
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/24504

This document is available under CC BY license

To cite this version :

Mario STOJANOVI, Francesco ROMANO, Hendrik C. KUHLMANN - MaranStable: A linear
stability solver for multiphase flows in canonical geometries - SoftwareX - Vol. 23, p.101405 -
2023

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/24504
https://creativecommons.org/licenses/by/4.0/
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


SoftwareX 23 (2023) 101405

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

MaranStable: A linear stability solver formultiphase flows in
canonical geometries
Mario Stojanović a,∗, Francesco Romanò b, Hendrik C. Kuhlmann a
a TU Wien, Getreidemarkt 9-BA, 1060 Vienna, Austria
b Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014 – LMFL – Laboratoire de Mécanique des Fluides de Lille
– Kampé de Fériet, F-59000 Lille, France

a r t i c l e i n f o

Article history:
Received 27 February 2023
Received in revised form 27 April 2023
Accepted 4 May 2023

Dataset link: https://github.com/fromano88
/MaranStable.git

Keywords:
Navier–Stokes equations
Multiphase flow
GUI
Thermocapillary flow

a b s t r a c t

MaranStable is a software to perform three-dimensional linear stability analyses of steady two-
dimensional non-isothermal multiphase flows in canonical geometries. Different approximations to
the Navier–Stokes equations can be selected, which are discretized by finite volumes on a staggered
grid. The stability of the basic flow, obtained by Newton—Raphson iteration, is computed by solving the
linearized three-dimensional perturbation equations using normal modes. All calculations are based on
Matlab and make extensive use of the already parallelized backslash and eigs operators, and the
graphical user interface eases the access to MaranStable.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Flow instabilities occur everywhere. They change the structure
of the flow in nature and in engineering applications. Three
scenarios demonstrate the crucial importance of hydrodynamic
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instability for the system dynamics: (a) The capillary break-
up of a liquid jet initiated by the Rayleigh instability is rele-
vant to inkjet printing. (b) Shear-flow instabilities related to the
laminar–turbulence transition significantly affect the drag forces.
(c) Buoyancy-driven instabilities are largely employed in thermal
management of buildings with floor heating or ceiling cooling and
drive geophysical circulations. While the physical mechanisms
changing the flow character by instability are different, they
all derive from the nonlinear character of the Navier–Stokes
equations.

MaranStable computes the parameters (e.g. the Reynolds
number) at which the flow changes by instability. The code
can deal with different canonical geometries (channels, annular
pipes, cavities, etc.). It thus computes the essential instability
phenomenon which might be hidden by excessive details in a
comprehensive engineering model. For instance, the thermocapil-
lary instabilities of the flow in a generic liquid bridge is the origin
of striation imperfections in floating-zone crystal growth.

With this paper we make MaranStable publicly available and
thus provide the mathematics, physics, and engineering commu-
nities with software capable of computing basic two-dimensional
immiscible multiphase flows involving capillary and Marangoni
stresses, and static and dynamic interface deformations. The
solver can also compute the most dangerous mode and the critical
parameter (e.g. the Reynolds number) beyond which the mode
grows exponentially in time.

2. Software description

The governing equations are discretized by second-order finite
volumes on a staggered grid. Primitive variables are used to solve
the Navier–Stokes equations. Discrete pressure and temperature
values are located at the cell centers, while the velocities are
defined normal to and in centers of the cell faces which facili-
tates balancing the convective fluxes. The computational mesh is
generated using a MaranStable tool capable of combining mul-
tiple tensorial grids (blocks), face-matched at their boundaries.
Whenever curved boundaries are present, the solver body-fits the
grid to the boundaries to avoid errors associated with geometric
approximations at the order of accuracy of the discretization.
For multiphase flows all blocks across the interface are body-
fitted to the sharp interface. Thus the correct thermophysical
properties are assigned to each phase with pressure and shear
stress discontinuities across the interface due to capillary and
Marangoni stresses, respectively. The curved interface location is
solved either employing a static or a dynamic stress balance. Each
block of the mesh is refined along its coordinate lines either by
hyperbolic tangent or geometric progression, controlled by spec-
ifying the maximum and minimum grid sizes in each tensorial
direction.

