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ABSTRACT

Employing the moving particles’ semi-implicit (MPS) method, this study presents a numerical framework for solving the Navier–Stokes
equations for the propagation and the split of a liquid plug through a three-dimensional air-filled bifurcating tube, where the inner surface is
coated by a thin fluid film, and surface tension acts on the air–liquid interface. The detailed derivation of a modified MPS method to handle
the air–liquid interface of liquid plugs is presented. When the front air–liquid interface of the plug splits at the bifurcation, the interface
deforms quickly and causes large wall shear stress. We observe that the presence of a transverse gravitational force causes asymmetries in
plug splitting, which becomes more pronounced as the capillary number decreases or the Bond number increases. We also observe that there
exists a critical capillary number below which the plug does not split into two daughter tubes but propagates into the lower daughter tube
only. In order to deliver the plug into the upper daughter tube, the driving pressure to push the plug is required to overcome the hydrostatic
pressure due to gravity. These tendencies agree with our previous experimental and theoretical studies.

I. INTRODUCTION

Liquid is instilled into the pulmonary airways in some medical
treatments such as surfactant replacement therapy (SRT),1–6 partial
liquid ventilation,7–11 and drug delivery.12–16 Liquid delivery to the tar-
geted areas of the lung is important for achieving successful results in
such treatments. A strategy to deliver a small liquid bolus to the distal
airways is to create a liquid plug at an upper airway and push it into
the descending airways by air flow. The formation of a liquid plug in
the trachea, prior to inspiration, is important to create a more uniform
distribution of liquid throughout the lung than with gravitational
drainage alone.17,18 A high ventilation rate results in a more homoge-
neous liquid plug delivery.19 Liquid plugs are formed in large airways
by faster instillation rates of perfluorocarbons into the trachea.20 In
addition to liquid delivery, airway closure due to plug formation and
reopening from plug propagation and rupture can be a source of air-
way injury.21 Coronavirus disease-19 (COVID-19) can cause lung
complications such as pneumonia and, in the most severe cases, acute
respiratory distress syndrome (ARDS).22 In pneumonia, the lungs
become filled with fluid and inflamed, leading to breathing difficulties
as well as lung injury due to plug formation.

In order to gain a better understanding of how plugs are used
effectively in medical treatments and how a plug behaves once it is cre-
ated, it is important to understand how the dynamics of liquid plugs is
affected by the properties of fluids and the geometry of the airways. As
the liquid plug propagates through the airways, it leaves the trailing
liquid film on the inner surface of the airways and splits at the airway
bifurcations. The trailing film thickness and the split ratio are func-
tions of the physical properties of the liquid (viscosity, density, surface
tension at the air/liquid interface, surfactant concentration), the direc-
tion of gravity, the bifurcation geometry, the precursor liquid film
thickness ahead of the plug, the initial plug volume, the plug propaga-
tion speed, airway wall elasticity, and uneven flow resistance of two
daughter tubes at the bifurcation. We need to understand the effect of
these factors on achieving homogeneous liquid delivery to the lungs.
The flow of the liquid plug was analytically modeled by Howell et al.,23

Waters and Grotberg24 with surfactant, and Suresh and Grotberg25

with gravity. Mamba et al.26 investigated both experimentally and the-
oretically the dynamics of a liquid plug driven by a cyclic force inside a
rigid capillary tube. Computational modeling of the propagation of the
liquid plug in a tube/channel has been performed using the finite
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volume method with the body-fit mesh,27–30 the finite element method
with the body-fit mesh,31,32 the sharp interface method,33 the volume-
of-fluids (VOF) method,34 and the multiphase lattice Boltzmann
method.35 The creation of liquid plugs as a consequence of airway clo-
sure was simulated by Roman�o et al.36 using the level-set method.

Zheng et al.37,38 experimentally investigated the effect of gravity
on the splitting of the liquid plug in a symmetrical bifurcating tube
model. They showed that plug splitting became more uneven for
smaller capillary number (Ca) and larger Bond numbers (Bo).
Ca ¼ lU=r is the ratio of viscous force to surface tension, and
Bo ¼ qgL2=r is the ratio of the gravitational force to surface tension,
where l and q are the viscosity and the density of fluid, r is the surface
tension, andU and L are characteristic velocity and length scales. They
proposed a simple one-dimensional model for the splitting ratio as a
function of the bifurcation orientations with respect to the gravity, Ca,
and Bo. Copploe et al.39 developed a bioengineering approach to
design three-dimensional bifurcating airway models using morpho-
metric data from human lung and experimentally examined the
dynamics of liquid plug splitting in fabricated physical bifurcation
models. Filoche et al.40,41 used the one-dimensional mathematical
model to develop a three-dimensional lung airway model of SRT and
compared it to experiments with rats’ lungs.42 Vaughan and
Grotberg43 used the finite element method and investigated the split
process of a liquid plug by a two-dimensional bifurcation model under
the influence of a transverse gravitational field and showed qualitative
agreement with Zheng et al.37

During liquid plug splitting at bifurcation, the air–liquid interface
contracts/stretches, and breaks/merges. There are some computational
methods that can handle large deformations and topological changes
in interfaces. The interface-tracking methods compute the flow on an
Eulerian, usually fixed grid, while a set of Lagrangian markers is used
to define the interface.33,34,44,45 Volume-of-fluid (VOF) methods46 and
level set methods47 are interface capturing methods, where the inter-
face is not tracked explicitly. They use a transport of fraction, level-set,
or phase-field function to capture interfaces. Smoothed particle
hydrodynamics (SPH) and the moving particle semi-implicit (MPS)
methods48 are in the category of particle methods. Both methods are a
full Lagrangian meshless method. Essentially, the computational
volume/area is discretized by particles. Therefore, mass conservation is
achieved precisely. Both methods can handle complex geometries and
topological changes in the interface. The SPH method has been devel-
oped initially for astrophysical problems and has recently been applied
to fluid dynamics with weak compressibility. The MPS method has
been developed to solve incompressible and interfacial flows. The major
difference from SPH is that the MPS method solves pressure fields
implicitly, where the governing equations are transformed based on par-
ticle representations, resulting in a Poisson equation for pressure.

