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The motion of a single spherical particle in a two-sided lid-driven cavity is investigated
experimentally. The flow in which the particle moves is created by two facing cavity
sidewalls which move with equal velocity in opposite directions. For a long cavity with
width-to-height cross-sectional aspect ratio Γ = W/H = 1.6 the flow field at Reynolds
number Re = 400 consists of steady spatially periodic three-dimensional convection cells.
Nearly neutrally buoyant particles with radius in units of H ranging from 1.1 × 10−2 to
7.1 × 10−2 are found to be attracted to periodic or quasi-periodic orbits in close vicinity
of Kolmogorov–Arnold–Moser (KAM) tori of the unperturbed flow. Like the KAM tori
the attractors of neutrally buoyant particles arise in mirror-symmetric pairs within each
convection cell. The particle attractors are created by a dissipative effect in the dynamical
system describing the particle motion which arises when the finite-size particle closely
passes the moving walls. When the particle density deviates from that of the fluid, inertial
attractors arise whose symmetry is broken by buoyancy, and other periodic attractors are
created which do not have KAM tori as counterparts.

Key words: chaotic advection, particle/fluid flow

1. Introduction

Particle-laden flows arise in many bounded flows of small characteristic length scale.
Examples are biomedical applications (Dong, Inthavong & Tu 2017), particle sorting in
micro-channels (Matsunaga et al. 2017) and quantum super-fluidics (La Mantia 2017).
Often, the volume fraction of the particulate phase is very small and the particle
size is very small compared to the size of the flow domain. Under these conditions
particle–particle and particle–wall interactions are very rare and the motion of an
individual spherical particle can be well described by the Maxey–Riley equation (Maxey
& Riley 1983) for the centroid of the particle, provided the particle Reynolds and the
particle Stokes numbers are small and the particle moves at a distance from the boundary
which is large compared to the particle size. In this frequently employed theoretical model

† Email address for correspondence: hendrik.kuhlmann@tuwien.ac.at
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a major simplification of the general two-phase problem results from the approximation of
the flow field being unaffected by the presence of the particles (one-way coupling) and the
particle motion being approximated by an ordinary differential equation.

If, however, a particle moves at a distance from the wall which is no longer large
compared to the particle size, the Maxey–Riley equation breaks down. Although a number
of asymptotic solutions exist for certain configurations when a sphere moves close to
a boundary (Jeffery 1915; Brenner 1961; Chaoui & Feuillebois 2003), there exists no
universally valid extension of the Maxey–Riley model which would allow an accurate
description of the motion of a spherical particle in the full domain up to the walls.

The breakdown of the Maxey–Riley model is frequently met for particles suspended
in millimetric thermocapillary flows (Schwabe et al. 2007; Romanò & Kuhlmann 2019),
in micro-flows (Wang, Jalikop & Hilgenfeldt 2011; Karimi, Yazdi & Ardekani 2013) or
even in nano-flows (Orlishausen et al. 2017), because the particle size relative to the
domain size can be much larger than, e.g. 0.1 %. While fully resolving simulations of
the fully coupled two-phase problem is computationally very expensive, attempts have
been made to treat the near-wall motion of a particle or the particle–particle interaction
supplementing the Maxey–Riley equation with force models (Breugem 2010; Romanò,
Kunchi Kannan & Kuhlmann 2019a) based on asymptotic solutions, e.g. by Brenner
(1961), dedicated numerical fits (Romanò, des Boscs & Kuhlmann 2020) or by an inelastic
collision (Hofmann & Kuhlmann 2011).

The lack of a Maxey–Riley-like model to describe the particle motion in the full
domain accessible to the particle is an open problem in micro-flows. In particular,
technical applications requiring particle selection or sorting involve the motion of particles
near boundaries in a distance much smaller than the particle size (Wang et al. 2012).
An example is the separation of blood cells from the plasma (Toner & Irimia 2005).
Alongside with the importance of the flow boundaries on the particle motion, the fluid
flow in small-length-scale systems tends to be laminar, and is often three-dimensional and
quasi-steady.

Particles suspended in small-length-scale incompressible three-dimensional steady
flows can be attracted to particular orbits leading to a partial or nearly complete de-mixing
of the suspension. A paradigm for the boundary effect on the particle motion is the flow
in a thermocapillary liquid bridge in which many particles of suitable size can be rapidly
attracted to periodic particle accumulation structures (PAS) (Tanaka et al. 2006). The fact
that the de-mixing is most rapid for particles density matched to the liquid and depends on
the particle size (Schwabe et al. 2007) is a clear indicator for the role of the boundary effect
on the motion of a finite-size particle. This effect was elaborated within a minimum model
by Hofmann & Kuhlmann (2011), based on advection in the bulk and an inelastic collision
of the particle with the free surface of the liquid bridge. Depending on the particle size
they predicted the existence of periodic and quasi-periodic attractors which are located
on Kolmogorov-Arnold-Moser (KAM) tori (Aref 1984; Ottino 1989) of the underlying
three-dimensional incompressible flow. A review was given by Romanò & Kuhlmann
(2019). Since this type of particle clustering is solely due to the particle size, Romanò,
Wu & Kuhlmann (2019b) coined the term finite-size coherent structures (FSCS) for these
attractors to distinguish them from the well-known Lagrangian coherent structures (LCS)
which are caused by inertia (Haller 2015). Typically, FSCS form much more rapidly than
inertial LCS, because the attraction rate to FSCS scales with the Reynolds number of the
flow (Kuhlmann et al. 2014; Muldoon & Kuhlmann 2016; Romanò et al. 2019a), while the
inertial attraction rate (inverse inertial time) is very small for small and nearly neutrally
buoyant particles.
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Despite the many attractors (LCS, FSCS) for the particle motion found and
characterised, little experimental work has been carried out to prove their existence,
to test their robustness and to quantify their spatio-temporal properties. The current
investigation is intended to rigorously analyse the behaviour of particles in a non-trivial
steady three-dimensional incompressible flow. In order to isolate the particle–boundary
effect on the particle trajectories and on the particle attractors we consider particles whose
density is most accurately matched to that of the fluid. By controlling small deviations
from the density-matching limit we carve out the effect of inertia and buoyancy which are
found to break certain symmetries of the particle motion attractors created by the boundary
effect. Quantitative information about the particle dynamics is provided alongside with
Poincaré sections and spectra. These data should help understand the complex dynamics
found and may serve as reference for the development of better theoretical models (see
e.g. Cui et al. 2020) to describe the wall effect on the particle motion.

To that end we apply long-term particle tracking to reconstruct the trajectories of
spherical particles suspended in the flow in a long cuboidal cavity which is driven by the
anti-parallel motion of two facing walls (Kuhlmann, Wanschura & Rath 1997). The flow
system was selected, because a steady three-dimensional flow robustly arises at relatively
low Reynolds numbers in the range of approximately Γ ≈ 1.2–1.8. (Albensoeder &
Kuhlmann 2002; Blohm & Kuhlmann 2002). For supercritical Reynolds numbers
Romanò, Albensoeder & Kuhlmann (2017) have thoroughly investigated the flow topology
for Γ = 1.7 and found coexisting regular (KAM tori) and chaotic streamlines which form
the template on which FSCS are based. The existence of attractors in this type of system
has been predicted Kuhlmann et al. (2016) and confirmed experimentally by Wu, Romanò
& Kuhlmann (2017) and Romanò et al. (2019b). Here, we systematically investigate
the attractors and establish accurate quantitative data on their existence range and their
properties which should aid the development of improved particle–boundary interaction
models like, e.g. those employed by Breugem (2010) and Romanò et al. (2019a).

Section 2 describes the experimental set-up and the particle tracking. In § 3 the
properties of the cavity flow under consideration are discussed together with the
numerically computed topology of the flow and its consequences for the particle motion.
This is followed, in § 4, by a presentation of the experimental results for the motion of
almost density-matched particles and the dependence of the attractors on the particle size.
In § 5 the motion of particles is measured for which inertia and buoyancy are gaining
importance. Finally, the results are discussed in the context of theoretical and numerical
modelling and conclusions are drawn in § 6.

2. Experimental methods

2.1. Experimental apparatus
We consider the motion of a single spherical particle in a nearly cuboidal, two-sided
lid-driven cavity. For the experiments we use the apparatus of Siegmann-Hegerfeld,
Albensoeder & Kuhlmann (2008, 2013) who studied the hydrodynamic instability of the
nominally two-dimensional vortex flow in this system. The cavity is shown schematically
in figure 1 (dashed lines). The fluid motion in the cavity is driven by two rotating cylinders
(grey) made from stainless steel which confine the cavity laterally in x direction. In the
positive vertical (y) and in the second horizontal direction (z), the cavity is bounded
from the top and from the sides by transparent plane Plexiglas walls which allow for
an optical access to the interior of the cavity. The bottom of the cavity is made from
black Polymethyl methacrylate (PMMA) to minimise undesired optical reflections and to
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FIGURE 1. Sketch of the cavity (dashed lines) within which the fluid motion is induced by
tangentially moving sidewalls realised by rotating cylinders. Their cross-sections are shown in
grey and their rotation direction is indicated by arrows. The size of the cylinders relative to the
cavity has been reduced in the drawing. The full lines delineate a typical periodic convection cell
which exists in the supercritical flow.

improve the contrast between the white suspended particle and the background when the
particle is observed from above. Since the radius of the rotating cylinders (not drawn to
scale in figure 1) is large compared to the gap between the cylinders and the height of the
cavity, deviations from a rectangular cuboidal shape are moderate, but not negligible as
will be explained later.

Both rotating cylinders have a radius of R = 135 mm. The height of the cavity in y
direction is H = 40.1 mm and the minimum and maximum widths (in x direction) between
the two moving cylinders are, respectively, Wmin = 62.9 mm and Wmax = 65.9 mm. The
arithmetic mean value W̄ = 64.4 mm is used to define the aspect ratio Γ = W̄/H = 1.6
(rounded). The rotating cylinders, the cavity bottom, and the transparent top and end
walls are mounted in a larger container (not shown in figure 1) which is also filled with
the working liquid. The container serves the purpose to thermalise the cavity and to
compensate for a minute exchange of liquid through the small gaps between the moving
cylinders and the stationary walls. All walls have been carefully adjusted to minimise the
exchange of liquid between the cavity and the surrounding reservoir.

Silicone oil (Bayer Baysilone fluid M20) with nominal kinematic viscosity ν = 20 cSt
and density ρf = 0.95 g cm−3 at T = 25 ◦C is used as the working fluid. The viscosity of
the fluid has been measured independently to establish a gauge function ν(T), and it is
shown in figure 2 together with the density of the liquid. Both cylinders rotate with the
same angular velocityΩ and in the same sense to create an opposing motion of the lateral
cavity walls. The Reynolds numbers associated with the rotating cylinders (subscripts 1
and 2)

Re = Re1 = Re2 = ΩRH
ν(T)

, (2.1)
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FIGURE 2. Kinematic viscosity (pluses) measured by a Cannon-Fenske capillary flow
viscometer and polynomial fit ν = a0 + a1T + a2T2 (full line) with a0 = 31.6717, a1 =
−0.5976 and a2 = 0.0044, where ν and T are measured in cSt and ◦C, respectively. The density
ρf (dash line) is a linear fit of the data provided by the manufacturer.

are kept constant by keeping the temperature T constant during each experiment. The
temperature of the liquid is controlled with an accuracy of ±0.1 ◦C by circulating
fluid from the outer bath through a thermostat (Haake F6). Owing to the high thermal
conductivity of the steel cylinders and the slow temperature variation, the system can be
considered in thermal equilibrium. Estimating all tolerances, the Reynolds number can be
controlled with an accuracy of 0.5 %.

For an infinitely long cavity and aspect ratio Γ = 1.6 the low-Reynolds-number
flow would be two-dimensional. Theoretically, this basic flow becomes unstable due to
the elliptic instability at a relatively low Reynolds number Rec ≈ 200 (Albensoeder &
Kuhlmann 2002) and gives way to steady periodic convection cells of width l (full lines
in figure 1), corresponding to half a wavelength in the z direction. At criticality l/H =
λ/2 ≈ 1.35, where λ is the non-dimensional wavelength. The long spanwise length in the
experiment of L = 435 mm, corresponding to a span aspect ratio Λ = 10.85, permits us
to create a nearly two-dimensional basic flow and a nearly spanwise-periodic supercritical
flow in most parts of the cavity, except near the end walls (cf. Siegmann-Hegerfeld et al.
2013).

In each experiment, the fluid is seeded with a single spherical particle made from
polyethylene. Different particles are used with particle radius ap ranging from 0.15 to
2.85 mm and particle-to-fluid density ratios � = ρp/ρf ranging from 0.94 to 1.08. The
particle-to-fluid density ratio � was determined by measuring the Stokes settling velocity
in a separate well-controlled experiment. Table 1 lists the particle sizes, their relative
densities �, corresponding uncertainties Δ� at the operating temperature, Stokes number
in viscous scaling St = 2a2/9 and Stokes number in convective scaling Stconv = Re St.
Since the temperature of the liquid in the cavity is controlled up to ±0.1 ◦C, the tolerances
for the density ratio determined by Stokes settling (table 1) is increased to Δ� ≈ ±0.00006
in the actual experiment due to fluctuations of the liquid density.

