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a b s t r a c t

The low-Reynolds-number flow past a sphere moving near a right dihedral corner made by a stationary
and a tangentially sliding wall is considered. Using the superposition principle, the arbitrary motion of
the sphere is decomposed into simple elementary motions. Fully-resolved spectral-element simulations
are carried out in the frame of reference translating and rotating with the particle such that the
velocity on the particle’s surface vanishes. Forces and torques on the sphere are obtained as functions
of the particle position near the corner. The data obtained are fitted by closed-form expressions
which take into account symmetries of the problem, exact solutions, and asymptotic solutions from
lubrication theory. The correlations obtained can easily be implemented in larger-scale one-way-
coupled particulate-flow simulations to correct the particle motion near dihedral corners where mere
point-particle models break down.

1. Introduction

The presence of rigid indeformable boundaries strongly affects
the hydrodynamic forces and torques exerted by a fluid on a
particle moving near a wall, a free-surface, or other particles
or bubbles. This situation is found for sedimenting and resus-
pending particles [1], transport of particles along rivers [2], and
particulate combustion and sprays [3]. Lubrication forces between
particle and boundary become increasingly important in small-
scale confined flows, e.g. in microfluidic applications, and can lead
to coherent particle structures [4–7].

Several studies have considered the low-Reynolds-number
flow past a spherical particle and the hydrodynamic forces and
torques acting when it moves near a wall, a free surface, or
another particle. Lorentz [8] theoretically investigated a sphere
moving towards a plane rigid wall when the distance between the
particle centroid and the wall is much larger than the radius of
the sphere. The axisymmetric problem of a sphere with fixed cen-
troid rotating about the principal axis perpendicular to a nearby
plane wall was solved by Jeffery [9]. Stimson & Jeffery [10] con-
sidered the case of two non-rotating spheres approaching each
other along the line connecting their centroids in an infinitely
extended fluid domain. A recent extension of their solution is
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due to Papavassiliou & Alexander [11]. Improving the Stokes-flow
result, Faxén [12] obtained an approximate solution for a sphere
moving parallel to a rigid wall using the Oseen approximation.
These studies were complemented by Brenner [13], who provided
the solution for the problem of a sphere moving towards an
indeformable plane rigid wall or a free surface in creeping flow.
Dean & O’Neill [14] and O’Neill & Stewartson [15] investigated
the slow steady flow near a plane wall due to a sphere rotating
about an arbitrary axis and translating in direction parallel to the
wall. The solution given by Dean & O’Neill [14] for a rotating
sphere was subsequently corrected by Goldman et al. [16], who
computed hydrodynamic forces and torques in the two limits
of a vanishing lubrication gap and of a large distance between
the particle and the wall. For creeping flow they demonstrated,
furthermore, that a sphere subject to gravitational forces rolls
down an inclined plane without any physical contact. Goldman
et al. [17] considered a neutrally-buoyant sphere of radius a
in a shear flow near a plane wall for (a) vanishingly small lu-
brication gap δ ≪ a between the sphere and the wall, and
(b) for a sphere far from the wall such that δ = O(a). Other
theoretical investigations have been carried out by Haberman
& Sayre [18] and Sonshine et al. [19], who investigated the
effect of boundaries on a particle immersed in a cylindrical tank.
Cox & Brenner [20] included inertial effects in the solution of
Brenner [13], and Bart [21] solved the unsteady problem of a
sphere moving towards an indeformable interface between two
immiscible fluids. The latter work was extended by Lee & Leal [22]
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and Geller et al. [23] who studied the motion of a sphere rising
towards an interface which can either be rigid or deformable.
Corresponding measurements [21,24] confirmed the theoretical
predictions made for low-Reynolds-number flows. Reviews of
these theoretical and experimental results can be found in [22]
and [25].

The result obtained for Stokes flow have been extended by Cox
& Mason [26] by taking into account inertial flow effects when a
sphere moves in a confined rotational flow. More recently, Liu
& Prosperetti [27] investigated the inertial flow past a sphere
rotating near a wall, between two parallel walls, or inside a
concentric cube. Other investigations extended the results for
creeping Newtonian flow to other rheologies. Kim & Russel [28]
investigated the hydrodynamic interaction between two spheres
in a Brinkman medium, and Damiano et al. [29] focused on
particles immersed in or moving near a Brinkman medium.

The attention paid to particle–boundary interaction models is
further motivated by a number of problems where modeling the
boundary-induced repulsion is crucial for performing predictive
simulations. This is the case, for instance, when two-dimensional
limit cycles [30–32] and finite-size Lagrangian coherent struc-
tures are created by the particle–boundary interaction which
focuses finite-size particles in regular regions of the flow near
the boundaries [33]. These phenomena have been experimentally
observed first in thermocapillary liquid bridges [4,34] and re-
cently numerically reproduced and theoretically explained by [6,
35–38]. For an overview on finite-size coherent structures in
liquid bridges, we refer to [39]. The same particle accumulation
phenomenon has been experimentally observed and numerically
reproduced in mechanically-driven systems, such as a lid-driven
cavity [7,40,41]. As pointed out by [7], spurious particle attrac-
tors are found using the current simplified particle–boundary
interaction models which are based on phenomenological ap-
proaches [35] or on classic lubrication models [7]. Within this
framework, our study aims at introducing corner-flow corrections
that are believed to be the source of the spurious attractors
observed in numerical simulations, but were never reported in
experiments.