In this study, we investigated the effect of gravity on the splitting
of the liquid plug in a three-dimensional bifurcating airway model
employing the moving particles semi-implicit (MPS) method.48 The
method can simulate the physical process from pre- to post-split
phases. The previous numerical study43 was limited to the bulk fluid
split process, which did not cover the topological changes of the air–
liquid interfaces.

In Sec. II, the numerical method is presented. In Sec. IIA, our use
of the MPS method for two-phase flow is outlined. In Sec. II B, our
three-dimensional bifurcating tube model is described. In Sec. IIC, the

governing equations are presented. In Sec. IID, the numerical proce-
dures are presented. In Sec. III, our computational results and discus-
sions are presented. Conclusions and future work are given in Sec. IV.

II. METHOD

We investigate the propagation and split of a liquid plug in a
three-dimensional bifurcating tube model. The Navier–Stokes equa-
tion coupled with the force balance due to the surface tension on the
air–liquid interface is solved by using the MPS method.48 In the MPS
method, the computational domain is discretized with a number of
particles. Figure 1 schematically shows the discretization of the model
rigid wall and the fluid, which are represented by three types of par-
ticles. The rigid wall consists of the wall and the ghost particles, which
are immobile, thus the velocities of these particles are set to zero. The
fluid particles, which are composed of liquid and air particles, are
allowed to move with their velocities. In Fig. 1, {PW}, {PG}, and {PF}
denote the group of wall, ghost, and fluid particles, respectively.
Particles within a distance of re from the inlet/outlet boundary, which
is grouped into {PWe} and {PFe}, must be treated differently from the
normal particles, which are grouped into {PWn} and {PFn}. re is the
size of the weight function, which is explained below.

In this study, we consider flow through a tube whose inlet and
outlet are not periodic boundaries. Therefore, when the fluid particles
exit the outlet, xB1, they are removed. When the inlet particles move
into the interior fluid domain, the type of particles is changed to the
normal fluid particle. The particles are placed in cells of the empty
inlet grid and the type of the particles is set to the inlet particle.

A. MPS method

The MPS method was first introduced by Koshizuka and Oka48

and their research group and is used by many other researchers. Each
particle is a node point where the flow variables such as velocity vector,
pressure, and concentration of some species are computed. Particles
move with their velocity carrying these variables. The spatial deriva-
tives are computed using neighboring particles. The details are pre-
sented in Appendix B. The particle number density is an important
quantity, which is defined at the location of particle i as

wi ¼
XN
j 6¼i

w jjxj � xijj
� �

; (1)

FIG. 1. Particle types in a tube domain. There are three types of particles repre-
senting the fluid, the wall, and ghost domains. The fluid particles comprise of liquid
and air particles. The wall and ghost particles are immobile.
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where N is all neighboring particles of any type, and w(r) is the weight
function, which should be a monotonically decreasing function of r. In
this study, we use

w rð Þ ¼

1� 6
r
re

� �2

þ 6
r
re

� �3

; r <
re
2

2 1� r
re

� �3

;
re
2
� r < re

0; r � re;

8>>>>>><
>>>>>>:

(2)

where re is a cutoff radius, which is re ¼ 2:1 � lg in this study, and lg is
the characteristic distance of two closest particles and is called the grid
size (see Fig. 1). With re ¼ 2:1 � lg , the number of neighborhood par-
ticles, N is approximately 40, which is larger than typical low-order
mesh-based methods. The particles must be evenly distributed
throughout the domain for incompressible fluids, which means that
the particle number density must be constant at w0.

We consider a two-phase flow that consist of liquid and air, as
shown in Fig. 1. The particles that belong to the liquid phase have
color number fi¼ 0 and the particles that belong to the air phase have
fi¼ 1. The color function is defined as the weighted average of fi as

ci ¼

X
j 6¼i

fjw jjxj � xijj
� �

X
j 6¼i

w jjxj � xijj
� � : (3)

The value of ci is 0 in the liquid phase and 1 in the air phase, respectively,
at far enough apart from the interface. In the vicinity of the interface, there
is a transition region, where ci changes from 0 to 1. In this study, ci is used
to determine the unit normal on the air–liquid interface, nS as

nS ¼
rci
jjrcijj

; (4)

and an approximation of Dirac’s delta function, dS is defined as

dS ¼ jjrcijj; (5)

where rci is computed by the gradient model given by Eq. (B1) in
Appendix B. The wall and ghost particles are included in this calcula-
tion with fi¼ 0 that mimics hydrophilic walls, yielding zero contact
angle. The viscosity and density for each particle are modified to have
a continuous change across the interface as

qi ¼ ql þ qa � qlð Þci;
li ¼ ll þ la � llð Þci;

(6)

where ql and qa are densities, and ll and la are viscosities for liquid
and air, respectively.

B. Three-dimensional airway bifurcation model

Our three-dimensional bifurcating tube is similar to the model of
Zheng et al.37,38 The bifurcating tube model is built defining two tube
axes, x1 and x2, as shown in Fig. 2. Each axis provides a density space
around it. The bifurcation model surface is defined by an isosurface of
the total density; the sum of two densities being unity. The detailed
formulation of the model is presented in Appendix A. In this study,

we build a symmetrical bifurcation model with the parameters of
r1¼ r2, r1=r0¼ 0.78; h1¼ h2¼ 35�; R1¼R2, R1=r0¼ 8, where r0 and
r1 are the radii of the parent and daughter tubes, h1 is the branch angle,
and R1 is the radius of curvature.

