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The transport of liquid and of small rigid spherical particles in a high-Prandtl-number
(Pr = 68) thermocapillary liquid bridge under zero gravity is studied by highly resolved
numerical simulations when the flow arises as an azimuthally traveling hydrothermal wave
with azimuthal wave number one. The Langrangian transport of fluid elements reveals
the coexistence of regular and chaotic streamlines in the frame of reference rotating with
the wave. The structure of the KAM (Kolmogorov-Arnold-Moser) tori is unraveled for
several Reynolds numbers for which the flow is periodic in time and space. Based on the
streamline topology the segregation of small rigid spherical particles of a dilute suspension
into particle accumulation structures (PASs) is studied, based on the steric finite-particle-
size effect when the particles moves close to the free surface. It is shown that the intricate
KAM structures have their counterparts in a multitude of different attractors for the particle
motion. Examples of PASs are provided, and their dependence on particle size, particle-to-
fluid density ratio, and Reynolds number are discussed. A large parametric study reveals
the most probable combinations of particle size and density ratio which lead to particle
clustering.

DOI: 10.1103/PhysRevFluids.6.084301

I. INTRODUCTION

Particle-laden flows are frequently encountered in natural phenomena [1,2] and industrial appli-
cations [3–5]. Therefore, the dynamics of particles suspended in a fluid and their spatial distribution
is of fundamental and practical importance [6]. Small rigid particles density matched with the
surrounding fluid are of particular interest in experimental fluid mechanics, because they can serve
as tracers to visualize the flow or to measure its velocity, assuming they move like the fluid [7].
When dispersed in a thermocapillary liquid bridge, however, even relatively small particles may
cluster rapidly along closed threads which rotate in a laminar time-periodic three-dimensional flow.
This phenomenon was discovered by Schwabe et al. [8] who called the rotating thread a dynamic
particle accumulation structure (PAS).

Since then, PAS in thermocapillary liquid bridges has received increasing attention both ex-
perimentally [9–13] and numerically [14–19]. PAS in a liquid bridge has been experimentally
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observed only when the flow arises as a three-dimensional azimuthally traveling hydrothermal
wave (HTW). This type of wave, which emerges from an instability of the steady axisymmetric
toroidal vortex flow and its temperature field, has the distinguished property to be dispersion-free.
Therefore, a HTW is stationary in a frame of reference which rotates with the same angular velocity
as the HTW. The stationary three-dimensional incompressible flow field of the HTW in the rotating
frame exhibits two different kinds of streamlines: regular streamlines and chaotic ones [20]. This
streamline structure results from the local Hamiltonian system which can be derived from a steady
incompressible three-dimensional flow [21]. A regular streamline winds on a closed stream tube
which corresponds to a so-called Kolmogorov-Arnold-Moser (KAM) torus. The KAM tori are
densely nested around a closed streamline. A set of KAM tori is typically surrounded by chaotic
streamlines which extend up to the boundaries of the liquid bridge [14,15].

Hofmann and Kuhlmann [14] showed that PAS relies on the existence of KAM tori which
approach the free surface of the liquid bridge very closely. Under this condition particles whose
size is comparable to the minimal distance of a KAM torus, or of the closed streamline inside of
the set of tori, from the free surface can accumulate in or near the KAM torus. The transfer of a
particle, initially moving in the region occupied by chaotic streamlines, to the KAM torus is caused
by the extra forces a particle experiences due to its finite size when it is transported close to the free
surface. Once a nearly density-matched particle moves near a KAM torus it can hardly escape from
it due to the regularity of the motion of the fluid elements contained in the KAM torus. This is the
reason why PAS always closely approaches the free surface [9,10]. Since the important processes
involved in the creation of PAS rely on the existence of KAM tori and on forces between the particle
and the free surface acting on length scales at least as large as the particle size, a numerical analysis
of PAS in high-Prandtl-number thermocapillary liquid bridges faces two main difficulties:

1. The first difficulty is the computation of highly resolved strictly periodic flow fields of
traveling HTWs and the analysis of these flow fields in terms of their KAM structures. The high
resolution is required, because even a small residual divergence of the flow field can lead to
accumulation of perfect tracers, thus faking a false attractor which does not exist for the motion
of tracers in a solenoidal flow field [22].

2. The second difficulty is the accurate computation of the particle motion. Fully resolving
the huge range of temporal and spatial scales associated with the moving-boundary problem is
prohibitively expensive computationally, even for a single particle. Therefore, currently the particle
motion cannot be accurately computed. A remedy may be sought by suitable modeling assumptions
which lead to sufficiently accurate approximations of the true particle trajectory.

The higher the Prandtl number, the thinner are the thermal boundary layers in the thermocapillary
flow in liquid bridges. Therefore, the accurate computation of the flow field of a HTW (problem 1)
becomes increasingly demanding the higher the Prandtl number is. For this reason, first investiga-
tions of PAS have employed analytic approximations of the true flow field [16,23,24]. Later on,
simulations of PAS based on flow field satisfying the Navier-Stokes equations have been carried out
for low and moderate Prandtl numbers by several authors [14,15,17,25,26] with the highest Prandtl
number Pr = 28 having been investigated numerically by Romanò and Kuhlmann [18].

To cope with problem 2 the above mentioned numerical investigations have all assumed a one-
way coupling between particle and flow. This approximation is well established and reliable for
dilute suspensions. In this approach, the influence of the particles on the fluid flow is neglected,
as are mutual interactions among the particles. Typically, a sufficient number of noninteracting
particles is initialized at random positions in a given flow, and the evolution of the particle ensemble
is monitored as a function of time, where the particle transport in the bulk is modeled by the Maxey-
Riley equation [27] or a variant thereof.

The bulk transport alone, however, is insufficient to explain the observation that small neutrally
buoyant particles are attracted to PAS on a very short timescale (see [8], Fig. 14 of [10], and [28]).
This indicates another aspect of problem 2: the necessary modification of the bulk-transport model
when a finite-size particle moves near a boundary of the domain. A corresponding correction is most
important for the motion near the free surface, because the thermocapillary stresses generate the



highest flow velocities on the free surface. Associated with the high surface velocity is a streamline
crowding which is the reason why particles are frequently transported very close to the free surface.
Despite its relevance for the problem at hand, the interaction of a finite-size particle with a flow
boundary has never been fully resolved for the thermocapillary liquid bridge. Existing studies were
concerned only with simpler settings such as, for example, a particle settling on a wall in a quiescent
fluid under the action of gravity [29,30], or the motion of a particle near an interface between
two immiscible viscous fluids in simple shear flow [31]. Perhaps the most relevant investigation,
in the current context, regarding the motion of a particle near a free surface subject to shear is
due to Romanò and Kuhlmann [32]. They numerically calculated the particle motion in an open
two-dimensional cavity whose free surface is subject to a constant shear. In their two-dimensional
computations all relevant temporal and spatial scales were resolved during the particle-boundary
interaction. Comparing their fully resolved, albeit two-dimensional, results with those obtained by
the simpler lump model of Hofmann and Kuhlmann [14], a very good agreement was obtained. This
required, however, one to replace the particle size in the lump model by a suitably selected collision
parameter which takes into account the width of the lubrication gap between the particle’s surface
and the interface. Other models for the motion of the particle near a moving boundary based on
asymptotic solutions for the settling of a sphere near a wall or a free surface [33] have as well been
suggested [34]. They essentially yield the same accumulation structures as predicted by the simpler
model of Hofmann and Kuhlmann [14] and Romanò and Kuhlmann [32] and only slightly modify
the dynamics. Therefore, the modified model of Romanò and Kuhlmann [32] based on the work of
Hofmann and Kuhlmann [14] appears to be the most efficient and sufficiently accurate approach for
predicting PAS to date.

To take into account the motion of the particles near the free surface, Hofmann and Kuhlmann
[14] modeled the particle-surface interaction as an inelastic collision of the particle with the free
surface when the spherical particle would touch the liquid-gas interface. Upon contact the normal
component of the velocity of the particle is instantaneously annihilated. After sliding along the
interface the particle would detach from the interface when it arrives at a point at which the normal
velocity is directed inward and the particle resumes its motion in the bulk. Idealizing the motion
of the particles in the bulk, Hofmann and Kuhlmann [14] were able to qualitatively explain the
accumulation of particles along closed threads (PASs) as well as on tubular structures by means of
a perturbed twist map.

The particle-surface interaction due to the finite size of the particle is key for PAS. It introduces a
strong dissipation in the dynamical system describing the particle motion. In case of pure advection
in the bulk, the particle-surface interaction is the only source of dissipation in the dynamical system.
This is important to note, since dissipation is a necessary condition for the existence of attractors
in dynamical systems [35]. Assuming finite-size particles are advected by a HTW for Pr = 4 in the
bulk, Hofmann and Kuhlmann [14] discovered that the KAM structure of the HTW is a template
for PAS. After repeated visits to the free surface many particles are transferred, by means of the
particle-surface interaction, from chaotic to regular streamlines and keep moving on periodic or
quasiperiodic orbits.

Hofmann and Kuhlmann’s model [14] improved by Romanò and Kuhlmann [32] has been
successfully tested by comparison with experiments on the particle motion in steady axisymmet-
ric thermocapillary flows [36]. Using the improved model, key experimental results on PAS in
liquid bridges with Pr = 28 [9,12,37] were reproduced numerically by Romanò and Kuhlmann
[18].

Recently Romanò et al. [38] demonstrated that PAS in liquid bridges is just a prominent example
of a more general class of finite-size coherent structures (FSCSs). They pointed out that PAS is
distinct from inertial Lagrangian coherent structures (LCSs), which rely on particle inertia [39,40].
A very detailed experimental study on periodic and quasiperiodic particle attractors, corresponding
to FSCSs, in a lid-driven cavity is due to Wu et al. [41]. Several other boundary-driven cavity flows
are characterized by regular streamlines which can serve as a template for FSCSs [42–46]. A review
on all PAS- and FSCS-related literature was recently given by Romanò and Kuhlmann [47].
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While for small density-matched particles the mechanism of PASs and FSCSs is independent
of particle inertia and buoyancy, buoyancy forces may prevent PAS for larger particles. For that
reason experiments under weightlessness conditions are of interest and can be realized within the
joint Japan-European Research Experiment on Marangoni Instability (JEREMI) which is planned
for the International Space Station (ISS) [48]. While PAS has been studied extensively in low-
and moderate-Prandtl-number liquid bridges on the ground, comprehensive experimental data and
numerical results for Pr = 68, which is foreseen for JEREMI, are still lacking. Merely, a few hints
about the existence of PAS in Pr = 68 thermocapillary liquid bridges have been detected during ISS
experiments [49], while recent numerical studies [50,51] reported some preliminary findings on PAS
formation. In the present study, we investigate PAS in thermocapillary liquid bridges for Pr = 68 to
provide a numerical basis for future space experiments as well as to identify flow parameters and
particle sizes for which PAS and FSCS are expected under zero gravity.

