such a method correctly reproduces
the impact of temperature on stiffness properties for many metallic materi-
als, the integration of thermophysical properties may require some numerical
procedures that can be computationally expensive.

As illustrated by Figure 4, the approximation of Wachtman et al. (1961)
(see Equation (73)) provide an accurate description of the temperature-
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Figure 4: Temperature dependence of the linear thermal expansion coefficient of several
metallic materials. Dots correspond to the experimental data taken from (Köster, 1948a,b;
Ledbetter, 1982; Zhang et al., 1991; Adams et al., 2006; Isaak and Masuda, 1995). Nu-
merical data obtained from Equation (73) is represented with solid lines.

dependence of the Young’s modulus of pure metals and alloys. Very sim-
ilar results are obtained with Equation (72), which differ from Equation (73)
only in the intermediate temperature range. It should be mentioned that for
ferromagnetic materials, some deviations with respect to Equations (72) and
(73) can be observed as a result of magnetostrictive effects.

3. Application to polycrystalline copper

For the purpose of illustration, the present framework is used to construct
a set of constitutive relations for polycrystalline copper. In this section, the
constitutive relations are first detailed. The corresponding material param-
eters are then presented. The proposed constitutive model is finally used to
discuss the thermodynamical implications of some deformation processes.

3.1. Constitutive equations

For isotropic stiffness properties, the stiffness tensor C is conveniently
expressed from the bulk modulus K and the shear modulus G with

C = 3KPs + 2GPd (74)

where Ps (respectively Pd) is the spherical (respectively deviatoric) fourth-
rank projection tensor. To consider the impact of temperature on stiffness
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properties, the relation proposed by Wachtman et al. (1961) is adopted:

K = K0

(
1−K1T exp

[
−Te
T

])
(75)

G = G0

(
1−G1T exp

[
−Te
T

])
(76)

Also, in the context of isotropy, the stress-free thermal expansion tensor
ᾱ is obtained from the linear thermal expansion coefficient ᾱ with:

ᾱ = ᾱ1 (77)

For polycrystalline copper, the temperature dependence of the linear thermal
expansion coefficient is correctly described by Equation (66) with a first order
polynomial function i.e., nα = 1.

To construct the viscoplastic flow rule, the equivalent stress is evaluated
according to the definition of von Mises. In the absence of kinematic hard-
ening, the von Mises equivalent stress is given by:

Σeq =

√
3

2
Σd : Σd (78)

where Σd is the deviatoric stress tensor. The differentiation of the equivalent
stress with respect to the stress tensor leads to the following expression of
the flow direction N :

N =
3

2

Σd

Σeq

(79)

To consider the temperature-dependence of strain hardening, the hard-
ening modulus H is assumed to follow a similar trend as for the elastic
constants:

H = H0

(
1−H1T exp

[
−Th
T

])
(80)

where H0, H1 and Th are material parameters.
To evaluate the plastic multiplier, the flow rule of Chaboche (1989) is

adopted:

Ṗ = Ṗ0

(〈Σeq −R〉
B

)1/m

(81)
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where Ṗ0 is a reference plastic strain rate, m is the strain-rate sensitivity
exponent and B is a reference stress. The effect of temperature on strain-
rate sensitivity is depicted by the following relation:

m = M0 +M1

(
T

Tm

)M2

(82)

According to the above equation, the strain-rate sensitivity exponent at ab-
solute zero is given by M0 while the M1 and M2 material parameters control
the temperature-dependency of the strain-rate sensitivity exponent. Also,
Tm is the melting temperature. To consider the dependence of the reference
stress with respect to temperature, a similar expression as for the hardening
modulus is adopted:

B = B0

(
1−H1T exp

[
−Th
T

])
(83)

where B0 is the reference stress at absolute zero.
The von Mises equivalent stress thus takes the following form:

Σeq = HZ +B

(
Ṗ

Ṗ0

)m

if Ṗ > 0 (84)

=

(
H0Z +B0

(
Ṗ

Ṗ0

)m)(
1−H1T exp

[
−Th
T

])
if Ṗ > 0 (85)

As indicated by the above Equation, the flow rule provided by Equation (81)
is additive in the sense that the equivalent stress is given by the sum of strain
and strain rate hardening contributions. However, the effect of temperature
is included in a single factor that affects both contributions.

The evolution equation for the isotropic hardening variable includes both
strain hardening and static recovery effects:

Ż =

Ṗ − S〈
T−Tr
Tm
〉qZ l, Z < Zc

Ṗ
(
Z
Zc

)n−1
n − S〈T−Tr

Tm
〉qZ l, Z ≥ Zc.