Related to the present work, Dauparas & Lauga [42] ana-
lytically investigated the leading-order force and torque on a
sphere in creeping flow at a distance δ ≫ a from a steady
dihedral corner. In our paper, we rather consider the case of a
sphere in creeping flow moving near (δ = O(a)) a right dihedral
corner formed by a steady and a tangentially sliding wall. We
are interested in the dependence of the forces and torques on
the position of the sphere in order to derive correlations which
could be used in larger-scale numerical simulations to correct for
boundary and edge effects [7,43]. In Section 2 the mathematical
problem is formulated. Section 3 presents the numerical method
used to simulate the Stokes flow past the particle. The results
obtained are presented in Section 4, and in Section 5 the results
are summarized and conclusions are drawn.

2. Problem formulation

A rigid spherical particle is moving near a semi-infinite di-
hedral edge in an incompressible Newtonian fluid of density ρ

and kinematic viscosity ν (Fig. 1). Using Cartesian coordinates
(x, y, z), the edge is formed by two orthogonal plane walls which
meet at x = (0, y, 0). While the wall at x = 0 is stationary,
the wall at z = 0 moves tangentially in its own plane with a
constant velocity Uw = (Uw, Vw, 0). We are interested in the
forces on a spherical particle with radius a which translates with
velocity U = (U, V ,W ) and rotates with angular velocity Ω =

(Ωx, Ωy, Ωz).

Fig. 1. Sketch of the sphere in creeping flow near a semi-infinite dihedral
corner made by a stationary (light gray) and a moving wall (light blue) at
90◦ . The arrows indicate the possible translational and rotational motions. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The motion of the fluid around the sphere is governed by the
Navier–Stokes and continuity equations

∂tu + u · ∇u = −
1
ρ

∇p + ν∇
2u, (1a)

∇ · u = 0, (1b)

where u(x, t) and p(x, t) denote the velocity and pressure field,
respectively. No-slip and no-penetration boundary conditions are
imposed on the plane walls

x = 0 : u = 0, (2a)

z = 0 : u = Uw. (2b)

In the presence of a spherical particle no-slip and no-penetration
boundary conditions must hold on the particle’s surface

x = xs : u = U + Ω × (xs − xp), (3)

where xs and xp = (xp, 0, zp) describe the surface and the centroid
of the sphere, respectively.

In the simultaneous limits of a small wall Reynolds number
Re = |Uw|L/ν ≪ 1, where L is the characteristic length of the
global fluid flow, and a small particle Reynolds number Rep =

|U + Ω ×
(
xs − xp

)
− u|a/ν ≪ 1, the material derivative can be

neglected with respect to the viscous term and (1a) reduces to
a balance between pressure and viscous forces, leading to the
Stokes-flow approximation. Using the scalings a, ν/a and ρν2/a2,
for length, velocity and pressure, respectively, the dimensionless
momentum equation becomes

∇p = ∇
2u. (4)

On the remaining boundaries at a large distance of order
O(λ = L/a) from the particle, with |xp| ≪ λ, we assume that
flow perturbations due to the presence of the particle are small,
while the flow due to the moving wall is still creeping (Re ≪ 1),
i.e. λ ≪ ν/(|UW |a). Under this assumption the two-dimensional
velocity field far from the particle is given by [44]

|x| = O(λ) : u = Uw
[
f ′(θ ) cos(θ ) + f (θ ) sin(θ )

]
, (5a)

v = Vw(1 − 2θ/π ), (5b)

w = Uw
[
f ′(θ ) sin(θ ) − f (θ ) cos(θ )

]
, (5c)



Fig. 2. (a) Distribution of the elements within the whole computational domain. (b) Zoom into the region near the particle. The spectral elements are fitted to the
spherical shape of the particle (red). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) Comparison between the numerical simulations (markers) and the analytic solution of Brenner [13] (line) for the wall-normal drag on a particle moving
towards a plane wall. (b) Spectral convergence in infinite norm of the numerical error (difference between computational and exact solution [13]) obtained considering
three polynomial degrees, i.e. N = 6, 8 and 10.

where f (θ ) = [θ sin(π/2 − θ ) − π/2(π/2 − θ ) sin θ ]/(1 − π2/4)
and θ = cos−1

(
x/

√
x2 + z2

)
.

The quasi-steady approximation employed does not carry any
memory from previous times. Therefore, the flow field depends
only on the instantaneous configuration. Since the Stokes equa-
tion (4) is linear, the superposition principle allows to obtain the
solution as a linear combination of solutions to the following el-
ementary sub-problems (and their symmetric counterparts) with
suitably defined far-field conditions.

(I) A sphere moving parallel to the edge made by two station-
ary walls

Uw = 0, U = ey, Ω = 0, (6)

(II) a sphere rotating about an axis parallel to the edge made
by two stationary walls

Uw = 0, U = 0, Ω = ey, (7)

(III) a sphere moving normal to one wall with both walls sta-
tionary

Uw = 0, U = ex, Ω = 0, (8)

(IV) a sphere rotating about an axis normal to one wall with
both walls stationary

Uw = 0, U = 0, Ω = ez, (9)

(V) a steady sphere near a dihedral corner with one wall mov-
ing parallel to the edge

Uw = ey, U = 0, Ω = 0, (10)

(VI) a steady sphere near a dihedral corner with one wall mov-
ing normal to the edge

Uw = ex, U = 0, Ω = 0. (11)

All the six fundamental problems are solved in the frame of
reference translating and rotating with the particle. Hence, the
particle’s surface is at rest in the computational frame. To take
this transformation into account, the boundary conditions for the
fluid on the two walls are obtained by subtracting the velocity
due to the transformation to the co-moving frame of reference
from (2), i.e. from the velocities the boundaries would have in
the laboratory frame.