The basic flow state is an equilibrium solution of the steady
two-dimensional Navier–Stokes equations. It is computed by the
Newton–Raphson method using the Matlab operator backslash
which requires a good initial guess. A computed basic state can
serve as an initial guess for consecutive basic state computations
in the sense of a natural continuation. Once the sought basic
state is obtained, its stability is computed from the linearized
equations governing small perturbations. These are represented
by Fourier modes in the homogeneous spatial direction (spanwise
or azimuthal) and by an exponential behavior in time. This ansatz
yields a generalized eigenvalue problem for the complex growth
rate (eigenvalue) and the spatial structure of the perturbation
flow (eigenvector). The eigenvalue problem is solved using the
Matlab operator eigs, which relies on the functions imple-
mented in the ARPACK library [1] for linear algebra, and a Cayley
transform implemented in MaranStable. MaranStable either

returns the normalized perturbation flow of the most dangerous
mode together with its growth rate and frequency at the given
set of parameters or seeks the critical mode whose growth rate
vanishes at a particular value of the control parameter. The user
can opt to either search for the most dangerous or the critical
mode. The latter is found by an automatic variation of one of
the controlling parameters which is stepwise ramped up or down
until the sign of the growth rate changes. The zero of the growth
rate is then determined by a regula falsi [2] and the critical mode
is obtained. More details on the mathematics, implementation
and validation can be found in [3]. A corresponding simulation-
resuming and parameter continuation algorithm is provided in
MaranStable and is automatically called whenever required.

2.1. Software architecture

Running the script main.m, the GUI of MaranStable is
launched and guides the user through all steps to set up a
simulation. This same GUI is accessible by installing the exe-
cutable for Windows or Linux and launching MaranStable by
double clicking on the desktop icon without the need of installing
Matlab. The architecture of MaranStable is summarized in
Fig. 1. Four macro-modules can be identified: (i) solver selection
(green box in Fig. 1), (ii) initialization (blue boxes), (iii) sim-
ulation (red boxes), and (iv) visualization and post-processing
(yellow boxes). A single- or a two-phase flow can be selected
(i). During the initialization (ii), the user specifies the thermo-
physical properties of the fluids, the geometry, the parameters for
the mesher, the approximation of the Navier–Stokes equations
and the boundary conditions for the flow. Thereafter (iii), the
simulation parameters shall be set, including the convergence
criteria, the initial guess and the type of simulation (basic state,
linear stability analysis, optical ray tracing). A comprehensive
post-processing/visualization tool (iv) is included in the GUI. The
data can be exported in VTK or DAT. The latter format is suitable
for external line plotting. When a simulation is resumed, the
macro-modules (ii) – (iv) work independently: Instead of going
through (ii), the user can either load a previous initialization data
set, a previously computed basic state, or a previously computed
perturbation flow (see ‘Load’ button in Fig. 1). If the basic state
has already been computed, the user can either skip (ii) and
perform a stability analysis in (iii) or also skip (iii) and visualize
the results in the macro-module (iv). The user may also change
the parameters in (ii) and use the loaded flow field as an initial
guess for a subsequent basic state computation. If the loaded file
contains a computed perturbation flow, it can also be directly
transferred to the post-processing (iv). Saving and resuming is
done via the GUI, which grants high flexibility in the file naming.
The resuming option is implemented only for states saved in
mat-format.

2.2. Software capabilities

MaranStable provides the user with a highly flexible ge-
ometry set-up, of which only a few representative combinations
are illustrated as examples in Fig. 2. However, we limit the
solver to the case in which g is parallel to the axis of symme-
try (symmetry plane) whenever gravitational forces are present.
Regarding the governing equations, three versions of the conti-
nuity, Navier–Stokes, and energy equations are implemented in
MaranStable for immiscible multiphase flows which are, with
ascending complexity,

OB: Oberbeck–Boussinesq approximation

∇ · u = 0, (1a)

2
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Fig. 1. Flowchart of MaranStable, only shown for the two-fluid model. For the single-fluid model, the flowchart is formally identical apart from the missing ‘Gas
Phase’. The four macro-modules are coded by color. Green: solver selection (i). Blue: initialization (ii). Red: simulation (iii). Yellow: visualization and post-processing
(iv). Colored frames (blue and red) constitute the main tabs of the GUI. Black full frames indicate subordinated tabs or buttons. Black dashed frames represent source
files.