(86)

where Zc, S, Tr, n, q and l are positive material parameters. Specifically, Zc
controls the transition from a linear hardening rule to a power hardening rule
and n is the strain hardening exponent. It is worth mentioning that such a
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hardening rule is compatible with the second law of thermodynamics in the
sense that the intrinsic contribution to the dissipation source is necessarily
non-negative provided that the strain hardening exponent n is inferior to
unity. Also, Tr is the minimum temperature for static recovery to occur.

The numerical procedure used for the time integration of constitutive
relations relies on the second order Runge-Kutta method. It is briefly detailed
in Appendix A.

3.1.1. Parameter identification

The material parameters for polycrystalline copper are listed in Table
2. The bulk and shear moduli were taken from the experimental data of
Ledbetter (1981). The experimental data of Johnson (1960), Touloukian et
al. (1975) and White and Collocott (1984) were used to obtain the linear
thermal expansion coefficient and specific heat capacity at zero stress. Also,
the viscoplastic and strain hardening parameters were adjusted to fit the
experimental data of Chen and Kocks (1991) who conducted uniaxial tension
tests at different temperatures (from 293 K to 673 K) and different strain
rates (10−4 and 1 s−1). The corresponding results are plotted in Figure 5.
Finally, the static recovery parameters were determined from the results of
McQueen and Vazquez (1986). Specifically, uniaxial compression tests were
conducted at 723 K up to an axial strain of -15% with a constant strain rate
of -0.18 s−1, interrupted and resumed. The experimental results were then
used to evaluate the softening ratio Xs such that:

Xs =
Σm − Σr

Σm − Σ0

(87)

where Σm is the maximum equivalent stress obtained for an axial strain of
-15%, Σ0 is the initial yield stress and Σr is the yield stress obtained upon
reloading. The softening ratios obtained for different interruption times are
plotted in Figure 6.

3.1.2. Discussion

Heat sources. To evaluate the contributions of the different heat sources to
the heat diffusion equation, the behavior of polycrystalline copper under
simple shear was evaluated. Specifically, a constant logarithmic shear strain
rate of 1 s−1 was imposed and isothermal conditions, with a temperature of
either 73 K or 673 K, were considered.
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Figure 5: Logarithmic stress-strain curves obtained for polycrystalline copper under uni-
axial tension at different temperatures with a strain rate of either 10−4 s−1 (top) or 1 s−1

(bottom). Dots correspond to the experimental data of Chen and Kocks (1991). Numeri-
cal data obtained from the present model is represented with solid lines.
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Figure 6: Logarithmic stress-strain curves obtained for polycrystalline copper under uni-
axial compression at 723 K with a strain rate of 0.18 s−1 and different interruption times
(top). Evolution of the softening ratio as a function of the interruption time (bottom).
Dots correspond to the experimental data of McQueen and Vazquez (1986). Numerical
data obtained from the present model is represented with solid lines.
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K0 (GPa) K1 (K−1) G0 (GPa) G1 (K−1)
145 5.68× 10−4 52 5.68× 10−4

Te (K) Td (K) Tm (K) Th (K)
343 343 1358 100

Tr (K) M0 M1 M2

673 0.01 0.28 1
A∞ (K−1) A1 (K−2) C∞ (J/kg/K) C1 (J/kg/K2)
1.8× 10−5 2× 10−9 390 5× 10−6

H0 (MPa) H1 (K−1) n Zc
1800 1.12× 10−3 0.25 0.08
S q l %0 (kg/m3)

3.12× 10−2 1 0.25 8960

B0 (MPa) Ṗ0 (s−1)
50 1× 10−4

Table 2: Material parameters for polycrystalline copper.

The evolutions of the intrinsic dissipation source, thermoelastic heat source
and internal coupling heat source are presented in Figure 7 for both tempera-
tures. According to the results, at low temperature (73 K), the thermoelastic
and internal coupling heat sources are negligible in comparison with the in-
trinsic dissipation source. For many practical situations, the temperature
evolution can thus be correctly approximated by solely considering the in-
trinsic dissipation source. However, at high temperature, as a result of the
temperature-dependence of hardening properties, the internal coupling heat
source becomes significant, especially at moderate strains where the harden-
ing variable rate is important.

The differential Taylor-Quinney coefficient β is plotted as a function of
the shear strain in Figure 8. Two distinct stages are observed. In the first
stage, where the hardening rule is linear (i.e., Z ≤ Zc), the differential Taylor-
Quinney coefficient decreases and reaches a minimal value. This effect is due
to the fact that a significant part of the plastic work rate is stored as internal
energy because of the important hardening rate. At high temperature (673
K), this effect is less pronounced due to the higher strain rate sensitivity. In
the second stage (i.e., Z > Zc), the hardening rule becomes non-linear and
the hardening rate decreases with an increasing strain. An important aug-
mentation of the differential Taylor-Quinney coefficient is therefore observed.
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Figure 7: Evolution of the intrinsic dissipation source, thermoelastic heat source and
internal coupling heat source for polycrystalline copper under simple shear with a shear
strain rate of 1 s−1 and a temperature of either 73 K (top) or 673 K (bottom).
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Figure 8: Evolution of the differential Taylor-Quinney coefficient for polycrystalline copper
under simple shear with a shear strain rate of 1 s−1 and a temperature of either 73 K or
673 K.

