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ABSTRACT

The Kolmogorov flow is a paradigmatic model flow used to investigate the transition from laminar to turbulent regimes in confined and,
especially, in unbounded domains. It represents a solution of the forced Navier–Stokes equation, where the forcing term is sinusoidal. The
resulting velocity profile is also sinusoidal with the same wavenumber of the forcing term. In this study, we generalize the Kolmogorov flow
making use of a generic forcing term defined by a Fourier series that bridges the classical Kolmogorov flow to an arbitrary even-degree
power-law profile. Thereafter, we perform a linear stability analysis on the power-law profiles for exponents, a ¼ 2; 4; 6; 8, and 10, and the
corresponding generalized Kolmogorov flows, varying the truncation index K of the Fourier series. Several neutral stability curves are com-
puted numerically for wall-bounded flows and the relevant critical conditions are compared in terms of critical Reynolds number, critical
wavelength, and eigenspectrum at criticality. The most dangerous perturbations are thoroughly characterized, and we identify three qualita-
tively different most dangerous modes, depending on a, K, the Reynolds number, and the perturbation wavelength.

I. INTRODUCTION

Parallel shear flows are solutions of the Navier–Stokes equa-
tion with a velocity field u in the form u ¼ uðy; zÞex , where x
denotes the streamwise direction and y and z are the coordinates
orthogonal to x. These flows can be realized by means of either a
pressure gradient, moving boundaries or a body force directed
along x. Classical examples of parallel shear flows are the
boundary-driven Couette flow, the pressure-driven plane
Poiseuille and Hagen–Poiseuille flows, and the body-force-driven
Kolmogorov flow. These simple solutions of the Navier–Stokes
equation represent paradigmatic flows widely used for investigat-
ing hydrodynamic instabilities1 and transition of laminar shear
flows to turbulence either in confined2 or in periodic domains.3

The Kolmogorov flow is a flow driven by a periodic (sinusoidal)
monochromatic force and it was first introduced by Kolmogorov4 for
studying hydrodynamic instabilities and transition to turbulence in
spatially periodic domains. Experimental realizations of the
Kolmogorov flow are done using magnetohydrodynamic forcing with
sinusoidal magnetic fields.5–7 More recently, adding a Coriolis forcing
term, the Kolmogorov flow has been employed as a barotropic ocean
model,8–10 and experimental realizations of the Kolmogorov flow are
also made by means of soap films.11

Meshalkin and Sinai12 carried out the first analytical stability
analysis of the two-dimensional Kolmogorov flow for a unitary wave-
number of the forcing term. For a domain with streamwise-to-wave-
length aspect ratio equal to Lx=Ly ¼ 1=C, they found that the
Kolmogorov flow is stable for C � 1 and it becomes unstable for C
< 1 with Re ¼ Rec !

ffiffiffi
2
p

for C! 0, where Re is the Reynolds num-
ber. These results found confirmation in the studies of Iudovich13 and
Marchioro,14 who further extended them by demonstrating that the
Kolmogorov flow is globally stable for C � 1. Other studies on the
stability of the Kolmogorov flow carried out a bifurcation analysis and
showed that the primary bifurcation of the Kolmogorov flow is a
supercritical pitchfork bifurcation.15 These studies were further
extended to higher Re,16 and the exact expressions were determined
for the second derivatives of the bifurcation components at the bifur-
cation points.17 Fundamental computational contributions are due to
Nagatou,18 who focused on the stability of the bifurcating solutions
proposing an algorithm to bracket the critical Reynolds number for
given C with an accuracy almost up to machine precision. Further
generalizations of the classical periodic monochromatic Kolmogorov
flow consist of dealing with rhombic cells, either in viscous or inviscid
regimes,19,20 flow confinements,21,22 time-periodic forcing23 non-
Newtonian stress tensors,24 and three-dimensional flows.25–27
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Since its introduction, the Kolmogorov flow has been employed
for studying the transition to Newtonian and non-Newtonian turbu-
lence of shear flows. High-Reynolds-number regimes have been tar-
geted by several studies that identified how the Kolmogorov flow
becomes chaotic and then turbulent upon an increase of Re, undergo-
ing a sequence of bifurcations and a number of flow patterns.3,28–30