3. Numerical method

The problem (4) is discretized using a spectral-element
method, making use of a nodal approach based on Lagrange poly-
nomials defined on Gauss–Legendre–Lobatto nodes. The func-
tional spaces for velocity and pressure are selected in respect
of the inf–sup condition, i.e. the couple (u, p) belongs to the
polynomial spaces PN

− PN−2. The 3/2 over-integration rule is
always employed in order to cure aliasing errors which arise
computing by Gauss quadrature the integrals of our Galerkin
weak formulation.

The Stokes solver implemented in the open-source software
Nek5000 is used to carry out the computations. The rectangular
computational domain is [0, λx]×[−λy, λy]×[0, λz] with λx,y,z =

360. The centroid of the sphere is placed in the midplane at
(xp, yp, zp) = (1 + δx, 0, 1 + δz) (see Fig. 2). Since the distance
of the sphere’s centroid from any wall is always less than two,



Table 1
p-convergence: non-zero forces and torques on a sphere at (xp, zp) = (1.1, 1.1) as functions of the polynomial order
N . The relative errors E are defined with respect to the finest grid, e.g.EFx = |(Fx|N−Fx|N=12) /Fx|N=12|.
Problem I

N Fy Tx Tz EFy ETx ETz
6 3.418544 −0.0098827 0.0098827 0.0001480 0.1521217 0.1521217
8 3.417875 −0.0115779 0.0115779 0.0000477 0.0066834 0.0066834
10 3.418033 −0.0116524 0.0116524 0.0000015 0.0002917 0.0002917
12 3.418038 −0.0116558 0.0116558

Problem II

N Fx Fz Ty EFx EFz ETy
6 −0.071339 0.071339 −1.7666238 0.0223650 0.0223650 0.0011169
8 −0.072770 0.072770 −1.7685391 0.0027545 0.0027545 0.0000340
10 −0.072934 0.079434 −1.7685957 0.0005070 0.0005070 0.0000020
12 −0.072971 0.072971 −1.7685992

Problem III

N Fx Fz Ty EFx EFz ETy
6 −13.84389 −2.049813 −0.0538792 0.0066674 0.0052042 0.0432627
8 −13.93053 −2.060257 −0.0562527 0.0004509 0.0001357 0.0011165
10 −13.93674 −2.060521 −0.0563166 0.0000051 0.0000076 0.0000189
12 −13.93681 −2.060537 −0.0563155

Problem IV

N Fy Tx Tz EFy ETx ETz
6 −0.014870 0.023849 −1.5374589 0.0260676 0.0111534 0.0009692
8 −0.015098 0.024108 −1.5389064 0.0111344 0.0004146 0.0000286
10 −0.015214 0.024117 −1.5389483 0.0035368 0.0000415 0.0000014
12 −0.015268 0.024118 −1.5389505

Problem V

N Fy Tx Tz EFy ETx ETz
6 1.813707 −0.181522 −0.1799225 0.0008724 0.0056858 0.0121488
8 1.812684 −0.182242 −0.1781167 0.0003079 0.0017419 0.0019903
10 1.812077 −0.182509 −0.1776767 0.0000270 0.0002794 0.0004849
12 1.812126 −0.182560 −0.1777629

Problem VI

N Fx Fz Ty EFx EFz ETy
6 1.358695 −0.209206 0.2735443 0.0661762 0.9844624 0.0050905
8 1.423157 −0.141202 0.2749107 0.0218718 0.3393978 0.0001207
10 1.451972 −0.113675 0.2749414 0.0020674 0.0782854 0.0000091
12 1.454980 −0.109422 0.2749439

e.g. xp ≤ 2, the computational domain is large compared to the
particle’s radius and compared to its distance from the walls.
Therefore, the flow due to the presence of the sphere is negligibly
small on the far domain boundaries, and the unperturbed Stokes
flow (5a)–(5c) can be imposed on the boundaries at x = λx,
y = ±λy and z = λz .

The spectral element grid consists of 20344 elements, which
corresponds to 15021380 degrees of freedom. A body-fitted mesh
is used to represent the sphere. Close to the sphere, the elements
are slightly deformed in order to allocate an ad-hoc h-refinement
of the mesh around the surface of the sphere. Since the Stokes
problem is time-independent, the computational grid is station-
ary. A typical computational mesh is shown in Fig. 2, depicting the
global computational domain (a) and a zoom towards the particle
(b). Forces and torques exerted by the fluid on the particle are
computed integrating the stresses over the spherical surface by
Gaussian quadrature with the 3/2 over-integration rule.

4. Results

4.1. Validation

To validate the numerical code a comparison is made with the
exact solution of Brenner [13] for a particle moving towards a
wall in creeping flow. In this setting, the force on the particle is
always directed normal to the wall. To carry out the computations
for this test problem the wall at x = 0 is removed and the grid

shown in Fig. 2 is mirrored with respect to the (x = 0)−plane.
A particle moving with velocity U = (0, 0, −1) is placed at
(xp, yp, zp) = (0, 0, 1 + δz). Fig. 3(a) shows the computed wall-
normal forces scaled by the Stokes drag (6πρνa|U |) Fz for five
different values of δz and and for polynomial orders N = 6, 8
and 10. The corresponding p-convergence is depicted in Fig. 3(b).
The agreement between the numerical and the exact solution is
excellent.