49,50 Our bifurcation model provides
a smoothly varying surface curvature. We neglect small undulations
on the surface and a layer of cilia of the airway wall because of numeri-
cal difficulties in including these effects.

The bifurcating tube resides within a three-dimensional gravita-
tional field in the z direction (lab frame). We use a roll angle (hr) and
then a pitch angle (hp) to define the plane orientation within this gravi-
tational field, which is shown schematically in Fig. 3. The resulting
gravitational field in the bifurcation plane is

fG ¼ qg

cos hr sin hp

�sin hr

�cos hr cos hp

2
664

3
775; (7)

FIG. 2. Axes of bifurcating tube model. A rigid parent tube of radius r0 bifurcates
into two smaller rigid daughter tubes of radius r1 and r2. This branching is charac-
terized by the total branch angle hT ¼ h1 þ h2, where h1 and h2 are the branch
angles for the right and left daughter tubes, respectively. The radii of the curved
portion of the daughter tube axis are R1 and R2. x1 and x2 are the axes of the bifur-
cating tube, which can be divided into three regions: the parent tube, the central
zone, and the daughter tubes. The two central axes merge into the single straight
line of the parent tube. The details are shown in Appendix A.

FIG. 3. The orientation of model with respect to the gravity.
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where g is the magnitude of gravity. For hr¼ hp¼ 0�, the gravity is only
in the z direction, normal to the bifurcation plane. For hr¼ 90� and
hp¼ 0�, gravity is only in the y-direction, and for hr¼ 0� and hp¼ 90�,
gravity is only in the x direction in the frame of bifurcation plane.

C. Governing equations

In this paper, we investigate the split of a liquid plug at a bifurcat-
ing rigid tube. A pressure difference between the inlet and outlet air-
phases, DP¼Pinlet � Poutlet , drives the air and liquid phases. Both
phases are assumed to be Newtonian fluid, and the flow is incompress-
ible since the velocity range considered here is O(1) cm/s. The density
of liquid and air are ql and qa, and the viscosities are ll and la. The
surface tension, r, acts on the surface of the air–liquid interface.

With the continuum surface tension model,51 the Navier–Stokes
equation can be written as

q
Du
Dt
¼ �rpþr � lruþ l ruð ÞT

h i
þ fB; (8)

and the continuity is

1
q
Dq
Dt
þr � u ¼ 0: (9)

where D/Dt is the material derivative, q and l are the density and vis-
cosity of the fluid, u is the velocity, p is the pressure, and fB is the body
force. Note that, due to incompressible flow, Dq=Dt ¼ 0. Here, we con-
sider the gravity and the surface tension, and thus, fB ¼ fG þ fS, where
fS is the surface force density due to the surface tension. In this study,
we consider only the case of constant surface tension. Therefore,

fS ¼ rnSr � nSdS; (10)

where r is the surface tension, nS is the unit normal to the air–liquid
interface at xS, and dS is calculated by Eq. (5).

D. Numerical procedure

The time derivative of the momentum equation can be discre-
tized using the Euler scheme and split into two steps as

Du
Dt
’ uðkþ1Þ � uðkÞ

Dt
¼ uðkþ1Þ � u�

Dt
þ u� � uðkÞ

Dt
; (11)

where u� is the predicted velocity and ~u ¼ uðkþ1Þ � u� is the velocity
correction. ðkþ 1Þ and (k) denote the iteration counter. The pressure
gradient term is also split intorp ¼ rp� þ qrq, where p� is the base
pressure and q is the correction for the pressure field. The momentum
equation is split into the prediction equation, which is

u� � uðkÞ

Dt
¼ � 1

q
rp� þ 1

q
r � l ru� þ ru�Tð Þ þ fB
� �

; (12)

and the correction equation, which is

uðkþ1Þ � u�

Dt
¼ �rq: (13)

The boundary condition for the base pressure, p�, is prescribed uni-
formly as Pinlet or Poutlet without considering the hydrostatic pressure
distribution due to the gravity. To make this consistent, the body force

density of air, qag, is subtracted from the momentum equation.
Therefore, the gravity term Eq. (7) in Eq. (12) is modified as its density
q replaced by ðq� qaÞ.

In this study, the velocity correction is calculated without explicitly
computing the pressure. Instead, we compute q, which is equivalent to
p=q when q is uniform. There is a pressure jump across the interface
due to the surface tension effects. In addition, the density of the fluid
changes largely at the air–liquid interface. Since the acceleration of the
fluid increases with the inverse of the density at the same pressure gradi-
ent, a large density ratio causes the calculation to be unstable. For this
reason, we computed q without computing the total pressure in order to
eliminate the density from the velocity correction calculation.

The time derivative of the density in the continuity equation can
be discretized using the Euler scheme and split into two steps as

1
q
Dq
Dt
’ 1

q
qðkþ1Þ � q�

Dt
þ 1

q
q� � qðkÞ

Dt
: (14)

The split continuity equations are

1
q

q� � qðkÞ

Dt
þr � u� ¼ 0; (15)

and

1
q

qðkþ1Þ � q�

Dt
þr � ~u ¼ 0; (16)

where u� þ ~u ¼ u and u� and ~u are the prediction and correction of
the velocity, which are defined below.

The position and velocity of the particles are computed with the
following steps.

1. Prediction step: Base pressure

In this study, the pressures are prescribed at the inlet and outlet.
The first step is to compute the base pressure field that satisfies the
pressure boundary conditions.52 Applying the Laplacian model of Eq.
(B3) tor2p� ¼ 0, we obtain the linear system of equation

1

w#i

XNFþNW

j 6¼i
p�j w jjxj � xijj
� �h i

� p�i ¼ 0; (17)

where NF and NW are neighboring fluid and wall particles (see Fig. 1),

w#i ¼
PNFþNW

j 6¼i wðjjxj � xijjÞ, and w(r) is the weight function defined

by Eq. (2). Equation (17) is applied to normal fluid and wall particles,
{PFn } and {PWn }. For inlet/outlet particles, {PFe } and {PWe }

1

w0

XN
j 6¼i

p�j w jjxj � xijj
� �h i

� p�i ¼ �
w0 � wi

w0 pb; (18)

is applied, where pb is the boundary condition prescribed as Pinlet or
Poutlet. wi is computed by Eq. (2). Since there are no particles outside
the boundary of the inlet/outlet, wi < w0 in the boundary regions.