Section II presents the mathematical formulation of the problem. The numerical methods em-
ployed for simulating the flow and the particles are described in Sec. III. The general spatial structure
of the hydrothermal wave for Pr = 68 is discussed in Sec. IV A, while the flow topology is analyzed
in Sec. IV B. Results for PAS are provided in Sec. IV C. A summary of the results is given and
conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

We consider a dilute suspension of small rigid spherical particles in a liquid bridge. The particle
motion is predicted based on the one-way-coupling approximation [14,52] in which the effect of
the particles on the flow field is neglected. This enables one to calculate the flow field beforehand,
independent of the particles. The motion of each single particle in the given flow is then computed
based on the forces acting on the particle.

A. Fluid flow

A liquid bridge made of an incompressible Newtonian liquid (density ρ f , kinematic viscosity ν,
thermal diffusivity κ) is formed in the gap of width d between two coaxial circular cylindrical rods
of equal radius R. The aspect ratio is defined as � = d/R. The liquid bridge is held in place by the
surface tension between the liquid and the surrounding gas.

The two support rods are kept at different constant temperatures Tcold = T0 and Thot = T0 + �T
with �T > 0 being the temperature difference. As a result the surface tension between the liquid
and the ambient gas varies and is approximated up to linear order by

σ (T ) = σ0 − γ (T − T0), (1)

where σ0 = σ (T0) is the surface tension at the reference temperature and γ = −∂σ/∂T |T =T0 > 0
is the negative surface-tension coefficient. The variation of the surface tension is usually very small
compared to its reference value σ0. This allows one to consider the asymptotic limit of vanishing
capillary number Ca = γ�T/σ0 → 0 in which the capillary pressure dominates the hydrostatic and
the dynamic pressure. In this limit and for a liquid volume V = πR2d the liquid bridge is cylindrical
(Fig. 1).

While the surface tension variation (1) does not affect the shape of the liquid bridge for Ca → 0,
it causes tangential shear stresses, which act on the interface via the thermocapillary effect, thereby
resulting in a thermocapillary flow. Under zero-gravity conditions buoyancy forces in the bulk are
absent and the flow is driven only by thermocapillary surface forces.

The velocity and temperature fields in the cylindrical flow domain are obtained as solutions of
the Navier-Stokes, continuity, and energy equations. Assuming constant material properties and
using the thermal-diffusive scaling with d , κ/d , d2/κ , and ρ f κ

2/d2 for length, velocity, time, and
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FIG. 1. Sketch of a liquid bridge with cylindrical shape. The hot and cold solid supports are indicated by
color.

pressure, respectively, the governing equations are

(∂t + u · ∇)u = −∇p + Pr∇2u, (2a)

∇ · u = 0, (2b)

(∂t + u · ∇)θ = ∇2θ, (2c)

where u(x, t ) = uer + veϕ + wez, p(x, t ), θ (x, t ) = (T − T0)/�T are the dimensionless velocity
vector, pressure, and reduced temperature, respectively, and x = rer + zez is the position vector
with the polar unit vectors er , eϕ , and ez. The Prandtl number Pr = ν/κ = 68 is fixed corresponding
to 5 cSt silicone oil, the working fluid to be used in the JEREMI space experiment. The physical
properties of the fluid according to the data sheet of Shin-Etsu [53] are summarized in Table I.

The mathematical problem is closed by enforcing no-slip and constant-temperature boundary
conditions on the cold and hot rods

z = 0, 1: u = 0, θ = 0, 1. (3)

The velocity field on the free surface must satisfy no-penetration and thermocapillary stress condi-
tions, while the viscous stresses from the gas phase are neglected. Furthermore, we assume adiabatic
conditions, yielding

r = 1/�: u · er = 0, er · S · ez = −RePr
∂θ

∂z
, er · S · eϕ = −RePr

r

∂θ

∂ϕ
,

∂θ

∂r
= 0, (4)

where S = ∇u + (∇u)T is the viscous stress tensor in the liquid and

Re = γ�T d

ρ f ν2
, (5)

TABLE I. Physical properties of 5 cSt Shin-Etsu silicone oil at 25 ◦C [53].

ρ f ν κ σ0 γ

[kg/m3] [m2/s] [m2/s] [N/m] [N/mK]

912 5 × 10−6 7.353 × 10−8 19.7 × 10−3 6.37 × 10−5



the thermocapillary Reynolds number. Instead of the thermocapillary Reynolds number Re, the
Marangoni number Ma = RePr may be used.

Along with the Prandtl number, the fluid flow is determined by � and Re. Due to the compu-
tational cost associated with high-resolution numerical simulations necessary for resolving particle
accumulation structures, we focus on Pr = 68 and the aspect ratio � = 1, considering Re = 1500,
1750, 2000, 2250, and 2500.

B. Fluid trajectories

When the Reynolds number exceeds a critical value Rec the steady axisymmetric basic flow
becomes unstable, for Pr � 1, to a pair of azimuthally traveling three-dimensional waves, called
hydrothermal waves (HTWs) [54,55]. Depending on the Prandtl number and the thermal conditions
either a laminar standing wave or a laminar three-dimensional traveling wave with constant ampli-
tude evolves for Re > Rec and t → ∞ [56]. Consistent with the result of Leypoldt et al. [57] we
find standing waves for Pr = 68 at slightly supercritical Reynolds numbers. However, for all high
Reynolds numbers considered here, we find the flow in form of a traveling HTW (see Sec. III A).

Hofmann and Kuhlmann [14] showed that the structure of the streamlines, called Lagrangian
topology, is key to understanding and predicting PAS for small particles. Therefore, the Lagrangian
topology of the thermocapillary flow is paid particular attention. Since the Lagrangian topology of
a three-dimensional time-dependent flow is difficult to analyze, we take advantage of the fact that
all azimuthal spectral components of the flow field of a traveling HTW have the same azimuthal
phase velocity HTW [56]. This property enables us to transform the traveling wave u(x, t ) from
the laboratory frame of reference to a frame of reference rotating with the same angular velocity
 = HTW as the wave, so that the traveling HTW becomes steady in the rotating frame. The flow
in the rotating frame of reference is obtained as U (x) = u(x, t ) − rHTWeϕ . A single snapshot of
u(x, t ) is sufficient to obtain the traveling HTW in the rotating frame, up to a phase factor which
depends on the time t = t0 at which the snapshot is taken.

The traveling HTW being steady, trajectories of fluid elements coincide with streamlines in the
rotating frame of reference. Therefore, both types of lines are governed by the advection equation

Ẋ = U [X (t )], (6)

where X (t ) denotes the position of an infinitesimal fluid element at time t . Equation (6) is invariant
under the transformation to a rotating frame of reference with constant rotation rate. To obtain the
Lagrangian topology, (6) must be solved for as many as possible initial condition X (t = 0) = X 0,
covering the volume occupied by the fluid.

The flow state in form of a traveling HTW is important, because PAS has been observed
only for traveling waves, but not for standing waves. The steady flow in the rotating frame of a
traveling HTW allows for closed streamlines and closed streamtubes which serve as organizing
centers (or templates) for PAS [14,15]. The existence of such streamtubes for certain Reynolds
numbers is guaranteed by the analogy between steady three-dimensional incompressible flows and
Hamiltonian systems [21]. On the other hand, there does not exist a frame of reference in which
a standing wave would become steady. We are also not aware of any theory which has established
a Hamiltonian framework for incompressible three-dimensional time-dependent flows which could
prove the existence of closed streamtubes in standing HTWs. The absence of invariant streamtubes
in standing HTWs is probably the reason PAS has never been observed in standing HTWs.

C. Particle motion

In the present one-way coupling approach the motion of noninteracting particles is approximated
by the simplified version of the Maxey-Riley (SMR) equation [27] in the form provided by Babiano



et al. [52]. Given the steady velocity field in the rotating frame of reference U (x) the SMR equation
in the frame of reference rotating with the angular velocity � is [14]

Ẍ = 1

� + 1/2

[
−Pr

St
(Ẋ − U ) + 3

2

DU
Dt

]

− 2� ×
(

Ẋ − 3

2� + 1
U

)
− � × (� × X )

(
1 − 3

2� + 1

)
, (7)

where X denotes the nondimensional position vector of the particle centroid and D/Dt is the
material derivative following the flow. Two additional dimensionless numbers arise in the SMR
equation (7): the particle-to-fluid density ratio � and the Stokes number St defined as

� = ρp

ρ f
and St = 2a2

p

9d2
, (8)

where ap is the radius of the spherical particle and ρp its density. With definition (8) St is merely a
quadratic measure of the particle size. Equation (7) yields a good approximation to the motion of a
small particle if

1. the dimensionless radius of the particle a = ap/d � 1 is small, ρSt � 1,
2. the particle moves far away from the domain boundaries,
3. the particle Reynolds number Rep = a|Ẋ − U |/Pr � 1 is small, and
4. the suspension is dilute with a volume fraction of particles less than O(10−3).
All conditions except for (2) hold true for the cases considered. Condition (2) cannot be satisfied,

because the motion of the particle is hindered by its size near the boundaries of the flow domain,
in particular near the free surface. Therefore, the modified particle-surface interaction (PSI) model
of Hofmann and Kuhlmann [14] and Romanò and Kuhlmann [18] is employed. Since the particles
planned to be used in the JEREMI space experiment and considered in this study are larger than
ap � 1 μm, Brownian motion is negligible [58]. Owing to condition (1), the Faxén correction
can be neglected as it is proportional to a2, so it represents a higher-order correction in terms of
the Stokes number. In the case that the streamline curvature is significant, i.e., if ∇2u � 1, the
Faxén correction may be important. However, for the present thermocapillary flows the streamline
curvature is significant only near the triple-phase contact lines at the hot and cold rods, where
the PSI model is applied. Hence the effect of the Faxén correction is inherently embedded in
the PSI model. Another term neglected by the SMR equation is the Saffman lift force, which
represents an inertial correction to the Maxey-Riley equation. The Saffman lift tends to zero when
the particle Reynolds number Rep tends to zero [see condition (3)]. Finally, the Basset history
term is neglected in the simplified Maxey-Riley equation because it is a higher-order correction
in St. A quantitative criterion for estimating the importance of the Basset force was proposed by
Coimbra and Rangel [59], who considered a Stokesian particle immersed in an oscillatory flow.
They identified the parameter S = a2̂/9ν, where ̂ is the forcing frequency of the relative particle
velocity, and demonstrated that for S � 1 or S � 1 the Basset history force is negligible. In the
present problem, the particle moves almost like the fluid and the frequency of closed streamlines
in the rotating frame of reference near which PAS arises is very close to the frequency of the
hydrothermal wave. Therefore, the forcing frequency experienced by the particle will almost be the
frequency of the hydrothermal wave. With ̂ ≈ HTW = O(103) (m = 1; see Table II below) and
particles smaller than a = 0.05, one obtains S = a2̂/9ν � 5 × 10−3 � 1 and the Basset history
force can be neglected. Moreover, as shown by Romanò et al. [34], the SMR equation is a consistent
approximation when dealing with laminar bounded flows, since the added mass is more important
than the Basset term in the bulk and both of them are much smaller than the particle-boundary
interaction forces in the near-boundary region.