2.2. Particle tracking
The trajectory X (t) of the centroid of the particle is obtained by recording its motion
by two synchronised cameras (type: FLIR GS3-U3-32S4M-C) equipped with lenses of
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ap [mm] a T [◦C] � Δ� St Stconv

0.15 0.004 26.7 1.003 ±0.0005 3.56 × 10−6 1.42 × 10−3

0.45 0.011 23.7 1.0001 ±0.00001 2.69 × 10−5 1.08 × 10−2

0.48 0.012 23.7 1.045 ±0.003 3.20 × 10−5 1.28 × 10−2

0.48 0.012 26.4 1.08 ±0.006 3.20 × 10−5 1.28 × 10−2

0.50 0.012 25.5 0.94 ±0.005 3.20 × 10−5 1.28 × 10−2

0.50 0.012 26.0 1.023 ±0.001 3.20 × 10−5 1.28 × 10−2

0.53 0.013 24.5 1.06 ±0.005 3.76 × 10−5 1.50 × 10−2

1.00 0.025 23.7 1.0001 ±0.00001 1.39 × 10−4 5.56 × 10−2

1.58 0.039 26.1 1.0001 ±0.00001 3.38 × 10−4 1.35 × 10−1

1.58 0.039 25.0 1.001 ±0.0001 3.38 × 10−4 1.35 × 10−1

1.58 0.039 28.0 1.006 ±0.0003 3.38 × 10−4 1.35 × 10−1

2.00 0.050 34.3 1.0001 ±0.00001 5.56 × 10−4 2.22 × 10−1

2.37 0.059 26.2 1.00005 ±0.000007 7.74 × 10−4 3.09 × 10−1

2.85 0.071 27.1 1.00007 ±0.000011 1.12 × 10−3 4.48 × 10−1

TABLE 1. Particle radii ap, non-dimensional particle radii a = ap/H, operating temperature,
particle-to-fluid densities � = ρp/ρf , uncertainties Δ� obtained from measuring the settling
velocity and Stokes number in viscous scaling St = 2a2/9 and in convective scaling Stconv =
Re St.

focal length fl = 16 mm. Records from both cameras are taken using aperture f /4 and a
frame rate of f = 20 Hz. The cameras are mounted above the transparent top lid of the
cavity and monitor the cavity under different angles (figure 39 in appendix A). Once the
positions of the particle images on the sensor planes of the cameras have been determined,
the three-dimensional particle position can be reconstructed via ray tracing as described
in appendix A. Consecutive positions of the particle yield its trajectory.

In a first step, the centroids of the particle images x(i)S = [x (i)S (t), y(i)S (t)] on each sensor
plane (superscript i = 1, 2) must be determined. To that end a background image, obtained
by averaging 200 frames, is subtracted from each original grey-scale frame. Thereafter,
a Laplacian-of-Gaussian (LoG) filter is applied to reduce the noise. The maximum
brightness value will arise at the centre of a blob-shaped structure which represents the
image of the particle (Szeliski 2010). Since the LoG filter is scale oriented, by selecting
different values of the standard deviation σ of the LoG kernel, the response of particles
with different sizes is different. This property helps to distinguish particles with different
sizes (if used simultaneously) and filter noise due to reflections from small debris particles
or air bubbles. Sample images corresponding to each of the above processing steps are
shown in figure 3.

After the sensor-based coordinates x(1)S and x(2)S have been determined for each frame
of the video record, the cavity-centred world coordinates of the trajectory X W(t) =
[XW(t),YW(t),ZW(t)] are obtained by a ray tracing process (Yamashita, Fujii & Kaneko
2008; Pedersen et al. 2018) which is described in detail in appendix A.

The flow at the targeted Reynolds number Re = 400 arises in form of N = 8 steady
convection cells which are numbered consecutively by an index n. Since we are interested
in the particle’s trajectory relative to the cellular flow, the cavity-centred world coordinates
X W(t) of the trajectory are transformed to the final cell-centred coordinates X (t).
Assuming the trajectory remains in the same convection cell n for all time, the cell
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FIGURE 3. Image processing of a single frame: (a) original image, (b) subtraction of the
background image, (c) convolution with a LoG filter.

number n relative to the reference cell n = 0 is detected by rounding n = round[(ZW −
λ/4)/(λ/2)]. The shift by half a cell width −λ/4 is applied to the coordinate ZW , since
the origin of the cavity-centred coordinates (XW,YW,ZW) = (0, 0, 0) lies on the boundary
between the two cells nearest to the cavity centre for an even number of cells. The
cell-centred coordinates (X,Y,Z) of the trajectory are then obtained as

X(t) = XW(t), (2.2a)

Y(t) = YW(t), (2.2b)

Z(t) = (−1)n
[

ZW(t)− n
λ

2
− λ/4

]
. (2.2c)

Hence, the trajectory X W is mapped to the reference cell n = 0 by a shift of (λ/4)(2n + 1)
in z. The factor (−1)n causes a reflection with respect to Z = 0 if the original cell index n
is odd. This is due to the full period of the flow consisting of two cells which are reflection
symmetric with respect to their boundaries (Blohm & Kuhlmann 2002; Romanò et al.
2017). Since the phase of the cellular flow in the central region of the cavity may slightly
vary from one experimental realisation to the other, the Z coordinate is corrected by a
tiny additive amount ΔZexp which is determined using point-cloud matching. Typically,
the average shift is ΔZexp = 0.01 � λ/2 for a series of 20 repeated experiments, with
standard deviation σΔZ = 0.01.

3. Transport of particles

Results are mainly presented in non-dimensional form, scaling all lengths, velocities
and time by H, ν(T)/H and H2/ν(T), respectively, where ν(T) is the viscosity of the fluid
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n = −1 n = 0 n = 1 n = 2

x

z

FIGURE 4. Particle image velocimetry (PIV) measurement showing the two-dimensional
velocity field [u(xW , zW),w(xW , zW)] in the horizontal plane yW = 0 for Re = 400. The
reference cell n = 0 is shaded.

in the respective experiment carried out at the temperature T . Exceptions concern the time
and frequency which, for convenience, are also given in dimensional form together with
the temperature. The coordinate origin is placed in the centre of the reference convection
cell (full lines in figure 1). We use non-dimensional cell-centred Cartesian coordinates
(x, y, z), flow velocities (u, v,w) and trajectory coordinates (X,Y,Z)(t). In addition to
the flow field, the motion of a spherical particle is determined by its density ratio � =
ρp/ρf and its non-dimensional radius a = ap/H. Furthermore, we define a particle Stokes
number St := 2a2/9 based on the velocity scale ν/H of the flow.

3.1. Fluid flow

3.1.1. General properties
Upon an increase of the Reynolds number, the nearly two-dimensional vortex flow in

the cavity becomes unstable and a three-dimensional cellular flow is established via a
supercritical bifurcation. The theoretical critical data for an infinitely extended cavity
(Λ → ∞) with a rectangular cross-section of Γ = 1.5 are Rec = 191.9 and λc = 2.67
(Albensoeder & Kuhlmann 2002), while the critical data for Γ = 1.7 are Rec = 211.53 and
λc = 2.73 (Romanò et al. 2017). Using the current set-up with Γ = 1.6 and slightly curved
moving walls, Siegmann-Hegerfeld (2010) experimentally obtained Rec(Γ = 1.6) = 205.
This experimental value compares very well with the numerical critical Reynolds number
Rec(Γ = 1.6) = 200 for a rectangular cross-section, also reported in Siegmann-Hegerfeld
(2010).

Using the same viscous scaling (ν,H) and fixing the Reynolds number to Re = 400 in
the present study, we find the cellular flow to always consist of eight stationary cuboidal
convection cells occupying the whole cavity. This corresponds to a mean non-dimensional
wavelength λ̄ = Λ/4 = 2.72 which is compatible with the previous numerical results for
the periodic rectangular cavity (Albensoeder & Kuhlmann 2002; Romanò et al. 2017).
The velocity field at the midplane y = 0 over the full extent of the cavity for Re = 400,
shown in figure 4, illustrates the cellular flow structure. The rigid end-wall conditions at
zW = ±Λ/2 modify the cellular flow mainly within the cells neighbouring the end walls.
The four cells (corresponding to two wavelengths) in the central region near z = 0 are
hardly affected and they are practically periodic in z. This is verified by the velocity profile
along the centre line (x, y) = (0, 0) of the cavity shown in figure 5. The cell boundaries
are characterised by planes of constant z on which the spanwise velocity w = 0 vanishes.
Furthermore, the flow is reflection symmetric with respect to each cell boundary, and it
is point symmetric with respect to the cell centre within each convection cell (Blohm &
Kuhlmann 2002; Romanò et al. 2017). For a more comprehensive review on hydrodynamic
instabilities in lid-driven cavities we refer to Kuhlmann & Romanò (2019).
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FIGURE 5. Laser-Doppler-velocimetry measurement of the dimensional velocity component
u(zW) along cavity centreline (xW , yW) = (0, 0) for Re = 400 as function of zW (dimensionless).
The cell boundaries, indicated by vertical dashed lines, coincide with the extrema of u(zW).

3.1.2. Numerical flow topology
The structure of the streamlines is of key importance for understanding the motion of

nearly neutrally buoyant finite-size particles in the system under consideration (Kuhlmann
et al. 2016; Romanò et al. 2017). Therefore, the flow field is numerically calculated,
taking into account the curvature of the moving walls and using a spectral-element
method employing high-order Lagrange polynomials. The discretisation of the velocity
field is based on Gauss–Legendre–Lobatto nodes defining the Lagrange polynomials
in the function space PN . For the pressure, Gauss–Legendre nodes are employed with
corresponding Lagrange polynomials in PN−2. The temporal integration is carried out
implementing the high-order stiffly stable scheme of Karniadakis, Israeli & Orszag
(1991) by using third-order backward differentiation formulae for the linear terms of the
Navier–Stokes equation and third-order explicit integration schemes for the nonlinear
convective terms. The open-source solver NEK5000 (Fischer, Lottes & Kerkemeier
2008) is used to carry out the numerical simulations distributing 20 elements along
each space direction of one period of the flow and using eighth-order polynomials for
the velocity field. Since the Galerkin weak formulation is used for the discretisation,
an over-integration method which employs 123 Gaussian nodes per element is used to
eliminate aliasing errors.

No-slip and no-penetration boundary conditions are imposed along the walls. In the z
direction periodic boundary conditions with λ = 2.618 have been used in the simulations.
To reduce the singularity due to the discontinuous boundary conditions along the straight
edges between the stationary and the moving walls the three spectral components of
the velocity field with the highest frequency are filtered within the elements next to the
singular corner. The time-dependent flow field is considered to have become stationary
once the convergence criterion (in viscous scaling)

max
x,i

|ui(x, t)− ui(x, t − Δt)|
Δt

≤ 10−7, (3.1)

is satisfied, where Δt is the time step.
The algorithm of Romanò et al. (2017) is used to integrate streamlines of the steady flow.

For Re = 400 chaotic and regular streamlines coexist, similar as in the strictly rectangular
cavity (Γ = 1.7, Romanò et al. 2017). However, the size, location, and structure of the
KAM tori are different due to the curvature of the moving walls. For the present system
with curved moving walls we have reconstructed the KAM tori at Re = 400 in the same
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FIGURE 6. Numerically calculated KAM tori in the two-sided lid-driven cavity for Re = 400
and λ = 2.618. (a) Largest reconstructible KAM tori in a convective cell. The wall motion is
indicated by black arrows. (b) Poincaré section on y = 0 of quasi-periodic streamlines on the
KAM tori shown in (a). The panel shows the full cross-section of the cell. Poincaré points due
to the closed streamlines inside the two main sets of KAM tori with period one are indicated by
red pluses. In the Poincaré section the top and bottom left sets belong to the same KAM tori.
The top and bottom right sets belong to the point-symmetrically located set of KAM tori.

way as in Romanò et al. (2017), Romanò, Hajisharifi & Kuhlmann (2017) and Romanò,
Türkbay & Kuhlmann (2020). Owing to the point symmetry of the flow in a single cell, all
KAM tori arise as two point-symmetric sets of tori. The resulting largest reconstructible
KAM tori are shown in figure 6(a) for the generic convection cell (shaded in figure 4).
There exist two primary closed streamlines which are surrounded by large KAM tubes
(red in figure 6a). The cross-sections of these two major KAM tubes are outlined by red
dots in figure 6(b) which shows a Poincaré section at y = 0. The major (red) KAM tubes
are surrounded by chaotic streamlines in which higher-order KAM tori are embedded.
From figure 6(b) it is seen that the primary KAM tubes (red) are surrounded by a set of
KAM tori due to a 9 : 1 resonance (cyan) which winds nine times about the primary system
of KAM tori. Further away, another set of KAM tori (blue) is found which is caused by a
5 : 1 resonance, winding five times about the red KAM tori. Up to the limits imposed by
the resolution and the procedure for detecting KAM tori numerically (Romanò et al. 2017)
the empty space outside of the tori in figure 6(a,b) is occupied by chaotic streamlines.
Inside of each set of KAM tori a closed streamline exists, which has period 1 (red pluses),
9 (cyan) or 5 (blue).

Properties of a set of KAM tori relevant for the particle motion are the distances
Δψ of the closed streamline and ΔT of the largest reconstructible KAM torus from the
boundaries, in particular from the moving walls, and the orbit time τnum of the closed
streamline (Mukin & Kuhlmann 2013; Romanò et al. 2017, 2019b). These characteristic
parameters are gathered in table 2 for the three KAM tori near z = −λ/4 (left side in
figure 6b).
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KAM τnum Δ
y=0.5
ψ Δ

y=−0.5
ψ Δ

x=−Γ/2
ψ Δ

x=Γ/2
ψ Δ

y=0.5
T Δ

y=−0.5
T Δ

x=−Γ/2
T Δ

x=Γ/2
T

Period 1 0.03126 0.098 0.116 0.077 0.076 0.053 0.065 0.037 0.031
Period 5 0.15442 0.050 0.048 0.025 0.028 0.046 0.045 0.024 0.027
Period 9 0.28772 0.049 0.062 0.035 0.027 0.048 0.061 0.034 0.027

TABLE 2. Numerically computed properties of the three different sets of KAM tori for Re = 400
and λ = 2.618 which are located near the cell boundary at z = −λ/4 (cf. figure 6). Specified are
the period τnum of the closed streamline, its closest distance to the boundaries (Δψ) and the
closest distances to the boundaries of the largest reconstructible KAM torus (ΔT) of each set.
The superscript indicates the boundary the distance refers to. The distances from the moving
walls at x = ±Γ/2 were evaluated in x (for constant y); but up to the accuracy given these
distances are equal to the wall-normal distances. For the distances of the tori near z = λ/4 the
coordinates in the superscripts need to be multiplied by (−1) (point symmetry).