Moreover, owing to its versatility, the Kolmogorov flow has been
assumed as a model flow for investigating the effect on the transition
to turbulence of the forcing wavelength,3,29 the flow confinement,21,31

the thermal stratification,32 the flow compressibility,31,33 as well as of
non-Newtonian stress tensors including viscoelastic34 or granular35

constitutive models.
In this paper, we propose a generalization of the Kolmogorov

flow, in which the forcing term is given by a summation of K Fourier
modes. In a closed channel confined by parallel rigid walls, the stability
diagram of the generalized Kolmogorov flow will turn the neutral sta-
bility curve of the classical Kolmogorov flow (for K¼ 1) into the stabil-
ity curve of the Poiseuille flow (for K !1). Thereafter, this same
approach is used to further extend the generalized Kolmogorov flow
to arbitrary even-degree power-law flows with the aim of providing a
generalized model framework for the investigation of body-force-
driven flows. The paper is organized as follows: Sec. II formulates the
mathematical problem, generalizes the Kolmogorov flow, and briefly
recalls the Orr–Sommerfeld equation used to carry out the linear sta-
bility analysis, and Sec. III describes and validates the numerical code
used to solve the eigenvalue problem at the core of the linear stability
analysis. The results of our numerical study are presented and dis-
cussed in Sec. IV. Finally, the conclusions of our study are drawn in
Sec. V.

II. PROBLEM FORMULATION

The incompressible flow of a fluid with constant density q and
kinematic viscosity � is considered. Scaling lengths, time, velocity,
pressure, and body forces by H, H/U, U, qU2, and qU2=H, the non-
dimensional continuity and Navier–Stokes equations read

r � u ¼ 0; (1a)

@u
@t
þ u � ru ¼ �rpþ 1

Re
r2uþ f ; (1b)

where x ¼ ðx; y; zÞ and t are the space and time coordinates, u
¼ ðu; v; wÞ and p denote the velocity and pressure fields, f ¼ ðfx; fy; fzÞ
is a body force, and Re ¼ UH=� is the Reynolds number.

A. Generalized Kolmogorov flow

When the forcing term is monochromatic and sinusoidal, i.e.,
f ¼ ðRe�1p2 sin ½pðy þ 1Þ=2�=4; 0; 0Þ, the (1) admits a steady plane-
flow solution which is itself unidirectional and sinusoidal in velocity,
i.e., u ¼ ðsin ½pðy þ 1Þ=2�; 0; 0Þ, where U and H are assumed as the
maximum flow velocity and a quarter of the forcing wavelength,
respectively. This flow is known as Kolmogorov flow and it is com-
monly extended to periodic domains to investigate the transition to
turbulence without including any solid boundary. In a plane channel
flow, the Kolmogorov flow can be used as first-mode-approximation
model of the Poiseuille flow [see Fig. 1(a)]. In this sense, for
unbounded domains, the Kolmogorov flow approximates the flow

consisting of antisymmetric Poiseuille flows matched in slope [see
Fig. 1(b)],

fx ¼
p2 sin pðy þ 1Þ=2½ �

4Re
;

u ¼ sin pðy þ 1Þ=2½ �

� 1� ðy � 4nÞ2 if y 2 �1; 1½ � þ 4n

�1þ ðy � 4nþ 2Þ2 if y 2 �3;�1½ � þ 4n;

(
(2)

where n 2 Z. Within our scaling, U also represents the maximum
velocity magnitude of the anti-symmetric Poiseuille flows and H is
half of the height of each Poiseuille flow sub-domain [see Fig. 1(b)].

Two generalizations of the Kolmogorov flow are discussed as
follows: (i) the consideration of higher harmonics of the Fourier
expansion to bridge the classical Kolmogorov to the Poiseuille flow
and (ii) the investigation of even-degree polynomial flows of
degree higher than two. The former point is of interest since
remarkable differences are observed in the linear stability of
Kolmogorov and Poiseuille flows for confined geometries, and we
aim at characterizing how such differences decay by employing
more than one Fourier mode. This same generalization could
then be used in further studies to investigate the two-dimensional
transition to turbulence for higher-order approximation of the
anti-symmetric Poiseuille flows in unbounded domains. The corre-
sponding Fourier series reads

u ¼ 32
p3

X1
k¼1

1

ð2k� 1Þ3
sin pð2k� 1Þðy þ 1Þ=2½ �

¼ 1� ðy � 4nÞ2 if y 2 �1; 1½ � þ 4n
�1þ ðy � 4nþ 2Þ2 if y 2 �3;�1½ � þ 4n:

(
(3)

The second generalization considers anti-symmetric even-degree
polynomial flows of arbitrary order matched in slope as done for the
Poiseuille flow [see Fig. 2(b)]. The corresponding Fourier series repre-
sents a generalized form of (3),

FIG. 1. (a) Kolmogorov (solid line) and Poiseuille (dashed line) flow in a plane
channel flow. The channel walls are delimited by solid lines and gray rectangles.
(b) Periodic Kolmogorov flow (solid line) and antisymmetric Poiseuille flows
matched in slope (dashed line). The domain is unbounded. In both the sub-figures,
the arrows denote the velocity vector field.
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u ¼
X1
k¼1