This inelastic collision model assumes that the particle centroid can approach the boundary
up to some distance � = a + δ, comprising the dimensionless particle radius a = ap/d plus a
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FIG. 2. Particle-boundary interaction modeled as an inelastic collision by the modified PSI model. The
dotted line denotes the trajectory if a spherical particle of radius a would not see the boundary; the solid
line represents the trajectory when the PSI model is enforced. Also indicated are the lubrication gap δ and
interaction parameter � = a + δ.

dimensionless lubrication gap width δ (see Fig. 2). At this distance � (interaction parameter)
from the flow boundary an approaching particle experiences an inelastic collision such that its
velocity component normal to the boundary is annihilated. After the collision the particle centroid is
supposed to slide, according to the z and ϕ components of (7), along a cylindrical surface with radius
R∗ = 1/� − �, where 1/� is the dimensionless radius of the liquid bridge. The sliding continues as
long as the flow velocity normal to the free surface at the location of the particle centroid is directed
out of the liquid. As soon as the normal component of the velocity changes sign and turns inward,
i.e., as soon as U [(X (t )] · n < 0, where n is the outward normal vector, the particle is released back
into the bulk, where it continues to satisfy (7).

For two-dimensional flows, Romanò and Kuhlmann [32] showed that numerical results obtained
using the PSI model compare very well with fully resolved numerical simulations. Numerical
calculations using the PSI model also compare well with experiments on axisymmetric flows [36].
Moreover, the PSI model including a properly selected lubrication-gap width δ, which may depend
on a, �, and the flow parameters, is capable of reproducing experimental PAS for Pr = 28 [18].
It is noteworthy that the PSI model acts directly on the particle velocity and does not require the
inclusion of boundary-related forces in (7). Therefore, this approach has a conceptual advantage:
different from force models, in which the particle motion near a boundary is affected by additional
forces, e.g., lubrication forces defined by the asymptotic solution for the particle in the local Stokes
flow [33,60], the PSI model can be combined with the perfect-tracer (advection) model (6) which
does not include any dynamical-systems dissipation effect. The perfect-tracer model (6) is retrieved
from (7) in the limit of St → 0 and � → 1. Considering this limit allows one to prove that the
particle accumulation obtained for this model derives solely from the particle-boundary interaction,
since the PSI is the only source of dissipation in this framework. Furthermore, in the perfect-tracer
limit, PAS exactly visualizes the relevant part of the Lagrangian topology.



III. NUMERICAL METHODS

A. Flow solver

The velocity and temperature fields are computed by solving numerically the governing equations
(2) together with boundary conditions (3) and (4) for appropriate initial conditions u(x, t = 0) and
θ (x, t = 0) on a very fine grid using the open-source software package OpenFOAM.

A standard pressure-based solver has been modified to include the thermocapillary stresses along
the free surface. In order to smooth the singularities due to the discontinuous azimuthal vorticity
at the three-phase contact lines at the hot and cold rods, a cosine regularization function f (z) is
introduced replacing the axial surface-stress condition in (4) by

∂w

∂r
= − f (z)RePr

∂θ

∂z
, f (z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

4

[
1 − cos

πz

L

]2
, if z < L,

1, if L � z � 1 − L,

1

4

[
1 − cos

π (1 − z)

L

]2

, if z > 1 − L,

(9)

where L is the length of the free-surface strip adjacent to the contact lines over which the boundary
condition is smoothed. In test calculations [61] a regularization length L = 0.02 was found to be
a good compromise between accuracy and required numerical effort. Therefore, this value is also
used for the present calculations.

The numerical simulations are performed using a finite-volume solver on a collocated com-
putational grid. For the pressure-velocity coupling the PISO (Pressure-Implicit with Splitting of
Operators) algorithm with two external correction steps is selected. Two additional internal cor-
rections are included to account for the nonorthogonality of the grid. The second-order central
scheme and the implicit second-order backward scheme are applied for the spatial discretization
and for the time integration, respectively. To solve the linear algebraic equations resulting from the
pressure-projection step the preconditioned conjugate-gradient (PCG) method is used, while the
linear equations resulting from the momentum and energy equations are solved iteratively using
the preconditioned biconjugate gradient (PBiCG) method. For all dependent variables (pressure,
velocity, and temperature) relative residuals less than 10−8 are reached at each time step before
proceeding to the next time step.

The grid of finite-volume cells employed to simulate the flow for Pr = 68 and � = 1 is shown in
Fig. 3. During the calculations the mesh is refined in three steps from coarse to fine using 2 370 585
(coarse), 10 466 000 (medium), and 21 504 000 (fine) cells, where the mesh sizes are given excluding
the boundary cells. Starting with the coarse mesh the simulation is advanced on each mesh until a
fully developed periodic flow (fully developed HTW) is reached. Thereafter, the grid is refined using
an interpolation consistent with the order of accuracy of the discretization scheme (second order)
by employing the interpolant mapFields provided by OpenFOAM.

Using a small constant time-step of �t = 10−8 the equations are integrated until the flow
becomes time-periodic. In all cases considered the periodic state is found to be a constant-amplitude
traveling HTW. During each simulation the velocity and temperature are monitored at sixteen
different points inside the liquid and on the free surface. When the traveling HTW is fully developed
the signal at each monitoring point must be periodic with frequency FHTW and suitable azimuthal
phase relations must hold, depending on the fundamental azimuthal wave number m and the location
of the probes. This yields the rotation rate of the wave HTW = (2π/m)FHTW. In the frame of
reference rotating with the rotation rate HTW the HTW is stationary. This property is used to
establish a convergence criterion. With F being the peak-to-peak frequency at time t of the periodic
sinusoidal signal in the laboratory frame of reference, the flow field is transformed to a frame of
reference rotating with the angular velocity ′ = (2π/m)F at time t . The flow is assumed to have
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FIG. 3. Computational grid as seen in the horizontal (x, y) cross section (a) and in the vertical (x, z) plane
(b). The grid employed for computing the Lagrangian flow topology is five times finer than the one depicted,
consisting of 21 504 000 cells (excluding boundary cells). Double lines indicate the meshing blocks employed
in blockMesh to define the computational grid.

become steady in this frame of reference when the condition

max
x,i

|ui(x, t ) − ui(x, t − �t )|
RePr�t

� 10−5 (10)

is satisfied at time t in the rotating reference frame. This termination criterion can hold only if the
flow is almost constant in time in the frame of reference rotating with ′. The angular velocity ′ at
which the convergence criterion (10) is satisfied is then identified as the rotation rate of the traveling
hydrothermal wave HTW = ′.

The procedures described above as well as the regularization of the boundary conditions were
tested and verified in Kuhlmann and Lemée [61]. For Pr = 28, an excellent agreement was obtained
between the numerical and experimentally measured angular frequencies of the hydrothermal waves
[18].

B. Trajectories of fluid elements and of particles

Once the flow field has become steady, streamlines of the HTW in the rotating frame of
reference are computed by numerically integrating the advection equation (6) using the Runge-Kutta
Dormand-Prince method [62] for given initial positions X (t = 0) = X 0. This method employs stan-
dard fourth- and fifth-order Runge-Kutta schemes at each time step. An estimate of the numerical
error is derived from the difference between the two results. Hereinafter, the absolute and relative
errors estimated by the Dormand-Prince method are enforced to be less than 10−9 by adaptively
selecting the time-step size �t . For streamline integration the velocity field must be known at
arbitrary points. This requires an interpolation of the discrete flow data which is accomplished by
second-order interpolation, consistent with the accuracy of the flow solver.

Different from streamlines and tracer trajectories, particle trajectories are computed by solving
the SMR equation (7) using a classical fourth-order Runge-Kutta method. To reduce the compu-
tational cost for the calculation of particle trajectories the steady velocity field U is interpolated
(second order) from the OpenFOAM grid to a structured cylindrical grid. Another advantage of
using cylindrical coordinates is that the cylindrical grid exactly fits the free surface of the liquid
bridge and thus facilitates the implementation of the particle-surface interaction model. The cylin-
drical grid consists of (Nr, Nϕ, Nz ) = (200, 240, 601) grid points, where N denotes the number of
points per direction, yielding a total 28 848 000 grid points. To take care of the viscous and thermal



TABLE II. Angular phase velocity of the fully developed HTW as function of Re for Pr = 68 and � = 1,
given in the units of κ/d2.

Re HTW [κ/d2]

1500 835.5
1750 901.2
2000 953.2
2250 988.8
2500 1026.6

boundary layers the cylindrical grid is compressed towards the support rods and the free-surface by
the same amount as the original block-structured OpenFOAM grid.

To ensure an accurate integration of the SMR equation on the cylindrical grid, several tests have
been performed. It was checked that regular streamlines obtained on an original block-structured
grid are reproduced using the cylindrical grid, while streamlines initiated in the chaotic region are
chaotic regardless of the grid used. Furthermore, for particles with St � 10−4 and � = 1 the trajecto-
ries obtained integrating the SMR equation up to t = 5 on the cylindrical grid do not deviate by more
than 10−3 from the streamlines computed on the original OpenFOAM grid. Since the computed
HTW has a very small residual divergence error, tracer particles cannot accumulate by integrating
the advection equation without taking into account the particle-surface interaction. This was verified
using 4000 random initial conditions and integrating up to t = 5. The same was verified for the
SMR equation, for the above parameters, using the same set of initial positions X (t = 0) = X 0

and initial velocities Ẋ (t = 0) = U (X 0) matched to velocity of the flow. In particular, if a particle
with � = 1 and St = 10−5 is initialized velocity-matched on a regular streamline, it visibly stays on
this streamline for at least up to t = 5 (the deviation of the trajectory from the streamline does not
exceed 10−4). From these tests we found a constant time-step size of �t = 10−7 to be sufficient for
the desired accuracy if the SMR equation is integrated for no longer than t = 5 thermal-diffusive
time units.