The convergence of the forces and torques on a sphere for the
corner-flow problem under consideration is investigated for δx =

δz = 0.1. Keeping constant the distribution of the spectral ele-
ments, a p-convergence study is carried out. Table 1 demonstrates
that the forces and torques on the sphere exhibit convergence
up to several digits when the polynomial order is N = 10 (153

Gauss nodes are used for the over-integration). Based on these
results the polynomial order N = 10 is used for all subsequent
computations.

4.2. Fundamental results of lubrication theory and exact solutions

In the limit of vanishing distance δ := δx → 0 of the sphere
from a plane wall and with δz → ∞, or vice versa, the asymptotic
form of the forces and torques is known from lubrication theory.
Since the numerical simulations must be compatible with the
asymptotic results and reproduce known exact solutions, these
are briefly summarized. Let n be the wall-normal unit vector and
(t1t2) the two tangent unit vectors on the plane, such that the



Table 2
Fit coefficients for the non-zero forces and torques acting on a sphere according to (13).

Case I Case II Case III

Fy Tx Tz Fx Fz Ty Fx Fz Ty
A1 −0.3798 αTx = 0 −0.0162 αFx = 0 −0.1639 −1.7510 −1.5646 αFz = 0 αTy = 0
A2 −2.4726 αTx = 0 −14.5643 αFx = 0 −19.9627 −2.2417 −6.7898 αFz = 0 αTy = 0
A3 −0.3798 −0.0162 βTz = 0 −0.1639 βFz = 0 −1.7510 −0.2599 βFz = 0 −0.0605
A4 −2.4726 −14.5643 βTz = 0 −19.9627 βFz = 0 −2.2417 −37.6495 βFz = 0 −10.8926

B1 −2.0025 −4.7384 4.7384 −26.4643 26.4643 −0.6718 −4.4088 −5.6664 14.1699
B2 −0.0830 −0.7895 −0.7895 −2.6278 −4.4123 −0.1006 −12.0391 −2.3672 −1.3375
B3 −0.0830 −1.9566 −1.9566 −4.4123 −2.6278 −0.1006 −1.6057 −1.0773 −3.6786
B4 −0.1253 0.0023 0.0023 2.0424 1.2880 1.0485 −0.5482 1.7676 1.3015
B5 −0.1253 −0.1228 −0.1228 1.2880 2.0424 1.0485 0.0072 0.5239 −0.0002

C1 0.7600 −10.5132 −15.1638 −3.1747 −0.3929 −0.4830 −10.0331 −4.8746 −13.4879
C2 −0.2400 −0.9493 −1.8691 −4.2052 −1.7985 −0.4962 −1.4504 −3.2699 −1.2928
C3 −0.8978 −1.8491 −0.8966 −3.8579 −0.6559 −1.7478 −1.7173 −1.9287 −3.3980
C4 0.8205 −0.0010 −0.0441 1.0873 0.7768 −0.2752 1.4786 0.2711 1.2118

D1 0.7600 15.1638 10.5132 0.3929 3.1747 −0.4830 −10.3575 −6.1101 0.6635
D2 −0.8978 −0.8966 −1.8491 −0.6559 −3.8579 −1.7478 −2.8118 −9.8853 −0.9036
D3 −0.2400 −1.8691 −0.9493 −1.7985 −4.2052 −0.4962 −1.5570 −7.6463 −2.4932
D4 0.8205 −0.0441 −0.0010 0.7768 1.0873 −0.2752 −0.0841 0.3376 1.1230

Case IV Case V Case VI

Fy Tx Tz Fy Tx Tz Fx Fz Ty
A1 −0.9534 αTx = 0 −0.2440 αFy = 0 αTx = 0 αTz = 0 αFx = 0 αFz = 0 αTy = 0
A2 −4.0844 αTx = 0 −0.7313 αFy = 0 αTx = 0 αTz = 0 αFx = 0 αFz = 0 αTy = 0
A3 βFy = 0 βTx = 0 −2.8383 −0.2617 −0.0633 βTz = 0 −14.3738 βFz = 0 −168.5633
A4 βFy = 0 βTx = 0 −18.2681 −6.9855 −29.6632 βTz = 0 −69.1733 βFz = 0 −17.9721

B1 0.5263 0.0752 1.6865 11.2238 0.4280 −0.1713 −3.3308 −2.5759 −0.5380
B2 −0.5309 −2.5308 0 −0.1705 −0.1666 −0.7235 −1.4017 −0.7410 −0.6218
B3 −0.9471 −1.2985 −6.8690 −3.5914 −0.7726 −0.0256 −0.1523 −1.1929 −0.0081
B4 0.9284 1.6340 −1.7860 −0.0162 0.9248 0.2095 1.1946 0.8067 0.8673
B5 1.7859 0.3857 10.7261 1.3963 −0.0638 −0.1034 −0.0963 1.7156 0.2501

C1 0.0020 0.0508 −1.1319 2.5034 6.3211 0.0809 −10.3448 8.4908 −1.5388
C2 −1.0717 −3.3257 −2.5221 −0.2480 −0.2204 −0.5292 −4.9219 −4.9481 −4.6636
C3 −0.7929 −1.9897 −0.2702 −5.6273 −1.0754 −4.3201 −0.9479 −5.6816 −3.7982
C4 −1.4025 0.1478 −0.1645 −0.0132 −0.0010 0.8472 0.7057 2.2431 1.7595