2. Prediction step: Velocity

Using the base pressure, p�, the predicted velocity, u�, is obtained
by solving the momentum equation

https://scitation.org/journal/phf


q
Dt

u� � r � l ru� þ ru�Tð Þ ¼ q
Dt

uðkÞ � rp� þ fB: (19)

The pressure gradient at particle i, hrp�ii, is obtained with the typical
MPS scheme. We can obtain the linear system of equation and solve
implicitly for u�, assuming uðkÞi ¼ 0 for particles {PW} and {PG}. The
velocities at inlet/outlet particles, {PFe }, are computed explicitly.

3. Prediction step: Particle position

The position of particle i with its velocity u�i is updated by

x�i ¼ xðkÞi þ u�i Dt: (20)

Since u�i does not satisfy the continuity, this causes the particle num-
ber density to deviate from w0.

When two particles are very close, the simulation becomes unsta-
ble because the particle number density is elevated locally. This will
cause excessive correction values in velocity. To avoid this problem, an
artificial repulsion force is added to two particles within a distance less
than 0.7 �lg as

~f i ¼
XN
j 6¼i
�Apgmaxð0:7 � lg � r; 0Þðx�j � x�i Þ=r2; (21)

where r ¼ jx�j � x�i j and Apg is an artificial pressure gradient; we use

Apg¼ 100. Adding ~f i to the predicted velocity as ~u�i ¼ u�i þ ~f iDt, the

position of the particle i is updated again by x�i ¼ xðkÞi þ ~u�i Dt.

4. Correction step: Velocity

For incompressible flow, qðkþ1Þ ¼ qðkÞ ¼ q0. Substituting Eq.
(13) into Eq. (16), we obtain the pressure correction equation as

r2q ¼ � 1
q

q� � q0

Dt2
: (22)

Since the particle density is related to the fluid density as qi ¼ miwi,
where mi is the fixed mass of the fluid particles, so mi ¼ qi=w

0.
Therefore, the above equation can be rewritten as

r2q ¼ � 1

w0

w�i � w0

Dt2
; (23)

where w� is the particle number density measured with the predicted
position of the particles, x�. We discretize Eq. (23) similar to Eq. (17)
with the boundary condition of qinlet ¼ qoutlet ¼ 0, q obtained.
Applying Eq. (13), the velocity of {PFn } is corrected.

5. Correction step: Position of the particle

The position of the particle i is corrected by

xðkþ1Þi ¼ x�i þ ~u iDt: (24)

The numerical method is implemented using Cþþ and com-
piled with Intel Cþþ compiler with Intel MPI library. PETSc library53

is used to manage particles and solve a large linear system of equations
in parallel on a distributed memory computing cluster. Also, Eigen54 is
utilized for local linear algebra. The results data are stored with
HDF555 format. Approximately 850 000 particles are distributed in a

bifurcating tube model. The computations were performed mainly on
eight nodes of dual 10-core 2.8GHz Intel Xeon E5–2680 v2 CPUs sys-
tem; total 160 cores for each case.

III. RESULTS AND DISCUSSION

In this study, we investigated the propagation of a liquid plug
in air-filled tubes. The density and viscosity of liquid are
ql¼ 1000 kg=m3 and ll¼ 10�2 Pa s, and these of air are qa¼ 1 kg=m3

and la¼ 10�5 Pa s, as base values. Here, we consider the liquid as the
lung fluid secreted naturally in healthy lungs and, therefore, assume
ll to be ten times higher than the viscosity of water. We tested the effect
of the liquid viscosity in a range of 6� 10�3 � ll � 6� 10�2 Pa s.
The gravitational constant is g ¼ 10m=s2. We varied the surface ten-
sion between the liquid and gas as 10�2 � r � 2� 10�2 N=m, which
is relevant to the surface tension when the pulmonary surfactant exists
on the air–liquid interface. In this study, we assume a uniform surface
tension though the surface tension varies as a function of the surfactant
concentration. The geometry of the bifurcation model is built with the
following parameters: r1¼ r2, r1=r0¼ 0.78, h1¼ h2¼ 35�, R1¼R2,
R1=r0¼ 8. We varied the radius of the parent tube within the range
10�3 � r0 � 3� 10�3 m, keeping the aspect ratios fixed. These sizes
are equivalent to fourth to ninth generation of the pulmonary airways.56

The Bond number, Bo ¼ qlgr0
2=r, ranges between 1 � Bo � 9. The

Laplace number, La ¼ qlrr0=ll
2, which is a ratio of surface tension to

momentum transport, ranges between 8:33 � La � 833. The capillary
number, Ca ¼ ll

�U=r, which is a function of the plug speed, �U , ranges

FIG. 4. Comparison of interface shape with the finite volume method result by
Fujioka et al.30 Ca¼ 0.05.

FIG. 5. Estimation of the trailing film thickness.
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Ca< 0.1. The Reynolds number, Re ¼ La � Ca ¼ qlr0 �U=ll , which is a
ratio of viscous force tension to momentum, ranges Re< 60.

A. Validations

The propagation of a liquid plug in a straight channel/tube was
computed to validate the code for the two-phase flows. Figure 4 shows
the distribution of air/liquid/wall particles within jzj < 0:5lg projected
onto the xy plane. The solid lines were the interface shape of the plug
computed by the finite volume method with the boundary-fitted
mesh.30 The solid lines correspond well to the boundaries of the air
and liquid particles.