Xa=2
m¼1

ð�1Þmþ122ðmþ1Þ
Q2m�1

l¼0 ða� lÞ
ð2k� 1Þp½ �2mþ1

sin pð2k� 1Þðy þ 1Þ=2½ �

¼
1� ðy � 4nÞa if y 2 �1; 1½ � þ 4n

�1þ ðy � 4nþ 2Þa if y 2 �3;�1½ � þ 4n;
(4)

(

where a ¼ 2c and c 2N. Figure 2(a) depicts the first three modes of
(4) for a¼ 4 for a confined channel flow. The forcing term corre-
sponding to (4) reads

fx¼�
1
Re
@2u
@y2

¼ 1
Re

X1
k¼1

Xa=2
m¼1

ð�1Þmþ122ðm�1Þ
Q2m�1

l¼0 ða� lÞ
ð2k�1Þp½ �2m�1

sin pð2k�1Þðyþ1Þ=2½ �:

(5)

The rationale at the basis of the second generalization consists of
proposing a model flow for studying the relaminarization observed for
flat profile flows36 or for investigating the transition to turbulence of
forced flows.

B. Linear stability analysis

The plane shear flow defined in (4) is assumed as steady basic
flow, u0 ¼ ðu0ðyÞ; 0; 0Þ. Considering an infinitesimal perturbation
ð~u; ~pÞ, the linear stability equations of the two-dimensional basic flow
read

r � ~u ¼ 0; (6a)

@~u
@t
þ u0 � r~u þ ~u � ru0 ¼ �r~p þ 1

Re
r2~u: (6b)

Since the coefficients of (6) do not depend on time and z, the solution
ð~u; ~pÞ admits an exponential ansatz in t and z. Moreover, for plane-

parallel basic flows, the infinitesimal perturbation has the form of
oblique waves,

~q ¼ ð~u; ~pÞ ¼ ðû; p̂ÞeiðrxþbzÞ�ixt þ c:c: ¼ q̂eiðrxþbzÞ�ixt þ c:c:; (7)

where r and b 2 R; x 2 C; q̂ ¼ ðû; p̂Þ depends only on y, and c:c:
denotes the complex conjugate ansatz. Plugging (7) in (6), the resulting
three-dimensional linear stability equations can be further simplified
to an equivalent two-dimensional problem by the following substitu-
tion of variables:

�r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

q
; �x ¼ xr=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

q
; Re ¼ Re r=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ b2

q
:

(8)

Without loss of generality, we therefore will remove b from the pertur-
bation ansatz, solve the stability problem in terms of �r; �x, and Re, and
simplify the notation by removing the overline sign in (8). The equiva-
lent two-dimensional problem can be reformulated in terms of the
Orr–Sommerfeld equation, which characterizes the infinitesimal
streamfunction perturbation, ~w ¼ ŵeirx�ixt þ c:c:, where @yŵ ¼ û
and�irŵ ¼ v̂ , by the following single-equation eigenvalue problem:

ðu0 � cÞ @

@y2
� r2

� �
ŵ þ ŵ

@u0
@y2
¼ 1

irRe
@

@y2
� r2

� �2

ŵ; (9)

where c ¼ x=r 2 C is the wave speed. Since we target the stability
analysis for confined flows, at the walls we set no-slip boundary condi-
tions, i.e., ŵ ¼ @yŵ ¼ 0 at y¼ –1 and y¼ 1. We stress that, since the
Orr-Sommerfeld equation does not include neither the pressure nor
the forcing term, it is irrelevant for the flow stability how the basic
flow profile u0 has been generated.37

III. NUMERICAL METHOD

The collocation spectral method employed to discretize the linear
system (9) relies on Chebyshev–Gauss–Lobatto nodes. The number of
spectral nodes is denoted by N. After assembling the matrices that

FIG. 2. (a) Power-law flow for a¼ 4 (solid black line), first three Fourier modes
(blue lines, i.e., k¼ 1, k¼ 2 and k¼ 3 of (4)), truncation of the Fourier series to
the first (dashed black line), second (dashed–dotted black line), and third (dotted
black line) Fourier mode. The channel walls are delimited by solid line and gray rec-
tangles. (b) Periodic antisymmetric power-law flows matched in slope for a¼ 2
(black, Poiseuille flow), a¼ 4 (green), a¼ 6 (light blue), a¼ 8 (red), and a¼ 10
(violet). The domain is unbounded. In both the sub-figures, the arrows denote the
velocity vector field.

FIG. 3. Eigenspectrum computed by our code (black) and by Ref. 38 (light blue) for
the critical conditions of the Poiseuille flow, i.e., ðRec;rcÞ ¼ ð5772; 1:026Þ. The
three branches of the eigenspectrum are denoted Airy (A), the Schensted (S), and
the Pekeris (P) branches. The Airy branch distinguishes two kinds of eigenmodes:
symmetric (even, green) and antisymmetric (odd, magenta).

https://scitation.org/journal/phf


define the discrete form of the generalized eigenvalue problem, the
eigenvalues and eigenvectors are computed using the function eig of
Matlab.

