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Abstract Air jets for active flow control have proved effective in postponing the onset of stall phe-
nomenon in axial compressors. In this paper, we use a combination of machine learning and genetic
algorithm to explore the optimal parameters of air jets to control rotating stall in the axial compres-
sor CME2. Three control parameters are investigated: the absolute injection angle, the number of injector
pairs and the injection velocity. Given an experimental dataset, the influence of the air jet parameters
on the surge margin improvement and power balance is modeled using two shallow neural networks.
Parameters of the air jets are then optimized using a genetic algorithm for three rotational velocities, i.e.,
Ω = 3200 RPM, 4500RPM and 6000 RPM. First, surge margin improvement and power balance are being
maximized independently. Then, a bi-objective optimization problem is posed to explore the trade-off
between the two competing objectives. Based on the Pareto front, results suggest that a globally optimal
set of parameters is obtained for a velocity ratio (defined as the ratio of the injection velocity to the rotor
tip speed) ranging from 1.1 to 1.6 and an injection angle attack varying from 1◦to11◦. These outcomes
point out a potential generalization of the control strategy applicable to other compressors.

1 Introduction

Axial compressors are standard components in numer-
ous industrial applications such as power generation
or aircraft engines. One long-term goal is to improve
their performances while maintaining safe and reliable
operating conditions. Rotating stall [1] is a key prob-
lem hindering the stability and the progress of mod-
ern axial compressors. When it occurs, flow instabili-
ties are generated, leading to degraded performances.
In the worst-case scenario, rotating stall can eventually
cause machine failure. Aiming at delaying the onset
of this phenomenon, a lot of efforts have thus been
devoted to designing and implementing effective flow
control strategies, including both passive [2] and active
[3] methods. In particular, active flow control meth-
ods have the added advantage of being switched on
only when control is needed, thus leading to an over-
all reduced energy consumption. Previous studies [3,4]
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have demonstrated the effectiveness of air jets in post-
poning the onset of rotating stall in axial compressors.
Such a control strategy relies on the injection of high-
momentum fluid near the tip leading edge of the rotor
blades by a discrete set of air jets positioned circumfer-
entially upstream of the compressor. Despite the effec-
tiveness of air jets for active flow control, achieving effi-
cient and reliable control strategies remains challenging.
One reason for that is the lack of efficient and accurate
predictive models for control design.

A standard approach is thus to use surrogate models.
Built on data, these models can approximate efficiently
the relationship between the input parameters and the
output of a given process. Examples of surrogate models
include the response surface methodology [5], Kriging
(also known as Gaussian process regression) [6], or arti-
ficial neural networks [7]. Such surrogate models can be
used to tackle local optimization using gradient-based
techniques, or global optimization with the Nelder–
Mead’s simplex method [8] or genetic algorithms [9]. In
turbomachinery applications, surrogate model applica-
tions include aerodynamic design optimization [7], flow
modeling [10], performance predictions [11] and flow
control [12], among others [13].

For flow control, data-driven techniques have recently
gained a lot of attention [14,15]. Two prominent
avenues are evolutionary algorithms [16–19] and deep
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reinforcement learning (DRL) [20–25]. Deep reinforce-
ment learning relies on deep neural networks to approx-
imate the optimal state–action combination from repe-
ated queries of the experimental or numerical environ-
ment. Genetic algorithms on the other hand borrow
ideas from natural selection and genetic principles to
evolve a population of possible control strategies. Such
evolutionary algorithms have been used experimentally
by [26] to optimize the control parameters of DBD actu-
ators to control the flow separation downstream of a
backward-facing step. Likewise, genetic algorithms have
been coupled to artificial neural networks to optimize
the parameters of a suction/blowing strategy to con-
trol the separation over SD7003 airfoil by [27]. Intend-
ing for machine learning methods that automatically
learn from data and improve over experience without
being explicitly programmed, from the authors’ point of
view, GAs do not belong to them because GAs do not
automatically learn, but they rather sort out, combine
and compare sub-optimal solutions. On the other hand,
DRL falls well within the category of ML methods. For
an extensive overview, interested readers are referred to
[15,28] or the book on Machine Learning Control [29].

To the best of our knowledge, limited references exist
in the literature highlighting the potential of such con-
trol design strategies to mitigate rotating stall in axial
compressors. This is the problem we tackle in this work.
Given an experimental dataset [4], we train shallow neu-
ral networks to capture the relationship between our
control parameters and two performance indices, i.e.,
the power balance and the surge margin improvement.
The control parameters include the rotor rotational
velocity and three air jet-related parameters: the abso-
lute injection angle, the number of injectors pairs and
the absolute injection velocity. First, the control param-
eters are optimized to maximize each of the perfor-
mance indices independently. Then, a bi-objective opti-
mization problem is formulated to explore the trade-off
between these competing objectives. In both cases, we
use shallow neural networks to approximate the cost
function and genetic algorithms to solve the optimiza-
tion problem. The paper is organized as follows: Sect. 2
presents a brief overview of the CME2 axial compressor,
along with some definitions and an overview of exper-
imental dataset used in the rest of this work. Then,
details about our surrogate modeling and optimization
procedures are given in Sect. 3. Finally, the key results
are discussed in Sect. 4, while Sect. 5 provides the con-
clusion and some perspectives to this work.