Figure 5 demonstrates the trailing film thickness of plugs in
two-dimensional channel for the particle gird size of lg=r0¼ 0.05
and 0.03, compared with an empirical formula by Ref. 57. The trail-
ing film thickness, h, is estimated from ðr0 � hÞUair ¼ r0 �U , where
Uair is the averaged velocity of air particles, �U is the averaged veloc-
ity of all particles, and r0 is the tube radius. The MPS results agree
reasonably well with the empirical formula. Since the film thickness
is thin and close of the size of grid, there exist deviations from the
empirical formula. If we used smaller size of lg, the results would be
improved but increase the computational cost. In this study, we use
lg=r0¼ 0.05. The estimated errors in the film thickness are within a
factor of two.

FIG. 6. Snapshots of a liquid plug splitting at a bifurcating tube. The inner surface of the bifurcating tube (gray) and the air–liquid interface (cyan) are plotted. Bo ¼ 4,
La ¼ 200, hr ¼ 90�; hp ¼ 0�. The resultant RS ¼ 0.514, Ca ¼ 0.0284, and Re ¼ 5.67. (a) t¼ 0 s, (b) t¼ 0.1 s, (c) t¼ 0.2 s, (d) t¼ 0.25 s, (e) t¼ 0.4 s, and (f) t¼ 0.5 s.
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B. Liquid plug split at bifurcation

Figure 6 demonstrates a liquid plug propagation and split at the
bifurcating tube of r0 ¼ 2� 10�3 m. The three-dimensional shapes of
the air–liquid interface and the inner tube surfaces are constructed
and projected on the two-dimensional plane. Initially, the plug of
length LP=r0 ¼ 4 is placed in the parent tube, Fig. 6(a). The pressure
difference between the inlet and outlet drives the plug to propagate
toward the bifurcation. The pressures at the two daughter tube outlets
are zero. The parent tube inlet pressure is 20 Pa. The roll angle is
hr¼ 90�, and the pitch angle is hp¼ 0�; thus, the gravity acts down-
ward in the figure. The remaining non-dimensional parameters are
Bo¼ 4 and La¼ 200. As the plug approaches the bifurcating section,
the front interface of the plug is stretched to the direction of two bifur-
cating tubes, Fig. 6(b). More liquid drains into the lower branch than
the upper branch due to the gravity, Fig. 6(c). After the front interface
splits at the flow divider, Figs. 6(d) and 6(e), the two front interfaces
quickly deform to a hemisphere-shaped shape due to the surface ten-
sion. The interface entered to the lower daughter tube moved faster
because the hydrostatic pressure due to the gravity accelerates the liq-
uid downward. The rear interface propagates and leaves a thin liquid
layer on the tube wall behind. Finally, in Fig. 6(d), the rear interface is
split into two daughter tubes. The trailing liquid film is thicker in the
bifurcating section, where the tube cress section is large.

After the front interface is split into two daughter tubes, each
front interface is transformed into a hemisphere-like shape. Figure 7
shows the particles in the vicinity of the bifurcation plane, z¼ 0 for
t¼ 0.21–0.24 s, which is between (c) and (d) in Fig. 6. When the front
air–liquid interface impacts against the flow divider, the liquid par-
ticles quickly move into the daughter tubes along the wall. The surface
curvature near the wall becomes large, and the Laplace pressure accel-
erates the liquid particles along the wall. Due to the faster movement
of the meniscus, the wall shear stress near the flow divider is elevated.
For the case in Fig. 6, the wall shear stress increased to 3 Pa when the
front meniscus split as shown in Fig. 8. This may cause damage to epi-
thelial cells around the bifurcation carina.58

Due to the gravity, the plug splits unevenly as seen in Fig. 6.
More liquid goes to the lower daughter tube. To quantify the uneven-
ness of the split, the plug split ratio, RS is calculated from the amount
of liquid volume delivered to each daughter tube. Figure 9 shows the
volume of liquid in the parent tube, Vparent, and each daughter tube,
Vupper and Vlower, which are the volumes of liquid within the upper
and lower daughter tube with respect to the direction of the gravity.
The liquid volume was estimated from the number of liquid particles
in each region; parent tube, x < 3r0; upper daughter tube, x � 3r0
and y � 0; and lower daughter tube, x � 3r0 and y< 0. At the begin-
ning, t < 0:1 s, the most of the liquid is in the parent tube. A small
amount of liquid exists in both daughter tubes because of a thin lining

FIG. 7. Particles near z¼ 0 plane during the front meniscus of liquid plug splitting at the bifurcation carina for the case shown in Fig. 6. Liquid and air particles are represented
by cyan and gray, respectively, and wall particles are represented by black. (a) t¼ 0.21 s, (b) t¼ 0.22 s, (c) t¼ 0.23 s, and (d) t¼ 0.24 s.
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liquid, which is initially prescribed. As the plug moves into the bifurca-
tion, Vupper and Vlower increase, and hence, Vparent decreases. After the
plug splits, t> 0.45, each liquid volume becomes almost unchanged.
Eventually, Vupper is smaller than Vlower because of the uneven split.
The split ratio, RS, can be calculated from the changes in liquid volume
in each daughter tube before and after the plug splits

Rs ¼
DVupper

DVlower
: (25)

DVupper and DVlower are increments of Vupper and Vlower after the split
as shown in Fig. 9. RS¼ 1 means an even split. RS¼ 0 when all the liq-
uid goes to the lower branch.