Figure 3 demonstrates that using N¼ 200 Chebyshev–Gauss–
Lobatto nodes provides an excellent agreement of the discrete eigenspec-
trum at criticality for the Poiseuille flow between our code (black) and
the reference data38 (light blue). The eigenvalues of the two solvers are
in excellent agreement for all three branches of the eigenspectrum, i.e.,
the Airy (A), the Schensted (S), and the Pekeris (P) branches. After a
mesh convergence test (not shown), we decided to employ N¼ 100 for
all the results presented in Sec. IV, increasing the number of
Chebyshev–Gauss–Lobatto nodes to N¼ 200 whenever critical condi-
tions are computed or most dangerous modes are depicted.

IV. RESULTS AND DISCUSSION

The generalized form of the Kolmogorov flow reported in (4) is
here assumed as basic state u0. Making use of the spectral solver pre-
sented in Sec. III, we determine the stability limits of the generalized
Kolmogorov flow for several truncates of the Fourier series (4). In the
following, the order of truncation is denoted by the truncation index
K, the two-dimensional parameter space ðr; ReÞ 2 ½0; 2� � ½5
�102; 106� is explored with steps in r of 1%, i.e., Dr ¼ 0:01, and steps
in Reynolds of 500, i.e., DRe ¼ 500. The resolution in Re is thereafter
increased whenever the critical conditions are determined.

A. Stability of generalized Kolmogorov flow
for Poiseuille flow

The stability of generalized Kolmogorov flow is investigated, set-
ting a¼ 2 in (4), i.e., for a Fourier series that tends to the Poiseuille
flow. Figure 4(a) shows the neutral stability boundaries for a Poiseuille

flow (a thick solid black line) confined within a rigid channel of
dimensional height 2H. The light-blue area denotes the unstable
region of the Poiseuille flow and the turning point characterizes the
critical conditions ðRec; rcÞ ¼ ð5772; 1:026Þ. These conditions are
poorly approximated by (4) when truncating the Fourier series to the
first term (Kolmogorov flow), such that rc is overestimated of about
30% and Rec is underestimated of almost a factor 6. The unstable
region of the confined Kolmogorov flow is found to grow in compari-
son to the unstable region of the Poiseuille flow. The two curves inter-
sect each other at ðRe; rÞ � ð2� 104; 1Þ, and the neutral stability
boundary for K¼ 1 underestimates the upper limit of the unstable
region for Poiseuille flow for Re� 2� 104. Upon an increase in the

FIG. 4. (a) Neutral stability curves for Poiseuille flow (thick black solid line with unstable region filled in light blue) and generalized Kolmogorov flow (4) for a¼ 2 and truncation
index: K¼ 1 (dark-blue dashed–dotted line), K¼ 2 (dark-blue dashed line), K¼ 3 (dark-blue solid line), K¼ 4 (dark-blue dotted line), K¼ 5 (light-blue dashed–dotted line),
K¼ 6 (light-blue dashed line), K¼ 8 (light-blue solid line), K¼ 10 (light-blue dotted line), and K¼ 100 (peach dashed–dotted line). (b) Eigenspectrum of the critical conditions
for Poiseuille flow (black bullets) and generalized Kolmogorov flow (4) for a¼ 2 and truncation index: K¼ 1 (dark-blue triangles), K¼ 2 (dark-blue squares), K¼ 3 (dark-blue
circles), K¼ 6 (light-blue circles), and K¼ 100 (peach bullets). The gray area denotes the unstable domain, i.e., =fcg > 0.

TABLE I. Critical Reynolds (Rec) and critical wavelength (rc) for the generalized
Kolmogorov flow (4) for a¼ 2 and truncation index K.

Modes Rec rc

K¼ 1 1025 1.27
K¼ 2 2128 1.21
K¼ 3 3523 1.13
K¼ 4 5016 1.06
K¼ 5 6438 1.02
K¼ 6 7500 0.99
K¼ 8 7767 0.97
K¼ 10 5993 1.01
K¼ 100 5767 1.03
Poiseuille 5772 1.026
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truncation index K of the generalized Kolmogorov flow, the area of
the unstable region reduces up to becoming smaller than the unstable
area for Poiseuille flow [see, e.g., K¼ 8 in Fig. 4(a)]. Increasing further
the truncation index of (4), the unstable region inverts its area-
decreasing trend and approaches the neutral stability curve of the
Poiseuille flow already well approximated by K¼ 10. For K¼ 100, we
do not observe any remarkable difference between the unstable region
of (4) and the corresponding one of the Poiseuille flow [cf. peach and
black lines in Fig. 4(a)]. However, focusing on the critical conditions
demonstrates that the generalized Kolmogorov flow for K¼ 100
slightly underestimates the critical Reynolds number and overesti-
mates the wavelength of the Poiseuille flow (see Table I).