2 Experimental flow configuration and
dataset

2.1 Experimental configuration and definitions

The experimental setup considered in this work is
the CME2 workbench, a single-stage low-pressure axial
compressor with 30 and 40 blades for the rotor and sta-

Fig. 1 Schematic view for air jet control system

Table 1 Range of experimental parameters considered

Rotor’s rotational
velocity Ω

3200 RPM, 4500RPM and
6000RPM

Number of injectors
pairs Ninj

10 and 20

Absolute injection
angle αinj

−45◦, −30◦, −15◦, 0◦, 15◦, 30◦

Absolute injection
velocity Vinj

46 m/s to 202 m/s

tor, respectively. The main characteristics of this exper-
imental platform can be found in [30]. The actuators
consist in 20 equally spaced air jets pairs, each with
two injectors. These injectors are mounted circumferen-
tially at 10 mm upstream of the leading edge of the rotor
blades. Each injector pair can be supplied by an exter-
nal power source [3], or from the high-pressure region of
the compressor [31]. The control process can use either
10 or 20 pairs of injectors. By using 10 such pairs, the
injectors can generate approximately the same injec-
tion velocity as when all 20 pairs are used, albeit at
half the total injection flow rate. These actuators lever-
age the Coandǎ effect by injecting momentum near the
tip clearance of the rotor blades as illustrated in Fig. 1.
Previous studies [3,4] have demonstrated the effective-
ness of air jets to postpone the onset of rotating stall in
axial compressors. Following [4], we focus our attention
on three control parameters: the number of injectors
pairs Ninj, the injection angle αinj and the injection
velocity Vinj. Three operating conditions, characterized
by the rotational velocity Ω, are moreover considered:
Ω = 3200RPM, 4500RPM and 6000RPM. The range of
these different parameters is summarized in Table 1.

In turbomachinery applications, the effectiveness of a
control strategy is often evaluated based on two perfor-
mance indices: the surge margin improvement and the
power balance. The surge margin improvement, here-
after denoted as SMItot, is defined as

SMItot =
SMc − SMb

SMb
× 100, (1)



where SMb and SMc are the surge margins of the base-
line and controlled configurations, respectively. These
are given by

SMb =
(

ptt,b

Qs,b
× Qnom

pnom
− 1

)
× 100,

and

SMc =
(

ptt,c

Qs,c
× Qnom

pnom
− 1

)
× 100.

where Qs,b and ptt,b are the flow rate and total-to-total
pressure in the baseline configuration, while Qs,c and
ptt,c are the flow rate and total-to-total pressure in the
controlled setup. Finally, Qnom and Pnom are the nom-
inal flow rate and power of the compressor. For a rota-
tional velocity Ω = 3200RPM , the nominal power and
flow rate are Pnom = 2300W and Qnom = 5.3 kg/s,
respectively. This performance index characterizes the
effectiveness of the control strategy in terms of the mar-
gins in the flow rate and the total pressure ratio between
the nominal and the critical operating points.

The second performance index considered is the
power balance, hereafter denoted as PB. It is defined
as

PB =
(

(Qs,b + Qinj) × ptt,c

ρc
− Qs,b × ptt,b

ρb

)
× 100

Pnom
,

(2)

where ρ denotes the density. The subscript s, c, b, inj
and nom refers to the values of these different vari-
ables for the last stable point, the controlled cased, the
baseline case, injection and nominal conditions, respec-
tively. Compared to the surge margin improvement, the
power balance performance index evaluates the cost of
the control process by comparing the output power gain
by the compressor and the input power paid to activate
the actuators.

Both of these performance indices are schematically
presented in Fig. 2. In Fig. 2a, two surge lines are plot-
ted in red for the baseline case and the controlled case.
The baseline configuration can be characterized by the
stall pressure ps,b and the stall mass flow rate Qs,b at
the last stable point LSPb. Likewise, the controlled con-
figuration is characterized by ps,c and Qs,c at the last
stable point LSPc. It should be emphasized finally that,
compared to [4], the pressure rise ptt across the com-
pressor inlet for the controlled case is computed based
on the mass average value in the jet and the mean flow.