For important plastic strains, the Taylor-Quinney coefficient is close to unity,
which indicates that most of the plastic work is dissipated into heat.

Thermophysical properties. To determine how the specific heat capacity and
the thermal expansion coefficient are impacted by a deformation process, the
behavior of polycrystalline copper under uniaxial compression was examined.
As for the simple shear test, isothermal conditions were prescribed with a
constant temperature of either 73 or 673 K and the axial strain rate was fixed
to −1 s−1.

The evolution of the specific heat capacities at constant strain or constant
stress as a function of the axial strain are presented in Figure 9. Whatever
the temperature is, the specific heat capacities at constant strain cv and
c̄v are close to each other. As a result, for many practical applications,
the specific heat capacity at constant strain cv, which appears in the heat
diffusion equation, can advantageously be replaced by that obtained in the
absence of external stress and hardening c̄v. Indeed, as indicated by Equation
(31), while the former depends on the internal state, the latter only depends
on the absolute temperature.

The linear thermal expansion coefficients along and perpendicular to the
loading direction direction, respectively denoted by α‖ and α⊥, are reported
in Figure 10. The stress-free linear thermal expansion coefficient ᾱ is also
displayed. At low temperature (73 K), since stiffness properties do not signif-
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Figure 9: Evolution of the specific heat capacity for polycrystalline copper under uniaxial
compression with an axial strain rate of −1 s−1 and a temperature of either 73 K (top) or
673 K (bottom).
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icantly depend on temperature, no major difference is observed between the
different linear thermal expansion coefficients. However, at high temperature
(673 K), the discrepancies between the stress-free and current linear thermal
expansion coefficients cannot be neglected.

4. Conclusions

A general framework dedicated to the development of constitutive mod-
els for metallic materials was proposed in the present paper. The proposed
framework is dedicated to applications involving important temperature vari-
ations. The main features of the framework are:

• The additive decomposition of the logarithmic strain tensor is adopted
to include the contributions of elasticity, plasticity and thermal expan-
sion to deformation.

• The classical internal variable concept is used to consider the history
effects associated with the development of plasticity, which includes
strain hardening, static recovery and dynamic recovery.

• The temperature dependence of common thermophysical properties is
considered. Some equations, which are in agreement with the third
law of thermodynamics, have been proposed to reproduce the effect of
temperature on these properties.

For the purpose of illustration, the proposed framework was used to build
a constitutive model for polycrystalline copper. Such a model allows dis-
cussing the impact of thermomechanical couplings on the deformation be-
havior over a wide temperature range. The results indicate that:

• While the thermoelastic heat source remains negligible in comparison
with the intrinsic dissipation, the role of the internal coupling heat
source, which results from the temperature-dependence of hardening
properties, cannot be ignored at high temperature.

• The contribution of hardening to the specific heat capacity at constant
strain is negligible. This contribution can therefore be ignored for many
practical applications for which the solution to heat diffusion equation
is needed.
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Figure 10: Evolution of the linear thermal expansion for polycrystalline copper under
uniaxial compression with an axial strain rate of −1 s−1 and a temperature of either
73 K (top) or 673 K (bottom). The linear thermal expansion coefficient parallel and
perpendicular to the loading direction are respectively denoted by α‖ and α⊥. The stress-
free linear thermal expansion coefficient is denoted by ᾱ.
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It is important to mention that the proposed framework does not include
any length scale. As a consequence, the resulting constitutive models cannot
provide satisfying predictions for strain localization, which may occur when
softening is present. To limit localization, a possible strategy would consist
of treating the spatial gradients (Mühlhaus and Aifantis, 1991; Geers, 2004;
Miehe, 2014) or the spatial average and/or variance (Mareau, 2022) of plas-
tic strain measures as additional state variables. Also, future work should
focus on the description of the effect of temperature on damage, which is an
important aspect of the processing of metallic materials.