C. Effect of Bo

The split ratio, RS, vs capillary number, Ca ¼ ll
�U=r, for three

different Bo ¼ qlgr0
2=r are plotted in Fig. 10. Symbols are the compu-

tational results, and dashed lines are calculated by Eq. (C1). Details on
the extraction of Eq. (C1) are described in Appendix C. �U , which is
used to calculate the computational Ca, is computed by averaging U

during plug splitting, for example, 0:1 < t < 0:45 in the case shown
in Fig. 9. U is the cross-sectional average velocity of air flow at
x ¼ �3r0. Note that x¼ 0 is located at the point where the parent
tube axis bifurcates, as shown in Fig. 2. Since the flow resistance of the
plug varies depending on its configuration, U changes over time. As
Bo increases, RS decreases, implying that gravity leads to more liquid

FIG. 8. The wall shear stress distribution at (a) t¼ 0.21 and (b) t¼ 0.22 s, right
after the front meniscus splits at the flow divider, see Fig. 6(c).

FIG. 9. A course of liquid volumes within the parent and daughter tubes, and the
averaged air velocity in a cross section. VParent is the total liquid volume within
x < 3r0, while Vupper and Vlower are the total liquid volumes within y � 0 and y< 0
for x � 3r0, respectively.

FIG. 10. The split ratio, RS vs Ca. For Bo¼ 1, 4, and 9, r0¼ 10�3; 2� 10�3, and
3� 10�3 m, respectively, at a fixed r¼ 10�2 N=m. For Bo¼ 2, r0¼ 2� 10�3 m
and r¼ 2� 10�2 Pam. Ca is calculated from the resultant plug speed, �U .
Dashed lines are computed using Eq. (C1).
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being delivered to the lower branch. It can be expected that RS ! 1
as Bo! 0 for any finite value of Ca. Increasing Ca, Rs also increases.
The pressure difference due to the gravity becomes less significant as
the overall pressure drop increases, which leads to a more symmetric
splitting. These tendencies are consistent with previous stud-
ies.37,38,43 It can be expected that RS ! 1 as Ca!1 for any finite
value of Bo.

From the result presented in Fig. 10, in a fixed bifurcation
geometry with stable surface tension and gravity, the split ratio of
the plug will increase with increasing plug speed. Furthermore, at a
fixed plug speed, when the surface tension increases, for example,
Ca¼ 0.06 ! 0.03 and Bo¼ 9 ! 4.5, the split ratio of the plug will
increase.

D. Critical Ca

For Bo¼ 9 at the smallest Ca in Fig. 10, the split ratio is close to
zero, RS¼ 0.03. Figure 11 demonstrates the plug-splitting process for
this case. When the front interface of the plug moves into the bifurcat-
ing section, Fig. 11(a), the liquid already drains into the lower branch
because of the strong gravitational effect. After the front interface is
split, the two front interfaces deform to a hemisphere-shaped shape as
a result of the surface tension. Due to the gravity, the plug portion in
the lower daughter tube moves faster and the plug portion in the
upper daughter tube is almost stagnant, as shown in Figs. 11(b)–11(d).
When the rear interface of the plug enters the bifurcating section, the
rear interface merges with the front interface at the upper daughter

FIG. 11. Snapshots of a liquid plug splitting at a bifurcating tube. The inner surface of the bifurcating tube (gray) and the air–liquid interface (cyan) are plotted. Bo ¼ 9,
La ¼ 300, hr ¼ 90�; hp ¼ 0�. The resultant RS ¼ 0.0343, Ca ¼ 0.0137, and Re ¼ 4.11. (a) t¼ 0.6 s, (b) t¼ 0.8 s, (c) t¼ 0.9 s, (d) t¼ 1.2 s, (e) t¼ 1.5 s, and (f) t¼ 1.6 s.
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tube. The plug that splits to the upper branch ruptures immediately.
As discussed in previous studies,37,43 there exists a critical capillary
number, Cacrit, such that for Ca � Cacrit , the plug does not split into
two daughter plugs, but one propagates into the lower daughter tube.
Because the plug in the upper daughter tube propagates against the
gravity, the driving pressure is required to overcome the hydrostatic
pressure due to the gravity. Cacrit will be decreased with Bo.

E. Effect of the roll and pitch angles

The effect of the roll and pitch angles on the split ratio is shown
in Fig. 12. As the roll angle, hr decreases, RS at a fixed Ca increases.

When hr¼ 0�, RS¼ 1 for any Ca (not shown). The traverse compo-
nent of gravity (y component, see Fig. 2) is g sin hr referring to Eq. (7).
Thus, the effective Bond number is Bo sin hr . Therefore, the overall
trend is similar to that in Fig. 10. For the cases of hr¼ 60� and 90�, for
Ca < 0.015, we observed that the plug entered into the upper daughter
tube ruptured (similar to Fig. 11). For other roll angles, there must be a
critical capillary number Cacrit present, below which the plug does not
split into two daughter plugs, but one propagates into the lower daugh-
ter tube. Cacrit will decrease with the roll angle. The numerical results
agree with the dashed lines, which are computed using Eq. (C1).

As Fig. 12(b) shows, the effect of the pitch angle, hp, on the split
ratio is insignificant. Thinking about the gravity force by Eq. (7), when
hr¼ 90�, hp does not change the gravity effect at all. When hr¼ 90�, as
hp changes from 0� to 90�, x and z components change, but y compo-
nent is most dominant. For a small roll angle, hr < 90�, the change in
hp changes the local flow field and can cause a change in the plug split
ratio, but it is not significant.

F. Effect of initial plug length

Figure 13 shows RS vs Ca for three different initial plug lengths.
The “semi-infinite” denotes a semi-infinitely long plug, where the
front air–liquid interface is placed in the parent tube initially and
moves into the air-filled bifurcating tube, followed by liquid with the
absence of rear interface. As LP0 increases, RS at a fixed Ca increases
up to the value of semi-infinite. For LP0¼ 2, when Ca < 0.04, the plug
in the upper daughter tube ruptures immediately after splitting and,
when Ca > 0.04, the plugs in both daughter tubes rupture after split-
ting. The numerical results with finite LP0 agree with dashed lines,
which are computed using Eq. (C1). For semi-infinite, the dashed line
is computed setting DPm¼ 0, DPb¼ 0, and h0¼ 0. Equation (C1) pre-
dicts RS of semi-infinite well for Ca < 0.03 but underestimates for
Ca > 0.03.