2.2 Experimental dataset

In this study, we use data from 175 experiments to train
and test the two neural network models. The exper-
iments are conducted at LMFL laboratory by [4] in
the framework of ACONIT project [32]. The specifica-
tions of the experimental parameters are summarized
in Table 1. The dataset was split into 96% for training

and 4% for testing, but five experiments are excluded
due to missing values of the power balance PB. Addi-
tionally, five extra experiments were performed, outside
the range of the training and testing dataset, to test
the extrapolation capabilities of the two neural network
models.

3 Surrogate model and optimization
problem

We present in Sect. 3.1 a brief overview of the archi-
tecture and training procedure of the shallow neural
networks used as surrogate models to approximate the
input–output relationship between the control param-
eters and the two performance indices defined in the
previous section. Then, Sect. 3.2 describes the formu-
lation of the single- and multi-objective optimization
problems and their resolution using genetic algorithms.

3.1 Shallow neural networks

Given the experimental dataset, we approximate the
relationship between the control parameters (i.e., Ninj,
αinj, Vinj and Ω) and the two performance indices with a
surrogate model built using a shallow feedforward neu-
ral network. Each of these two relationships is approx-
imated using a different network, albeit with the same
architecture. A schematic representation is shown in
Fig. 3. The architecture is as follows:

• Each network takes as input a vector x ∈ R
4 defined

as

x = [αinj Vinj Ninj Ω] .

• The first hidden layer has 64 artificial neurons per-
forming the following operations

z
(1)
i = σ

⎛
⎝b

(1)
i +

4∑
j=1

W
(1)
ij xj

⎞
⎠ for i = 1, · · · , 64,

where z
(1)
i denotes the ith output of this layer, and

b(1) ∈ R
64 (the bias vector) and W(1) ∈ R

64×4 are
learnable parameters. The activation function σ :
R → R is the ReLU defined as σ(x) = max(0, x).

• The second hidden layer, with 32 neurons, acts in a
similar way on z(1), i.e.,

z
(2)
i = σ

⎛
⎝b

(2)
i +

64∑
j=1

W
(2)
ij z

(1)
j

⎞
⎠ .) for i = 1, · · · , 32.

Once again, the activation function σ is set to the
ReLU function.

• Finally, the output layer takes as input z(2) and
maps it to the desired performance index. This map-



Fig. 2 Schematic definitions of a the surge margin
improvement SMItot and b the Power Balance PB. Both
panels depict an uncontrolled (i.e., baseline) and controlled
surge line. In panel a, LSPb denotes the last stable point in

the uncontrolled case, while LSPc is the corresponding last
stable point when control is applied. Likewise, subscripts
Q’s and p’s denote the corresponding flow rates and pres-
sure ratios

Fig. 3 Schematic description of the neural network model

ping simply reads 4

ŷ = b(o) +
32∑

j=1

W
(o)
1j z

(2)
j ,

where b(o) ∈ R (the bias vector) and W(o) ∈ R
1×32

are the associated learnable parameters, and ŷ ∈ R

is the approximation of either performance index.

Denoting by y ∈ R the ground truth value of either
performance index, the learnable parameters of each
layer are obtained by minimizing the following mean
square error loss function

L
(
W(1),b(1),W(2),b(2),W(o), b(o)

)

=
1
M

M∑
i=1

(yi − ŷi)
2
, (3)

where M = 168 is the total number of data points in
the training set. Both of the networks are implemented
using Keras with the TensorFlow back end, while the

Table 2 Specification of shallow neural network’s architec-
ture and optimizer used for the learning process

Number of neurons
per layer

4 → 64 → 32 → 1

Activation function ReLU(x) = max(0, x)
Optimizer ADAM
Learning rate 0.005
Epochs 550

ADAM optimizer [33] is used for the minimization of
the cost function. The different parameters of the net-
works and optimizer are summarized in Table 2.

3.2 Optimization problem and genetic algorithm

The aim of this study is to find the set of control
parameters x ∈ R

3 maximizing either of the perfor-
mance indices defined in Sect. 2.1, or a combination
thereof. Letting J1 : R3 → R be the surrogate model
approximating the surge margin improvement SMItot

and J2 : R3 → R be the corresponding model for the
power balance PB, we can thus formulate the following



multi-objective unconstrained optimization problem

maximize (1 − λ)J1(x) + λJ2(x), (4)

where λ ∈ [0, 1] is a trade-off parameter. Note that
setting λ = 0 or λ = 1 reduces Eq. 4 to a single-
objective optimization problem. The maximizer x(λ) of
Eq. 4 thus forms a parameterized family of optimal solu-
tions forming a Pareto front. It cannot be guaranteed
in general that the entries of the solution x will be in
a given range when solving an unconstrained optimiza-
tion problem. As such, we also consider the following
constrained variation

maximize (1 − λ)J1(x) + λJ2(x)
subject to −45◦ ≤ αinj ≤ 30◦

46m/s ≤ Vinj ≤ 202m/s
Ninj = 10 (or 20).