Fig. 2. Schematics of possible setups and coordinates: (a, c) cylindrical, (b, d) Cartesian. All geometrical parameters, as well as the volume ratio V = Vliquid/Vgap ,
are adjustable, where Vgap is the upright gap between the two rods/blocks of radius ri (or blocks of width xi). Light blue: liquid phase. Beige: gas phase. (a, b):
single-fluid model. (c, d): two-fluid model.

∂tu + u · ∇u = −
1
ρ0i

∇p +
µ0i

ρ0i
∇

2u − gαρi(T − T0), (1b)

∂tT + u · ∇T =
λ0i

ρ0icp0i
∇

2T , (1c)

LTD: Linearly Temperature-Dependent properties

−ρ0iαρi∂tT + ∇ · (ρiu) = 0, (2a)

ρi (∂tu + u · ∇u) = −∇p + ∇ · (µiτ) − gαρi(T − T0),
(2b)

ρicpi (∂tT + u · ∇T ) = λi∇
2T + λ0iαλi (∇T )2 , (2c)

FTD: Fully Temperature-Dependent properties

∂tρi + ∇ · (ρiu) = 0, (3a)

∂t (ρiu) + ∇ · (ρiuu) = −∇p + ∇ · (µiτ) + ρig, (3b)

∂t (ρicpiT ) + ∇ · (ρicpiTu) = ∇ · (λi∇T ), (3c)

where the index i = 1, 2 denotes the phase (only for the two-fluid
model), t is the time, u, p and T denote the velocity, pressure
and temperature fields, τ = ∇u + (∇u)T − 2(∇ · u)I/3 and I
are (twice) the deformation rate tensor and the identity matrix,
respectively. The thermo-physical properties ρ, µ, cp and λ are
the temperature-dependent density, dynamic viscosity, specific
heat at constant pressure and thermal conductivity, respectively.

3
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The physical model among OB, LTD and FTD is selected in the
macro-module (ii) inside the main tab ‘General’.

In the Boussinesq approximation OB all thermo-physical ma-
terial parameters are assumed constant and evaluated at a refer-
ence temperature T0 (subscript ‘0’), except for the linear depen-
dence of the density in the buoyancy term. Within the LTD model,
the material parameters

µi = µ0i
[
1 − αµi(T − T0)

]
, (4a)

ρi = ρ0i
[
1 − αρi(T − T0)

]
, (4b)

λi = λ0i [1 + αλi(T − T0)] , (4c)

cpi = cp0i
[
1 + αcpi(T − T0)

]
, (4d)

depend linearly on T , where cp0αcp, λ0αλ, −ρ0αρ and −µ0αµ

are the linear coefficients of the Taylor expansions about T =

T0. Finally, within the FTD model, the user can choose among
various implemented fluids, whose material properties depend
nonlinearly on T . When choosing the OB or the LTD model, the
user has the possibility to create a new fluid with custommaterial
properties.

At the interface between two fluids, the balance of tangential
and normal stresses, as well as the heat transfer across the
interface is imposed. The capillary and Marangoni stresses are
included in the interfacial conditions. Concerning the location of
the interface h, we neglect dynamic surface deformations due
to the three-dimensional perturbation flow, i.e., the stationary
surface shape h of the basic state is prescribed while solving
the perturbation equations. In that case, the interface location
h depends only on the vertical coordinate (y for Cartesian and
z for cylindrical coordinates, see Fig. 2). Within this constraint,
three approximations are implemented in MaranStable with
ascending complexity which can be selected in the macro-module
(ii) inside ‘Boundary Conditions’:

RI: Straight indeformable surface shape (Rigid Interface) and
linearized surface tension σ

h ≡

{
xi for Cartesian coordinates,
ri for cylindrical coordinates,

(5a)

σ = σ0 − γ (T − T0), (5b)

SI: Indeformable hydrostatic surface shape (Static Interface)
(limit of asymptotically large surface tension at reference
temperature σ0) and linearized surface tension

∆ph = σ0∇ · n + ∆ρhgz, (6a)

σ = σ0 − γ (T − T0), (6b)

DI: Dynamically deformed surface shape (Dynamic Interface)
and full temperature-dependent surface tension