IV. RESULTS

A. Hydrothermal waves

A linear stability analysis for � = 1 reveals that the basic axisymmetric vortex flow considered
here becomes unstable at a critical Reynolds number Rec = 917 [63]. The flow bifurcates, via a for-
ward Hopf bifurcation, into a pair of counter propagating hydrothermal waves. Standing or traveling
waves can arise. For adiabatic boundary conditions we find standing waves for slightly supercritical
driving, whereas a constant-amplitude traveling wave is obtained for all higher Reynolds numbers
considered herein, i.e., for Re = 1500, 1750, 2000, 2250, and 2500. All traveling waves arise with
a fundamental wave number m = 1 and propagate in the positive ϕ direction. The angular phase
velocities of the HTWs are given in Table II.

Since the phase of the HTW in the rotating frame is arbitrary, depending on the instant at which
the snapshot of the flow field is taken in the laboratory frame, we define the phase relative to the
azimuthal angle at which the reduced temperature θ on the free-surface r = 1/� in the midplane
z = 0.5 reaches its maximum value θmax. Thus

θmax = max
ϕ̃

θ (r = 1/�, ϕ̃, z = 0.5) = θ (r = 1/�, ϕ := 0, z = 0.5), (11)

where ϕ̃ is the original azimuthal coordinate which contains an arbitrary shift, and ϕ is the azimuthal
coordinate relative to the angle ϕ̃θmax at which θ = θmax. The temperature distribution on the free
surface at midplane is shown in Fig. 4 for different Reynolds numbers. The hydrothermal wave
becomes increasingly inharmonic and travels faster (Table II) the higher the Reynolds number is.
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FIG. 4. Temperature distribution θ (r = 1/�, ϕ̃, z = 0.5) on the free surface in the midplane for � = 1.
Here ϕ̃ is the phase angle in the rotating frame up to an arbitrary phase. The hydrothermal wave travels in the
positive ϕ-direction shown by the arrow for all cases considered. The vertical dashed line indicates ϕ = 0. The
vertical dotted lines indicate ϕ = −π/4 and ϕ = 3π/4 at which vertical cuts are taken below.

Note that the signature of the wave on the free surface at midplane is very weak, with peak-to-
peak amplitudes less than 1% of the total temperature variation across the liquid bridge. The small
surface temperature variation, as compared to a much larger temperature variation in the bulk, is a
characteristic property of hydrothermal waves [54,64].

As a representative example, we discuss in some detail the flow fields of the HTW for � = 1
and the largest Reynolds number Re = 2500. The temperature field is shown in Fig. 5. Viewed
from the hot wall in the negative z direction the wave propagating in positive ϕ direction appears
to travel counterclockwise in the figure. Figures 5(a) and 5(b) show contours of θ in the midplane
[Fig. 5(a)] and in a vertical cross section at ϕ = −π/4, 3π/4 [Fig. 5(b)]. The horizontal axis x′
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FIG. 5. Temperature field of a fully developed counterclockwise-traveling HTW for � = 1 and Re = 2500.
The full temperature field θ is shown (a) in the midplane z = 0.5 and (b) in a vertical cross section at ϕ =
−π/4, 3π/4. The nonaxisymmetric fluctuating part of the temperature field θ̂ is shown (c) in the midplane
z = 0.5 and (d) on the cylindrical free surface r = 1/�. The vertical cross section at ϕ = −π/4 shown in (b) is
indicated by the x′-axis in (a) and by the vertical black line in (d).

in the vertical plane ϕ = −π/4 is defined such that ex′ = cos(ϕ̃θmax − π/4)ex + sin(ϕ̃θmax − π/4)ey.
It can be seen that the temperature field is primarily determined by the basic axisymmetric flow.
The toroidal vortex can be anticipated from Fig. 5(b) by the two large hot patches shown in
a reddish color (θ ≈ 0.75). Cold fluid is transported towards the hot rod only along a slender
region near the axis, where it undergoes rapid heating. As expected for such a large Marangoni
number of Ma = 1.7 × 105, the thermal boundary layers due to the strong convective effect
are very thin on the hot and cold walls [Fig. 5(b)] and, in particular, near the hot and cold
corners.

The fluctuating part of the temperature field of the hydrothermal wave θ̂ = θ − (2π )−1
∫ 2π

0 θ dϕ

is given by the deviation form the azimuthal mean. It is shown in the midplane [Fig. 5(c)] and on the
free surface [Fig. 5(d)]. From Fig. 5(c) it is noticed that the fluctuations have the largest amplitude
in the interior of the liquid bridge with an amplitude in the midplane of about 10%. The weak hot
and cold filaments of the temperature fluctuations extend axially and split azimuthally (not shown)
as they approach the hot wall, where they leave their signature on the free surface in form of very
weak hot and cold spots with amplitude of ≈0.006 (note the scale) near the hot wall [Fig. 5(d)].
The inharmonicity in ϕ of the wave is clearly seen. The wave fronts on the free surface are slanted
with respect to the z direction giving the impression as if the wave also propagates towards the hot
wall in a certain region near z = 0.5.
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FIG. 6. Velocity field of a fully developed counterclockwise-traveling HTW for � = 1 and Re = 2500 in
the laboratory frame of reference. (a) Magnitude of the axial shear stress |∂w/∂r| in the plane ϕ = −π/4.
(b), (c) Velocity vectors (arrows) and velocity magnitude (isolines in color) near the hot corner in the plane
ϕ = −π/4 (b) and in the midplane z = 0.5 (c). (d) Velocity vectors (arrows) and velocity magnitude (isolines
in color) of the fluctuating part of the velocity field in the midplane.

The largest surface-temperature gradients arise near the hot corner and create a thermocapillary
stress primarily acting in the negative z direction. The resulting large radial gradient of the axial
velocity near the hot corner is illustrated in Fig. 6(a) by showing |∂w/∂r| in the (x′, z) plane. The
axial shear |∂w/∂r| [Fig. 6(a)] attains its largest value on the free surface near the hot corner.
Defining the projection of the velocity field onto the vertical plane (x′, z) as ux′,z = (u · ex′ )ex′ +
wez, its magnitude and direction near the hot corner are shown in Fig. 6(b) by color and arrows,
respectively. As a result of the thermocapillary stresses, the fluid is attracted from the bulk [arrows
in Fig. 6(b)] to the hot corner and ejected mainly axially along the free surface. The fluid is also
attracted from the free surface to the cold corner, but to a much lesser degree, since the region of
high axial shear stress near the cold corner arises over a much smaller distance from the cold corner.
Therefore, the toroidal vortex flow covers the whole length of the liquid bridge with the highest
velocities arising in the upper part of the liquid bridge, in particular, near the hot corner. We did not
find any flow separation from the solid walls as was observed in buoyant thermocapillary flow for
Pr = 28 and � = 0.68 [18].



The projection of the velocity field onto the midplane z = 0.5, defined as ur,ϕ = uer + veϕ , is
shown in Fig. 6(c). The flow is seen to be strongly asymmetric with cross flow at the origin,
characteristic for a HTW with m = 1. The nonaxisymmetric (fluctuating) part of the flow in the
midplane, defined as ûr,ϕ = [u − (2π )−1

∫ 2π

0 u dϕ]er + [v − (2π )−1
∫ 2π

0 v dϕ]eϕ , is shown in
Fig. 6(d). It arises in form of two weak (compared to the axisymmetric part of the flow) vortices in
the bulk which are driven by the weak azimuthal temperature gradients (stresses) on the free surface
[see Fig. 5(d)]. The stronger fluctuating temperature extrema in the bulk [Fig. 5(c)] are created
by the action of the weak perturbation vortices on the large radial temperature gradients shown in
Fig. 5(b).

The axisymmetric part of the flow has closed streamlines and can be derived from a streamfunc-
tion. These streamlines are all regular, since the streamfunction plays the role of a Hamiltonian of the
corresponding one-degree-of-freedom dynamical system, for which chaotic streamlines cannot arise
[20]. As we shall see in the next section, the weak mainly axial vortices created by the fluctuations
due to the HTW are sufficient to make almost all streamlines chaotic.

B. Streamline topology

The fully developed hydrothermal wave satisfying the convergence criterion (10) is stationary
in the rotating frame of reference. Such an incompressible flow is equivalent to a piecewise
Hamiltonian system with one and a half degrees of freedom [21] in which the velocity represents the
flux in the phase space of the system. Therefore, both regular and chaotic streamlines can coexist
in the flow. The closed KAM tubes are stationary in the rotating frame of reference and fluid is
transported along the stationary tubes being confined to them. Therefore, the KAM tori can be
considered closed material tubes. This property is preserved in the laboratory frame of reference.
The tubes remain closed. Merely, the material tubes are no longer stationary, but spiral about the
basic state vortex and the azimuthal transport in the tubes is due only to the weak azimuthal flow of
the HTW. Therefore, fluid contained in these winding material tubes does not mix with the fluid
outside of the tubes which moves on chaotic streamlines. Owing to the importance of regular
streamlines for PAS [14–16], the streamline topology of the steady flow U (x) is analyzed in the
rotating frame of reference with focus on the geometry of the KAM tori.

Regular and chaotic streamlines are, indeed, found to coexist for all Reynolds numbers con-
sidered. The high spatial resolution of the simulations enables one to identify various sets of
KAM tori. In the center of each set of KAM tori there exists a closed streamline. It may wind
several (n) times about the z axis before closing. To identify the closed streamlines we consider
the Poincaré return map of different streamlines on the half-plane ϕ = −π/4. On this half-plane, a
closed streamline of period n appears as a fixed point x′∗ of the nth return to the half-plane. To find
fixed points of period n we search for zeros of the vector function f (x′) = x′

n(x′) − x′, where x′
n(x′)

is the nth return to the Poincaré half-plane of the streamline initiated at x′ = (x′, z) in the same
half-plane. The zeros x′∗ of f are calculated by Newton-Raphson iteration with absolute accuracy
of ‖x′(k) − x′(k−1)‖ < 10−5, where k numbers the iteration step. The iteration uses initial conditions
x′ = (x′, z) = (0.5 + 0.05 × i, 0.1 + 0.05 × j) on a regular grid in the Poincaré half-plane with
i = 0, 1, . . . , 9, j = 0, 1, . . . , 16. To distinguish neutrally stable (elliptic) fixed points from unstable
(hyperbolic) ones, a streamline is integrated from the obtained numerical approximation of the fixed
point for as long as t = 30. If ‖x′

n×in − x′∗‖ < 10−5, i.e., almost zero, for all in = 2, 3, . . . , the fixed
point is classified as elliptic and the corresponding streamline is closed. Otherwise the fixed point is
hyperbolic.