(5)

The benefit of using the constrained formulation of
the optimization problem is that practitioners can force
the solution (if it exists) to be in a given range of
safe operating conditions. On the other hand, using an
unconstrained formulation allows for the possibility of
finding a global optimal solution outside of the range of
the experimental data. It should be noted that our con-
trol system only supports Ninj values of 10 and 20 due
to design constraints. Therefore, Ninj is set to either 10
or 20 in both constrained and unconstrained optimiza-
tion processes. Additionally, compressors are typically
designed to operate at a constant rotational velocity
Ω; thus, the optimal control parameters are explored
at Ω = 3200, 4500 and 6000 RPM. The range of all
experimental data is summarized in table creftab: set
of configurations.

A genetic algorithm (GA) is employed to solve both
problems Eqs. 4 and 5. The main search operators in
GAs are crossover and mutation. These two operators
can function as an exploration or exploitation opera-
tors [34]. In our genetic algorithm (1), random (uni-
form) mutation operation with a single-point crossover
operator [34] is applied.

Algorithm 1 : Genetic algorithm
1: Population initialization;
2: Specify λ in (1 − λ)J1(x) + λJ2(x);
3: Set constant value of Ω;
4: Set optimization boundaries for Ninj, αinj and Vinj;
5: while Stopping criteria is not met do
6: Objective function calculations;
7: Parents selection;
8: Crossover;
9: Mutation;

10: New-generation selection;
11: end while

3.3 Model selection and hyperparameter
optimization

In this section, we discuss the methodology of tun-
ing the neural network hyperparameters and the model
selection criteria. Given a dataset in the domain D ,
we split them into training and testing sets Dtrain

and Dtest, respectively. In the process of splitting
the original dataset D , we use K-fold cross-validation
method [35], which divides D into K equally sized sam-
ples. The K folds take the following form: Dtrain =
{D

(1)
train, . . . , D

(K)
train} for the training and Dtest =

{D
(1)
test, . . . , D

(K)
test} for the testing datasets such that

D
(i)
train = D\D

(i)
test for i = {1, . . . , K} where K in the

number of folds. Let A = {A(1), . . . , A(N)} denote a
set of learning algorithms, and let the associated hyper-
parameters x of each algorithm A(j) having a domain
Λ(j). Finally, let L (Ax

(j), D(i)
train, D(i)

test) be the
loss function of a certain learning algorithm A(j) trained
on D(i)

train and tested on D(i)
test utilizing the hyper-

parameter x. This allows the model selection and the
hyperparameter optimization equation to be written as

minimize
1
K

K∑
i=1

L (Ax
(j), D(i)

train, D(i)
test). (6)

The goal of Eq. 6 is to find the optimal neural net-
work algorithm and hyperparameters, Ax∗ (†), that min-
imize the loss function, where x∗ denotes the optimal
hyperparameter and † refers to the optimal algorithm.
Various methods are discussed in the literature [36–38]
for tackling the optimization problem Eq. (6). In our
study, we use a genetic algorithm for random search
of the neural networks hyperparameters and 25 folds,
i.e., K = 25, for our model selection. Furthermore,
to simplify the hyperparameter optimization process,
we use a neural network architecture with two hidden
layers (encompassing 64 and 32 neurons, respectively).
ReLU is employed as activation function and Adam as
optimizer. Then we employ the GA for optimizing two
parameters, namely the learning rate and the weight
initialization.

4 Results

This section summarizes the key results of our study.
First, Sect. 4.1 describes the in-sample (training) and
out-of-sample (testing and extrapolation) performances
of the surrogate models. Then, the results of the opti-
mization task pertaining to finding the optimal control
parameters to delay rotating stall are being presented
in Sect. 4.2.



Fig. 4 Comparison
between the experimental
results (ground truth) of
the training set and the
shallow network’s
predictions for a the power
balance PB and b the
surge margin improvement
SMItot
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Fig. 5 Comparison
between the experimental
results (ground truth) of
the test set and the shallow
network’s predictions for a
the power balance PB and
b the surge margin
improvement SMItot

4.1 Surrogate models

Given the training set, neural network surrogate models
approximating the power balance PB and surge mar-
gin improvement SMItot have been trained until the
loss function has stabilized. More precisely, the train-
ing procedures are performed for 550 epochs until a
mean square error less than 10−3 is achieved. Figure 4a
compares the prediction of the surrogate models with
the ground truth data for the power balance PB, while
Fig. 4b provides the same comparison for the surge mar-
gin improvement SMItot. The quality of this approxi-
mation can be quantified using the coefficient of deter-
mination R2 defined as

R2 = 1 −
∑M

i=1 (yi − ŷi)
2

∑M
i=1 (yi − ȳ)2

,

where ȳ denotes the sample mean of the performance
index considered. In both cases, the surrogate models
achieve a coefficient of determination R2 ≥ 0.98. The
two surrogate models moreover exhibit similar perfor-
mances when the test set is being considered, as shown
in Fig. 5. Furthermore, Fig. 6 compares the predictions
of the surrogate models with the actual data for the
extrapolation dataset. The surrogate models achieve
R2 = 0.89 and 0.82 for PB and SMItot, respectively.