D1 −0.0915 0.0287 −0.8108 5.1687 −6.2823 −0.1675 −1.7035 −1.8089 −0.7581
D2 −1.2408 −9.9228 −7.8318 −0.0191 −0.1466 −3.7283 −0.3082 −0.9703 −0.4309
D3 −2.1431 −8.1499 −0.3186 −2.6056 −1.0967 −1.5895 −1.4688 −0.7462 −6.3617
D4 0.0159 0.2820 2.6567 3.5427 0.0083 0.1890 0.7932 0.0175 0.4302

system formed by (t1, t2, n) is right handed, the asymptotic forms
(12b) and (12d) by Chaoui & Feuillebois [45] and the exact solu-
tions (12a) and (12c) by Brenner [13] and Jeffery [9], respectively,
hold for a particle translating or rotating near a stationary wall

U · n = 1 :

F · n =

4
3
sinh γ

∑
∞

n=1

n (n + 1)
(2n − 1) (2n + 3){

2 sinh [(2n + 1)γ ] + (2n + 1) sinh (2γ )

4 sinh2 [(n + 1/2)γ ] − (2n + 1)2 sinh2 γ
− 1

}
(12a)

U · t1 = 1 :
F · t1 =

T · t2 =

8/15 log(δ) + 64/375δ log(δ) − 0.9543 + · · ·

−1/10 log(δ) − 43/250δ log(δ) − 0.1929 + · · ·

(12b)

Ω · n = 1 : T · n =
∑

∞

n=0

sinh3(γ )

sinh3 [γ (n + 1)]
(12c)

Ω · t2 = 1 :
F · t1 =

T · t2 =

−2/15 log(δ) − 0.2526 + · · · ,

2/5 log(δ) + 0.5280δ log(δ) − 0.3709 + · · · ,

(12d)

where γ = cosh−1(δ). The force F and the torque T exerted
by the fluid on the sphere are scaled, respectively, by the drag
F∗

= 6πρνaU and the couple T ∗
= 8πρνa2U in the unbounded

domain with U the velocity of the wall or the particle’s surface,
i.e. |U |, |Uw| or a|Ω |. All drag and couple components not listed
in (12) vanish.

4.3. Fit functions

Steady flows for all six fundamental cases defined in Section 2
are calculated numerically for a 10 × 10 evenly-spaced grid of
particle locations (δx, δz) ∈ [0.1, 1]2. The non-zero hydrodynamic
forces and torques on the particle obtained are shown by markers
in Fig. 4. To provide the forces and torques in a functional form
which could be employed in Lagrangian particle tracking where
the position of the particle centroid is not known a priori the
numerical data are fitted (lines in Fig. 4) by

F (δx, δz), T (δx, δz) = α∗(δx)(1 − eA1δz )(1 − e2A2θ/π ) +

β∗(δz)(1 − eA3δx )(1 − eA4(1−2θ/π )) +

B1eB2δx+B3δz δB4x δ
B5
z +

C1eC2δx+C3δz δC4x +

D1eD2δx+D3δz δD4
z , (13)

using the same scaling as in (12). The exponential terms (all
exponents are negative) assure that F and T relax to the known
asymptotic/exact solutions given in (12), here denoted α∗(δx)
and β∗(δz), where ∗ denotes the force or torque to fit, e.g. αFx (δx)
refers to the asymptote along the wall x = 0 of the force Fx. The
two factors containing the polar angle θ are introduced to ensure
the asymptotic/exact solutions are recovered near both walls, all
along z = 0 (θ = 0) and x = 0 (θ = π/2). The reader is referred
to the appendix for a check of the consistency of this fit with



Fig. 4. Sketch of the six fundamental problems (left column) and corresponding hydrodynamic forces and torques on the particle as functions of δz (three right
columns). The markers denote constant δx = 0.1 (◦), 0.2 (□), 0.3 (⋄), 0.4 (△), 0.5 (◁), 0.6 (▽), 0.7 (▷), 0.8 (+ ), 0.9 (×) and 1 (∗). The fit functions (13) are represented
by solid lines. Dash–dotted lines represent the asymptotes β∗(δz ) and dotted lines indicate the zero level.

the asymptotic solutions. The power laws in δx and δz are typical
of near-wall trends. The 17 fit coefficients Ai, Bi, Ci and Di are
determined by least-squares. They are listed in Table 2. Whenever
the asymptotic solution is zero, α∗(δx) = 0 or β∗(δz) = 0, the
corresponding coefficients Ai are not defined. All the coefficients
are computed enforcing the symmetries of the problem. An initial
fitting operation is performed using all the coefficients involved
in (13). If the magnitude of a coefficient is less than 10−4, the
least-squares fit is recomputed, enforcing that such coefficient is
zero.

Depending on the elementary case considered different
asymptotic limits can arise.

(I) The sphere translates (without rotation) parallel to the
dihedral edge at distances δx and δz from the two stationary
walls. This problem admits two limits of type (12b), repre-
sented by a sphere translating parallel to a solid wall: (i)

t1 = ey, t2 = ez and δ = δx, and (ii) t1 = ey, t2 = −ex and
δ = δz .

(II) The sphere rotates (without translation) about an axis par-
allel to the dihedral edge. This case admits two limits
corresponding (12d) with (i) t1 = −ez , t2 = ey and δ = δx,
and (ii) t1 = ex, t2 = ey and δ = δz .

(III) The sphere translates (without rotation) in x direction nor-
mal to one wall. This problem admits two different limits
corresponding to (i) wall-normal motion (12a) with n = ex
and δ = δx, and (ii) wall-tangential motion (12b) with
t1 = ex, t2 = ey and δ = δz . The problem is equivalent
to the case when the particle translates in z direction.
Forces and torque for this latter case are obtained by the
transformation (δx, Fx, δz, Fz, Ty) → (δz, Fz, δx, Fx, −Ty).