While the flow topology has been computed for λ = 2.618, the wavelength in the centre
of the cavity was experimentally found to be λexp ≈ 2.7, as expected from the linear
stability analyses (Albensoeder & Kuhlmann 2002; Romanò et al. 2017). Nevertheless,
flow properties deduced from the numerical simulation with λ = 2.618 will be compared
with experimental results, because tests have shown the difference is very small. For
instance, the distance between the intersection points of the closed streamlines of period 1
with the plane y = 0 obtained numerically for λ = 2.618 and for λ = 2.7 is less than 0.01.

3.2. Particle motion
Small, but finite-size, nearly density-matched spherical particles almost move like the
fluid. The advection of fluid elements in a steady, three-dimensional incompressible
flow represents a locally Hamiltonian system (Bajer 1994), leading to a KAM structure
of the streamlines. This property carries over to perfectly advected particles. However,
small deviations from advection exist which are caused by the density mismatch between
particles and fluid and by the finite size of the particles. Such small deviations from
the Hamiltonian dynamics of advected particles are typically dissipative. Due to the
dissipation introduced by the particle’s finite size and density mismatch in the dynamical
system governing its motion, elliptic orbits (such as the closed streamlines of the flow)
become stable or unstable limit cycles of the particle motion (Mukin & Kuhlmann 2013;
Romanò & Kuhlmann 2018).

To isolate the effect of the particle size on its motion it is useful to eliminate the
influence of inertia. Therefore, we shall primarily consider particles whose density
mismatch with respect to the fluid has been minimised. For the motion of finite-size
density-matched particles Hofmann & Kuhlmann (2011) suggested that attractors for
the particle motion can be created by the steric boundary effect if an elliptic orbit of
the fluid motion (a closed streamline), surrounded by KAM tori, exists which locally
approaches the boundary up to a distance compatible with the particle size, i.e. with
the range of boundary-induced forces on the particle. Hofmann & Kuhlmann (2011)
and others (see e.g. Mukin & Kuhlmann 2013; Muldoon & Kuhlmann 2013; Romanò
& Kuhlmann 2015, 2017a; Romanò & Kuhlmann 2018) modelled the particle–boundary
interaction by an ad hoc one-parameter repulsive inelastic collision. Further refinements
aiming at a more realistic modelling are due to Romanò et al. (2019a,b). Independent of the
specific theoretical and numerical modelling of the wall effect, the attractors for finite-size
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density-matched particles are created by the dissipation the particle experiences during
its motion near the boundary: while the particle essentially moves like a fluid element
in the bulk either on a chaotic or a regular streamline, it is displaced from its original
streamline during its motion near the boundary. Romanò et al. (2019a) have explained
that this effect is generic and termed the resulting coherent structures forming in dilute
suspensions finite-size coherent structures.

To carry out experiments which meet the above theoretical conditions for finite-size
coherent structures, we first consider the motion of single particles of different sizes for
which the density mismatch relative to the fluid is minimised. Thereafter, the effect of the
density mismatch is investigated. To minimise effects on the particle motion caused by
the end walls at zW = ±Λ/2 only particle trajectories are taken into account which were
measured within the four inner convection cells near zW = 0, i.e. for cell indices n = −1,
0, 1 and 2 (figure 4).

4. Nearly neutrally buoyant particles

To minimise buoyancy and inertia due to the relative density deviation � − 1 between
the particle and the fluid, the temperature of the liquid was adjusted as to keep a selected
particle floating in quiescent liquid as long as possible. The residual density mismatch was
then determined by the sedimentation time using Stokes’ formula. This way the density
mismatch could be reduced to |� − 1| ≤ 10−4. If not mentioned otherwise, the density
ratio was ρ = 1.0001 throughout in this section. Under these conditions and with particle
radii in the range a = O(Δx=−Γ/2

ψ ) (table 2) the above mechanism of particle–boundary
interaction is expected to be the dominant source of dissipation in the dynamical system
governing the particle motion.

In the experiments a selected single particle was placed in the cavity. Then the Reynolds
number was rapidly increased to Re = 1600 and kept constant for at least 60 s. At this
Reynolds number the flow is time dependent and fully chaotic. This initial phase of the
experiment serves the purpose to assign the particle a random initial condition. After
randomisation, the Reynolds number is linearly ramped down to Re = 400 with a rate
ΔRe/Δt = 1000 s−1. The time at which Re = 400 is reached defines t = 0. For t > 0 the
Reynolds number is kept constant at Re = 400.

Figure 7 shows the spanwise and streamwise velocity components w(t) and u(t),
respectively, measured at the cavity midpoint (xW, yW, zW) = (0, 0, 0). In addition, Re(t)
is indicated by a dashed line in figure 7(a). As can be seen the large-amplitude chaotic
flow oscillations of w(t) decay rapidly after ramping down commences at t = −1.2 s. At
t = 5 s after the Reynolds number has reached Re = 400 convective cells have already
formed, indicated by the vanishing spanwise velocity component w(t) characteristic of
a cell boundary. However, the streamwise velocity component u(t), which has a local
maximum as a function of z on the cell boundary, decays much slower. Figure 7(b)
indicates an exponential decay of u(t) which becomes indistinguishable from the noise
at time t ≈ 50 s, which is ∼0.6 times the viscous diffusion time τν = H2/ν ≈ 80 s.

4.1. Case a = 0.05
Using the length scale H = 40.1 mm of the flow domain, a particle with radius
ap = 2.00 mm has the non-dimensional radius a = 0.05. With � = 1.0001 this particle is
found to be attracted to a limit cycle. Figure 8 shows this limit cycle (red) in the (x, y) plane
(figure 8a) and in the (x, z) plane (figure 8b) using cell-centred coordinates. At t1 = 65 s
the particle’s motion has already converged to the periodic attractor. The trajectory was
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FIGURE 7. Velocity components as functions of time measured by laser Doppler velocimetry
(LDV) at the midpoint of the cavity (xW , yW , zW) = (0, 0, 0). At t ≈ −1.2 s the Reynolds
number Re (dashed line in (a)) is ramped down from 1600 and reaches Re = 400 at t = 0 s. (a)
Spanwise velocity component w(t). (b) Streamwise velocity component u(t). The smooth curve
in (b) is a fit ufit = B + Ae−t/Tf for t ∈ [0, 210.4] s with A = 0.0294 m s−1, B = −0.0441 m s−1

and Tf = 12.2 s. In addition, the non-dimensional time is shown in units of τν = 84.14 s. The
temperature is T = 26 ◦C.

recorded from t1 to t2 = 115 s, i.e. for a duration of trec = 50 s. This duration corresponds
to 15.5 periods of the limit cycle. It can be seen that the limit cycle closely approaches
the boundary of the domain of motion V∗ of the particle centroid, which is defined by
V∗ = V\P, where V is the volume occupied by the fluid and P the geometrically prohibited
region for the particle centroid, made by a layer of thickness a along all boundaries
(indicated by dashed lines for the moving walls only).

The periodicity of the attractor can be verified by the amplitude spectrum (figure 9)
of the particle trajectory X (t) = [X(t),Y(t),Z(t)] in cell-centred coordinates, recorded
during [t1, t2] = [65, 115] s. The amplitude spectra X̂ and Ẑ of the trajectory only
consist of sharp peaks at the fundamental frequency F1 = 30.5 (dimensional frequency
f1 = 0.31 Hz) and its harmonics.
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FIGURE 8. Periodic trajectory X (t) (red) of a single particle with a = 0.05 (ap = 2 mm) and
� = 1.0001 shown for [t1, t2] = [65, 115] s (≈15.5 periods of revolution) in comparison with the
numerically computed closed streamline (black) of the main set of KAM tori, corresponding to
the two red pluses in figure 6 for z < 0. The vertical arrows in (a) indicate the direction of motion
of the walls. The circle shows the size of the particle. The red dashed lines delineate the layers
on the moving walls geometrically inaccessible for the centroid of the particle. The window of z
in (b) corresponds a full cell width λ/2. T = 34.3 ◦C.
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FIGURE 9. Amplitude spectra of the trajectory coordinates X(t) (dashed line) and Z(t) (full line)
for a particle with a = 0.05 (ap = 2.00 mm) and � = 1.0001 moving on the periodic orbit. The
fundamental frequency is F1 = 30.5 ( f1 = 0.31 Hz); T = 34.3 ◦C. Also shown is the amplitude
spectrum X̂ψ (grey) of the closed streamline of the period-one set of KAM tori.

The limit cycle in figure 8 (red) forms in the close vicinity of the closed streamline
(black) of the period-one set of main KAM tori of the flow, obtained numerically.
Also the orbit time τexp = 1/F1 = 0.0328 for the period-one limit cycle compares well
with the numerical result τnum = 0.03126 (table 2).

The attraction to the limit cycle can be understood in the framework of the mechanism
for finite-size coherent structures (Hofmann & Kuhlmann 2011; Romanò et al. 2019b):
While the particle nearly follows the flow in the bulk, repeated returns to the moving
walls eventually transfer the particle from the chaotic sea to the main KAM torus
within which it gets further focussed to the limit cycle. For the present particle size,
the limit cycle is created in the vicinity of the closed streamline of the unperturbed flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

76
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.768
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(Hofmann & Kuhlmann 2011). As can be seen from figure 8 the particle never collides
with the moving walls; there remains a certain small lubrication gap of width δ between
the particle’s surface and the moving walls. From figure 8 one can also see that the periodic
orbit stays much further away from the stationary top and bottom walls, indicating the
interaction with the left moving wall at x < 0 (closest approach of the attractor to any
of the boundaries) provides the main source of dissipation for the dynamic system of the
particle motion.

To ensure reproducibility of the result, the experiment has been repeated 36 times. In all
cases the particle was attracted to a periodic orbit. However, due to the randomised initial
conditions for the particle, the particle could have also been attracted to the other orbit,
point-symmetrically located in the same convection cell, because the closed streamlines
arise in point-symmetric pairs in each of the convection cells owing to the symmetry
of the flow within each cell. Moreover, due to the initial conditions, the particle can be
attracted to an orbit near any of the primary closed streamlines in the other convection
cells which possess the same KAM structures, or to their mirror-symmetric counterparts.
Therefore, in each measurement the particle is found to settle, for t > 0, in one of the
periodic convection cells. This is demonstrated in figure 10(a) which shows long-exposure
photographs of the particle limit cycles (closed wide bright streaks, projection to y = 0)
for four out of eight cases which are possible within the four innermost convection cells
n = −1, 0, 1, 2 indicated by vertical dashed lines. Exploiting the symmetries of the flow
and of the particle attractors, all periodic attractors can be mapped to any of the two limit
cycles existing inside the n = 0 reference cell. Figure 10(b) shows the superposition of
all 36 single-particle trajectories (red) mapped, using (2.2), to the generic convective cell
n = 0 in comparison with the closed streamlines (black). The shape and location of the
limit cycles compare very well with each other and are located in the very vicinity of one
of the two closed streamlines.

Theoretical models typically consider a density-matched particle initially velocity
matched to a stationary flow at t = 0 (Hofmann & Kuhlmann 2011). If initialised in the
chaotic sea, which occupies most of the cavity, the initial part of the particle’s trajectory
reflects the underlying chaotic streamlines. Once, by way of the particle–boundary
interaction, the particle has entered a KAM torus, hosting the attractor, the particle’s
motion is expected to be nearly regular (for exceptions, see § IV.D.1 of Mukin & Kuhlmann
2013). Therefore, the particle’s trajectory should be governed by different time scales
during the different phases of its evolution. The first (initial) time scale τI is given by
the time required for an ensemble of non-interacting particles to be transported near the
attractor from their initial conditions at t = 0. The second phase of attraction is governed
by an oscillatory approach of the particle trajectory to the limit cycle.

In the experimental realisation, however, the particle cannot be introduced velocity
matched and its motion is always tied to the fluid motion which is initially transient
(figure 7). For that reason, the particle’s motion cannot be separated from the relaxation
dynamics to the stationary state of the flow. Regardless of this difficulty, we estimate the
mean time at which the particle enters the region close to the attractor and its motion
becomes non-chaotic. To that end we define the discrete distance from the attractor

dn = [
( yn − y∗)2 + (zn − z∗)2

]1/2
, (4.1a)

where ( yn, zn) = [y(tn), z(tn)] is the nth Poincaré point in the plane x = 0 at t = tn and

( y∗, z∗) = 1
K

Nmax∑
k=Nmax −K+1

( yk, zk), (4.1b)
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FIGURE 10. (a) Long-exposure photographs from the top view of the cavity showing periodic
particle orbits projected to the plane yW = 0. The particle (a = 0.05, � = 1.0001) can be
trapped in different (from top to bottom) convective cells indicated by the cell index n. The
cell boundaries can be identified from the faint streaklines made by fine aluminium flakes. Each
exposure covers the time t ∈ [65, 115] s. T = 34.3 ◦C. The isolated white dots in the cell centres
indicate the particle size. (b) Superposition of 36 individual particle trajectories (red), for a
duration of 15 periods each, and mapped, using (2.2), to the generic convection cell n = 0 in
comparison with the two closed streamlines (black). The arrows indicate the direction of the
wall motion.
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FIGURE 11. (a) Poincaré section on x = 0 with Poincaré points ( yn, zn) connected by straight
lines for a = 0.05 and � = 1.0001. Also shown is the largest numerically reconstructible KAM
torus (+) and the fixed point ( y∗, z∗)num = (0.2340,−0.5254) corresponding to the closed
streamline (♦). The dashed line indicates the distance d∗ = 0.2 from the experimental fixed
point ( y∗, z∗)exp = (0.1876,−0.5386). (b) Distance function dn = d(tn) for 36 experimental
realisations (+) and exponential fit d(t) (full line), yielding the attraction rate σ̄ = 3.5 ± 0.1
(A = 0.111 ± 0.002, B = 0.0073 ± 0.0003). The time is given in viscous units H2/ν(T). T =
34.3 ◦C.

is the estimated fixed point corresponding to the limit cycle of the periodic attractor with
Nmax the total number of Poincaré points recorded. Considering the last K = 20 Poincaré
points of the total sequence of points we define the time τI such that dn(t > τI) < d∗ = 0.2.
In the case of a quasi-periodic attractor (see further below) the same definition is used to
estimate the geometric centre of the quasi-periodic attractor in the Poincaré plane.