To better understand the capabilities and limitations
of our model in extrapolating, we study the impact of
splitting the dataset D between training Dtrain and

testing Dtest; hence, we aim to investigate different
combinations of D

(i)
train and D

(i)
test. We found that the

split of the input database between training and test-
ing affects the robustness of the extrapolation predic-
tion. To identify the cause of this sensitivity, we first
obtained the optimal neural network architecture by
employing a genetic algorithm for hyperparameter opti-
mization as discussed in Sect. 3.3. Then, we trained
the optimal neural network architecture on 2000 ran-
dom data splits of the original database (i.e., differ-
ent training/testing sets). Out of the analysis of our
2000 random data splits, we identified a narrow set of
data that consistently resulted in poor predictions for
both extrapolation and testing conditions. In order to
confirm that these ill-conditioned testing points uncon-
ditionally undermines both testing and extrapolation
predictions, we trained another 2000 different neural
network architectures by forcing such data to belong to
the testing dataset. As a result, none of these 2000 trials
yielded a model that gives good predictions in terms of
testing and extrapolation sets. In this process, we also
utilized the GA for hyperparameter optimization, dis-
cussed in Sect. 3.3, but without cross-validation.

To further understand whether the ill-conditioned
testing data could be correlated with the sensitivity of
the underlying physics, we compute the gradients of
the neural network outputs, i.e., PB and SMItot, with
respect to the relevant inputs for the flow control sys-
tem, i.e., the velocity ratio VR = Vinj/U , where U =
πDΩ
60 , and the angle of attack βatt, defined as the rela-



Fig. 6 Comparison
between the experimental
results (ground truth) of
the extrapolation set and
the shallow network’s
predictions for a the power
balance PB and b the
surge margin improvement
SMItot

tive injection angle βinj minus the compressor stagger
angle γst, which is fixed at 45◦. We therefore computed
∂VRSMItot, ∂βattSMItot, ∂VRPB and ∂βattPB keeping
constant Ω and Ninj. This protocol is therefore sup-
posed to allow comparisons for different air jet control
parameters (Vinj and αinj) with the compressor param-
eters (U and γst), making it easier to compare the com-
pressor’s performance under different operating condi-
tions (i.e., Ω = 3200RPM, 4500RPMand6000RPM).

Figure 7 shows ∂VRPB, and ∂βattPB, and similarly
in Fig. 8 for the gradient components of SMItot at Ω =
3200 RPM and Ninj = 20. Figures 7 and 8 show that the
ill-conditioned testing data (marked by red squares) are
partially located in regions where there is a high sensi-
tivity of the output gradients (sharp change of gradient
components on the right end of the figures). We further
stress, however, that most of the red squares are located
well within the bulk region of the domain, where the
outputs are not sensitive to the injection parameters
VR and βatt. Hence, we speculate that the physical fea-
tures of the system are not responsible of the observed
ill-conditioning of the debated testing inputs. A possi-
ble reason for the ill-conditioning of such testing data
could be the limited dataset. In addition, the results
suggest that data points far away from the interpo-
lation/extrapolation boundary may severely affect the
training of the models up to ill-condition the coherence
of the model training. In fact, to have a reliable model,
we need to include such ill-conditioned testing points in
the training dataset.

We conducted two additional trials to test the signifi-
cance of the ill-conditioned testing points. The first trial
involved training 2000 neural network models using
the same process discussed in Sect. 3.3, while intention-
ally including the ill-conditioned points in the training
dataset. The goal was to decrease the K-fold number
(10 folds instead of 25 folds), i.e., increase the test-
ing dataset from 4% to 10%. Although the models
converged rapidly for the same K folds (K= 25), we
observed no significant benefits for lower K-fold tests
(K= 10). In the second trial, we trained 2000 neu-
ral network models using the same process discussed
in Sect. 3.3, after removing the ill-conditioned points
from the dataset completely. The results of these tests
showed that excluding the ill-conditioned points under-

mined the predictions for both testing and extrapola-
tions.

In conclusion, including the ill-conditioned points in
the testing dataset or excluding them completely from
the dataset unconditionally undermines the predictions
of the testing and the extrapolation data. On the other
hand, including them in the training dataset benefits
the model training convergence, but it cannot be used
to increase the testing percentage of the datasets. These
results might indicate the deficiency of the limited num-
ber of dataset, but they also give an insight about the
possible amount of data required to build accurate pre-
dictive models for similar problems.