(IV) The sphere rotates (without translation) about an axis per-
pendicular to one wall. In this case two different asymp-
totic limits arise: (i) a sphere rotating parallel to a wall



Fig. 4. (continued).

(12d) with the identification t2 = ez , t1 = ey and δ = δx,
and (ii) a sphere rotating normal to a wall (12c) with n = ez
and δ = δz . As for Problem III, the force and torques for this
case Ω ∥ ez are mirror symmetric to the ones for Ω ∥ ex.

(V) A sphere is at rest near a dihedral corner formed by a
stationary wall and a wall sliding parallel to the edge. Apart
from the trivial limit in which both the sphere and the
near wall are at rest (α∗(δx) = 0), the other asymptotic
limit corresponds to (12b) (analogous to the sphere sliding
tangentially to a steady wall) with the identification t2 =

ex, t1 = −ey and δ = δz .
(VI) A stationary sphere is located near a dihedral corner

formed by a stationary wall and a wall sliding perpendic-
ular to the edge. This problem admits the trivial limit of
a steady sphere near a steady wall (α∗(δx) = 0) and the
limit (12b) with the identification t2 = −ey, t1 = −ex and
δ = δz .

4.4. Application to the motion of a finite-size particle in a cavity

In a recent study on accumulation of particles in a two-sided
lid-driven cavity, Romanò et al. [7] employed a simplified version
of the Maxey–Riley equation [46] complemented by a lubrication
model to take into account the particle–boundary interaction.
The enhanced drag force a particle experiences when moving
near a boundary was modeled using the classical lubrication
expansions for a particle moving towards an infinite plane wall.
The authors pointed out that using this model for the near wall
motion unphysical point attractors are created, one at each of the
two dihedral corners. This indicates that a mere superposition
of classical particle–wall solutions cannot properly represent the
particle motion near the edge.

In the following, we employ the same simplified Maxey–Riley
equation as in [7] in which buoyancy forces, the Basset history
term, the Saffman and the Faxén corrections are neglected, i.e.,

ÿ =

(
1

ϱ + 1/2

)[
−

ϱ

St
(ẏ − u) +

3
2
Du
Dt

]
. (14)



Fig. 4. (continued).

In (14) D/Dt represents the material derivative along a fluid flow
trajectory, y denotes the position of the particle’s centroid, and

ϱ =
ρp

ρ
and St = ϱ

2a2

9H2 (15)

are the particle-to-fluid density ratio and Stokes number, respec-
tively, with ρp the density of the particle and H the characteristic
length of the flow.

To demonstrate the improvement of the particle motion model
which can be achieved using the fit functions 4.3 determined
numerically in Section 4.3 we consider two different particle–
boundary interaction models.
Model I: In Model I the exact/asymptotic forces (12) for infinite

plane boundaries are added to the right-hand-side of
(14), whenever the particle moves at distance δx ≤ 1
or δz ≤ 1 from the walls.

Model II: Model II is the same as Model I, except that the su-
perposition of the classic asymptotic/exact solutions
is replaced by (13), whenever both δx ≤ 1 and δz ≤ 1.

The two models are applied to the same setup investigated
in [7]: The flow is driven in a rectangular cavity with an aspect
ratio Γ = W/H = 1.7, where W denotes the width in x of the
cavity and H its height in y direction. The two facing walls at
x = −W/2 and x = W/2 move with constant velocities ±Vwey
in antiparallel direction. At Reynolds number Re = HVw/ν = 400
(as in [7]) a periodic steady cellular flow exists with wavelength
λz = 2.73H in z direction. As flow domain we consider a single
rectangular cell within z = ±λz/4, corresponding to half a
wavelength in the z direction. For further details, we refer to [7].
The reason why finite-size particles can get trapped in the corners
using (14) is the velocity vector projected onto the (x, y) plane is
directed towards the corner along the lines (x, y) = (±Γ /2 ∓

a, ±1/2 ∓ a), more precisely nx · u > 0 and ny · u > 0 along
this line, where nx and ny are the outward normal vectors on the
boundaries.

Fig. 5 depicts the indistinguishable particle configurations at
t = 1 which result from both the models using N = 4096
particles with ϱ = 1 and a = 0.05, initially velocity-matched



Fig. 5. Configuration of N = 4096 finite-size and density-matched particles at
t = 1 (in units of H2/ν). Particles attracted to the periodic orbit are shown in
blue, whereas particles attracted to any of the two corner attractors are shown
in red. The moving walls are colored in light blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

to the flow and randomly distributed in the subdomain [−Γ /2+

a, Γ /2 − a] × [−1/2 + a, 1/2 − a] × [−λz/4, λz/4], i.e. the
statically accessible volume for each particle. In both models we
find the same periodic attractors (blue) and point attractors (red)
in the cavity corners at (x, y, z) = (±Γ /2∓ a, ±1/2∓ a, ∓λz/4).
The difference among the two configurations is using Model I 861
(0.2102×N) of the non-interacting particles have been attracted
to the corners, whereas in Model II which makes use of (13) only
47 (0.0115×N) particles end up in the corners. Thus the result of
Model II is closer to the experimental findings [33,40,41] in which
all particles are attracted to one of the two periodic orbits seen
in Fig. 5.