∆ph = σ∇ · n + ∆ρhgz + µ1n · τ1 · n − µ2n · τ2 · n, (7a)

σ = σ (T ). (7b)

Here γ = −∂Tσ |T0 is the negative surface tension coefficient
evaluated at the reference temperature T0, ∆ph the interfacial
pressure jump, ∆ρh the interfacial density jump and n = n(h)
the unit normal vector directed from phase 1 to phase 2. Selecting
SI, the general stress balance on the interface (7a) reduces to the
Young–Laplace Eq. (6a) which can be solved independently from
the flow field [3]. However, in DI, the interface shape h is part
of the numerical solution, since flow-induced deformations are
taken into account in the basic state. This is taken care of by
an additional iteration loop embedded in the Newton—Raphson
iteration for the basic state.

A dedicated tab of the GUI guides the user through the bound-
ary conditions. They can be chosen among: ‘no-penetration’

(free-slip or no-slip boundary with either adiabatic conditions
or a given temperature profile), ‘free-surface’ (free-slip with
user-specified heat flux, only for single-phase simulations) and
‘outflow’ (constant-pressure with homogeneous Neumann con-
ditions for velocity and temperature). Under the ‘inflow’ con-
ditions, the user can define a combination of non-homogeneous
Dirichlet and homogeneous Neumann conditions allowing for
case-specific inlet velocity and temperature profiles. Finally,
MaranStable provides a module dedicated to optical ray trac-
ing in axisymmetric, non-homogeneous diffraction index fields
N . This is coupled with the Navier–Stokes solver, as the user
can provide a temperature-dependent N (T ) index and trace the
optical path in the liquid of a ray with normal incidence on a
(transparent) wall.

2.3. Visualization, post-processing and customization

Several visualization and data post-processing features are im-
plemented in MaranStable. The GUI provides a dedicated button
for a post-processing of the data (velocity, pressure, and tem-
perature fields) and visualization of the two-dimensional basic
state and the three-dimensional critical mode. The computation
of the Stokes stream function is implemented for planar and
axisymmetric basic states. Beside of the embedded visualization
toolbox, an export feature is available to save the flow in VTK and
DAT formats. The exported data can be readily imported in third-
party software for a more advanced graphical post-processing,
like ParaView (VTK) or, for line graphs, gnuplot, xmgrace, etc.
(DAT).

MaranStable can be further customized. One can switch
from planar to axisymmetric geometries (Fig. 2). Moreover, by
box-ticking one can select the physical model, activate/deactivate
Marangoni stresses, use the creeping flow approximation (inertia
terms in the OB, LTD and FTD models are set to zero) or skip
the energy equation. Several fluids with their thermo-physical
properties are already implemented in MaranStable. Additional
fluids can be defined, but ρ(T ), cp(T ), λ(T ), and µ(T ) must either
be constant or depend linearly on T . Fluids can also be defined as
to enable a fully non-dimensional formulation, cf. Section 3.1.

3. Illustrative examples

3.1. Rayleigh-Bénard instability

In an infinitely extended layer of a Boussinesq fluid heated
from below the conducting basic state becomes unstable due to
buoyancy forces when a critical Rayleigh number is exceeded. To
set up this problem, we use a single-fluid model governed by the
OB model in a finite Cartesian domain with free-slip conditions
on the horizontal top and bottom walls which are heated from
below with a temperature difference ∆T . The domain (layer) has
a thickness of d = 1 mm and the acceleration of gravity g =

−gey acts in the negative y direction. Since convection in plane
layers arises in form of stationary periodic counter-rotating rolls
with rectangular cross-section, periodic boundary conditions are
equivalent, in this case, to adiabatic free-slip conditions on the
cell boundaries. These conditions are thus imposed on the side
walls of the present finite domain, whose length represents one
wavelength 2π/k of the flow pattern, where k is the wave number
in units of d−1. The control parameter is the Rayleigh number
Ra = gαρ∆Td3ρ2

0cp0/µ0λ0.
Neutral Rayleigh numbers Ran are defined by a vanishing

growth rate. Results for Ran are shown in Fig. 3(a) as function of
the wave number k. For the selected range of k, MaranStable
(red crosses) reproduces the exact solution Raexactn = (k2 +

π2)3/k2 [4,5] (full line) up to 0.01% using a uniformly distributed

4
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Fig. 3. (a) Neutral curve for the Rayleigh-Bénard problem with free-slip con-
ditions at the top and bottom boundaries; crosses: MaranStable, line: exact
solution. (b) Streamlines and temperature field T ′ (color) of the critical mode
(k = kc = 2.2214).

grid with 28300 grid points. The critical wave number kc (mini-
mum of Ran) found by MaranStable deviates by less than 10−4 %
from kexactc = π/

√
2. The critical mode obtained by MaranStable

is shown in Fig. 3(b).