The real and imaginary parts of the most unstable eigenvalue cor-
responding to the critical conditions reported in Table I are depicted
in Fig. 4(b). Despite the deviation in terms of Rec and rc for different
truncation indices K, all the eigenspectra are qualitatively similar. They
all admit the Y-shape spectrum characteristic of the Poiseuille flow,
and they all become unstable on the left branch of the spectrum due to

an even Airy mode. This is demonstrated in Fig. 4(b) by the markers
lying in the gray region (=fcg � 0). Upon an increase in the trunca-
tion index K, the most significant quantitative difference between the
eigenspectra is represented by a shift of the real part of the eigenspec-
trum. For low truncation indices, the critical wavelength of the gener-
alized Kolmogorov flow is larger than the one for Poiseuille flow (see
Table I) and, correspondingly, the eigenspectrum shifts toward larger
real parts, leading to critical conditions with a higher oscillatory fre-
quency. On the other hand, for K> 5, the critical wavelength of the
generalized Kolmogorov flow is smaller than the corresponding rc of
the Poiseuille flow and the oscillatory frequencies of the critical modes
of the generalized Kolmogorov flow become smaller than the critical
frequency of the Poiseuille flow.

B. Stability of even-degree power-law flows

The even-degree power-law profiles considered as generalization
of the pressure-driven Poiseuille flow do not represent exact solutions
of the Navier–Stokes equation without a forcing term. However, they
become solutions of the forced Navier–Stokes equation if the forcing
term equals f ¼ ðfx; fy; fzÞ ¼ ð�Re�1@2y u0; 0; 0Þ. Moreover, they
represent the limit for K !1 of (4) and therefore we characterize
their stability diagram in Fig. 5(a). Upon an increase in the exponent
a, we find a remarkable stabilization of the shear flow whose critical
Reynolds number increases of about two orders of magnitude passing
from Rec � 5� 103 for a¼ 2 to Rec � 3� 106 for a¼ 10. A precise
quantification of the critical conditions for a ¼ 2; 4; 6; 8, and 10 is
reported in Table II. Along with such an increase in the basic flow sta-
bility, the range of r for which the flow is unstable broadens and the
critical wavelength shifts toward higher rc. This stabilization effect is
due to the shrinkage of the energy transfer region between the basic

FIG. 5. (a) Neutral stability curves for even-degree power-law flows: a¼ 2 (Poiseuille flow, thick black solid line with unstable region filled in light gray), a¼ 4 (thick green solid
line with unstable region filled in light green), a¼ 6 (thick light-blue solid line with unstable region filled in light blue), a¼ 8 (thick red solid line with unstable region filled in light
red), and a¼ 10 (thick violet solid line with unstable region filled in light violet). The inset at the bottom-left corner depicts the basic states upon a change of a. The velocity pro-
files are color coded like the stability curves. (b) Eigenspectrum of the critical conditions for a¼ 2 (Poiseuille flow, gray bullet), a¼ 4 (light green triangles), a¼ 6 (light blue
squares), a¼ 8 (light red diamonds), and a¼ 10 (light violet triangles). The gray area denotes the unstable domain, i.e., =fcg > 0.

TABLE II. Critical Reynolds (Rec) and critical wavelength (rc) for the even-degree
power-law flows u0 ¼ 1� ya for a ¼ 2; 4; 6; 8; and 10. A further accuracy check
on the ða ¼ 10Þ-profile shows that the relative difference between Rec computed
using N¼ 300 and N¼ 200 is smaller than 0.3%.

Power flow Rec rc

a¼ 2 5772 1.026
a¼ 4 52 745 1.11
a¼ 6 128 831 1.32
a¼ 8 219 483 1.56
a¼ 10 315 494 1.83
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state and the flow perturbation. In fact, the y-range for which dyu0
� 0 increases upon an increase of a leading to the most dangerous
perturbations whose wall-normal derivatives @xð~u;~vÞ and @yð~u;~vÞ
become significant only near the channel walls. This is demonstrated

in Fig. 6 that depicts the critical modes for a¼ 2 [Fig. 6(a)] and a¼ 4
[Fig. 6(b)]. The top panels show the real (black) and the imaginary
(light blue) parts of the eigenmode in terms of x-velocity, û, y-velocity,
v̂ , and vorticity, x̂z ¼ irv̂ � @yû, whereas the bottom panel depicts

FIG. 6. Top panels: real (black) and imaginary (light blue) parts of the neutral eigen-
mode in terms of û (left), v̂ (center), and x̂z (right). Bottom panel: the most danger-
ous perturbation depicted in terms of vorticity and velocity field (arrows). Critical
conditions for the power-law basic state u0 ¼ 1� ya for a¼ 2 (a) and a¼ 4 (b).