We observe only particles initialized very close to a stationary
wall become trapped in one of the corner attractors. To more
accurately characterize the basin of attraction of the corner at-
tractors, 10,000 particles were initialized randomly and velocity
matched in the shallow cuboidal volume [−Γ /2 + a, Γ /2 −

a] × [−1/2 + a, −1/2 + 1/10] × [−λz/4, λz/4]. Fig. 6 shows
the initial state in which particles are color coded according to
their attractors. Particles which become attracted to (x, y, z) =

(−Γ /2+ a, −1/2+ a, λz/4) are shown in red, while those being
attracted to the periodic attractors have a gray color. Only par-
ticles from a very thin layer near the solid wall upstream of the

respective moving wall are attracted to the corner attractor. The
thickness of the layer depends on the (x, z) coordinates and has a
structure in z direction which results of the three-dimensionality
of the flow. The layer of red particles on the solid wall shown
does not seem to extend to the corner at (x, y) = (Γ /2, −1/2).
Therefore, the red particles are directly attracted to the corner
(x, y) = (−Γ /2, −1/2) and do not circulate in the cavity. The
attraction to the corners of near-wall particles in our models, as
opposed to the experimental evidence, is most likely due to the
lack of second-order effects which could lift up particles from the
walls [47,48].

A more quantitative analysis of the different dynamics of
Model I and Model II is presented in Fig. 7 by displaying the
fraction of particles n(t)/N which is attracted to any of the pe-
riodic (blue lines) or the point attractors (red lines). A particle
is considered attracted if the distance of its centroid from one
of the periodic or from one of the corner attractors is less than
a/2. It can be seen that the fraction of particles attracted to
the corner attractors (red) is significantly less for Model II (solid
lines) as compared to Model I (dashed lines). Moreover, the initial
evolution of the fraction of particles attracted to the periodic
attractors (blue) is similar. However, from about t ≈ 0.1 the
fraction of particles attracted to the periodic orbits increases more
rapidly for Model II, because more particles remain available for
the periodic attractors than in Model I. The initial attraction to the
corner attractors (red), in particular for Model I (dashed lines), is
more rapid than for the periodic attractors, because those near-
wall particles directly move to the edges from where they slide
to the cell boundaries at z = ±λz/4, see Figs. 5 and 6.

Finally, the periodic attractors existing in both models are
capable of reproducing the experimental results. Fig. 8 shows
a snapshot at t = 3 of 4049 particles (out of 4096) attracted
to the periodic attractor using Model II (blue). The attractor
agrees very well with the experimental particle configuration
(turquoise) [33], despite of the slight geometrical differences
between the experimental (Γ = 1.6, curved driving walls) and
the numerical geometry (Γ = 1.7, straight driving walls).

5. Discussion and conclusion

The general Stokesian motion of a sphere near a semi-infinite
dihedral corner has been considered. The solution can be obtained
by superposition of six elementary types of motion according to
the components of the velocity U and rotation rate vector Ω of
the sphere. Forces F and torques T on the sphere were quanti-
fied by numerically solving the six problems of complementary
fundamental motions. For all fundamental cases robust fits of the
data have been proposed, which take into account all symmetries

Fig. 6. Random initial positions of N = 10000 velocity-matched particles in the layer [−Γ /2 + a, Γ /2 − a] × [−1/2 + a, −1/2 + 1/10] × [−λz/4, λz/4]. Red dots
indicate the centroids of particle attracted to the bottom left corner. Blue dots represent centroids of particles attracted to periodic orbits. (a) Projection to the (x, y)
plane, (b) projection to the (x, z) plane. The blue arrows in (a) denote the antiparallel motion of the cavity lids. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)



Fig. 7. Fraction of particles n(t)/N attracted to one of the periodic attractors
(blue lines) or to one of the corner attractors (red lines) as functions of time in
units of the viscous diffusion time. The total fraction of particles attracted to any
attractor is indicated by green lines. Results are shown for Model I (dashed lines)
and for Model II (full lines). All N = 4096 particles have radius a = 0.05 and are
density-matched to the fluid. They are initialized at t = 0 velocity-matched to
the flow and randomly distributed in [−Γ /2+ a, Γ /2− a]× [−1/2+ a, 1/2−

a] × [−λz/4, λz/4]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of the problem, all exact solutions, and all asymptotic solutions
derived by lubrication theory for a particle moving near a wall.
The fits provided in (13) are valid near an edge within the range
(x, z) = (1 + δx, 1 + δz) = (hx, hz)/a = O(1) for the position of
the centroid. Since the known solutions for a particle near a wall
are incorporated in the fit, we expect (13) to be applicable even
for δx + δz ≫ 1, as long as the classical lubrication approximation
holds, i.e. as long as δx ≪ 1 with δz ≫ 1, or δx ≫ 1 with δz ≪ 1.

A solution to the Navier–Stokes problem for the motion of
a finite-size particle near a dihedral corner would require the
accurate resolution of the flow fields on all scales involved in the
problem, i.e. on the large scale of the fluid flow, over the particle
scale, and down to the scale of the lubrication gap. Treating this
problem in the limit of creeping flow restricts the Reynolds num-
bers of the flow and of the particle for which the approximation
is valid. On the other hand, considering the creeping flow regime
allows to exploit the superposition principle for linear problems.
As a result, the dimension of the phase space of the problem is
significantly reduced, memory effects do not need to be taken
into account, and non-linear interactions between the six funda-
mental motions identified in this paper do not arise. Moreover,
owing to the instantaneous character of the Stokes equations,
numerical simulations can be carried out on a stationary grid. In
terms of computational resources, this approach makes possible
the large parametric study carried out and allows for a fit that

only depends on the relative position of the particle with respect
to the corner, on the particle and the sliding wall velocities.