Once an elliptic closed streamline is found, surrounding KAM tori are obtained by computing
streamlines originating from the close vicinity of the elliptic point. We define the largest recon-
structible KAM torus as the torus obtained from the outermost regular streamline found near the
closed streamline. The streamlines are classified either regular or chaotic according to at least 100
ordered returns to the Poincaré plane.
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FIG. 7. (a) Poincaré section of streamlines in the (x′, z)-plane (ϕ = −π/4, 3π/4) for � = 1 and Re =
1500. Gray (colored) Poincaré points indicate chaotic (regular) streamlines. Some of the closed streamlines (L)
and KAM tori (T ) are indicated by labels. (b) Zoom into the Poincaré section of the lower left group of KAM
tori in (a).

As an example, the Poincaré section of streamlines on the full plane ϕ = −π/4 and ϕ = 3π/4
is shown in Fig. 7 for � = 1 and Re = 1500. To distinguish among the different structures, closed
streamlines and KAM tori are denoted by Ln and Tn, respectively, where n is the azimuthal period
of the object. Note that n can be larger than the fundamental azimuthal period m = 1 of the HTW
due to the resonance phenomenon [65].

Two major groups of KAM tori, shown in color and indicated by superscripts A and B, can
be identified in Fig. 7. Group A is organized around the closed streamline LA

1 , while group B is
organized around LB

1 . Both closed streamlines wind once about the z-axis. In the bulk of the flow the
KAM structures appear nicely ordered at ϕ = 3π/4 (left side of Fig. 7 with x′ < 0). The streamline
LA

1 does not approach any boundary closer than 0.1, neither in the Poincaré plane nor in the whole
flow domain. This property suggests that small particles may not form PAS near LA

1 . On the other
hand, LB

1 approaches the free surface much closer, and the whole group B of KAM tori becomes



(a) LA
1

x

y

(b) LB
1

x

y

FIG. 8. Two central closed streamlines LA
1 (a) and LB

1 (b) for � = 1 and Re = 1500 which wind once about
the axis. Left side of each subfigure: three-dimensional view of the closed streamline and Poincaré section.
Right side of each subfigure: axial projection of the closed streamline with the location of the Poincaré plane
(x′ axis) indicated by the straight black line.

extremely squeezed and stretched near the free surface at ϕ = −π/4 (right side of Fig. 7 with
x′ > 0). Obviously, the stretching is caused by the high strain rates [see Fig. 6(a)] exhibited by the
flow field due to the large thermocapillary stresses near the hot corner. Furthermore, the KAM tori
of group B appear also wrapped around group A at ϕ = −π/4 (x′ > 0). Based on the proximity of
group B to the free surface, this group bears a potential for being important for PAS (see Sec. IV C).

Axial projections as well as three-dimensional views of the closed streamlines LA
1 and LB

1 are
shown in Fig. 8 together with the Poincaré sections on ϕ = −π/4, 3π/4. The closed streamline LB

1
in Fig. 8(b) approaches the free surface relatively closely, up to a distance �FS = 0.02794. This
is a hint at its potential importance for PAS when suitably sized particles are added to the liquid
(see Sec. IV C). Many more complex closed streamlines exist. Examples are LA

2 , LA
3a [Figs. 9(a)

and 9(b)], and LA
7 [Fig. 12(a) below]. These streamlines are closed only after two, three, and seven

revolutions about the axis, respectively. Note that a letter in the subscript distinguishes between
different streamlines/KAM tori of the same azimuthal period that belong to the same group of KAM
tori. A very intricate structure of the regular streamlines is found inside of the torus T B

1 [Fig. 7(b)].
This includes, among others, the closed streamlines LB

5 , LB
11, and even LB

17. According to the KAM
theorem [65], these elliptic points are surrounded by KAM tori of the same period and alternate
with hyperbolic fixed points which are embedded in chaotic layers. These examples illustrate the
complex streamline structure of hydrothermal waves for Pr = 68.

To provide quantitative (reference) information on the flow topology for � = 1 characteristic
data of the most prominent closed streamlines (L) and KAM tori (T ) are gathered in Table III.
Given in the table are the period of the closed streamline (τ ) and the closest approach of the closed
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FIG. 9. Three-dimensional view (left) and axial projection (right) of closed streamlines LA
2 (a) and LA

3a

(b) for � = 1 and Re = 1500 which wind two and three times about the axis, respectively. Also shown is the
Poincaré section (left) and the location of the Poincaré plane by the black line (right).



TABLE III. Characteristic data for some of the closed elliptic streamlines L and KAM tori T near which
PAS is found. Given are the period τ of the closed streamline in the rotating frame and the minimum distances
from the free surface (�FS) and from the hot wall (�W). The coordinates (x′

0, z0) in the plane ϕ = −π/4
define either a closed streamline or a streamline on the largest reconstructible KAM torus. The angle ϕ̃θmax

characterizes the location of the plane ϕ = 0 with respect to the original computed flow field. Pr = 68 and
� = 1.

Re Streamline/KAM τ �FS �W (x′
0, z0) ϕ̃θmax

1500 LB
1 0.00743 0.02794 0.06237 (0.97199, 0.89899) −1.00980

LA
2 0.01506 0.03701 0.07743 (0.70366, 0.54863)

LA
3b 0.02261 0.02507 0.05620 (0.92261, 0.72344)

LB
5 0.03766 0.04525 0.09136 (0.96739, 0.92793)

LA
7 0.05273 0.04103 0.08447 (0.74351, 0.53045)

LA
9 0.06784 0.02423 0.05463 (0.91151, 0.64812)

LB
11b 0.08191 0.02307 0.05323 (0.94816, 0.61140)

T B
1 0.02278 0.05267 (0.93761, 0.52690)

T A
5b 0.02737 0.06039 (0.72090, 0.44716)

1750 LB
1 0.00680 0.02707 0.06120 (0.96129, 0.77167) 2.32814

LB
9 0.06127 0.02455 0.05633 (0.94830, 0.62978)

T B
1 0.02415 0.05554 (0.94085, 0.59982)

T A
8 0.03969 0.08123 (0.81087, 0.49980)

2000 LA
1 0.00640 0.04141 0.08587 (0.88149, 0.61484) 2.91719

LB
1 0.00656 0.02578 0.05805 (0.96550, 0.75765)

LB
4 0.02578 0.01948 0.04450 (0.96553, 0.66376)

2250 LB
1 0.00612 0.02838 0.06177 (0.96284, 0.72148) −2.74889

LA
2 0.01262 0.03703 0.07541 (0.88799, 0.62966)

LA
5 0.03163 0.02647 0.05520 (0.90777, 0.81681)

LB
7 0.04298 0.02413 0.05212 (0.96688, 0.94472)

2500 LA
2 0.01219 0.02829 0.06335 (0.83488, 0.46749) 1.96349

LB
7 0.04129 0.01923 0.04585 (0.97857, 0.92628)

T B
1 0.02388 0.05564 (0.94554, 0.56269)

streamline/KAM torus to the free surface (�FS) and to the hot wall (�W). The cold wall is never
approached as close as the hot wall. In addition, the locations of the closed streamlines are specified
by providing the respective fixed points in the plane ϕ = −π/4. In case of a torus, we specify a
point which defines the torus by the streamline originating from this point. Finally, we note the
angle ϕ̃θmax by which the original coordinate system has to be rotated to satisfy (11). From Table III
one can see that the closed streamlines and KAM tori are located much closer to the free surface
than to the hot (or the cold) wall.

As the Reynolds number is increased, some regular regions of the flow persist, at least up to
Re = 2500, the largest Reynolds number considered. However, the KAM tori have the tendency
to become more slender. Figure 10 shows Poincaré sections for Re = 1750 and 2000, and Fig. 11
for Re = 2250 and 2500. For Re = 1750, 2000, and 2250 the main topological features of the
flow are similar to the ones found for Re = 1500 with two groups of regular regions organized
around LA

1 and LB
1 . The higher the Reynolds number the closer T A

1 approaches the free surface.
Between Re = 2000 and 2250 LA

1 undergoes a period-doubling bifurcation and transforms into LA
2

[cf. Figs. 10(b) and 11(a)], still being surrounded in some distance by KAM tori of period one.



FIG. 10. Poincaré sections of streamlines in the (x′, z)-plane (ϕ = −π/4, 3π/4) for � = 1: (a) Re = 1750,
(b) Re = 2000. Gray (colored) Poincaré points indicate chaotic (regular) streamlines. Some of the closed
streamlines (L) and KAM tori (T ) are indicated by labels. Also shown are zooms into the Poincaré sections of
the upper left (a, b) and lower left (a) groups of KAM tori.

Moreover, an additional regular region, which is encompassed by T A
1b and contains LA

2 , is found
near T A

1a for Re = 2000 [Fig. 10(b)]. For Re = 2250 [Fig. 11(a)], the regular region which was
surrounded by T A

1b in Fig. 10(b) has become chaotic and no other regular region of period one is
found in the vicinity of T A

1 anymore. At Re = 2500 the KAM tori of group A (T A
1 ) have vanished and

only the period-doubled tori [orange in Fig. 11(b)] around LA
2 have survived. On the other hand, T B

1
still exists at Re = 2500, although LB

1 has transformed into a closed streamline LB
3 with period three.



FIG. 11. Poincaré sections of streamlines in the (x′, z)-plane (ϕ = −π/4, 3π/4) for � = 1: (a) Re = 2250,
(b) Re = 2500. Gray (colored) Poincaré points indicate chaotic (regular) streamlines. Some of the closed
streamlines (L) and KAM tori (T ) are indicated by labels. Also shown are zooms into the Poincaré sections of
the upper left (a) and lower left (a, b) groups of KAM tori.

For all Reynolds numbers considered, T B
1 is strongly drawn to the hot corner where the torus

reaches the closest point of approach to the free surface, thereby being stretched the most in the axial
direction. Therefore, the streamline topologies for all Reynolds numbers considered bear potential
for PAS. Examples of closed streamlines for different Reynolds numbers are presented in Fig. 12.
They are shown both in three-dimensional view along with the corresponding Poincaré section and
in an axial projection as seen from the top (hot rod).
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FIG. 12. Three-dimensional view (left) and axial projection (right, view from the hot rod) of closed
streamlines for different Reynolds numbers as indicated in the subcaptions. Also shown are the Poincaré section
(left) and the location of the Poincaré plane (black line, right).

C. Particle accumulation structures

The motion of a particle depends on its relative density �. An important limit is � = ρp/ρ f → 1.
Therefore, in a first step, we investigate PAS for small spherical particles which have the same
density as the fluid, i.e., for � = 1. Thereafter, the influence of a density mismatch � �= 1 on PAS is



considered as well as the alterations of the particle motion caused by changes of the flow field due
to a change of the Reynolds number.