FIG. 7. Top panels: real (black) and imaginary (light blue) parts of the neutral eigen-
mode in terms of û (left), v̂ (center), and x̂z (right). Bottom panel: the most danger-
ous perturbation depicted in terms of vorticity and velocity field (arrows). Neutral
conditions ðRe; rÞ ¼ ð366 400; 1:00Þ for the power-law profile for a¼ 8 (a) and
critical conditions for a¼ 8 (b).

https://scitation.org/journal/phf


one period of the most dangerous perturbation employing 12 contours
of vorticity, ~xz , and the velocity vector field (~u, arrows).

The eigenspectra at criticality are compared in Fig. 5(b). The Y-
shape spectrum characteristic of the Poiseuille flow turns into an H-
shape spectrum with a long branch at low oscillation frequencies and a
short one at high oscillation frequencies. Regardless of the even-degree
power-flow exponent a, all the spectra become unstable at low fre-
quencies, as depicted in the inset of Fig. 5(b). The remarkable feature
observed for a ¼ 8 and 10 is that the neutral stability curve is not as
smooth as for a ¼ 2; 4; and 6. This results from the intersection of
two neutral stability branches due to the presence of two different
unstable eigenmodes both emerging from the left branch of the H-
shaped eigenspectrum. Figure 7 depicts the neutral modes for a¼ 8

FIG. 8. Neutral stability curves for the power-flow for a¼ 4 (thick black solid line with unstable region filled in light blue) and generalized Kolmogorov flow (4) for a¼ 4 and
truncation index: K¼ 1 (dark-blue dashed–dotted line), K¼ 2 (dark-blue dashed line), K¼ 3 (dark-blue solid line), K¼ 4 (dark-blue dotted line), K¼ 5 (light-blue dashed–dot-
ted line), K¼ 6 (light-blue dashed line), K¼ 8 (light-blue solid line), K¼ 10 (light-blue dotted line), and K¼ 100 (peach dashed–dotted line). (b) Eigenspectrum of the critical
conditions for the power-flow for a¼ 4 (black bullets) and generalized Kolmogorov flow (4) for a¼ 4 and truncation index: K¼ 1 (dark-blue triangles), K¼ 2 (dark-blue
squares), K¼ 3 (dark-blue circles), K¼ 6 (light-blue circles), and K¼ 100 (peach bullets). The gray area denotes the unstable domain, i.e., =c > 0.

TABLE III. Critical Reynolds (Rec) and critical wavelength (rc) for the generalized
Kolmogorov flow (3) of the power-4 profile (a¼ 4) with truncation index K.

Modes Rec rc

K¼ 1 901 1.27
K¼ 2 3507 1.46
K¼ 3 6292 1.51
K¼ 4 9679 1.49
K¼ 5 13 649 1.44
K¼ 6 18 133 1.39
K¼ 8 28 308 1.30
K¼ 10 39 458 1.22
K¼ 100 52 941 1.11
a¼ 4 52 745 1.11

FIG. 9. Top panels: real (black) and imaginary (light blue) parts of the neutral eigen-
mode in terms of û (left), v̂ (center-left) and x̂z (center-right), and basic state u0
(light blue, right) for the generalized Kolmogorov flow for a¼ 4 and K¼ 2. The
dashed line in the top-right panel shows the power-law profile for a¼ 4 and the
gray stripes highlight the region where the eigenmode admits the highest velocity
and velocity gradients. Bottom panel: the most dangerous perturbation depicted in
terms of vorticity and velocity field (arrows). Critical conditions for the generalized
Kolmogorov flow for K¼ 2 and a¼ 4 are considered.
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and ðRe; rÞ ¼ ð366 400; 1:00Þ [Fig. 7(a)] and ðRe; rÞ ¼ ðRec; rcÞ
¼ ð219 483; 1:56Þ [Fig. 7(b)]. The same line and color plot style of
Fig. 6 is here employed. The top part of the neutral stability curve
(r > 1:16) is therefore due to the symmetric (even) eigenmode of
ŵ ¼ �v̂=ir [see Fig. 7(b)], whereas the bottom part of the neutral
stability curve (r < 1:16) is related to the antisymmetric (odd) eigen-
mode of ŵ [see Fig. 7(a)].