With the 36 realisations of the experiment we find the average initial time scale to be
τ̄I = 0.18. This value is significantly less than the time τrelax ≈ 0.6 the flow needs to fully
relax to steady state (see above). This indicates the transfer of the particle from the chaotic
sea to the regular region in case of a steady flow would be much faster than the viscous
momentum diffusion across the length scale H of the flow.

Once the distance to the fixed point has dropped below dn < d∗ = 0.2 (dashed circle
in figure 11a) the particle is always found to be attracted to the limit cycle without
large excursions and the Poincaré points lie inside or very close to the main KAM
torus. An example is shown in figure 11(a). Successive Poincaré points connected by
lines show a spiralling-in convergence to the fixed point characterising the limit cycle.
For comparison, the Poincaré section of the closed streamline and of a streamline on
the largest reconstructible primary KAM torus are shown by a diamond (♦) and pluses
(+), respectively. The periodic particle orbit and its Poincaré section differ slightly from
the ones of the closed streamline. In particular, the minimum distance of the attractor
from the boundary (which occurs with respect to the moving wall near x ≈ −0.8) is
Δx=−Γ/2

p = 0.108. This is larger than Δ
x=−Γ/2
ψ = 0.077 (table 2) and also larger than

a = 0.05, indicating a relatively large lubrication gap width δ ≈ a between the surface
of the particle and the moving wall.

The discrete distance function dn = d(tn) is shown in figure 11(b) for 36 realisations of
the experiment. Assuming the particle nearly follows the flow in the bulk, its trajectory
between successive interactions with the moving walls will resemble the motion on KAM
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tori with decreasing cross-sections in the case of a steady flow (Hofmann & Kuhlmann
2011). Due to the non-circular shape of the cross-section of the KAM tori and the two
incommensurate frequencies characterising the motion on a KAM torus the discrete
function dn is not monotonic, but will decay in the mean. To find the mean asymptotic
attraction rate to the limit cycle we fit the measured data (tn, dn) by

d(t) = Ae−σ t + B, (4.2)

where σ is the attraction rate and A and B are constants. The offset B /= 0 is non-zero due
to experimental uncertainties and the distance function dn ≥ 0 being positive. Also in the
general case of attraction to a torus (see below) B /= 0. To improve the statistics the fit
shown in figure 11(b) is made using data from 36 realisations of the experiment. As can
be seen the data are compatible with an exponential attraction to the limit cycle with an
average attraction rate σ̄ = 3.5 ± 0.1.

4.2. Case a = 0.011
A particle with a = 0.011, corresponding to ap = 0.45 mm, and � = 1.0001 can approach
the moving walls closer than a particle with ap = 2.00 mm studied above. Therefore, the
length scale Δ = a + δ over which the wall-induced forces act on the particle is smaller
and the particle cannot be transferred to the same periodic attractor as for a = 0.05. The
smaller particle is rather attracted to a quasi-periodic orbit which is similar to a particular
KAM torus of the main KAM system, and which is tangent to a cylindrical surface at a
distance Δ from the rotating cylinders (Hofmann & Kuhlmann 2011). Two representative
particle trajectories (red) on the toroidal attractors are shown in figure 12(a) together with
two streamlines on the largest reconstructible KAM tori (black). The tori to which the
particles are attracted, and their corresponding counterparts in the other convection cells,
are not the only types of attractors possible for nearly neutrally buoyant particles with
a = 0.011. We also find period-five attractors shown in figure 12(b). They correspond
to the secondary slender period-five sets of KAM tori of the unperturbed flow (blue in
figure 6 above). The intricate structure of the period-five attractors is strikingly similar to
the corresponding KAM tori.

Repeated experiments show that the particle is always attracted to one of the four
attractors (two of each kind) in the generic convection cell. Figure 13(a) shows the
superposition of all 32 individual trajectories measured. For clarity we use the naming
convention P and QP for periodic and quasi-periodic attractors, respectively, numbers for
the periodicity, and letters a and b to indicate the location of the attractor either near
the cell boundary at z = −λ/4 = −0.675 or near z = +λ/4 = 0.675, respectively. The
correspondence between the attractors found and the KAM tori is particularly clear from
the Poincaré sections on y = 0 shown in figure 13(b) for the 32 individual trajectories
on the period-one (red) and the period-five attractors (blue) in comparison to the largest
reconstructible primary and period-five KAM tori (black dots). The location and shape of
the experimental attractors agree well with the KAM tori.

In all 32 realisations of the experiment the particle initially moves in a chaotic fashion.
Therefore, the toroidal particle attractors are typically approached from outside. Assuming
32 realisations of the experiment represent a sufficient sampling of the whole volume
accessible to the particle, it is concluded that the four attractors found in the generic
convection cell are the only ones for the given particle and flow parameters.

The amplitude spectra X̂ and Ẑ of representative particle trajectories X = (X,Y,Z)
shown in figure 14 confirm the particle either moves on a torus (figure 14a) or on a
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FIGURE 12. Particle trajectories for a = 0.011 (ap = 0.45 mm) and � = 1.0001 recorded during
t ∈ [300, 500] s. T = 23.7 ◦C. (a) Two point-symmetrically located quasi-periodic (toroidal)
attractors (red), (b) two periodic attractors with period five (blue). Also shown are the
corresponding largest reconstructible KAM tori (black) obtained numerically. The wall motion
is shown by arrows.
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FIGURE 13. Thirty-two trajectories for a = 0.011 (ap = 0.45 mm) and � = 1.0001 recorded
during t ∈ [300, 500] s. T = 23.7 ◦C. (a) Three-dimensional view of the two toroidal period-one
(red) and the two period-five attractors (blue) in the generic convection cell. (b) Poincaré sections
on the plane y = 0 (red, blue) of the particle trajectories shown in (a). Poincaré sections of
numerically computed streamlines on the corresponding largest reconstructible KAM tori are
shown as black dots. The dashed lines indicate the distance a (particle radius) from the moving
walls in the midplane y = 0.

periodic orbit (figure 14b). The spectrum for a particle on the toroidal attractor (red
in figure 12a) exhibits two incommensurate frequencies. The largest peak at frequency
f1 = 0.39 Hz represents the vortex turnover motion in the cavity, corresponding to the
toroidal direction. The minor peak at f2 = 0.0825 Hz represents the winding frequency on
the torus (poloidal direction). Other than these two frequencies only sums and differences
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FIGURE 14. Amplitude spectra of the two particle-motion attractors for a = 0.011 (ap = 0.45
mm) and � = 1.0001. (a) Spectra X̂ (full) and Ẑ (dashed) for a trajectory on the tubular
attractor with f1 = 0.39 Hz (F1 = 31.39) and f2 = 0.0825 Hz (F2 = 6.64), and spectrum X̂T
(grey) of a streamline on the largest numerically reconstructible KAM torus of period one.
(b) Spectra X̂ (full) and Ẑ (dashed) of a trajectory on the period-five attractor with f1 = 0.4125 Hz
(F1 = 33.2) and spectrum X̂T (grey) of an intermediate reconstructible KAM torus of period five.
T = 23.7 ◦C.

of f1 and f2 contribute significantly to the spectrum. Therefore, the particle’s motion is
quasi-periodic. The amplitude spectrum of a trajectory on the period-five attractor (blue
in figure 12b) is shown in figure 14(b). Again, the fundamental frequency f1 = 0.4125 Hz
is associated with the vortex turnover motion. In addition, the period-five character of the
orbit is signalled by the presence of frequencies corresponding to the subharmonic of fifth
order f1/5 and its integer multiples. The experimental spectra of the particle trajectory
agree very well with the spectrum of a streamline on the largest reconstructible KAM
torus (grey in figure 14).

Figure 15 shows the Poincaré section on x = 0 for one representative trajectory on the
toroidal attractor (lines). It nearly coincides with the largest numerically reconstructible
KAM torus (+). Furthermore, the attraction rate σ̄ = 1.2 can be estimated from the
exponential fit (4.2) to the data for dn of 18 trajectories.

4.3. Case a = 0.025
For a particle with radius a = 0.025 (ap = 1.00 mm), which is intermediate of the two
previous particle sizes, the period-five attractor is absent. However, a quasi-periodic
attractor exists, similar to the one for particle size a = 0.011. As before, the toroidal surface
to which the trajectory of the nearly neutrally buoyant particle is attracted nearly coincides
with one of the primary KAM tori (figure 16), albeit with a smaller cross-sectional area in
the Poincaré plane than the one for the smaller particle with a = 0.011. The coincidence
of the particle attracting torus with an intermediate KAM torus of the unperturbed flow is
consistent with the particle–boundary interaction model (Hofmann & Kuhlmann 2011) in
which a small neutrally buoyant particle is attracted to a KAM torus which is tangent to
the surface which has a distance Δ from the moving walls. As the particle with radius
a = 0.025 is larger, it is repelled at a larger distance Δ from the moving walls than
the particle with a = 0.011. The same reason prevents the particle with a = 0.025 to be
transferred to the slender period-five system of KAM tori which is apparently located too
close to the moving wall for a particle with a = 0.025.
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FIGURE 15. (a) Poincaré section on x = 0 with Poincaré points ( yn, zn) connected by straight
lines for a = 0.011 and � = 1.0001. Also shown is the largest numerically reconstructible
KAM torus (+) and the closed streamline (♦). (b) Experimental distance function dn for 18
experimental realisations (+). The exponential fit d(t) (full line) yields the attraction rate σ̄ =
1.2 ± 0.4 (A = 0.04 ± 0.006, B = 0.07 ± 0.003). The time is given in viscous units H2/ν(T).
T = 23.7 ◦C.
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FIGURE 16. Superposition of 18 particle trajectories on the toroidal attractor for a particle with
a = 0.025 (ap = 1.00 mm) and � = 1.0001. All trajectories were recorded during the period t ∈
[300, 400] s. T = 23.7 ◦C. (a) Three-dimensional view of the trajectories (red) and numerically
computed KAM torus of approximately the same size (dashed black lines). (b) Poincaré section
on the plane y = 0 for the trajectories (red) shown in (a) and of streamlines (black dots) on an
intermediate KAM torus (also shown before in figure 6b). The dashed lines indicate the distance
a (particle radius) from the moving walls in the Poincaré plane.
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FIGURE 17. Amplitude spectra of the trajectory of a particle with a = 0.025 (ap = 1.00 mm)
and � = 1.0001 moving on its toroidal attractor. Shown are the spectra X̂( f ) (solid line) and Ẑ( f )
(dashed line). The dominant frequencies are f1 = 0.3875 Hz (F1 = 30.96) and f2 = 0.0825 Hz
(F2 = 6.59). The spectrum X̂T of a streamline on a corresponding intermediate KAM torus of
period one is shown in grey. T = 23.7 ◦C.

The quasi-periodic motion of the particle on the toroidal attractor is confirmed
by the amplitude spectra of the x and z coordinates of its trajectory X (t). We find
two incommensurate frequencies with the main toroidal frequency f1 = 0.3875 Hz, the
poloidal frequency f2 = 0.0825 Hz, and their sum and difference (figure 17).

The transient motion near the quasi-periodic toroidal attractor in the Poincaré plane
x = 0 is shown in figure 18 (lines) in comparison with the largest reconstructible primary
KAM torus (pluses). Analysing 18 realisations of the experiment (not shown) the attraction
rate is σ̄ = 2.3 ± 0.3. The mean transient time to reach the attractor up to the distance
dn ≤ 0.2, determined by (4.1), is τ̄I = 0.9, comparable to the viscous diffusion time
scale τν .

4.4. Case a = 0.039
Further increasing the particle size to a = 0.039 (ap = 1.58 mm) the particle finds its
attractor in form of a very slender torus corresponding to a very slender KAM tube. The
particle trajectories for 52 experimental realisations (red) and a slender numerical KAM
torus (black) which closely encircles the closed streamline are shown in figure 19. Due to
the small diameter of the attracting toroidal surface experimental imperfections prevent
distinguishing it from a periodic orbit in the Poincaré section (figure 19b). However, from
the spectrum of the particle’s trajectory (figure 20) the quasi-periodic particle motion
can be clearly perceived. Two primary peaks at the two incommensurate frequencies f1 =
0.375 Hz and f2 = 0.0825 Hz arise in the spectrum for a single-particle trajectory. Also
the sum and difference frequencies are present with small amplitude. While the turnover
motion with frequency f1 dominates the trajectory, the amplitude of the poloidal motion
at f2 is very small. Analysing the transient behaviour for 52 single-particle experiments
(figure 21b) the average attraction rate is found to be σ̄ = 2.9 ± 0.1. A representative
transient trajectory is shown in figure 21(a) in the Poincaré plane x = 0.