If density-matched particles are initiated velocity-matched to the flow, the SMR equation (7)
reduces exactly to the advection equation (6). This also holds true if the modified particle-surface
interaction (PSI) model [14,18] is implemented. The reason is the equivalence of (7) and (6) for
velocity matching holds true component-wise and, after an interaction event, the particle is released
to the flow with a vanishing boundary-normal velocity component. Therefore, the particle motion
in the bulk of the liquid bridge can be obtained integrating (6), while near the free surface and the
walls the modified PSI model is implemented. In this approach, the only parameter characterizing
the particles is the thickness � of the layer on the boundaries (the free surface and the walls) which
is not accessible by the centroids of the particles. Since the PAS obtained this way is formed solely
due to the finite particle size, it represents a finite-size coherent structure (FSCS) [47].

1. Monitoring the temporal evolution of a particle ensemble

Within the present one-way coupling approach particle accumulation is a single-particle process.
Nevertheless, it makes sense to consider an ensemble of noninteracting particles initialized at
random positions, because the evolution of the ensemble takes into account the global attraction
dynamics. For a quantitative characterization of the evolution of the ensemble we follow Muldoon
and Kuhlmann [16] and introduce the same box counting measure K (t ) to quantify the accumulation
process. To that end the liquid bridge is partitioned into Ncells cells of equal volume. For a given total
number N of particles the accumulation measure

K (t ) = 1

2(N − N̄ )

Ncells∑
i=1

|ki(t ) − N̄ | (12)

with K ∈ [0, 1] can then be defined as the normalized sum over all cells of the deviations of the
number of particles ki(t ) in each cell from the average number of particles per cell N̄ = N/Ncells.
The same accumulation measure has already been used in numerical and experimental studies
[50,66]. For convenience we select the number of cells N = 4000 equal to the number of particles,
thus N̄ = N/Ncells = 1, and use 10 × 40 × 10 cells in the radial, azimuthal, and axial directions,
respectively. The widths of the cells in the azimuthal and axial directions are �ϕ = 2π/40 and
�z = (1 − 2�)/10, respectively. In order to satisfy the requirement of equal cell volumes, the radial
cell length is ri+1 − ri = [(1/� − �)2/10 + r2

i ]1/2 − ri, i = 1, . . . , 10.

2. PAS for density-matched particles

We consider the motion of 4000 noninteracting spherical particles governed by (6) and the PSI
model. The particles are initialized at t = 0 at random positions within the volume accessible to the
particle centroids. The large number of finite-size particles is merely used to improve the statistics,
they do not interact with each other.

The evolution of the particle ensemble for � = 1 and Re = 1500 is shown in Fig. 13 for two
different interaction parameters as it evolves from the random distribution shown in Fig. 13(a). To
show the particle distribution within the liquid bridge we use the same coordinate system as for the
flow streamlines presented above. Depending on the interaction parameter � = 0.037 [Figs. 13(b)–
13(d)] and � = 0.0082 [Figs. 13(e)–13(h)] different PAS emerges. Particles which have undergone
at least one interaction with the free surface or the solid walls are colored red, while particles which
have not interacted with the boundaries up to the time displayed are colored blue. The time t which
has passed since the initialization of the particle motion is given in Fig. 13 in units of the thermal
diffusion time d2/κ .

Graphs of the accumulation measure K (t ) for the evolution of the particle ensembles shown in
Fig. 13 are presented in Fig. 14 (blue lines). The dashed red lines in Fig. 14 show the fraction Nred/N
of particles which, at time t , have undergone at least one collision with the free surface, or, to be



FIG. 13. Temporal evolution of the distribution of 4000 particles from random initial positions (a) for
� = 1, Re = 1500, and � = 0.037 (top row) and � = 0.0082 (bottom row) shown in axial projection. Red
dot: particle has undergone at least one PSI, blue dot: particle has not undergone any PSI. Time is indicated in
the subcaptions. Note that the dot indicates the particle centroid, not the particle size. The dashed red circle of
radius R∗ = 1/� − � indicates the cylindrical surface on which the PSI occurs.

more precise, their centroid have visited the cylindrical surface of radius R∗ = 1/� − � (illustrated
by the dashed red circle in Fig. 13).

The particle-wall interactions arise mainly during the early phase of PAS evolution because of
particles initialized near the axis of the liquid bridge and the solid walls. After the central and the
wall regions of the liquid bridge have become depleted of particles, particle-wall collisions are very
sparse, because the streamline crowding is most dense near the free surface.

FIG. 14. Time evolution of the accumulation measure K (t ) (solid blue line) and of the fraction of particles
Nred/N which have undergone a PSI at least once (dashed red line) for � = 0.037 (a) and � = 0.0082 (b). The
parameters are the same as in Fig. 13.



FIG. 15. Combinations of � and Re for which periodic (red dots) and quasiperiodic (blue squares) particle
accumulation structures form by t = 5 in numerical simulations for � = 1 using advection in the bulk and the
modified PSI model near the flow boundaries.

The initial random distribution with K (t = 0, N → ∞) = e−1 ≈ 0.37 rapidly increases to K ≈
0.8 within t < 0.05 indicating clustering. This is due to the fact that many particles from the region
near the axis of the liquid bridge are directly advected to the free surface where they are removed
from their streamlines by the first collision [67]. For the interaction length � = 0.037, most particles
(up to 90%) become colored red during this early phase of evolution. As a result of the PSI, the
central region of the liquid bridge becomes rapidly depleted of particles [Figs. 13(b) and 14(a)]. The
further gradual evolution of K (t ) to K (t → ∞) ≈ 0.91 is caused by the slower attraction of most of
the particles (≈93% by time t = 0.5) to a periodic orbit by multiple PSIs. For the interaction length
� = 0.037 the periodic orbit which evolves practically coincides with the closed streamline LA

2 of
the flow [compare Fig. 13(d) with Fig. 9(a)]. LA

2 is, in fact, tangent to a cylindrical surface of radius
R∗ = 1/� − � = 0.963 at which the PSI takes place (see Table III for the closest approach of LA

2
to the free surface), so that most of the particles undergoing PSI are eventually released to T A

2 and
cannot leave from there anymore [14].

Some particles (≈7% of all particles) never approach the free surface sufficiently close to
undergo a PSI, since they have been initialized in KAM tori which are located further from the
free surface than � = 0.037. Therefore, these particles are always perfectly advected and will never
be attracted to a limit cycle.

PAS can also form in the chaotic region [68]. This is found to be the case for smaller particles
with the interaction parameter � = 0.0082. The evolution of the particle ensemble is shown in
Figs. 13(e)–13(h) and 14(b). The initial stage is similar to the one for larger particles discussed
above, but only about 50% of the particles approach the free surface such that they experience PSI.
They are depleted from the near-axis region, resulting in an accumulation measure slightly above 0.5
by t = 0.05. Further on, most particles are transferred by PSI to a trajectory which does not coincide
with any closed streamline of the flow. Rather, particles gather on a limit cycle which is made
of segments of two specific chaotic streamlines. Even though the underlying chaotic streamlines
are open, the two streamline segments are closed by two PSIs on the free surface and after three
revolutions about the axis [68]. Figure 13(g) shows the particle distribution at t = 0.5 is still diffuse
in axial projection with slightly more than 60% of the particles having undergone at least one PSI
and K ≈ 0.58, while other particles are still moving in the chaotic toroidal core near the apparent
vortex core of the flow. By t = 5 [Fig. 13(h)] PAS has become a sharp linelike structure [see also
Fig. 16(e) in the next section], while more particles from the toroidal core continue to gradually



FIG. 16. Examples of PAS for � = 1 in a thermocapillary liquid bridge for � = 1 and Re = 1500 at time
t = 5. Shown are axial (top) and azimuthal (bottom) projections of the particle configuration for different
values of �. Red dot: particle has undergone at least one PSI, blue dot: particle has never contacted the free
surface. The cylindrical surface of radius R∗ = 1/� − � is indicated by the dashed red circle (top) and by
the dashed red straight line (bottom). Closed streamlines relevant for PAS are shown by dotted black lines in
(b)–(d) and (f)–(h).

undergo their first PSI and accumulate on the periodic orbit. As can be seen from Fig. 14(b) this
process is not very efficient and is characterized by a slow growth of K and Nred/N , also beyond
t = 5. Conceptually, unless particles move in a distant KAM torus or in a distant separated chaotic
region, all particles are expected to end up on the attractor for t → ∞, because the chaotic sea of
streamlines extends to the full free surface.

3. Existence range of PAS for density-matched particles

Owing to the complex structure of the KAM tori, particles can accumulate for a variety of particle
radii. To obtain an overview on the parameters (Re,�) for which PAS forms the motion of 4000
initially randomly distributed particles with � = 1 is computed up to t = 5 for each of the five
Reynolds numbers considered and for interaction parameters densely covering � ∈ [0.001, 0.05] in
steps of 0.001.

A particle ensemble qualifies as “PAS existing” if K (t = 5) > 0.5 and if the visual inspection
indicates a periodic or quasiperiodic accumulation pattern. Periodic attractors appear sharp in axial
and azimuthal projections of the particle positions, while a quasiperiodic structure appears diffuse.
A quasiperiodic attractor, or tubular PAS (using the naming convention of Muldoon and Kuhlmann
[16]), is expected to arise if �FS(T ) < � and �FS(L) > � [14,16]. Such a quasiperiodic attractor
can be clearly identified by Poincaré sections and distinguished from the quasiperiodic motion of
noncolliding particles in distant KAM tori.

Parameters for which PAS exists according to the above-mentioned criterion are indicated in
Fig. 15 by blue squares for quasiperiodic structures and by red dots for periodic structures or for
cases when both periodic and quasiperiodic structures coexist. This does not mean that the time
span of t = 5 is required for PAS to form. In fact, in many cases the particle accumulation occurs



on a shorter timescale. This can be seen from Figs. 13(d) and 14(a), where most of the particles
cluster around the closed streamline LA

2 of the flow after t = 0.5 � 5. The largest probability
for PAS for � = 1, as can be seen in Fig. 15, is found near � ≈ 0.03. Since � > a and usually
� < 2a [18,32], the size of the spherical particles which qualify for PAS can be estimated as
a ∈ [0.015, 0.03]. This corresponds to dimensional particle radii in the range ap ∈ [75, 150] μm
for a liquid bridge with d = R = 0.005 m (� = 1). Accordingly, the dimensional time sufficient
for PAS formation according to our criterion is t = 5 d2/κ = 28.3 min for a 5 cSt silicone oil with
κ = 7.353 × 10−8 m2/s.