4.2 Optimization results

Given the surrogate models presented in the previous
section, we now turn our attention to the solutions
of both optimization problems from Sect. 3.2, begin-
ning with their single-objective variations in Sect. 4.2.1,
while the results of the bi-objective formulation are pre-
sented in Sect. 4.2.2.

4.2.1 Single-objective optimization

Maximizing the power balance PB compared to the
baseline configuration, optimizing the power balance
performance index amounts to maximize the output
power generated by the compressor for a given set
of operating conditions (e.g., fix mass flow rate Q).
Tables 3 and 4 summarize the results of the cor-
responding constrained and unconstrained maximiza-
tion problems, respectively. Values highlighted in red
correspond to optimized parameters which are at or
beyond the extrema specified in the constrained case.
These extrema correspond to those of the training
set. It can be observed that the injection velocity Vinj

increases almost linearly with the rotational velocity
Ω, while the injection angle αinj appears to decrease
with increasing Ω. Note moreover that, for Ω =
3200RPM and 4500RPM, the injection angle is at or
below the lower bound specified in the constrained
problem. As discussed in Sect. 4.2.2, the Pareto-optimal
points occur within a specific range of the velocity ratio
VR and the relative angle of attack βatt. The formu-



Fig. 7 Derivatives of PB with respect to βatt a and VR b at Ω = 3200 RPM and Ninj = 20. The ill-points are highlighted
in red squares

Fig. 8 Derivatives of SMItot with respect to βatt a and VR b at Ω = 3200 RPM and Ninj = 20. The ill-points are
highlighted in red squares

Table 3 Results of the constrained optimization procedure
when aiming at maximizing the power balance performance
index PB for the different operating conditions

Rotational
velocity
(RPM)

Injector
pairs

Injection
angle (◦)

Injection
velocity
(m/s)

3200 20 –45 92
4500 20 –45 129
6000 20 –19 159

Note that for 3200RPM and 4500 RPM, the optimizer sets
the injection angle at its maximum absolute value (see val-
ues in bold)

lation of VR and βatt is discussed in Sect. 4.1. As Ω
increases, U increases, and thus, Vinj tends to increase
in order to maintain the optimal VR range. Similarly, as
both Vinj and Ω increase, the injection angle αinj tends
to decrease to maintain the optimal βatt range.
Maximizing the surge margin improvement SMItot

while we optimized for the power balance and let the

Table 4 Results of the unconstrained optimization proce-
dure when aiming at maximizing the power balance perfor-
mance index PB for the different operating conditions

Rotational
velocity
(RPM)

Injector
pairs

Injection
angle (◦)

Injection
velocity
(m/s)

3200 20 –65 103
4500 20 –59 137
6000 20 -18 161

Note that for 3200RPM and 4500 RPM, the optimizer sets
the injection angle (see values in bold)

surge margin improvement unchecked in the previous
section, we now do the opposite: Optimize for the surge
margin improvement and leave the power balanced
unhampered. Optimizing for this performance index
primarily aims at extending the range of conditions at
which the compressor can safely operate. Tables 5 and 6
summarize the results of the corresponding constrained
and unconstrained maximization problem, respectively.



Table 5 Results of the constrained optimization procedure
when aiming at maximizing the surge marring improvement
SMItot for the different operating conditions

Rotational
velocity
(RPM)

Injector
pairs

Injection
angle (◦)

Injection
velocity
(m/s)

3200 20 –33 144
4500 20 –33 165
6000 20 –45 202

Note that for 6000 RPM, the optimizer sets the both the
injection angle and the injection velocity to their maximum
allowed value (see values in bold)

Table 6 Results of the unconstrained optimization proce-
dure when aiming at maximizing the surge marring improve-
ment SMItot for the different operating conditions

Rotational
velocity
(RPM)

Injector
pairs

Injection
angle (◦)

Injection
velocity
(m/s)

3200 20 –32 144
4500 20 –31 166
6000 20 –45 206

Note that for 6000 RPM, the optimizer sets the injection
velocity beyond its maximum allowed value (see values in
red)

As before, values highlighted in red correspond to opti-
mized parameters at or beyond the bounds specified in
the constrained formulation. While the evolution of the
injection velocity with respect to the rotational veloc-
ity of the rotor appears to follow a similar trend as
what is observed when maximizing the power balance
(i.e., increasing Vinj with increasing Ω), the optimized
values are comparatively larger (as much as 40% larger
for Ω = 3200RPM). More importantly, the evolution of
the injection angle αinj is different. While αinj decreases
with Ω when maximizing the power balance, it now
appears to stay constant (if not increase) as Ω increases
when the surge margin performance index is considered.
As discussed in Sect. 4.2.2, the Pareto-optimal points
are achieved within a specific range of VR and βatt. This
can help explaining the evolution trends of Vinj. Addi-
tionally, it can be observed that at a rotational velocity
of 6000 RPM, the optimal value of Vinj for surge mar-
gin improvement is higher than that for power balance.
This difference in Vinj could explain the reverse trend
in the evolution of αinj. In other words, as Vinj is higher
in the case of SMItot, for the same rotational velocity,
αinj tends to increase in order to maintain the same
relative injection angle βinj and thus achieve the same
optimal value of βatt.