The attracting torus for a = 0.039 is very slender and the situation is close to the tangent
case of Hofmann & Kuhlmann (2011). Observing that the smaller particle with a = 0.011
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FIGURE 18. Final phase of the spiralling-in attraction of a particle (a = 0.025, � = 1.0001) to
its toroidal attractor. Shown are successive Poincaré points connected by lines, recorded during
t ∈ [117, 496] s. T = 23.7 ◦C. Pluses (+) and diamond (♦) indicate the largest numerically
reconstructible KAM torus and closed streamline, respectively.

is attracted to a torus close to the largest reconstructible KAM torus (figure 15a) one can
estimate the tangent case will arise for a particle with a ≈ 0.041. In this case the attractor
would be periodic, approximating the closed streamline. The larger particle with a = 0.05
(§ 4.1) is also attracted to a periodic orbit. But this orbit (figure 11a) is more distant from
the closed streamline than the nearly periodic orbit for a = 0.039 (figure 21a). This is
consistent with the model of Hofmann & Kuhlmann (2011) according to which particles
larger than the optimum ones (corresponding to the tangent case) are also attracted to
periodic orbits. These periodic orbits, however, lie on a KAM torus and they are closed
during the particle–boundary interaction process.

4.5. Case a = 0.004 and � = 1.003
Finally, we consider the smallest particle, with radius a = 0.004 (ap = 0.15 mm) and
with a density mismatch of 0.3 % (� = 1.003). This particle, as well as all particles
with � = 1.0001 considered before, are essentially advected in the bulk, because the
leading-order inertial effect scales with the small factor (� − 1)Stconv (see also (5.1)
below), where Stconv = StRe is the convectively scaled Stokes number. For a = 0.004 and
� = 1.003 one obtains (� − 1)Stconv = 4.3 × 10−6, and for the largest particle investigate
with a = 0.071 and � = 1.0001 the inertial force scales like (� − 1)Stconv = 4.5 × 10−5.
Note, however, that all particles initially being advected along chaotic streamlines will
eventually interact with the moving walls, regardless of their size.

The small particle with a = 0.004 and � = 1.003 is found to be essentially advected by
the flow. We find the particle always moves in the region occupied by chaotic streamlines
and it is never attracted to a periodic or quasi-periodic orbit. Since the distance of
the KAM tori from the moving walls is ∼7 times larger than the particle radius (see
table 2), the length scale Δ = a + δ = O(10−3), over which the wall effect on the particle
is significant, is too small to transfer the particle to the region of the flow occupied
by KAM tori. Therefore, a focusing of the particle’s trajectory is not possible via the
boundary interaction process. Yet, the particle will experience the wall effect which will
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FIGURE 19. Superposition of 52 particle trajectories for a particle with a = 0.039 (ap =
1.58 mm) and � = 1.0001. All trajectories were recorded during t ∈ [300, 400] s. T = 26.1 ◦C.
(a) Three-dimensional view of the particle trajectories (red) and two very slender KAM tori
calculated numerically (black dotted lines). (b) Poincaré section on y = 0 of 52 particle
trajectories (red) and of streamlines (black) on two slender KAM tori. The dashed lines indicate
the distance a from the moving walls in the Poincaré plane y = 0.
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Ẑ

ẐT
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FIGURE 20. Amplitude spectra of the trajectory X (t) of a particle with a = 0.039 and � =
1.0001. Shown are X̂ (full line) and Ẑ (dashed line). The main frequencies are f1 = 0.375 Hz
(F1 = 30.96) and f2 = 0.0825 Hz (F2 = 6.81). Also shown are spectra X̂T and ẐT of a streamline
on a very slender KAM torus with period one (shown in figure 19), located near the closed
streamline. T = 26.1 ◦C.
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FIGURE 21. (a) Attraction to a quasi-periodic orbit of a particle with a = 0.039 (ap = 1.58 mm)
and � = 1.0001 (lines) in comparison to the largest reconstructible KAM torus of the flow
(+) and the closed streamline (♦). (b) Distance function dn for 52 realisations as functions
of time and fit d(t) of the distance functions according to (4.2), yielding the attraction rate
σ̄ = 2.9 ± 0.1.

merely displace the particle from some incoming chaotic streamline to another outgoing
chaotic streamline and the particle will continue to explore the region occupied by chaotic
streamlines (see, however, Kuhlmann & Muldoon (2013) and Muldoon & Kuhlmann
(2013), for particle attractors in the chaotic region of the flow).

The motion of individual particles with a = 0.004 has been recorded for t ∈ [0, 8250] s.
Two trajectories are shown in figure 22(a), distinguished by colour. The two particles stay
in a single convection cell and each of them seems to explore one half of the whole
volume occupied by chaotic streamlines which extends up to all boundaries of the cell.
Under the idealising assumption that the particle is perfectly advected in the bulk, it may
not, however, populate those chaotic streamlines which originate from the layer on the
(moving) walls which is inaccessible for the particle centroid. This depletion effect, which
has been found in other systems as well (Muldoon & Kuhlmann 2013; Kuhlmann et al.
2014; Orlishausen et al. 2017; Romanò & Kuhlmann 2019), is visible in figure 22(a) on
the walls at y = ±0.5 just upstream of the moving walls and results from the deceleration,
thus widening, of the layer of streamlines from the inaccessible layers on the moving walls.
Regardless of the depletion effect in the region of chaotic streamlines, the particles do not
enter the regions occupied by KAM tori. This is clearly seen from the Poincaré section on
y = 0 shown in figure 22(b) in which patches devoid of Poincaré points arise. The four
empty patches corresponding to the two primary KAM tori are evident. For comparison
the Poincaré sections for the two largest reconstructible KAM tori of period one have been
included as squares.

The Poincaré section in figure 22(b) compares qualitatively with the numerical Poincaré
section of streamlines computed by Romanò & Kuhlmann (2017b) in their figure 12 for a
rectangular cavity with Γ = 1.7 and Re = 500. The central region of the Poincaré plane
is not populated by Poincaré points. This effect may be due to the flow topology: The
centre of the cell at (x, y, z) = (0, 0, 0) hosts a spiralling-in saddle focus c whose stable
manifold originates from a degenerate wall limit cycle wc (figure 9 of Romanò et al. 2017).
Since the streamlines originating from the near-wall region are depleted of particles, these
cannot move in the vicinity of the stable manifold of c. This interpretation is confirmed
by noticing that the stable two-dimensional manifold of the spiralling-in saddle focus c
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FIGURE 22. (a) Trajectories of two particles with a = 0.004 (ap = 0.15 mm) and � = 1.003
distinguished by colour (grey and blue) and shown for t ∈ [0, 500] s. (b) Poincaré section on the
plane y = 0 for both particles during t ∈ [0, 8250] s and largest reconstructible period-one KAM
tori (squares). The cross (×) denotes the spiralling-in saddle focus c in the flow. T = 26.7 ◦C.

represents a transport barrier for perfect tracers inside the convection cell. The barrier is
almost respected by the present particles: the particle (blue) moving in the left part of
the cell in figure 22(b) did not visit the right region throughout the whole observation
time. Similarly, the particle (grey) moving in the right region in figure 22(b) stays there
for a long time. Careful inspection of figure 22(b), however, shows that the particle in grey
colour has crossed the transport barrier of the steady flow once during the late stage of
the trajectory shown. The rare crossing of the flow barrier by the particle may be due to
experimental imperfections or due to the particle not being a perfect tracer.

The chaotic motion of the particles can also clearly be identified by the amplitude spectra
of a typical trajectory shown in figure 23. As expected, the spectra are broadband, but four
peaks characteristic for a torus-like motion are still visible. The long period of time of
8250 s during which the small particle continues to move chaotically compared to the
much shorter period of time of the order of O(300 s) during which the larger particles
become attracted to periodic or quasi-periodic orbits, is yet another proof that the strong
attractors for the motion of larger particles are caused by the particle–boundary interaction.

4.6. Synthesis of results for nearly neutrally buoyant particles
The attractors found for the motion of nearly neutrally buoyant particles of
different sizes and moderate Stokes numbers are all created by particle–boundary
interaction due to the finite particle size. The rates of attraction during the second,
asymptotic phase of the particle motion are summarised in figure 24 as function
of the particle radius a = [0.011, 0.025, 0.039, 0.050, 0.059, 0.071] (respectively ap =
[0.45, 1.00, 1.58, 2.00, 2.37, 2.85] mm). The data for σ̄ (a) should not be interpolated,
because the existence of finite-particle-size attractors is only possible if there exists a
system of KAM tori which can receive the particles, i.e. whose distance from the boundary
is compatible with the particle–boundary interaction length which, in turn, depends on the
particle radius a. Nevertheless, the attraction rate is larger the larger the particle is.
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FIGURE 23. Amplitude spectra X̂ (black) and Ẑ (brown) of the trajectory of a single particle
with a = 0.004 (ap = 0.15 mm) and � = 1.003 (the grey particle in figure 22). The frequency
peaks of X̂ are f1 = 0.3833 Hz, f2 = 0.05318 Hz, f3 = 0.3301 Hz ≈ f1 − f2 and f4 = 0.4439 Hz
≈ f1 + f2. T = 26.7 ◦C.
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FIGURE 24. Mean attraction rates σ̄ to the attractors for nearly neutrally buoyant particles
(� = 1.0001) with radii a = 0.011, 0.025, 0.039, 0.050, 0.059 and 0.071, corresponding to
ap = 0.45 mm, 1.00 mm, 1.58 mm, 2.00 mm, 2.37 mm and 2.80 mm.

An estimate, provided in appendix B, of the attraction rate of neutrally buoyant particles
to periodic orbits based on the inelastic collision model of Hofmann & Kuhlmann (2011)
applied to the present flow and particle parameters a = 0.05 and � = 1.0001 yields
σ = 20, larger than the measured value. Likewise, the rates of attraction for neutrally
buoyant particles found numerically in a similar flow (a rectangular two-sided cavity
with straight moving walls, Romanò et al. 2019a) are much larger (σ ≈ 30) than our
experimental measurements. The too small experimental attraction rates, as compared to
the theoretical and numerical results, are most likely related to the fact that in the model of
Hofmann & Kuhlmann (2011) and in the numerics of Romanò et al. (2019a) the particle is
introduced velocity matched to the fully developed steady flow. Therefore, the attraction
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dynamics is independent of the relaxation time scale of the flow. In our experiments,
however, the particle motion is analysed from t = 0 and, therefore, is strongly affected
by the initial flow transient during which the initially unordered flow decays to the steady
flow on a viscous time scale. From figure 7(b) we find the dimensionless relaxation rate of
the flow as σflow = 6.9. It is not surprising that the attraction rates are all (slightly) less than
σflow, because the dynamics of nearly density-matched particles is slaved to that of the flow.
It is thus concluded that the flow transient reduces the particle attraction rates obtained in
an ab-initio fully developed steady flow to those measured for the present transient flow.

Figure 25 combines the particle motion attractors for nearly neutrally buoyant particles
within a single Poincaré section for the generic convection cell. The particle radius,
indicated by colour, ranges from a = 0.004 to 0.071 (ap = 0.15 mm to 2.80 mm). All
attractors are located in the region occupied by regular streamlines. For very small
particle radii the particle moves chaotically. As the particle radius increases quasi-periodic
attractors are created. On a further increase of a, the distance of the quasi-periodic
attractors from the moving walls increases. Based on the shrinking cross-sections of the
quasi-periodic attractors with particle size the first appearance of a periodic attractor
is expected for a = atangent ≈ 0.041. The location of this orbit should lie in the centre
of the yellow point clouds (a = 0.039) in figure 25. This situation corresponds to the
so-called tangent case of Hofmann & Kuhlmann (2011) (their section V.A.1) in which
the attractor becomes periodic and approaches the closed streamline inside of the KAM
tori. The reverse scenario, upon decreasing a, resembles the Ruelle–Takens–Newhouse
scenario for the transition to turbulence (Newhouse, Ruelle & Takens 1978). However, we
could not unambiguously determine a third incommensurate frequency in the spectrum
of the particle with a = 0.004 (figure 23), hence we conclude that our experiment does
not fall in the class of the Ruelle–Takens–Newhouse scenario. The absence of a third
incommensurate frequency is consistent with the model of Hofmann & Kuhlmann (2011)
which predicts an abrupt change of the particle motion from a quasi-periodic to a chaotic
motion, in which the particle is fully slaved to the flow field and no physical reason exists
for a third incommensurate frequency.

For particles larger than a = atangent (in the sense of Hofmann & Kuhlmann 2011),
periodic attractors are expected as well. This is confirmed by our experiments. The
deviation of the periodic orbit for the large particle with a = 0.05 (ap = 2.00 mm)
(figure 25) from the closed streamline in the tangent case is expected. According to the
model of Hofmann & Kuhlmann (2011) the periodic orbits for these larger particles lie
on KAM tori in the bulk and are only closed by small trajectory segments near the
boundary where the particle experiences the boundary effect. For particles larger than
a = 0.05 temperature-controlled density matching becomes increasingly delicate. But we
do find periodic attractors also for particles with a = 0.59 (ap = 2.37 mm) and a = 0.71
(ap = 2.85 mm), both with density ratio � = 1.0001. The Poincaré sections of their
periodic orbits are included in figure 25. The spectra of these orbits (not shown) confirm
the orbits are periodic. This is different from attractors in thermocapillary liquid bridges
for which period-doubled attractors have been predicted by Mukin & Kuhlmann (2013) for
sufficiently large particles, and observed experimentally by Gotoda et al. (2019).

By tracking particles with different sizes, we could effectively visualise the flow
topology experimentally. In particular, those KAM tori which are located in the vicinity
of the moving walls can be targeted. In the present steady flow all KAM tori approach the
moving walls sufficiently close such that they can attract suitably sized particles to their
vicinity. This interpretation is confirmed by comparing the particle motion attractors from
figure 25 with the streamline topology obtained numerically and displayed in figure 6(b).
Several properties of the attracting orbits for nearly density-matched particles are collected
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FIGURE 25. Overlay of Poincaré sections of trajectories of nearly neutrally buoyant spherical
particles moving on their respective attractors. The colour indicates the particle radius: ap =
0.45 mm (cyan and blue), 1.00 mm (red), 1.58 mm ( yellow), 2.00 mm (brown), 2.37 mm
(maroon) and 2.85 mm (magenta). Particles with ap = 0.15 mm (grey) move chaotically in the
chaotic sea. For comparison, the Poincaré section of KAM tori and of closed streamlines are
shown as black dots and diamonds, respectively.

in table 3. Note the orbit time of the period-five attractor is 5τ̄1. The minimum distance
of the attracting orbit with any boundary is always made with respect to a moving
boundary. The mean winding angle θ̄ is experimentally determined by averaging the angles
which two consecutive Poincaré points make in the plane y = 0 with the fix point or the
geometric centre of the quasi-periodic attractor according to (4.1b).