4. Examples for particle accumulation

Figure 16 shows examples of PAS for � = 1 and Re = 1500 in axial and azimuthal projections
for selected interaction parameters � at t = 5. The temporal evolution of the PAS shown in
Figs. 16(a) and 16(e) (� = 0.0082) and 16(c) and 16(g) (� = 0.037) has been displayed before
in Fig. 13. By comparing the PAS from Fig. 16 with the closed streamlines shown in Figs. 8, 9, and
12, it becomes evident that PAS preferentially forms very close to the regular streamlines that enter
the narrow boundary layer of the thickness � on the free surface. The closed streamlines, indicated
by dotted black lines, are indistinguishable from the red attractors on the scale of Fig. 16. The larger
the interaction parameter � (larger particles), the more particles undergo interactions with the free
surface and the more particles are depleted from the central region of the liquid bridge. In case of
PAS these particles end up on periodic or quasiperiodic attractors [see, e.g., Figs. 16(b) and 16(f)
and 16(d) and 16(h)].

The accumulation structures for � = 0.028 shown in Figs. 16(b) and 16(f) are made of periodic,
quasiperiodic, and strange attractors. For better identification we consider the last Poincaré point out
of t ∈ [0, 5] for each of the 4000 particles simulated. Poincaré sections are shown for two different
azimuthal angles in Figs. 17(a) and 17(b). For ϕ = −π/4 [Fig. 17(a)] the streamline topology which
has been presented before in Fig. 7 is shown in gray. In addition, a Poincaré section is shown for ϕ =
2.0605 [Fig. 17(b), with the horizontal axis denoted x′′]. These azimuthal angles have been selected,
because the PSIs leading to the attractors take place very close to these values of ϕ [Fig. 17(c)]. In
Fig. 17 one can identify the periodic attractor (P, magenta) already visible in Figs. 16(b) and 16(f).
The PSI leading to this attractor which is associated with the closed streamline LB

1 takes place near
ϕ = −π/4 [Fig. 17(c)]. In addition, one can identify a quasiperiodic attractor QP5 [black in Fig. 17,
but red in Figs. 16(b) and 16(f)] which is created by PSIs at ϕ ≈ 2.18–2.22 and which forms near
the KAM torus T A

5b (Fig. 7). As a third structure which is also created by PSI at ϕ ≈ 1.74–2.07 one
can identify a nearly quasiperiodic structure (red, related to the KAM structures of group A) which,
however, is chaotic and can be termed strange PAS (S, red), according to the naming convention of
Muldoon and Kuhlmann [16]. Particles cannot escape the strange PAS S due to the PSI. The PSIs
for the quasiperiodic and the strange PAS arise in distinct regions of ϕ [Fig. 17(c)]. In addition to
these structures, the Poincaré points of particles which have not undergone a PSI at t = 5 are shown
in blue in Figs. 17(a) and 17(b). Most of these particles move inside of KAM tori of the flow. The
remainder of the particles with blue Poincaré points may eventually be transferred to one of the
accumulation structures for t > 5.

For smaller particles with � < 0.01, for which the PSI occurs closer to the free surface than the
closest approach of any regular streamline, particle clustering is still possible. An example is shown
in Figs. 16(a) and 16(e). The periodic attractor arises along trajectories coinciding with (open)
chaotic streamlines in the bulk which, however, are closed by the PSI near the free surface. This
mechanism, also discussed in Sec. IV C 2, was first pointed out by Kuhlmann and Muldoon [68].

Even though the strain rate of the present flow is very high near the hot and the cold corner, test
calculations for density-matched particles using (7) and an initial velocity mismatch of Ẋ = 2|U |χ,
where the components of χ for each particle are assigned random numbers χi ∈ [0, 1], yielded
essentially the same long-time behavior as for initial velocity matching in the presence of the
PSI. This is interpreted as the particle-surface interaction being by far the strongest dissipative



FIG. 17. Poincaré section of 4000 particle trajectories for Re = 1500 and � = 0.028 showing only the last
Poincaré point before t = 5 of each particle. Poincaré sections are shown at ϕ = −π/4 (a) and ϕ = 2.0605 (b).
The colors indicate different accumulation structures (P: periodic, QP5: quasiperiodic, S: strange) explained in
the text. Blue dots indicate Poincaré points of particles not having experienced any PSI. The gray dots in
(a) represent the Lagrangian topology [KAM tori of group A; cf. Fig. 7(a)]. (c) Collision points (green for QP5

and bright blue for S) and release points [colors as in (a) and (b)] of particles on r = R∗ = 1/� − � [dashed
red lines in (a) and (b)]. The vertical dashed black lines in (c) correspond to the azimuthal angle ϕ of the
Poincaré sections shown in (a) and (b).

mechanism and thus determining the attractors. This is in agreement with the results of Romanò
and Kuhlmann [69].

5. Dependence of the particle accumulation on the density ratio

To investigate the alteration of PAS in the presence of mild inertia we consider the motion of
particles whose density deviates from that of the fluid. To that end the relative density is varied in
the range � ∈ [0.5, 2] and the SMR equation (7) is integrated for particles which are initiated with
velocity matched to the velocity of the flow. Owing to the large parameter space we present results
for the particle radius a = 0.0185 (St = 7.606 × 10−5). The particle motion is computed using the
PSI model with � = 2a = 0.037. This value for � is motivated by an order-of-magnitude estimate
based on the results of Romanò and Kuhlmann [32] for very small particles.



FIG. 18. Examples of PAS in a thermocapillary liquid bridge for � = 1, Re = 1500 and a = �/2 =
0.0185 (St = 7.606 × 10−5) at t = 1. The particle density is indicated in the subcaptions. Lines, symbols, and
colors as in Fig. 16.

Figure 18 shows results obtained for � = 0.5 [Fig. 18(a)], 1 [Fig. 18(b)], 1.5 [Fig. 18(c)], and 2
[Fig. 18(d)]. In the presence of PSI (Fig. 18), we find PAS which does not deviate much from the
PAS for density-matched particles [� = 1, Fig. 18(b)]. The latter case has already been discussed
above in Figs. 16(d) and 16(g): PAS forms near the closed streamline LA

2 which winds twice about
the axis [Fig. 9(a)]. For light particles with � = 0.5 [Fig. 18(a)] a similar line-like PAS forms near
LA

2 , but with fewer particles having interacted with the free surface at t = 1. For heavy particles with
� = 1.5 [Fig. 18(c)] the particles cluster on a weakly quasiperiodic attractor QP2 which, due to the
particle inertia, appears slightly rotated from LA

2 in the clockwise direction in the reference frame
rotating with the HTW, i.e., in the direction opposite to the sense of rotation of the HTW [compare
Figs. 18(b) and 18(c)].

The toroidal nature of PAS QP2 becomes even more evident in Fig. 19. The figure depicts the
last intersection point within t ∈ [0, 1] of each particle (black dot) with the half-plane ϕ = −π/4
[Fig. 19(a)] and with the half-plane ϕ = 1.7498 [Fig. 19(b)], in which the quasiperiodic attractor
QP2 for � = 1.5 is nearly tangent to r = R∗ (indicated by a red dashed line). The horizontal axis
is denoted x′′. Figure 19(c) shows impact (green) and release (black) points of the PAS QP2 on the
cylindrical surface of radius R∗ which intersects T A

2 (orange dots). The rotation of QP2 with respect
to the closed streamline LA

2 appears as a shift of the toroidal PAS relative to LA
2 in the Poincaré

sections in Figs. 19(a) and 19(b).
For a particle twice as heavy as the fluid [� = 2, Fig. 18(d)], particles gather at t = 1 near two

different structures. One structure is sharply toroidal, appearing diffuse in the axial view. It is similar
to QP2 discussed above for particles with � = 1.5 and forms as a toroidal structure rotated clockwise
from LA

2 . The azimuthal shift with respect to the closed streamline increases as the density ratio �

(density mismatch) increases from 1.5 to 2. A similar azimuthal shift of pure inertia-induced limit
cycles with respect to the closed streamline was found by Kuhlmann and Muldoon [24] (see Fig. 2
therein) for a similar flow.

The other attractor is periodic and arises near another KAM torus of period one (not shown),
nested into T B

1 . The corresponding attracting orbit is closed after two revolutions about the axis.
During each revolution of a particle on the periodic attractor one PSI takes place (two interactions
per period of the closed orbit). This indicates that the new periodic attractor that arises for � = 2 is
also essentially caused by the PSI, while the inertia effect slightly modifies the particle trajectories
in the bulk such that the PSI leads to an attracting orbit.

Computations for other particle sizes yield qualitatively similar results. Therefore, we conclude
that not only density-matched particles can form FSCS. Also particle accumulation structures for
light and heavy particles with � ∈ [0.5, 1.5] and a � 0.02 must be understood as FSCS, if the
clustering mechanism is essentially due to the PSI. Of course, purely inertial clustering is possible, in
principle, for weakly inertial particles near a closed streamline which is distant from the free surface.
But the timescales on which such inertial structures form are usually orders of magnitude larger



FIG. 19. (a), (b) Half-plane Poincaré section of the PAS for for � = 1, Re = 1500, � = 1.5, a = 0.0185,
and � = 0.037 [Fig. 18(c)] showing the last intersection within t ∈ [0, 1] of each particle simulated (black
dots) superimposed on the Poincaré section of LA

2 (2 dark red dots) and T A
2 (orange dots). (c) Impact (green)

and release (black) points of the PAS QP2 with the cylindrical surface of radius R∗ = 1/� − �, indicated by
the dashed red line in (a) and (b). The vertical dashed black lines correspond to ϕ of the Poincaré sections in
(a) and (b).

than for FSCS [28,34]. For very small interaction lengths � < 0.001 and particles with density
larger than that of the fluid (� > 1) we do not find periodic attractors. As might be expected, such
particles are merely centrifuged out of the vortex of the basic flow, tend to approach the boundaries
and may eventually come to rest on the solid walls.

6. Dependence on the Reynolds number

The existence and shape of PAS reflect the underlying KAM structure of the flow. For Pr = 68
and � = 1 the KAM template changes considerably with Reynolds number. Therefore, the type and
existence of attractors for the particle motion are expected to vary with Re, even if � and a are kept
constant.