3.2. Thermocapillary liquid bridge with a coaxial gas flow

An example for a multiphase problem with temperature-
dependent fluid properties is the flow instability in an axisym-
metric liquid bridge from silicone oil, which is treated using
cylindrical coordinates. The liquid bridge is heated differentially
with ∆T via cylindrical support rods and surrounded by air which
is concentrically confined by a cylindrical tube. The basic flow
is driven along the liquid–gas interface by the thermocapillary
effect and by a steady forced nominally axial flow in the air. For
more information, the reader is referred to [6].

Results of linear stability analyses are shown in Fig. 4.
MaranStable can visualize the eigenvalue spectrum (left), where
ω is the frequency and s the growth rate of the critical mode. The
temperature field of one of the two oscillatory critical modes is
shown on the right. Figures 4(a) and 4(b) are obtained for the
same parameters, but for flow models OB and FTD, respectively,
which yields different critical temperature differences ∆Tc . In
both cases the critical mode is a wave, but it travels azimuthally
with m = 1 for the OB model, while it is axisymmetric (m = 0)
traveling axially for the FTD model.

3.3. Optical ray tracing

Finally, we demonstrate the ray tracing capability of
MaranStable. The axisymmetric basic flow in a thermocapillary
liquid bridge made from 2-cSt silicone oil with volume ratio
V = 0.9 and aspect ratio Γ = d/ri = 0.5 is computed using the
two-fluid model FTD for a temperature difference ∆T = 70 ◦C
(T0 = 25 ◦C) under weightlessness. This corresponds to typical
experimental conditions [8] for tracking particles in the liquid
bridge through a transparent top rod. MaranStable can correct

Fig. 4. Leading eigenvalues (left) and critical temperature field (right) for
the same parameters, but different computational models. (a) Oberbeck–
Boussinesq approximation OB with mc = 1 and ∆Tc = 52.2 ◦C. (b) Full
temperature-dependent properties FTD with mc = 0 and ∆Tc = 56.1 ◦C.

the hypothetical particle position (along the straight dashed line
in Fig. 5) for a constant index of refraction N of the liquid to take
into account the temperature dependence of N (T ) (red line).

4. Impact and conclusions

MaranStable aims to provide the mathematics, physics and
engineering community with a flexible and easy-to-use GUI-
integrated code for performing linear stability analyses in immis-
cible multiphase flows.

The canonical geometries implemented in MaranStable cover
many paradigmatic setups used to investigate flow instabilities.
Examples were presented in Section 3. The range of Navier–
Stokes (OB, LTD, FTD) and interfacial models (RI, SI, DI) im-
plemented provides a large flexibility for carrying out state-of-
the-art research in complex multiphase hydrodynamic stability.
Several articles based on MaranStable have recently been pub-
lished by the authors who developed the software [3,9,10]. This
paper aims at broadening the user community to foster progress
in multiphase flow instabilities.

The software enables new research opportunities. To the best
of our knowledge, no other open-source linear stability solver is
capable of directly comparing the three Navier–Stokes models OB,
LTD and FTD implemented. This enables, e.g., an assessment of the
accuracy and the validity of the Oberbeck–Boussinesq approxi-
mation OB, which is an active research topic [11]. Moreover, the
three interface models RI, SI and DI allow to study the role of
dynamic interface deformations, which are often neglected. In on-
going work [6] regimes have been identified near the mechanical
stability limit in which the flow-induced interface deformations
have a significant impact on the basic state, hence on the sta-
bility of the system. The nonlinear temperature-dependence of
the surface tension, implemented in DI, is important for large
temperature differences. It allows users to investigate the effect
of Marangoni stresses beyond the classic approximation SI.