From table 3 the initial transient time τ̄I required to approach the attractor up to the
distance dn ≤ 0.2 (in the plane y = 0) increases when the particle size decreases. This
effect can be explained by the thickness of the layer on the moving walls over which a
small particle experiences forces from the boundary becoming thinner the smaller the
particle. As the layer thickness shrinks also the overlap of the KAM tori with this layer
shrinks, and the probability for a particle to be transferred to the KAM torus becomes
lower. Therefore, small particles spend more time in the chaotic sea before being caught
by a KAM torus.

Even though a = 0.011 appears to be a particle size compatible with a period-nine
attractor, no attractors other than P-5 and QP-1 are observed. This might be related to
the KAM torus of period five approaching the moving walls the closest (table 2), while a
possible period-nine attractor has to compete with the period-one attractor which is based
on the largest system of KAM tori. But the detailed dynamics, even within the collision
model, can be quite complicated (Mukin & Kuhlmann 2013).
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a 0.011 0.011 0.025 0.039 0.050 0.059 0.071

Type P-5 QP-1 QP-1 QP-1 P-1 P-1 P-1
St 2.69 × 10−5 2.69 × 10−5 1.39 × 10−4 3.38 × 10−4 5.56 × 10−4 7.74 × 10−4 1.12 × 10−3

Stconv 1.08 × 10−2 1.08 × 10−2 5.56 × 10−2 1.35 × 10−1 2.22 × 10−1 3.09 × 10−1 4.48 × 10−1

f1 [Hz] 0.4125 0.3900 0.3875 0.3750 0.3100 0.3475 0.3400
F1 33.20 31.39 30.96 30.96 30.49 29.33 29.09
τ1 0.0301 0.0319 0.0323 0.0323 0.0328 0.0341 0.0343
τ̄I — 2.8 0.9 0.3 0.2 0.2 0.2
σ̄ — 1.2 2.3 2.9 3.5 3.8 4.6
θ̄ — 1.40 1.36 1.31 1.22 1.14 1.10
Δ

y=0.5
p 0.061 0.073 0.102 0.129 0.143 0.132 0.129

Δ
y=−0.5
p 0.044 0.061 0.096 0.108 0.135 0.159 0.159

Δ
x=−Γ/2
p 0.039 0.058 0.078 0.096 0.107 0.118 0.127

Δ
x=Γ/2
p 0.042 0.065 0.919 0.115 0.143 0.162 0.185

N — 18 18 52 36 23 16

TABLE 3. Properties of measured trajectories on the attractor for nearly neutrally buoyant
particles with � = 1.0001 as function of the particle radius a. Specified are the type of attractor
(P: periodic, QP: quasi-periodic), the Stokes number St, the convectively scaled Stokes number
Stconv = Re St, fundamental frequencies f1(dimensional) and F1(dimensionless), turnover time
τ1 = F−1

1 , initial transient time τ̄I required to approach the attractor up to the distance dn ≤ 0.2
(in the plane y = 0), asymptotic attraction rate σ̄ , mean winding angle θ̄ (modulo 2π), the closest
wall-normal distances from the boundariesΔp (the boundary is indicated by the superscript) and
the number of samples N used for averages.

5. Inertial particles

When the normalised density deviation |� − 1| between the particle and the liquid
increases from zero, inertial and buoyancy forces may have to be taken into account.
Expanding the Maxey–Riley equation (Maxey & Riley 1983) for small particles up to
order O(a2) Lasheras & Tio (1994) obtained the inertial equation for the centroid X (t) of
a small particle

Ẋ = u − (� − 1)St
(

Du
Dt

+ ey

Fr2

)
, (5.1)

where D/Dt is the material derivative following the motion of the fluid and the
acceleration of gravity acts in the negative y direction (ey: unit vector in positive y
direction). For convenience the diffusively scaled Froude number Fr = √

ν2/(gH3) =
7.95 × 10−4 at T = 25 ◦C has been introduced, independent of � and ap, where g is
the acceleration due to gravity. The Froude number based on the wall velocity ΩR and
the sedimentation velocity is Fr′ = 9ν2Re/[2(� − 1)ga2

pH]. The minimum and maximum
values encountered are min(Fr′) = 99.4 (ap = 0.48 mm, � = 1.08) and max(Fr′) =
9.05 × 104 (ap = 0.45 mm, � = 1.0001), respectively.

From the inertial equation (5.1) the leading-order effect of inertia and buoyancy on the
velocity of the particle relative to the velocity of the fluid can be measured by (� − 1)St
and (� − 1)St/Fr2, respectively. Both terms scale with a2 and can become significant for
the present millimetric particles, even if the density mismatch |� − 1| amounts to only a
few per cent.
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FIGURE 26. Thirty-nine trajectories of a particle with a = 0.012 (ap = 0.50 mm) and � =
1.023 recorded during t ∈ [300, 400] s. T = 26 ◦C. (a) Three-dimensional representation.
(b) Poincaré section on the plane y = 0. The different attractors are distinguished by colour
and labels.

5.1. Case a = 0.012, � = 1.023
For the moderate density ratio � = 1.023 the trajectories of single particles with a = 0.012
(ap = 0.50 mm) and Stokes number St = 3.8 × 10−5 are still found to be attracted to
particular orbits. Thirty-nine trajectories, each obtained from a single-particle experiment
and recorded during t ∈ [300, 400] s, are shown in figure 26(a). They are similar to those
for a = 0.011 (ap = 0.45 mm) and � = 1.0001: the particle can be attracted either to one
of two period-five structures (blue) similar to the corresponding sets of slender KAM tori,
or to one of two structures (red) resembling the main period-one KAM tori.

More details can be recognised from the Poincaré section on y = 0 shown in
figure 26(b). The trajectories of the particles attracted to the period-five structure
(blue) seem to be independent of whether they are attracted near the one or the other
point-symmetrically located KAM torus of period five existing in the generic convection
cell. However, the two attractors forming near the two main KAM tori are different. One
of the two attractors (QP-1b, on the right side of figure 26b) is clearly quasi-periodic,
while the other one (P-1a, on the left side of figure 26b) seems to evolve into a periodic
attractor. The distinction between the periodic and the quasi-periodic attractors becomes
clearer when tracking particles for a much longer time. To that end two particles were
tracked up to t = 4980 s, one being initiated in the left and the other one in the right half
of the convection cell. During their evolution, the particles were found to always stay in
the same half of the convection cell and, after one hour, the periodic and the quasi-periodic
attractors are clearly established. Figure 27(a) shows the two trajectories for large times,
i.e. during t ∈ [4500, 4980] s. The Poincaré section on y = 0 in figure 27(b) displays all
Poincaré points during t ∈ [0, 4980] s (83 min since t = 0).

The evolution of the trajectories can thus be described by three phases: in the very short
initial phase the particles are very rapidly transported to the region of the KAM tori. In
the second phase they tend to focus on quasi-periodic orbits resembling a KAM torus on
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FIGURE 27. Trajectories of two particles with a = 0.012 (ap = 0.50 mm) and � = 1.023
approaching P-1a and QP-1b. (a) Three-dimensional view, t ∈ [4500, 4980] s. (b) Poincaré points
for the same particles during the full time interval t ∈ [0, 4980] s (red) and during the final phase
t ∈ [4500, 4980] s (black). T = 26 ◦C.

a time scale comparable to that for density-matched particles. During the third phase, on
a much longer time scale, the symmetry between the particles moving near the one or the
other point-symmetrically located KAM torus is broken. One trajectory evolves to a limit
cycle in the vicinity of the closed streamline of one KAM torus, while the other trajectory
is stabilised on a quasi-periodic orbit near the other KAM torus.

To understand this behaviour, we consider symmetries and time scales. Inertial effects
can lead to clustering on limit cycles or tori in steady solenoidal flows (see, e.g. Sapsis
& Haller 2010). In particular, the dissipative character of inertial forces changes the
structurally unstable trajectories along the closed streamlines into limit cycles which
are either attracting or repelling (Kuhlmann & Muldoon 2012). The asymmetry of the
evolution of the two particle trajectories in the present system, however, cannot be
explained by inertial forces alone, because the flow field u and the inertia term Du/Dt in
(5.1) are both point symmetric with respect to the cell centre (see also Blohm & Kuhlmann
2002). The point symmetry

(x, y, z, u, v,w) −→ −(x, y, z, u, v,w), (5.2)

corresponds to a rotation by π about the z-axis and a reflection with respect to the plane
z = 0. Thus in the absence of buoyancy, i.e. under zero-gravity conditions, the particle
evolution according to (5.1) should be the same near both point-symmetrically located
closed streamlines such that the two invariant structures must either both be attracting or
both be repelling. Therefore, the buoyancy term which does not satisfy the symmetry
(5.2) is responsible for the symmetry breaking. Since the buoyancy term in (5.1) is
solenoidal, it cannot, however, contribute to the contraction rate which amounts to ∇ · Ẋ =
−(� − 1)St∇ · (u · ∇u) independent of Fr.

Buoyancy forces on the particle are always associated with inertia forces. Inertia
converts the closed trajectories along closed streamlines into limit cycles and buoyancy
breaks the symmetry of these limit cycles such that one limit cycle is attracting and the
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Attractor Δ
y=0.5
p Δ

y=−0.5
p Δ

x=−Γ/2
p Δ

x=Γ/2
p

P-1a 0.105 0.118 0.084 0.121
P-5a 0.054 0.054 0.044 0.049
QP-1b 0.056 0.074 0.043 0.066
P-5b 0.045 0.057 0.043 0.044

TABLE 4. Closest wall-normal distance Δp of a trajectory of a particle with a = 0.012 and
� = 1.023 on its attractor.

other is repelling. This interpretation is confirmed by the experimental result: We find
an attracting limit cycle near one of the closed streamlines and the absence of such limit
cycle near the other closed streamline (where a repelling limit cycle is expected). The slow
attraction of the particle to the limit cycle suggests that this limit cycle is indeed created by
inertia, because the finite-size effect predicts a rapid attraction to a quasi-periodic attractor
(for density-matched particles with a = 0.012, see a = 0.011 and a = 0.025 in table 3).
The initial phase of the evolution of a particle with a = 0.012 and � = 1.023 is equivalent
to that of a nearly density-matched particle and can be explained by the particle–boundary
interaction, and the particle thus has the tendency to approach a quasi-periodic orbit. The
weakly attracting/repelling limit cycles near the closed streamlines due to buoyancy and
inertia dominate the long-term behaviour by slowly attracting the particle to the stable limit
cycle near one of the closed streamlines, while repelling the particle from the unstable
limit cycle near the other closed streamline. However, this particle is ultimately stabilised
on a quasi-periodic orbit by the particle–boundary interaction. This interpretation is also
supported by observing that the distance of the quasi-periodic orbit (table 4) from the
moving wall for a weakly inertial particle (figure 27b) is comparable to that for a nearly
density-matched particle with a similar size (a = 0.011) shown in figure 13(b). A similar
behaviour was found using the model of Romanò et al. (2019a) for Γ = 1.7 (unpublished).
The same type of asymmetry should also apply to the period-five attractors. But the
period-five KAM tori are too slender to be able to detect a notable difference among the
two attractors.

The dynamics of attraction to the inertia-induced limit cycle P1-a for a = 0.012 (ap =
0.50 mm) and � = 1.023 near the cell boundary at z = −λ/4 is shown in figure 28.
The inertial rate of attraction σ̄ = 0.31 is ∼4 times smaller than the attraction rate
to the quasi-periodic orbit for the nearly density-matched particle with a = 0.011 and
� = 1.0001, and more than ten times smaller than the attraction rates for larger nearly
density-matched particles (table 3). This difference is remarkable in view of the attraction
rates of the nearly neutrally buoyant particles being hampered by the initial flow transient.

As a final consideration, a weak perturbation by buoyancy (Fr−2 → 0) in the presence of
inertia would not change the character (inertially attracting/repelling) of both limit cycles.
The asymmetry introduced by weak buoyancy would only slightly change the attraction
rates. If, however, buoyancy exceeds a critical value such that Fr−2 > Fr−2

c , the asymmetry
it induces apparently changes the sign of the attraction rate of one limit cycles such that one
of the two limit cycles in the generic convection cell is attracting and the other repelling.

5.2. Case a = 0.012, � = 1.045
A particle of similar size (a = 0.012, ap = 0.48 mm), but slightly heavier (� = 1.045),
is found to settle either on a periodic orbit, on a quasi-periodic orbit, or on one of two
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FIGURE 28. (a) Poincaré section on x = 0 of the trajectory of a single particle (red lines) with
a = 0.012 and � = 1.023 approaching the limit cycle P1-a. The final phase of the evolution is
shown by black lines. Pluses indicate the largest numerically reconstructible KAM torus and the
diamond marks the closed streamline. (b) The distance function dn for ten realisations (+). A fit
of the data according to (4.2) (full line) yields the attraction rate σ̄ = 0.31 ± 0.04.

period-five orbits. Figure 29 shows the three-dimensional view and the Poincaré section
on y = 0. The behaviour is similar to that of the particle with a = 0.012 (ap = 0.50 mm)
and � = 1.023. In 13 out of 31 realisations of the experiment the particle was attracted
to the period-one limit cycle P-1a (red, left side in figure 29b) inside of the main KAM
torus near the cell boundary at z = −λ/4. From these 13 trajectories we find the attraction
rate σ̄ (a = 0.012, � = 1.045) = 0.49 ± 0.03 (figure 30) which is larger than the one for
the previous case with only approximately half the density mismatch and σ̄ (a = 0.012,
� = 1.023) = 0.31 ± 0.04.