FIG. 12. The split ratio, RS vs Ca at Bo¼ 9 for different roll and pitch angles. Dashed
lines are computed using Eq. (C1). (a) Effect of roll angle, hr on RS at a fixed pitch
angle, hp¼ 0�. (b) Effect of pitch angle, hp on RS at a fixed roll angle, hr¼ 30�.

FIG. 13. The split ratio, RS vs Ca at Bo¼ 9 for different initial plug lengths. Semi-
infinite denotes semi-finitely long plug. Dashed lines are computed using Eq. (C1).
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G. Effect of inertia

The relation of Re to Ca can be written as Re ¼ La � Ca, where
La is the Laplace number. Figure 14 shows the effect of La on the split
ratio. As La increases, Re at a fixed Ca increases. Thus, the pressure
loss at bifurcation increases with La. As Ca decreases, the impact on
RS by La becomes smaller because the inertial effect is less dominant
for small Re ¼ La � Ca. At large Ca, RS increases with La. Equation
(C1) predicts well.

H. Comparison with experiments

Finally, we compare Eq. (C1) with the experimental data by
Zheng et al.,38 that is, shown in Fig. 15. Since the geometry differs
from the numerical model in this study, the friction factor parameters
were calculated based on the experimental data and were A ¼ 26:7;
B¼ 16.8 and C¼ 0.50. Equation (C1) agrees qualitatively well with the
experimental data. The slope of the LB400X experimental data is
smaller than in theory. Since the viscosity of LB400X is much larger
than that of others, La is smaller than other test fluids as well as the
range of our simulation. Therefore, our empirical formula may not
predict the split ratio well for small La. This could cause a difference in
slope.

IV. CONCLUSIONS AND FUTURE WORK

A particle method is presented to simulate the propagation of a
liquid plug through an air-filled bifurcating tube. The method handles
large deformation, break, and merge of the air–liquid interface. The
singularity of the air–liquid interface is blurred by a model Dirac delta
function with a finite peak; thus, the surface force caused by the surface
tension is spread over a narrow transition region in the vicinity of the
air–liquid interface. We successfully simulate the propagation of the
liquid plug in a straight and bifurcating tube using the MPS method
presented here. The present computational framework allows us to

perform simulations to understand the behavior of liquid plugs in pul-
monary airways.

When the front meniscus of the plug splits at the bifurcation
carina, the surface curvature becomes large, and the Laplace pressure
accelerates the liquid near the wall. Due to the faster movement of the
interface, the wall shear stress becomes large. This may cause damage
to pulmonary epithelial cells.

We observed that the presence of a transverse gravitational force
causes asymmetries in plug splitting; gravity leads to more liquid being
delivered to the lower branch. We calculate the split ratio, RS, which is
the ratio of liquid volume in two daughter tubes after the plug split.
We show that RS decreases, which means a more uneven split, as Ca
decreases at a fixed Bo. Also, we show that RS decreases as Bo increases
at a fixed Ca. The results agree with previous experimental and com-
putational studies.37,38,43 We also observed that there exists a critical
capillary number in which the plug does not split into two daughter
plugs but instead propagates into the lower daughter tube. This is due
to the existence of a minimal driving pressure, which is required to
overcome the hydrostatic pressure due to gravity.

In SRT or drug delivery in lungs, faster plug speed, which yields a
large Ca, will result in more uniform split in airway bifurcation.
However, since the trailing film thickness of the plugs increases with
Ca, the plugs lose mass faster. Therefore, there must be an optimal
plug speed to deliver the liquid uniformly to the distal airways. In
small airways, since Bo is small, the gravity effect will be less
significant.

In this study, we focus on a symmetrical and plane bifurcating
tube. In future work, we will explore a larger parameter space, includ-
ing asymmetric and/or non-plane bifurcation geometries, which can

FIG. 15. The experimental results by Zheng et al.38 The split ratio, RS vs Ca for
three different liquid materials. The roll angle, hr¼ 30�, and the pitch angle,
hp¼ 0�. LB-400X: machine oil, Bo¼ 1.26, La¼ 2.7. Glycerin: 60% glycerin,
Bo¼ 0.67, La¼ 1.7 �103. DDWater: de-ionized distilled water, Bo¼ 0.54,
La¼ 1.4 �105. Dashed lines are computed using Eq. (C1). The parameters for the
friction factor, Eq. (C2) are A¼ 26.7, B¼ 16.8, and C¼ 0.40.

FIG. 14. The split ratio, RS vs Ca at Bo¼ 9 for different Laplace number, La.
Dashed lines are computed using Eq. (C1).
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be built by tweaking the parameters defined in Appendix A. The effect
of surfactant on the split of the liquid plug will be investigated using
the method presented in the previous study,59 where we need to solve
two transport equations for surfactant in the bulk fluid and at the
interface. Through these future investigations, we will refine the simple
reduced-dimension model of the split of the plug, which contributes to
achieving a better understanding of how to use liquid plugs effectively
in medical treatment and how a plug behaves once it is created.40,60
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APPENDIX A: BIFURCATION MODEL

In this study, we construct a realistic model of airway bifurca-
tion, which has a smooth curved surface, particularly at the flow
divider.49 The curved line is defined as the tube axis, which provides
a density space around the axis like a magnetic flux density around
an electronic wire. Here, the bifurcating tube model is built, defin-
ing two tube axes, x1 and x2, as sketched in Fig. 2. These two axes
provide the density space around the axis for a given position, x, as

H1 ¼
G1ð~x1Þ
jj~x1 � xjj and H2 ¼

G2ð~x2Þ
jj~x2 � xjj ; (A1)

where ~x1 and ~x2 are the closest points from x to axes x1 and x2,
respectively. The model surface is the summation of nth powers of
these density spaces provided by Eq. (A1) being unity

H ¼ H1
n þH2

n ¼ 1; (A2)

where n is a parameter to control the sharpness of the flow divider.
Large n yields a sharp flow divider shape. In this study, n¼ 4 is used.