MaranStable bears a great potential for significant exten-
sions of its already advanced capabilities. Including evaporation
and phase change would be of great interest. Moreover, including
dynamic deformations caused by the perturbation flow would

5
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Fig. 5. Ray tracing in a non-isothermal liquid bridge: (a) Spatial distribution of the index of refraction N (T ) [7] and optical path (red line) of a ray which enters or
leaves the liquid perpendicular to the top (hot) transparent wall at r = 2.9 mm (blue dashes). (b) Close-up of the optical path.

allow the detection of surface wave instabilities. Adding the com-
putation of the kinetic and thermal energy budgets of the criti-
cal mode to the post-processing tools would considerably sup-
port the physical understanding of the instabilities. Future exten-
sions of MaranStable concern embedding implicit and explicit
reduced-order models for heat transfer and wetting, including
surfactant dynamics in the bulk and on the interface, and a
generalization of the optical module.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests: Mario Stojanović reports financial support was provided
by Austrian Research Promotion Agency. Hendrik C. Kuhlmann
reports a relationship with Austrian Research Promotion Agency
that includes: funding grants.

Data availability

Our data/code is available on https://github.com/fromano88/
MaranStable.git.

Acknowledgments

This work has been supported by the Austrian Research Pro-
motion Agency (FFG) in the framework of the ASAP14 programme
under contract no. 866027. The first version of the MaranStable
has been developed by Michael Lukasser in the framework of
the project Engineering Marangoni Flows (EMA), which was also
supported by FFG, Austria under contract no. 819714.

References

[1] Lehoucq RB, Sorensen DC, Yang C. ARPACK users’ guide: Solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods.
Philadelphia: SIAM; 1998.

[2] Gottlieb RG, Thompson BF. Bisected direct quadratic regula falsi. Appl Math
Sci 2010;4:709–18.

[3] Stojanović M, Romanò F, Kuhlmann HC. Stability of thermocapillary flow
in liquid bridges fully coupled to the gas phase. J Fluid Mech 2022;949:A5.

[4] Rayleigh, Lord. On convection currents in a horizontal layer of fluid, when
the higher temperature is on the under side. Phil Mag 1916;32:529–46.

[5] Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Oxford:
Oxford University Press; 1961.

[6] Stojanović M, Romanò F, Kuhlmann HC. Flow instability of high-Prandtl-
number liquid bridges accounting for the full temperature dependence of
the thermo-physical properties (unpublished).

[7] He J, Liu W, Huang Y-X. Simultaneous determination of glass transition
temperatures of several polymers. PLoS One 2016;11:1–12.

[8] Romanò F, Kuhlmann HC, Ishimura M, Ueno I. Limit cycles for the motion
of finite-size particles in axisymmetric thermocapillary flows in liquid
bridges. Phys Fluids 2017;29:093303.

[9] Stojanović M, Kuhlmann HC. Stability of thermocapillary flow in
high-Prandtl-number liquid bridges exposed to a coaxial gas stream.
Microgravity Sci Technol 2020;32:953–9.

[10] Stojanović M, Romanò F, Kuhlmann HC. Instability of axisymmetric flow
in thermocapillary liquid bridges: Kinetic and thermal energy budgets for
two-phase flow with temperature-dependent material properties. Eur J
Appl Math [submitted for publication].

[11] Zonta F, Soldati A. Stably stratified wall-bounded turbulence. Appl Mech
Rev 2018;70:040801.

6

https://github.com/fromano88/MaranStable.git
https://github.com/fromano88/MaranStable.git
https://github.com/fromano88/MaranStable.git
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb1
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb1
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb1
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb1
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb1
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb2
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb2
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb2
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb3
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb3
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb3
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb4
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb4
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb4
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb5
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb5
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb5
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb7
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb7
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb7
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb8
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb8
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb8
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb8
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb8
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb9
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb9
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb9
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb9
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb9
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb10
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb11
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb11
http://refhub.elsevier.com/S2352-7110(23)00101-2/sb11

	MaranStable: A linear stability solver for multiphase flows in canonical geometries
	Motivation and significance
	Software description
	Software architecture
	Software capabilities
	Visualization, post-processing and customization

	Illustrative examples
	Rayleigh-Benard instability
	Thermocapillary liquid bridge with a coaxial gas flow
	Optical ray tracing

	Impact and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