C. Stability of generalized Kolmogorov flow
for even-degree power-law flows

The stability boundaries of the generalized Kolmogorov flow (4)
for a¼ 4 and K ¼ 1; 2; 3; …; 100 are depicted in Fig. 8(a). The neu-
tral stability boundaries for the ða ¼ 4Þ� power flow are denoted by
the thick solid black line, which confines the unstable region (area
filled in light blue). The stability boundaries of the generalized
Kolmogorov flow for K¼ 1 (a dark-blue dashed–dotted line) have
been discussed in Sec. IVA for a¼ 2. The neutral stability curves for
K¼ 1 and a ¼ 2; 4 only differ by a scaling factor resulting from (4).
For a¼ 4 the first truncation index of (4), K¼ 1, underestimates the
critical Reynolds number Rec of about two orders of magnitude and
overestimates the critical wavelength rc of about 20% with respect to
the power-law profile for a¼ 4 (see Table III). The poor approxima-
tion provided by the first truncation index is demonstrated also by
comparing the critical eigenspectra of the power-law flow for a¼ 4
[black bullets in Fig. 8(b)] and of (4) for a¼ 4 and K¼ 1 [dark-blue
triangles in Fig. 8(b)]. The two eigenspectra are qualitatively different,
as the spectrum for a¼ 4 is H-shaped while the spectrum of the gener-
alized Kolmogorov flow for a¼ 4 and K¼ 1 is Y-shaped.

When truncating (4) to the second mode, i.e., K¼ 2, the predic-
tion of the critical Reynolds number is improved of a factor 4 in com-
parison to the power-law profile for a¼ 4, whereas the critical
wavelength worsens, deviating of about 30% from the corresponding
rc of u0 ¼ 1� y4. No remarkable qualitative difference in the critical
eigenspectrum is observed between K¼ 1 and K¼ 2. In fact, for K¼ 2
the eigenspectrum [dark-blue squares in Fig. 8(b)] is still Y-shaped as
for K¼ 1. The major qualitative difference between the neutral

stability boundaries for K¼ 1 and K¼ 2, see dark-blue dashed–dotted
and dashed lines in Fig. 8(b), respectively, is due to the presence of a
new most dangerous perturbation introduced for r < 1 and r > 1:6
by the second truncation index of (4). The presence of such a second
unstable mode is due to the two symmetric inflection points intro-
duced by the second Fourier mode in the channel bulk. This is demon-
strated in Figs. 9 and 10. Figure 9 depicts the critical mode which
maximizes the perturbation amplitude near the wall, while Fig. 10
shows the most dangerous perturbation for the neutral stability condi-
tion ðRe; rÞ ¼ ð14632; 0:5Þ. In this latter case, the perturbation
amplitude is maximized in the bulk near the inflection points of the
basic state [see Fig. 2(a)].

Upon an increase in the truncation index for K> 2, the critical
Reynolds number increases monotonically and the critical wavelength
decreases monotonically approaching ðRec; rcÞ for the ða ¼ 4Þ-
power-law profile and the truncation indices investigated (see
Table III). The two most dangerous modes discussed for K¼ 2 persist
for higher K and their footprint on the neutral stability boundaries
recedes toward higher neutral Reynolds numbers. For K ¼ 3; 4; 5;
and 6 a new unstable region emerges at short wavelengths, which
region is due to an odd most dangerous eigenmode. The correspond-
ing most dangerous perturbation maximizes the velocity and velocity
gradient amplitude near the channel walls and qualitatively resembles
the most dangerous perturbation depicted in Fig. 7(a).

The S-branch of the critical eigenspectrum is preserved for
K � 2 and splits into two branches for K¼ 3 at =fcg � �1:2 (not
shown). Upon an increase in the truncation index, the imaginary part
of c at which the S-branch splits reduces in absolute value and gives
rise to a K-shaped eigenspectrum for K¼ 4 and to an H-shaped
eigenspectrum for K � 5 [see Fig. 8(b)]. Regardless of the truncation
index K, all the critical eigenspectra become unstable at low oscillatory
frequencies, along the A-branch. The oscillatory frequency of the most
dangerous perturbation decreases monotonically toward <fccg for the
ða ¼ 4Þ-power-law profile.

The neutral stability curves for a ¼ 6; 8; and 10 are depicted in
Fig. 11, together with the stability boundaries for the corresponding
generalized Kolmogorov flow (4) truncated at Fourier mode K. In the