As for the previous case, two period-five attractors P-5a,b (blue) are present for
a = 0.012, � = 1.045. However, the period-five attractor P-5b near the toroidal attractor
QP-1b (red, near z = λ/4) appears less sharp than the period-five attractor P-5a (blue, near
z = −λ/4) near the period-one limit cycle P-1a. This is interpreted as another consequence
of the point-symmetry-breaking effect due to buoyancy discussed above and clearly
exhibited by the attractors associated with the period-one KAM tori.

5.3. Case a = 0.013, � = 1.060
Further increasing the particle density to � = 1.06, but also slightly increasing the particle
size to a = 0.013 (ap = 0.53 mm), we find a similar behaviour (figure 31) as for the
previously considered particles with smaller density mismatch. We find a period-one
(P-1a, red) and a quasi-periodic attractor (QP-1b, red), as well as two period-five attractors
(P-5a,b, blue). As expected the attraction rate σ̄ = 0.74 ± 0.06 to the periodic attractor
P1-a (figure 32) is larger than the one for the particles with the smaller density mismatch.

Different from the previous cases, however, we also find a period-four attractor P-4a
(black) near z = −λ/2 which is located between the period-five attractor and the stable
limit cycle of period one. Since a period-four KAM torus was not identified in the
numerical streamline topology, the period-four attractor is probably caused by inertia
in combination with buoyancy. This interpretation is also supported by the observation
that the trajectories on the period-four orbit remain distant from the moving boundaries
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FIGURE 29. Thirty-one trajectories of a single particle with a = 0.012 (ap = 0.48 mm)
and � = 1.045. The trajectories were recorded during t ∈ [500, 600] s. T = 23.7 ◦C.
(a) Three-dimensional view of the trajectories. (b) Poincaré section on y = 0.
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FIGURE 30. (a) Poincaré section on x = 0 of a single-particle trajectory for a = 0.012 (ap =
0.48 mm) and � = 1.045 being attracted to the period-one limit cycle P1-a (points connected by
lines) in comparison to the largest reconstructible KAM torus (pluses). (b) Distance function dn
of 13 realisations (+) and fit d(t) (full line) yielding σ̄ = 0.49 ± 0.03.

(table 5) such that the finite-particle-size effect near the moving boundaries cannot be
responsible for this dissipative structure.

5.4. Light particle with a = 0.012, � = 0.94
To investigate the behaviour of light particles we consider a particle with a = 0.012 (ap =
0.5 mm) and � = 0.94. The magnitude (� − 1) of the density mismatch is the same as
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FIGURE 31. Superposition of 33 particle trajectories for a = 0.013 (ap = 0.53 mm) and
� = 1.06. Trajectories have been measured starting 5 min after Re = 400 has been reached.
T = 24.5 ◦C. (a) Three-dimensional view. (b) Poincaré section on y = 0. The different attractors
are colour coded.
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FIGURE 32. (a) Poincaré section on x = 0 of a single trajectory approaching the period-one
limit cycle P-1a for a particle with ap = 0.53 mm and � = 1.06 (lines) and largest reconstructible
KAM torus (+). (b) Distance function dn for 9 realisations (+) and fit d(t) (full line) yielding
the slope σ̄ = 0.74 ± 0.06 for the attraction rate to the limit cycle.

for the previous particle, but it has a different sign. Trajectories and Poincaré sections
are shown in figure 33. As expected from the symmetries of the system, reversing the
buoyancy force, the attractors for � = 0.94 are point symmetric to those for � = 1.06.
This can be seen by comparing figure 33(b) with figure 31(b). The attraction rate σ̄ =
0.72 ± 0.08 (obtained from figure 34) for the light particle with � = 0.94 to the period-one
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Attractor Δ
y=0.5
p Δ

y=−0.5
p Δ

x=−Γ/2
p Δ

x=Γ/2
p

P-1a 0.099 0.126 0.084 0.160
P-4a 0.081 0.098 0.065 0.103
P-5a 0.050 0.054 0.035 0.062
QP-1b 0.068 0.066 0.042 0.067
P-5b 0.056 0.056 0.040 0.058

TABLE 5. Closest wall-normal distances Δp of particle trajectories on their attractors for
a = 0.013 (ap = 0.53 mm) and � = 1.060.
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FIGURE 33. Thirty-seven trajectories of individual particles with a = 0.012 (ap = 0.50 mm)
and � = 0.94. Trajectories were recorded during t ∈ [400, 500] s. T = 25.5 ◦C.
(a) Three-dimensional view. (b) Poincaré section on y = 0. The attractors are distinguished by
colour and labels.

limit cycle P-1b (red in figure 33) nearly equals the one (P-1a) for the heavy particle with
� = 1.06 for which σ̄ = 0.74 ± 0.06 (figure 32).

5.5. Attraction rates to the period-one limit cycle
Figure 35 shows the rate of attraction to the period-one limit cycle as function of the
particle-to-fluid density ratio � for particles of nearly the same size with particle radii
a = 0.012 and a = 0.013, i.e. particles with ap ∈ [0.48, 0.53] mm. Within the range of
� considered the attraction rate increases linearly with the absolute value of the density
mismatch |� − 1|. This dependence is in agreement with (5.1) in which both inertia and
buoyancy terms scale with |� − 1| for constant Stokes number St. Numerical simulations
of the particle motion in a rectangular cavity with Re = 400, Γ = 1.7 and zero gravity
by Romanò et al. (2019a) yielded attraction rates due to inertia alone (bullets and the
squares in figure 4(c) of Romanò et al. 2019a) with slopes ∂�σ (a = 0.01) ≈ 2 and ∂�σ (a =
0.02) ≈ 8 which are of the same order of magnitude as our present measurements which
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FIGURE 34. (a) Poincaré section for a single representative trajectory approaching the
period-one limit cycle P-1b for a particle with a = 0.012 (ap = 0.50 mm) and � = 0.94 (points
connected by lines) and largest reconstructible KAM torus (pluses). (b) Distance function dn for
nine measurements (+) and fit d(t) (full line) according to (4.2) yielding the attraction rate to the
period-one limit cycle σ̄ = 0.72 ± 0.08.
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FIGURE 35. Mean rate of attraction σ̄ to the period-one limit cycle (crosses) as a function of the
density ratio � = 0.94, 1.023, 1.045 and 1.06 for particles of nearly the same size with particle
radii a = 0.012 and a = 0.013, i.e. ap ∈ [0.48, 0.53] mm. The full lines represent linear fits with
slopes |∂σ/∂�| = 12.

yield |∂σ/∂�| = 12 ± 1 for a = 0.012 and a = 0.013. The remaining deviations may be
caused by the different aspect ratio, the different wall curvatures and the stabilising effect
of buoyancy in our experiments. In the numerical simulations for Γ = 1.7 and straight
moving walls KAM tori of higher periodicity are absent.

5.6. Case a = 0.012, � = 1.08
For even heavier particles with density ratio � = 1.08, keeping the particle radius almost
the same as before at a = 0.012 (ap = 0.48 mm), the period-five attractor in the right
half of the convection cell (near z = λ/4) vanishes completely (figure 36), while it
persists on the left side (P-5a, blue, near the cell boundary z = −λ/4). This is consistent
with the previous interpretation that one inertia-induced limit cycle is stabilised by
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FIGURE 36. Forty trajectories of particles with a = 0.012 (ap = 0.48 mm) and � =
1.08. The trajectories were recorded 5 min after Re = 400 was reached. T = 26.4 ◦C.
(a) Three-dimensional view. (b) Poincaré section on the plane y = 0.

buoyancy (near z = −λ/4), while the other one (near z = λ/4) is destabilised. Particles
being repelled from the unstable limit cycle could be attracted to a nearby slender
period-five toroidal attractor created by the particle–boundary interaction. In the present
case, however, the inertial–buoyancy destabilisation seems to overcome the stabilisation
by particle–boundary interaction and QP-5b is absent.

There are four qualitative changes compared to the case a = 0.013 (ap = 0.53 mm)
and � = 1.06 (figure 31). The first is the transformation of the period-one attractor P-1a
near z = −λ/4 caused by inertia (red in figure 31) to a tubular quasi-periodic attractor
QP-1a (red in figure 36). It is surrounded by the period-four attractor P-4a (black) which
prevails. The second change is the absence of the period-five attractor near z = λ/4. The
third difference is the creation of a periodic attractor P-1b (magenta) inside of the still
existing tubular period-one attractor QP-1b (red) near the cell boundary at z = λ/4 (right
hand side of figure 36b). As the fourth difference, the new periodic attractor P-1b is
surrounded by a newly created period-4 attractor P-4b (black). Apparently, the stability
of the two period-one limit cycles has changed (change of sign of σ ) upon increasing
the density mismatch � − 1: The period-one limit cycle near z = −λ/4 has become
unstable, while the period-one limit cycle near z = λ/4 has become stable (magenta).
The stable quasi-periodic attractor QP-1a (red) which has evolved from the stable limit
cycle near z = −λ/4 must still be due to inertia, because the quasi-periodic orbits on the
torus to which the particle is attracted stays further away from the moving walls than
the period-five limit cycle P-5a (blue) near z = −λ/4 and the quasi-periodic attractor
QP-1b (due to particle boundary interaction) near z = λ/4. The minimum distances of
these orbits from the boundaries are specified in table 6.

5.7. Case a = 0.039, � = 1.001 and � = 1.006
For larger particles buoyancy and inertia effects become even stronger. For particles
with a = 0.039 (ap = 1.58 mm) and � = 1.001 we only find two periodic attractors
near the closed streamlines. A three-dimensional view and a Poincaré section are shown
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Attractor Δ
y=0.5
p Δ

y=−0.5
p Δ

x=−Γ/2
p Δ

x=Γ/2
p

QP-1a 0.074 0.130 0.050 0.133
P-4a 0.069 0.126 0.049 0.129
P-5a 0.046 0.026 0.024 0.064
P-1b 0.076 0.115 0.039 0.097
QP-1b 0.041 0.090 0.037 0.074
P-4b 0.057 0.100 0.041 0.084

TABLE 6. Closest wall-normal distance Δp of trajectories of particles with a = 0.012
(ap = 0.48 mm) and � = 1.08 moving on their respective attractors.

in figure 37. Due to the presence of buoyancy, the limit cycles are different, depending on
the side of the convection cell in which they arise. This is clearly visible in the projection
of the limit cycles to the (x, y) plane shown in figure 37(c). The loci of the two limit
cycles are not point symmetric with respect to the cell centre (x, y, z) = (0, 0, 0). For a
comparison, the same slender KAM tori are shown in black in figure 37(b), which were
compared in figure 19(b) with the trajectory of a particle of the same size but nearly density
matched to the fluid with � = 1.0001. While the symmetry breaking effect of buoyancy
is visible and the trajectory must be affected by inertia, the particles also approach the
moving walls up to a distance comparable to their size such that, apart from inertia, also
the boundary effect is expected to contribute to the generation of the limit cycles.

The asymmetry between the two limit cycles becomes even stronger when the density
ratio is increased to � = 1.006. The corresponding trajectories and Poincaré sections are
provided in figure 38.

6. Discussion and conclusion

The incompressible flow at Re = 400 in a long two-sided lid-driven cavity with
cross-sectional aspect ratio Γ = 1.6 arises in form of steady spatially periodic cells.
This cellular flow hosts regular streamlines on KAM tori of period one and period five,
surrounded by chaotic streamlines which occupy most of the domain, including a layer
along all cavity walls (see also Romanò et al. 2017).

Individual spherical particles suspended in the cellular flow whose density does not
differ much from that of the fluid are found to be attracted to a variety of limit cycles and
quasi-periodic orbits. All attractors for the particle motion found are located in or close to
the KAM tori of the unperturbed cellular flow, regardless of the particle’s initial condition.
If several non-interacting particles were considered, the large part of the domain which is
occupied by chaotic streamlines would become depleted of particles. Since the trajectories
of the particles considered do not deviate much from the streamlines of the flow in the
bulk, the particles will eventually be transported along chaotic streamlines to the vicinity
of the moving walls where the motion of the particles becomes restricted owing to their
finite size. A particle can then be transferred to the region of KAM tori if these are located
within a distance from the walls over which the wall effect on the particle is operative
(Hofmann & Kuhlmann 2011; Muldoon & Kuhlmann 2013).

If particle inertia and buoyancy are minimised, in the present experiments by selecting
the relative density � = 1.0001, and if the particle size is not too small we find the
particles to be attracted to either periodic orbits which are located in very close vicinity
of the closed streamlines of the flow, or to quasi-periodic orbits which practically coincide
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FIGURE 37. Twenty trajectories of a particle with a = 0.039 (ap = 1.58 mm) and � = 1.001.
The trajectories were recorded during t ∈ [300, 400] s. T = 25 ◦C. (a) Three-dimensional view,
(b) Poincaré section on the plane y = 0 including the contours of two slender KAM tori (black)
and (c) projection of the trajectories onto the (x, y)-plane.

with a KAM torus of the flow. Since � = 1.0001 is very small, the particles nearly
move like tracers in the bulk. In this situation the theoretical concept of Hofmann &
Kuhlmann (2011) and Romanò et al. (2019b) for the motion of finite-size particles should
be applicable. Our experimental results are, indeed, consistent with this theoretical model
which explains the creation of attractors for the particle motion by a particle–boundary
interaction that introduces a dissipate effect in the dynamical system governing the
particle motion. Particle–boundary interaction can be effective in the present experiments,
because the minimum distances of the closed streamlines Δψ inside the KAM tori
from the moving walls are of the same order of magnitude as the distance Δ = a + δ
(a: particle radius, δ: thickness of the lubrication layer) over which the finite-size
particle–wall effect is operative. For nearly neutral buoyancy we find particle-motion
attractors in the representative convection cell which exhibit the same symmetries as the
flow field.