The axes of the bifurcating tube can be divided into three regions,
which are the parent tube, the central zone, and the daughter tubes.
The two central axes merge into a single straight line of the parent tube.
G1ð~x1Þ and G2ð~x2Þ are functions that determine the radius of the tube.
Scaling with r0, G1ð~x1Þ is defined for each region as

G1ð~x1Þ ¼

1
2

� �1
n

; parent tube;

1
2

� �1
n

þ r1
r0
� 1

2

� �1
n

( )
/ ~x1ð Þ

h1
; central zone;

r1
r0
; daughter tube;

8>>>>>>>>><
>>>>>>>>>:

(A3)

where /ð~x1Þ denotes the angle of ~x1 from x axis with respect to the
center of each curve, thus 0 � /ð~x1Þ < h1. G2ð~x2Þ can be defined
similarly. For a given coordinate, x, when H > 1, x is inside the
tube. When H < 1, x is outside the tube. The unit normal on the
wall can be calculated by n ¼ �rH =jjrH jj, and the mean curva-
ture can be calculated by j ¼ r � n.

APPENDIX B: DISCRETE FORM OF SPATIAL
DERIVATIVES

In the MPS method,48 the spatial derivatives are discretized
using the distributed particles and their properties. The derivatives
of each variable are calculated from the values owned by the par-
ticles. The gradient of a scalar / at particle i is defined by

r/i ¼
d
wi

X
j 6¼i

/j � /i

jjxj � xijj2
xj � xið Þw jjxj � xijj

� �
; (B1)

the divergence of a vector v is defined by

r � vi ¼
d
wi

X
j 6¼i

vj � við Þ � xj � xið Þ
jjxj � xijj2

w jjxj � xijj
� �

; (B2)

the Laplacian of a scalar or vector / is defined by

r2/i ¼
2d
kwi

X
j 6¼i

/j � /i
� �

w jjxj � xijj
� �h i

; (B3)

where d is the dimensions of the space, i.e., for the three-dimensional
case, d¼ 3 as it in the present study, and k is defined as

k ¼

X
j 6¼i
jjxj � xijj2w jjxj � xijj

� �
X
j 6¼i

w jjxj � xijj
� � : (B4)

APPENDIX C: SIMPLE MODEL OF PLUG SPLIT RATIO

A simple model is developed to investigate the plug splitting
process in a similar way to Zheng et al.37 For simplification, the
curved tubes of the bifurcation model are replaced by straight tubes.
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The motion of the plug is considered quasi-steady, and the expres-
sion for the split ratio, RS, is derived by a theoretical calculation of
the pressure drops and mass balances between the parent and
daughter tubes. We did not focus on the effect of gravity on the
shape of the meniscus of the air–liquid interface, as previously stud-
ied by Suresh and Grotberg.25 The pressure drop between the par-
ent and daughter tubes has different contributions. It includes the
capillary jump across the air–liquid interfaces, the viscous dissipa-
tion, and the gravitational hydrostatic effect. The balance of pres-
sure drops in the plug is simplified as37

4
r0
LP0

� �
r1
r0

� �
~f2 3Ca2ð Þ2=3 � ~f1 3Ca1ð Þ2=3
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DPm

RS þ 1ð Þ

þFCa 1� h0
r0

� �	 
2 r1
r0

� ��4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

DPv

RS � 1ð Þ

þ 4
r0
LP0

� �
r1
r0

� �3

Bo cos h1 sin hr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DPb

RS þ 1ð Þ

þBo sin h1 sin hr|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
DPr

RS þ 1ð Þ

�Bo cos h1 cos hr sin hp|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DPp

RS � 1ð Þ ¼ 0: (C1)

The first term, DPm, is due to the pressure drop across the front
menisci of plugs in the daughter tubes. The second term, DPv , is due to
the viscous dissipation, and F is the friction factor. The third term,
DPb, is due to the hydrostatic pressure difference between the entrances
of daughter tubes. The forth term, DPr , is due to the hydrostatic pres-
sure as a function of the roll angle, hr. The fifth term, DPp, is due to the
hydrostatic pressure as a function of the pitch angle, hp. Equation (C1)
remains implicit form because Ca1 and Ca2 are function of RS. Thus, to
obtain RS, we need to solve Eq. (C1) for RS numerically.

Dashed lines in Fig. 10 are computed using Eq. (C1) with the
precursor film thickness of h1=r1 ¼ 0:05 and the initial plug length
of LP0 ¼ 4. Considering the large pressure loss across the bifurca-
tion, we define the friction factor, F , is a function of the Reynolds
number, Re ¼ La � Ca ¼ qlr0 �U=ll , as

F ¼ Aþ B � ReC: (C2)

From a curve-fitting analysis, we obtain A¼ 229, B¼ 0.0638, and
C¼ 2.11, which make approximately 30 times of the same factor for
the Poiseuille flow that is F ¼ 8 and show excellent agreement
with our MPS simulation results as lines and corresponding
markers agree well for all the Bo considered, see Fig. 10. Comparing
each term in Eq. (C1), DPp¼ 0 since hp¼ 0�, and DPm is negligibly
small, thus the contribution of the pressure jump across the front
interfaces is negligible. The first term will become significant by
shorter plugs, asymmetric bifurcations, and the presence of surfac-
tant on the air–liquid interface.

Our numerical results show that the contribution of DPm and
DPp terms in Eq. (C1) to the split ratio is small. Neglecting two
terms, we can simplify Eq. (C1) and make it an explicit form as

RS ¼
DPv � DPb � DPr
DPv þ DPb þ DPr

: (C3)
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