Appendix A. Numerical implementation

The numerical implementation of constitutive equations is detailed here-
after. The objective of this implementation is twofold. First, for a prescribed
loading path, it aims at integrating the evolution equations. For this pur-
pose, each loading path is decomposed into time increments. The integration
procedure then uses the temperatures and deformation gradient tensors at
the beginning (t) and the end of the time increment (t + ∆t), as well as
the internal variables at the beginning of the time increment, to determine
the internal variables and the applied stress tensor at the end of the time
increment. In the present work, a second order Runge-Kutta integration
method is used to integrate the evolution equations. For the application of
this method, both the logarithmic strain tensor and the absolute temperature
in the middle of the time increment should be known. They are computed
according to:

E[t+ ∆t/2] =
1

2
(E[t+ ∆t] +E[t+ ∆t]) (A.1)

T [t+ ∆t/2] =
1

2
(T [t+ ∆t] + T [t+ ∆t]) (A.2)

Second, the numerical procedure allows controlling the prescribed defor-
mation gradient tensor. Specifically, the integration of constitutive relations
assumes that the deformation gradient tensor at the end of a time increment
is known. However, for stress-controlled or mixed loading conditions, the de-
formation gradient tensor at the end of the time increment is not available.
To circumvent this difficulty, an iterative procedure is used. It consists of
adjusting the deformation gradient tensor to obtain, within a given tolerance,
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the prescribed stress state. At the beginning of each iteration, the prescribed
deformation gradient tensor is estimated with:

F ij[t+ ∆t] = F bc
ij [t+ ∆t]

(
1− ηij

)
+
P bc
ij [t+ ∆t]− P ij[t+ ∆t]

D
ηij (A.3)

where F bc is the prescribed deformation gradient tensor, P bc is the prescribed
first Piola-Kirchoff stress tensor and D is a numerical parameter that controls
the convergence rate. Also, η is a matrix that indicates whether a given
component P ij of the Piola-Kirchoff stress tensor is prescribed (ηij = 1)
or not (ηij = 0). To determine whether convergence is achieved or not,
the difference ε between the actual and prescribed stress tensor is calculated
according to:

ε =

√∑
i,j

ηij
(
P bc
ij − P ij

)2
(A.4)

Convergence is achieved when the difference ε is inferior to a given toler-
ance εbc. The numerical implementation of the constitutive model is briefly
described in Table A.3.
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. Set the state variables to their initial values
For each time t:∣∣ Do while ε > εbc:∣∣ ∣∣ . Compute the deformation gradient tensor at time t+ ∆t∣∣ ∣∣ → F [t+ ∆t]∣∣ ∣∣ . Compute the logarithmic strain tensor at time t∣∣ ∣∣ → E[t]∣∣ ∣∣ . Compute the logarithmic strain tensor at time t+ ∆t∣∣ ∣∣ → E[t+ ∆t]∣∣ ∣∣ . Compute the logarithmic strain tensor at time t+ ∆t/2∣∣ ∣∣ → E[t+ ∆t/2]∣∣ ∣∣ . Compute the absolute temperature at time t+ ∆t/2∣∣ ∣∣ → T [t+ ∆t/2]∣∣ ∣∣ . Compute the stress tensors at time t∣∣ ∣∣ → Σ[t] and χ[t]∣∣ ∣∣ . Compute the yield stress increase at time t∣∣ ∣∣ → R[t]∣∣ ∣∣ . Integrate evolution equations between t and t+ ∆t/2∣∣ ∣∣ → Ep[t+ ∆t/2], A[t+ ∆t/2] and Z[t+ ∆t/2]∣∣ ∣∣ . Compute the stress tensors at time t+ ∆t/2∣∣ ∣∣ → Σ[t+ ∆t/2] and χ[t+ ∆t/2]∣∣ ∣∣ . Compute the yield stress increase at time t+ ∆t/2∣∣ ∣∣ → R[t+ ∆t/2]∣∣ ∣∣ . Integrate evolution equations between t+ ∆t/2 and t+ ∆t∣∣ ∣∣ → Ep[t+ ∆t], A[t+ ∆t] and Z[t+ ∆t]∣∣ ∣∣ . Compute the stress tensors at time t+ ∆t∣∣ ∣∣ → Σ[t+ ∆t] and χ[t+ ∆t]∣∣ ∣∣ . Compute the yield stress increase at time t+ ∆t∣∣ ∣∣ → R[t+ ∆t]∣∣ ∣∣ . Compute the specific internal energy at time t+ ∆t∣∣ ∣∣ → e[t+ ∆t]∣∣ ∣∣ . Compute the heat sources at time t+ ∆t∣∣ ∣∣ → din[t+ ∆t], ϕθ[t+ ∆t] and ϕic[t+ ∆t]∣∣ ∣∣ . Compute the first Piola-Kirchoff stress tensor at time t+ ∆t∣∣ ∣∣ → P [t+ ∆t]∣∣ ∣∣ . Compute the difference∣∣ ∣∣ → ε

Table A.3: Numerical integration of constitutive relations for a prescribed loading path.
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