The attraction to periodic or quasi-periodic orbits due to the boundary interaction effect
is typically very rapid, because the process scales with the turnover time τ1 ≈ 0.03 � 1
(non-dimensional viscous time) of the respective orbit (table 3), independent of the density
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FIGURE 38. Twenty trajectories of a particle with a = 0.039 (ap = 1.58 mm) and � = 1.006.
Trajectories were recorded during t ∈ [300, 400] s. T = 28 ◦C. (a) Three-dimensional view,
(b) Poincaré section on the plane y = 0 including the contours of two slender KAM tori (black)
and (c) projection of the trajectories onto the (x, y)-plane.

ratio (Kuhlmann et al. 2014; Muldoon & Kuhlmann 2016). In contrast, the inertial time
scale ∼ |� − 1|−1St−1 can become very large as |� − 1| → 0.

The attraction rates expected due to the finite-particle-size effect based on the theoretical
model of Hofmann & Kuhlmann (2011) and estimated in appendix B is σ = O(20).
Similarly, the attraction rate obtained numerically by Romanò et al. (2019a) for a very
similar system is σ = O(30). This is faster than the dynamics found in our experiments
for nearly neutrally buoyant particles for which the mean attraction rate to periodic or
quasi-periodic orbits ranges in [1.2, 4.6]. The reason is the most prominent signal for dn

arises during the transient evolution of the flow. Therefore, the measured attraction rates σ̄
are lower bounds on the attraction rates a particle would experience if it could be initialised
in a steady flow. Yet, the focusing of particles via the particle–boundary interaction effect
is much faster than the inertial focussing for which the attraction rates can be measured
more accurately.

When the magnitude of the density mismatch |� − 1| increases, inertia and buoyancy
effects gradually become important. It is known that stable or unstable limit cycles
due to inertia evolve from the closed streamlines which are equilibrium trajectories for
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perfectly advected particles (in the absence of inertia and other forces). Owing to the
symmetries of the flow and of the inertia forces both the limit cycles evolving out of
each closed streamline of a pair must have the same stability properties. Since both
the flow field and the leading-order inertia term are point-symmetric, the removal of
the degeneracy of the attraction/repulsion rates to/from the limit cycles is essentially
caused by the symmetry-breaking buoyancy forces. In our experiments, we find that the
relative strength ∼ Fr−2 of buoyancy to inertia forces on the particle is so large that
even the sign of the attraction/repulsion rate of one limit cycle is changed by buoyancy,
rendering one limit cycle of the inertial particle stable and the other unstable. The particle
motion near the unstable limit cycle can, however, be stabilised on a quasi-periodic orbit
surrounding the unstable limit cycle, where the quasi-periodic orbit is created by the
particle–wall effect, similar as for nearly density-matched particles. For even larger density
mismatch the inertia–buoyancy-unstable limit cycle inside of the boundary-induced
quasi-periodic attractor is found to stabilise again. This observation suggests that a new
unstable inertia–buoyant quasi-periodic attractor has been created between the stable
inertia–buoyant limit cycle and the stable boundary-induced quasi-periodic attractor.
Apart from attractors which exhibit the same periodicity as the underlying KAM tori,
we also found inertia–buoyancy-induced attractors which exhibit different periodicities,
e.g. period four.

The results obtained confirm the predictions of the particle–boundary interaction model
of Hofmann & Kuhlmann (2011) according to which attractors for the motion of particles
with a suitable finite size are created, if inertia and buoyancy are sufficiently weak (for
cavity flow, see Kuhlmann et al. 2016; Romanò et al. 2019a). For dilute suspensions
the attractors can be populated by several or even many finite-size particles. Such PAS
have been observed in thermocapillary flows (Schwabe et al. 2007; Toyama et al. 2017;
Watanabe et al. 2018; Oba et al. 2019). The present experimental results have shown
that the transfer of particles to attractors by the finite-size boundary interaction is a
more general concept and can lead to finite-size coherent structures (Romanò et al.
2019b). For the present cm size flow and particles in the mm range the restrictions
on the density matching are quite severe due to the large buoyancy forces. Buoyancy
becomes less important for particles in millimetric thermocapillary flow, and even less
in micrometre-scale flows (Orlishausen et al. 2017). If, furthermore, the particle size a
is small, FSCS can be expected to play an important role in incompressible multiphase
micro-flows which are often laminar and thus can exhibit KAM structures. The same
mechanism may also help explain the preferential orbits of particles in the classical
lid-driven cubic cavity observed by Tsorng et al. (2006) and Tsorng et al. (2008) which
have been lacking a plausible explanation as yet.

A proper numerical treatment of the phenomena measured would be desirable. First
results for driven-cavity flows are due to Kuhlmann et al. (2016) and Romanò et al. (2019a).
Since fully resolving three-dimensional simulations, taking into account all length scales
down to the thickness of the lubrication film between particle and boundary, are extremely
expensive computationally (for a two-dimensional flow, see Romanò & Kuhlmann 2017a),
accurate models improving the elementary model of Hofmann & Kuhlmann (2011) must
be developed. For small particle Reynolds numbers such model could be based on the
asymptotic theory of Brenner (1961) as already applied by Breugem (2010) and Romanò
et al. (2019a). While this approach may be useful for plane boundaries, it is not directly
applicable to the particle motion near the singular edges of the cavity where the stationary
and the moving wall meets. But regardless of the problem associated with the particle
motion near the singular edge and independent of the boundary effect on the particle
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motion, the stability of inertia-induced particle limit cycles and quasi-periodic orbits and
its dependence on buoyancy would be an interesting subject of future investigations.
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Appendix A. Particle tracking

Based on the pinhole camera model (Zhang 2000), and considering homogeneous
coordinate systems, the sensor-plane coordinates x(i)S (of the ith camera) and the world
coordinates X W(t) are related by

s

⎡
⎢⎣

x (i)S (t)

y(i)S (t)
1

⎤
⎥⎦ = K (i) · [

R(i) t(i)
] ·

⎡
⎢⎢⎢⎣

XW(t)
YW(t)
ZW(t)

1

⎤
⎥⎥⎥⎦ , (A 1)

where s is a scale factor, R(i) and t(i) are, respectively, the extrinsic 3 × 3 rotation and
3 × 1 translation matrices which define the rigid body transformation between the world
and camera coordinates. The matrix

K (i) =
⎡
⎣f (i)l 0 c(i)x

0 f (i)l c(i)y

0 0 1

⎤
⎦ , (A 2)

is the 3 × 3 camera intrinsic matrix, where (c(i)x , c(i)y ) and f (i)l are the principal point and
the focal length of the camera lens, respectively.

The nine elements of the extrinsic matrix and the three unknowns in the intrinsic matrix
can be obtained from the camera calibration process described in Zhang (2000). To that
end we captured 12 images per camera of a planar checkerboard pattern in air under
different three-dimensional orientations. After the calibration process, the coordinates of
the centre of each camera can be determined in world coordinates by

C (i) = − [
R(i)

]−1 · t(i). (A 3)

Since the particle is immersed in oil, the cameras are placed in air, and both fluids are
separated by a thick Plexiglas lid, the refraction of the optical ray due to the different
indices of refraction needs to be taken into account for the air–Plexiglas and Plexiglas–oil
interfaces. Therefore, the position of the particle centroid is determined by ray tracing
based on Snell’s law (Yamashita et al. 2008; Pedersen et al. 2018). For each camera, the
refracted optical ray from the object point P to the camera-plane centre point C (i) intersects
with the air–Plexiglas and Plexiglas–oil interfaces at points P(i)

1 and P(i)
2 , respectively. The

direction vectors of the optical rays in air, Plexiglas and oil are, respectively, v
(i)
1 , v

(i)
2 and

v
(i)
3 . The geometry is shown in figure 39.
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FIGURE 39. For each camera (i = 1, 2) C(i) is the camera centre, P(i) is the projection of the
point on the sensor and v

(i)
n (n ∈ [1, 2, 3]) is the direction vector of the light ray in air, Plexiglas

and oil, respectively; X W is the particle position in world coordinates and l is the line segment
perpendicular to both light rays.

Once the sensor coordinates have been determined for each camera by the image
processing described in § 2.2, the optical rays in air r(i)1 can be expressed as

r(i)1 = C (i) + α(i)v
(i)
1 , (A 4a)

where α(i) is a free parameter. The direction vector v
(i)
1 can be obtained from the calibrated

intrinsic and extrinsic matrix

v
(i)
1 = [

R(i)
]−1 · [

K (i)
]−1 ·

⎡
⎢⎣

x (i)S (t)

y(i)S (t)
1

⎤
⎥⎦ . (A 4b)

The refraction on an air–Plexiglas interface is described by the direction vectors v
(i)
1

and v
(i)
2 of the incident and refracted ray, respectively, and the corresponding angles of

incidence and refraction θ(i)1 and θ(i)2 , respectively. The cosine of θ(i)1 can be expressed as

cos θ(i)1 = −n1 · v
(i)
1

|v(i)1 | , (A 5)

while, based on Snell’s law,

cos θ(i)2 =
√

1 −
(

n1

n2

)2

(1 − cos2 θ
(i)
1 ), (A 6a)
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where n1 is the unit normal vector of the air–Plexiglas interface, and n1 = 1 and n2 = 1.49
are indices of refraction of air and Plexiglas, respectively. The corresponding direction
vector of the refracted ray v

(i)
2 can then be expressed as

v
(i)
2 = n1

n2
v
(i)
1 +

(
n1

n2
cos θ(i)1 − cos θ(i)2

)
n1. (A 6b)

Next, in order to determine the optical ray in Plexiglas r(i)2 , one needs to know the
intersection point P1 between the optical ray and the air–Plexiglas interface which can
be described as

P(i)
1 = C (i) + α(i)c v

(i)
1 , (A 7a)

where the unknown constant α(i)c must be determined. Since P1 is a point on the interface,
any point PAG on the same plane must satisfy

(P(i)
1 − PAG) · n1 = 0. (A 7b)

Projecting (A 7a) onto n1 yields

α(i)c = (C (i) − PAG) · n1

v
(i)
1 · n1

. (A 7c)

The optical ray in Plexiglas can then be expressed as

r(i)2 = P(i)
1 + β(i)v

(i)
2 , (A 8)

where β(i) is a free parameter.
As for the Plexiglas–oil interface, the refracted angle θ(i)2 and direction vector of the

optical ray in oil can be determined by the same procedure as described above. We obtain

cos θ(i)3 =
√

1 −
(

n2

n3

)2

(1 − cos2 θ
(i)
2 ), (A 9a)

v
(i)
3 = n2

n3
v
(i)
2 +

(
n2

n3
cos θ(i)2 − cos θ(i)3

)
n2, (A 9b)

where n3 = 1.40 is the refractive index of the working liquid (silicone oil) and n2 the unit
normal vector of the Plexiglas–oil interface.

The intersection point of the ray with the Plexiglas–oil interface can then be obtained as

P(i)
2 = P(i)

1 + β(i)c v
(i)
2 , (A 10a)

with the constant

β(i)c = (P(i)
1 − PGO) · n2

v
(i)
2 · n2

, (A 10b)

where PGO is an arbitrary point on the Plexiglas–oil interface.
Consequently, the optical ray in oil received by each camera can be expressed as

r(i)3 = P(i)
2 + γ (i)v

(i)
3 , (A 11)

where γ (i) is a free parameter.
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Ideally, the particle’s three-dimensional position vector X W(t) would locate at the
intersection point of the two optical rays r(1,2)3 . However, due to errors caused by optical
distortion, refraction, and image post-processing, r(1)3 and r(2)3 will not exactly intersect,
but miss each other within a small distance. The three-dimensional position is, therefore,
estimated by finding the centre of the line segment l connecting the two rays r(1,2)3
perpendicularly, as shown in figure 39. Moreover, |l| can be used as a measure of error
of X W . In the present study we have |l| ≤ 0.6 mm.

Appendix B. Estimate of the attraction rate to a limit cycle

To estimate the attraction rate to periodic orbits caused by the particle–boundary
interaction we consider the perturbed twist map used by Hofmann & Kuhlmann (2011) to
model the particle focusing. The map describes the evolution of Poincaré points (xn, yn)

of the trajectory of a particle which is transported on streamlines in the bulk of the flow
domain. The Poincaré plane is selected orthogonal to the closed streamline in the point
of closest approach of the closed streamline to the boundary (here the moving wall). The
fixed point (x∗, y∗) of the map represents the limit cycle.

In the case when the closed streamline of a KAM torus enters the layer on the moving
wall which is inaccessible for the particle centroid and if the winding angle of the
streamlines on the KAM tori between two returns to the Poincaré plane is θ ≤ π, θ
assumed constant, this map can be written as

xn+1 = xn cos θ − A sin θ, (B 1)

where (xn,A) is the Poincaré point with yn = A < 0, |A| = const. being equal to the
penetration depth of the closed streamline into the inaccessible layer. Since the simplified
map (B 1) is linear, the convergence is independent of the additive constant A sin θ ,
and governed by dn+1 = dn cos θ , where dn = xn − x∗ with (x∗, y∗) = [−A/ tan(θ/2),A]
being the fixed point. With the identification dn=̂d(t) and the time τ between successive
returns to the Poincaré plane we can define ḋ := [d(t + τ)− d(t)]/τ and obtain

ḋ = cos θ − 1
τ

d, (B 2)

with the solution d ∼ exp{(cos θ − 1)t/τ }. Thus, within the model of Hofmann &
Kuhlmann (2011), the attraction rate σ = (1 − cos θ)/τ depends only on the winding
angle θ and the return time (turnover time).

For the case a = 0.05 and � = 1.0001 (attraction to a limit cycle) we find the mean
winding angle θ̄ (a = 0.050) = 1.22 < π and the turn-over period τ1 = 0.0328 (see
table 3) which yields σ = 20.0.
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