4.2.2 Bi-objective optimization

As discussed in the previous section, maximizing the
power balance PB and the surge margin improvement

SMItot leads to conflicting evolution of the optimized
parameters, most notably for the injection angle. Aim-
ing at achieving the best of these two objectives, we
now turn our attention to the bi-objective optimization
Eq. 5. In particular, we look at how the solution of this
optimization problem changes as the trade-off param-
eter λ evolves. The bi-objective optimization processes
are performed based on constrained and unconstrained
conditions.

This process begins by analyzing the case where con-
trol parameters are constrained. Figure 9 shows the
non-dominated optimal points (i.e Pareto front) at dif-
ferent rotational velocities (3200 RPM, 4500 RPM and
6000 RPM). Each Pareto front is labeled by three opti-
mal points: Ai, Ci and Bi. Points Ai correspond to the
maximization of surge margin improvement, points Ci

correspond to the maximization of power balance, and
points Bi represent the Pareto-optimal solutions. The
specifications of points Ai, Ci and Bi are summarized
in Table 7. It can be observed that as we pass from
points Ai to Ci at each rotational velocity, the value of
VR increases linearly. The value of βatt follows a similar
trend as VR, except at Ω = 6000RPM. The physical
interpretation of these observations is the subject of
ongoing study.

Comparisons between the non-dominated optimal
points for the constrained case are also shown in Fig. 10.
A notable feature is the similarity in the range of
VR and βatt where all Pareto-optimal points (Bi) are
achieved. In particular, as shown in Fig. 10 and Table
7, the Pareto-optimal points (Bi) can be obtained at
VR between 1.2 and 1.4 and βatt between 7◦ and 11◦.
These similarities in the range of VR and βatt at differ-
ent operating conditions may be due to the self-similar
flow topology of the air jets, as discussed in [39]. This
issue is also subjected to the ongoing research study.

For the case where control parameters are uncon-
strained, Fig. 11 shows similar trends compared to the
constrained optimization Fig. 10, except for some inter-
sections between rotational velocities of 3200RPM and
4500RPM. Additionally, small changes can be observed
in the range of VR and βatt where the Pareto-optimal
points (Bi) are achieved. This range, in the uncon-
strained case, is between 1.1 and 1.6 and between 1◦ and
11◦ for VR and βatt, respectively. The similarities in the
range of VR and βatt at all operating conditions suggest
the possibility of developing non-dimensional forms of
the control parameters. These dimensionless quantities
aim to generalize the active flow control strategy and
make it applicable to other compressors.

5 Conclusion

A machine learning optimization algorithm is used to
identify the optimal air jet control parameters for active
flow control in an axial compressor CME2. Two neu-
ral networks are first created to model the relation-
ship between our control parameters and two perfor-
mance metrics, namely power balance and surge mar-



Fig. 9 Results of the bi-objective optimization problem
in the (PB-SMItot) plane for different rotational veloci-
ties Ω. Points in red highlight the Pareto front of this bi-
objective optimization problem, i.e., the set of optimal val-
ues obtained for varying trade-off λ. Points in black corre-
spond to the values of the two objectives obtained for ran-

dom set of input parameters. In each panel, points labeled
Ai and Ci correspond to the maximization of the surge
margin improvement or power balance, respectively. Points
labeled Bi highlight the Pareto-optimal solutions. The set of
optimized parameters for each of these points is summarized
in Table 7

Table 7 Specifications of non-dominated optimal points resulting from the bi-objective optimization problem

Point Ω (RPM) Ninj αinj (◦) Vinj (m/s) VR βatt (◦) SMItot PB

A1 3200 20 –33 144 1.81 0.2 59 0.2
B1 3200 20 –45 105 1.31 10.4 52 1.9
C1 3200 20 –45 92 1.14 11.9 45 2.0
A2 4500 20 –31 165 1.45 0.4 50 2.3
B2 4500 20 –45 151 1.33 10.1 46 2.7
C2 4500 20 –45 129 1.13 12 42 2.9
A3 6000 20 –45 202 1.34 10.1 33 3.9
B3 6000 20 –41 185 1.22 8.7 32 3.9
C3 6000 20 –19 159 1.04 –0.5 27 4.1

Points labeled Ai and Ci correspond to the maximization of the surge margin improvement or power balance, respectively.
Points labeled Bi correspond to the best trade-off between the two conflicting objectives. The optimal values highlighted
in red are the limits of the training dataset range