The fit of the forces and torques has been constructed as to
match with asymptotic solutions derived by lubrication theory
for plane walls. This extends the range of validity of the fit
beyond the immediate vicinity of the corner. In fact, far away
from the corner, the particle is supposed to be affected only by the
presence of the nearest solid wall, when the separation distance δ

is small. The fit of the forces and torques proposed well converges
to the theoretical asymptotes already at a distance much shorter
than 100 particle radii from the corner. Moreover, far away from
the boundaries the Maxey–Riley equation is already consistent
with the creeping flow approximation. Therefore, the motion of
a sphere in creeping flow can well be captured supplying the
Maxey–Riley equation with our fit, as realized in Model II. We
stress, however, that creeping-flow models such as the Maxey–
Riley equation and the Stokesian lubrication model, are widely
used in literature even beyond their range of validity, i.e. for
non-vanishing particle Reynolds numbers. Indeed, inertial effects
become important when the particle Reynolds number is of order
10 or higher, as also demonstrated by weakly-inertial lubrication
theory [26] and finite-Reynolds Saffman-lift effects.

Dealing with a wedge by simply superposing the asymptotic
solutions for two plane walls is conceptually not always correct.
This approach was used by Brenner [13], even though he pointed
out that a superposition of classical asymptotic solutions may be
permissible only if the distance from the edge is sufficiently large,
while the particle is close to one of the walls. When δx → 0
and δz is large enough, or viceversa, the asymptotic solutions
are recovered. However, in the dedicated limit δx → 0 and
δz → 0, with lim(δx,δz )→(0,0) δx/δz = O(1), leading-order lift
forces and torques arise due to a non-linear confinement effect,
which cannot be taken into account by a linear superposition
of asymptotic lubrication-type of solutions for a sphere moving
close to an infinite plane wall, as also demonstrated by Romanò
et al. [7]. For instance, the non-monotonous dependence of the
torque Ty in case III (Fig. 4l) is a result of opposing contributions:
The positive torque induced by the wall at z = 0 when δz → 0
(see dashed–dotted line for the asymptotic solution) might be
opposed by a negative contribution to the torque as a result of
the confinement effect created by the wall at x = 0. This behavior
cannot be represented by the two asymptotic solutions near plane
walls corresponding to the two limits (δx → ∞, δz → 0) and
(δx → 0, δz → ∞). In the latter limit Ty(δx → 0, δz → ∞) → 0.

The usefulness of the fit functions (13) is demonstrated by
reducing the number of particles attracted to the spurious attrac-
tors by a factor 20 when using Model II as compared to Model
I. The remaining small fraction of near-wall initial conditions

Fig. 8. Snapshot at t = 3 of 4049 particles (out of 4096) using Model II (blue). The experimental result (turquoise) was obtained by particle tracking [33]. (a)
Projection onto the (x, y) plane; (b) projection onto the (x, z) plane. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)



Fig. 9. Comparison between the fit (13) and the asymptotic solutions (12) for
case III. The lubrication solutions α∗ and β∗ for small δx and δz , respectively,
are indicated by lines. Symbols in (a) denote δz = 1 (×), 10 (△), 100 (⋄), and
1000 (◦). Symbols in (b) denote δx = 1 (×), 10 (△), 100 (⋄), and 1000 (◦).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

for which particles cannot escape the corners might vanish if
higher-order corrections and inertial effects are taken into ac-
count. These corrections are not taken care of in our model,
but they are probably required for simulating flows at moderate
Reynolds numbers. Nevertheless, most of the limitations imposed
by the use of linear superposition of classic lubrication results
are overcome by our creeping flow model, which is also in good
agreement with the experimental data of [33]. The accuracy of
our simulations, on which the fit functions are based, candidates
our results to be benchmark-quality data for further numerical
studies. The accuracy of the data is confirmed by correctly re-
trieving the restrictions imposed by the reciprocal theorem, i.e.
F∗Fy(case IV) = T ∗Tz(case I) and F∗Fx(case II) = T ∗Ty(case III).

Beyond the interest in the specific flow problem, we expect
our results to contribute to the development of sub-grid-scale
models for particulate numerical simulations which take into
account non-linear effects important, e.g., when a particle moves
in a rectangular duct or in long cavities, far from a trihedral
corner. When a particle is transported close to a boundary such
that the numerical grid resolution is insufficient to accurately
represent the flow field in the lubrication gap between particle
and wall, lubrication-force (by far dominant at small δ) models
can be employed near a wall. Alternatively, in case of edges,
the present fit can be used. The same approach has been used
by [49], who included a particle–boundary modeling layer for the
simulations of particle-laden flow. Finally, the proposed fits might
guide subsequent asymptotic analyses, which could include the
confinement effect due to the corner, extending the near-wall to
near-edge asymptotic solutions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix

The convergence of the fit (13) to the classic asymptotic so-
lutions for (δx, δz) → (0, ∞) and (δx, δz) → (∞, 0) has been
verified for all forces and torques of all six cases presented in our
study. As an example we consider problem III, a sphere translat-
ing in x-direction. Fig. 9 shows the lubrication functions α∗ and β∗

(solid lines) for small δx and δz , respectively. All symbols indicate
the present fit functions. As can be seen, far enough from the
corner, i.e. for δx + δz > 10, the fit (13) converges to the known
asymptotic solutions in the range of validity of such asymptote,
i.e. δx → 0 for α∗ and δz → 0 for β∗.
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