FIG. 10. Top panels: real (black) and
imaginary (light blue) parts of the neutral
eigenmode in terms of û (left), v̂ (center-
left) and x̂z (center-right), and basic state
u0 (light blue, right) for the generalized
Kolmogorov flow for a¼ 4 and K¼ 2. The
dashed line in the top-right panel shows
the power-law profile for a¼ 4 and the
gray stripe highlights the region where the
eigenmode admits the highest velocity
and velocity gradients. Bottom panel:
the most dangerous perturbation depicted
in terms of vorticity and velocity field
(arrows). Neutral conditions ðRe; rÞ
¼ ð14 632; 0:50Þ for K¼ 2 and a¼ 4 are
considered.
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light of the stability analysis performed for a¼ 4, the curves for K¼ 1
always admit a Y-shaped eigenspectrum and become unstable with a
most dangerous perturbation that admits highest perturbation velocity
and velocity gradient near the channel walls. Upon an increase in the
truncation index K, the most dangerous mode leading to a bulk insta-
bility and correlated with the inflection points of the basic state (see
Fig. 10) takes over. This signifies the importance of an inviscid-like
instability mechanism related to the Rayleigh’s inflection-point crite-
rion. A further increase in K stabilizes the flow moving the unstable
region toward higher neutral Reynolds numbers. For a high-enough
truncation index K, the wall instability takes over once again such that
the most dangerous perturbation admits highest perturbation velocity
and velocity gradient near the channel walls. The non-smooth charac-
ter of the neutral stability curves for high truncation indices K and
a¼ 8 and 10 is due to a change of the most dangerous mode, which is

symmetric for large wavelengths and antisymmetric for small r (see
Fig. 7).

V. CONCLUSIONS

The stability of shear flows in a channel was investigated consid-
ering power-law profiles for a ¼ 2; 4; 6; 8, and 10, and generalizing
the Kolmogorov flow for even-degree power-law exponents and arbi-
trary truncation indices. A detailed characterization of the critical
eigenspectra, the most dangerous perturbations, and the neutral stabil-
ity curves was discussed in Sec. IV, comparing the power-law profiles
and the generalized Kolmogorov flows for several truncation indices
K. Moreover, critical conditions were tabulated whenever the neutral
stability curve admitted a turning point.

We further identified the symmetric and antisymmetric most
dangerous perturbations determining their influence on the emergence

FIG. 11. Neutral stability curves for the power-flow for a¼ 6 (a), a¼ 8 (b), and a¼ 10 (c) (thick black solid line with unstable region filled in light blue) and generalized
Kolmogorov flow (4) for a¼ 6 (a), a¼ 8 (b), and a¼ 10 (c) and truncation index: K¼ 1 (dark-blue dashed–dotted line), K¼ 2 (dark-blue dashed line), K¼ 3 (dark-blue solid
line), K¼ 4 (dark-blue dotted line), K¼ 5 (light-blue dashed–dotted line), K¼ 10 (light-blue dashed line), K¼ 20 (light-blue solid line), K¼ 50 (light-blue dotted line),
andK¼ 100 (peach dashed–dotted line).
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of two branches of the neutral stability curve for a � 8. Moreover, also
a bulk instability arising for a � 4 at moderate truncation indices
K> 2 has been identified and explained in terms of the inflection
points of the basic state shear flow profile.36

Our investigation was inspired by the several studies that consid-
ered the Kolmogorov flow as a paradigmatic model flow for investigat-
ing transitional regimes and fully developed turbulence, either in
confined or unbounded domains. We therefore expect that our general-
ization will provide a model flow that can be employed to better under-
stand the effect of linear and non-linear instabilities in transitional
regimes of non-Poiseuille-like profiles. The presence of non-linearities
becomes relevant when the perturbations considered are no longer
infinitesimal. In this case, the convective term in the momentum equa-
tion cannot be linearized and the most dangerous perturbation may be
other than a plane wave. Such scenarios of transition to turbulence and
the identification of coherent structures have been investigated by
Chandler and Kerswell30 in classic Kolmogorov flows and they would
be an interesting extension of our study. Other extensions may include
the study of non-linear interactions at transitional regimes involving
the presence of turbulent puffs and slugs in a laminar surrounding
flow. In particular, flat profiles enlarge the linear stability region allow-
ing the study of intermittent flows at higher Reynolds than for a plane
Poiseuille flow.2,39 Such study would connect with the typical flat lami-
nar profiles observed for non-Newtonian pipe and channel flows,40

allowing to isolate the mean-flow contribution to the laminar-to-turbu-
lent energy transfer from the non-linearity introduced by the non-
Newtonian stress tensor.41–43 Moreover, we think that generalizing the
Kolmogorov flow to even-degree power-law profiles of arbitrary order
will also help us to shed some light on the relaminarization of turbulent
flat flow mean profiles, especially considering the increase in linear sta-
bility for a ". In fact, under the assumption that Boussinesq’s turbulent
viscosity hypothesis holds, the linear stability theory finds application
to turbulent flows formally assuming the same equations considered in
our study, with the difference that the basic laminar state is replaced by
the time-mean flow. In the case of turbulent flows, the quadratic flow
fluctuations term are assumed negligible and the Reynolds number is
an effective Reynolds number (i.e., it includes the molecular viscosity
and the eddy viscosity) and it is a function of space. Finally, the index
of truncation K of our generalized formulation (4) can be employed as
a control parameter to select the target linear instability of interest for
eventual further studies.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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