Attractors due to PSI which are located in the chaotic region are found to be particularly sensitive
to changes of the Reynolds number. For instance, PAS is observed at Re = 1500 for small particles
with � = 1 and � = 0.0082, whereas accumulation is absent for higher Reynolds numbers. For



FIG. 20. Particle accumulation structures for � = 1, � = 0.037 and different values of Re as indicated.
Shown are axial (top) and azimuthal (bottom) projections of the particle configuration at t = 5. Lines, symbols,
and colors as in Fig. 16.

larger particles with � = 0.037, on the other hand, PAS of different shapes is found, depending on
Re. For Re = 1750 [Figs. 20(a) and 20(e)] particles accumulate both on a periodic and on a strange
attractor, similar to the case of Re = 1500 and � = 0.028 considered in Sec. IV C 4 [see discussion
of Figs. 16(b) and 16(f) and 17]. In the bulk the periodic attractor is a streamline segment in the
chaotic layer surrounding T B

1 , and it is closed near the free surface by one PSI after one revolution
about the axis. Not all of the initially randomly distributed particles are attracted to this limit cycle.
Most of the particles (≈72%) cluster on a strange attractor in a chaotic layer in the vicinity of the
KAM structures of group A, which they cannot escape due to PSI, while a small number of particles
(≈1%) initiated inside the KAM structures of group A never experience PSI and keep moving along
the regular streamlines.

For the higher Reynolds number Re = 2000 and the same �, a quasiperiodic tubular PAS on
a torus of T A

1 arises [Figs. 20(b) and 20(f)] for which the PSI takes place at an azimuthal angle
rotated by about π with respect to the case of Re = 1750. Further increasing the Reynolds number
to Re = 2250, a periodic PAS near LA

2 [Figs. 20(c) and 20(g)] is found. For even higher Reynolds
number Re = 2500 and � = 0.037 the particles do not find a periodic or quasiperiodic structure.
Rather, they accumulate in a sharp torus-like region of period one near the hot corner and seem to
move chaotically. The structure appears diffuse in the axial and azimuthal projections [Figs. 20(d)
and 20(h)], as well as in the Poincaré section.

The higher the Reynolds number, the stronger is the streamline crowding near the free surface
and the more particles undergo particle-surface interactions. For Re = 1500 and � = 0.037, ≈7%
of all particles have never interacted with the free surface by t = 5. For Re = 1750 this number has
reduced to ≈2% [Figs. 20(a) and 20(e)], and for Re = 2500 all particles have undergone at least
one PSI during this period of time [Figs. 20(d) and 20(h)]. As more streamlines of the flow enter the
prohibited layer of thickness � on the free surface the stronger is the particle depletion effect in the
bulk, in particular during the initial phase of evolution of the particle ensemble.



FIG. 21. Examples of PAS in a thermocapillary liquid bridge for � = 1 and Re = 1750 (a), (b), (e), (f)
and Re = 2000 (c), (d), (g), (h) at time t = 5. Shown are axial (top) and azimuthal (bottom) projections of the
particle configuration for different values of �. Lines, symbols, and colors as in Fig. 16.

7. Sensitivity with respect to particle size

For the high-Prandtl-number hydrothermal waves considered, the KAM template is intricate and
thus PAS also depends sensitively on the particles size, reflected by the value of �. Figure 21 shows
side-by-side comparisons of PAS at t = 5 for constant Reynolds number and pairwise different
interaction parameters. For Re = 1750 and � = 0.027 [Figs. 21(a) and 21(e)] about 50% of all
particles accumulate near LB

1 [cf. Figs. 16(b) and 16(d) for Re = 1500 and � = 0.028]. For the same
Reynolds number and the larger interaction parameter � = 0.04 [Figs. 21(b) and 21(f)] almost all
particles accumulate on the surface of T A

8 [cf. Fig. 12(c)]. For Re = 2000, partial accumulation near
LB

4 is found for � = 0.0195 [Figs. 21(c) and 21(g)], while almost all particles accumulate around
LA

1 for � = 0.04 [Figs. 21(d) and 21(h)].
The partial accumulation on the periodic attractors is observed for intermediate values of the

interaction parameter �(≈0.01–0.03) that are greater than the distance between the free surface
and the KAM tori of group B, but less than the distance to the KAM tori of group A, which lie
further away from the free surface. For such � [see, e.g., Figs. 21(a) and 21(e), and 21(c) and
21(g)] the cylindrical surface at which the PSI takes place intersects with the KAM tori of group B
creating the periodic attractor. The KAM tori of group A, on the other hand, do not intersect with the
prohibited layer, and the particles moving inside the KAM tori of group A remain confined to these
tori [blue dots in Figs. 21(a) and 21(e) and 21(c) and 21(g)]. There are, however, other particles
colored in red seemingly randomly distributed within the liquid bridge. These particles stay for a
long time (making a large number of revolutions about the axis) on some of the chaotic streamlines
between the two groups of KAM tori for Re = 1750 and 2000, especially on those in the vicinity of
the regular streamlines, before they experience a PSI. Moreover, after a collision, these particles are



FIG. 22. Examples of PAS in a thermocapillary liquid bridge for � = 1 and Re = 2250 (a), (b), (e), (f) and
2500 (c), (d), (g), (h) at time t = 5. Shown are axial (top) and azimuthal (bottom) projections of the particle
configuration for different values of �. Lines, symbols, and colors as in Fig. 16.

released back to the same chaotic region of the flow. This can lead to confinement of the particles
to a chaotic layer near group A even for t � 5. This is the case for Re = 1750 and � = 0.027 [red
dots in the diffuse toroidal structure in Figs. 21(a) and 21(e)], and the PAS is classified as strange
PAS, similar to that discussed above in the context of Fig. 17 (red dots).

Another scenario is a slow transfer (after many collisions) to the regular streamlines of group B,
resulting in a complete accumulation for t � 5 as happens at t ≈ 15 for the case of Re = 2000 and
� = 0.0195 [Figs. 21(c) and 21(g)]. The confinement and persistence of the particles in the chaotic
cloud are not yet fully understood, but crucially depend on the mapping among chaotic streamlines
upon PSI on which particles move [15,16].

Further examples for periodic and quasiperiodic attractors are provided in Fig. 22 for Re = 2250
and Re = 2500. For Re = 2250 and small particles corresponding to � = 0.003, PAS forms in
the chaotic region [Figs. 22(a) and 22(e)] with the particle trajectory closed by two PSIs. For
larger particles with � = 0.027, two periodic attractors can be distinguished: one arises near LA

5
[cf. Fig. 12(b)], while the other one is a trajectory on the KAM torus T B

1 closed by one PSI after
one revolution about the axis. For Re = 2500 and � = 0.019, Figs. 22(c) and 22(g) show a periodic
PAS organized near LB

7 [cf. Fig. 12(h)], while for � = 0.028 Figs. 22(d) and 22(h) show a periodic
attractor near LA

2 (cf. Fig. 12(g)] with the other line-like attractor being a trajectory on T B
1 closed by

one PSI after one revolution about the axis.

V. CONCLUSIONS

The flow structures of traveling hydrothermal waves with a fundamental wave number m = 1 and
the motion of small spherical particles nearly density matched to the fluid have been numerically



investigated in a cylindrical liquid bridge with Prandtl number Pr = 68 and aspect ratio � = 1 under
zero gravity conditions. The highly resolved periodic flows have been analyzed in the rotating
frame of reference in which the hydrothermal wave is stationary. The flow topology has been
characterized in terms of closed streamlines and KAM tori. Some of them approach the free surface
sufficiently close to act as organizing centers for the attraction of nearly density-matched particles
of particular sizes. Based on the one-way coupling approach, accurate simulations of the motion
of a single particle initiated at random positions reveal a rapid accumulation of noninteracting
particles.

The KAM structures for Pr = 68 and � = 1 are found to be much more intricate than those for
Pr = 4 [15] and Pr = 28 [18]. This allows for nearly density-matched particles of many different
sizes to cluster in a rich variety of linelike and tubular PASs of different shapes, which can be well
understood based on the underlying KAM template. Among the flow parameters considered, the
most intricate KAM structure is found for the lowest thermocapillary Reynolds number considered,
Re = 1500. The larger the Reynolds number the more the KAM tori become stretched near the free
surface due to the high strain rate of the flow. Even for the largest Reynolds number considered,
Re = 2500, some slender KAM tori have been detected which allow for various PAS to form.

Comparing the two bulk transport models given by pure advection (6) and by the simplified
Maxey-Riley equation (7), inertia effects were found to have little impact on PAS formed by
small nearly density-matched particles and the parameters considered. Like for Pr = 28 [18], the
particle-surface interaction proposed by Hofmann and Kuhlmann [14] in their PSI model provides
the dissipative mechanism in the dynamical system governing the particle motion which is necessary
for the existence of attractors. In this model, kinetic energy of the motion normal to the flow
boundary (i.e., the solid walls or free surface) is completely dissipated by a fully inelastic collision
when the centroid of the particle has approached the boundary up to the distance �. The value of �

is a model parameter which must be derived from the steric effect the particle experiences when its
motion near the free surface is hindered by its own size. In this sense PAS is a dissipative structure
which can be classified as a finite-size coherent structure (FSCS) [34,47].

Owing to the abundance of closed streamlines and KAM tori in the traveling hydrothermal
waves considered, a multitude of finite-size coherent structures of different shapes have been found
for density-matched particles and interaction parameters in the range � ∈ [0.001, 0.05]. These
values correspond to particle sizes which can be estimated as a ∈ [�/2,�] [32]. Since we find
PASs predominantly near � ≈ 0.037 and � ≈ 0.007 (Fig. 15), the most promising particle sizes
for PAS can be estimated as a ∈ [0.0185, 0.037] and a ∈ [0.0035, 0.007]. For a liquid bridge of
radius R = 0.005 m (planned in the JEREMI space experiment) and � = 1 the corresponding
dimensional particle-size ranges are ap ∈ [92.5, 185] μm and ap ∈ [17.5, 35] μm, respectively. Due
to the existence of different attractors even within a small range of � (ap) it seems advisable to use
particles in experiments which are highly mono-disperse with respect to their size.

Although the PSI model has been proven successful in capturing the key effect of the finite
particle size near the flow boundaries and in predicting PAS, the global parameter � remains
undetermined in this approach. It would be desirable to determine � by additional fully resolving
numerical simulation depending on the particle size as was done for a two-dimensional model flow
by Romanò and Kuhlmann [32]. Another possibility is softening of the inelastic collision, on which
the PSI model is based, by, e.g., incorporating known asymptotic solutions such as the ones of
Brenner [33] for a particle in Stokes flow moving near a boundary. A similar approach has recently
been used by Romanò et al. [34] and Romanò et al. [70], who modeled the particle-boundary
interaction by the leading-order lubrication approximation for a particle in Stokes flow. Yet another
interesting problem relates to the particle dynamics once many particles have accumulated on the
same periodic orbit during the final stage of PAS. In this late state of evolution the local particle
volume fraction becomes large and particle-particle interaction cannot be disregarded. To date,
the effect of the number of particles collected on a periodic single-particle attractor has not been
investigated numerically.
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