Fig. 10 Comparison between the non-dominated optimal
points of the Pareto fronts for constrained optimization for
a the power balance PB and b the surge margin improve-
ment SMItot. The points show non-dominated optimal
points at Ω = 3200 RPM, 4500 RPM and 6000 RPM. Each

point is colored by βatt. Points labeled Ai and Ci correspond
to the maximization of the surge margin improvement or
power balance, respectively. Points labeled Bi correspond
to the best trade-off between the two conflicting objectives



Fig. 11 Comparison between the non-dominated optimal
points of the Pareto fronts for unconstrained optimiza-
tion for a the power balance PB and b the surge margin
improvement SMItot. The points show non-dominated opti-
mal points at Ω = 3200 RPM, 4500 RPM and 6000 RPM.

Each point is colored by βatt. Points labeled Ai and Ci corre-
spond to the maximization of the surge margin improvement
or power balance, respectively. Points labeled Bi correspond
to the best trade-off between the two conflicting objectives

gin improvement. A genetic algorithm is then used to
search for the optimal control parameters. The study
focuses on three air jet control parameters: absolute
injection angle, number of injector pairs and absolute
injection velocity, at three different rotational speeds
(3200 RPM, 4500 RPM and 6000 RPM). The neural
networks are trained and tested using a dataset from
175 experiments. Additionally, 5 experiments are con-
ducted to evaluate the networks’ extrapolation capabil-
ities.

The two neural networks are trained for 550 epochs
until a mean square error less than 10−3 is reached.
All neural networks achieve a coefficient of determina-
tion of R2 ≥ 0.98 for the training and testing dataset.
When extrapolating to new data, the networks had
R2 = 0.89 and 0.82 for the power balance and surge
margin improvement performance metrics, respectively.
A sensitivity analysis has been carried out by inves-
tigating the gradients of the neural network outputs
with respect to the flow control parameters. We demon-
strated that having limited dataset can allow to build a
reliable neural network model. Special attention must
be paid to the database splitting, as limited databases
could require sensitive data to be part of the training
rather than the testing dataset. Hence, if a study aims
to produce a neural network model for applications with
a parameter space comparable to ours and their model
relies on a limited database, a sensitivity analysis is
here advised. It is worth noting that, to the best of
our knowledge, the dataset we utilized is one of the
most comprehensive databases available in the litera-
ture for active flow control in axial compressors, given
the large dimensionality of the control parameter space
(i.e., injection velocity, injection angle, number of injec-
tors and rotational velocity). This means that limited
databases are a challenge to face in active flow control
applied to axial compressors, which further proves the
widespread importance of sensitivity analyses.

After this, single- and bi-objective optimization using
these neural network models are performed under both

constrained and unconstrained control parameter con-
ditions. The results of the bi-objective optimization
showed that the Pareto-optimal points were achieved
at specific ranges of VR and βatt. When control param-
eters were constrained, the optimal range for VR was
between 1.2 and 1.4, and for βatt was between 7 and 11
degrees. When control parameters were unconstrained,
the optimal range for VR was between 1.1 and 1.6, and
for βatt was between 1 and 11 degrees. This similarity
in the range of the optimal control parameters suggests
the possibility of developing control laws that could be
applied to other compressor geometries. Additionally,
this work opens up opportunities for further research
to explore the underlying physics behind the observa-
tions made in this study. For example, further study
could be done to understand the reasons behind the
reversed trend of the relative angle of attack of the non-
dominated optimal points at 6000 RPM.
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9. T. Bäck, H.-P. Schwefel, An overview of evolutionary
algorithms for parameter optimization. Evol. Comput.
1(1), 1–23 (1993)

10. J. Li, X. Du, Martins, J.R.: Machine learning
in aerodynamic shape optimization. arXiv preprint
arXiv:2202.07141 (2022)

11. Z. Liu, I.A. Karimi, Gas turbine performance prediction
via machine learning. Energy 192, 116627 (2020)

12. J. Yu, Z. Wang, F. Chen, J. Yu, C. Wang, Kriging sur-
rogate model applied in the mechanism study of tip
leakage flow control in turbine cascade by multiple dbd
plasma actuators. Aerosp. Sci. Technol. 85, 216–228
(2019)

13. Z. Li, X. Zheng, Review of design optimization methods
for turbomachinery aerodynamics. Prog. Aerosp. Sci.
93, 1–23 (2017)

14. S.L. Brunton, B.R. Noack, Closed-loop turbulence con-
trol: progress and challenges. Appl. Mech. Rev. 67(5),
1 (2015). https://doi.org/10.1115/1.4031175

15. F. Ren, H.-B. Hu, H. Tang, Active flow control using
machine learning: a brief review. J. Hydrodyn. 32(2),
247–253 (2020)
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