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Abstract. Forging processes are defined by variables related to the workpiece,
the tools, the machine, and the process itself, and these variables are called pro-
cess variables. They have a direct impact on the quality of the finished product,
so it is important to accurately define them at the very beginning of the pro-
cess design. Nowadays, the design stage is supported by numerical simulations,
however, these simulations are made under ideal process conditions and do not
consider the dynamics of the forging machine or the variabilities that may occur
in production (e.g., variabilities in the dimensions of the billet). This suggests that
among the different process variables, those defined for piloting the process (such
as the blows energies, for example) are fixed under nominal conditions and are
not calibrated for each part produced.

This study exploits a methodology in four steps to create a surrogate model
and implement it into amachine-behavior model for real-time piloting of a forging
operation with a screw press. This model supports the piloting of the operation,
providing a value for the energy setpoint, according to the current state of process
variables, these being the input of the model. The methodology is detailed for a
multiple-blow cold upsetting of a copper billet.

Keywords: Forging · Real-time prediction · Surrogate model · Numerical
simulation ·Mass-spring-damper model

1 Introduction

Ensuring high precision and consistency in piloting a forging process can be challenging
due to the complex nature of such forming processes. While numerical simulations can
predict key forging outcomes, such as billet’s deformation behavior and forging load,
they often fail to consider the dynamic of the forging press and its interaction with
the workpiece. The lack of consideration for these dynamics in simulations can lead
to discrepancies between the predicted and actual process outcomes, as the dynamic
affects the efficiency of the blows and some other variables, such as forging load or ram
displacement [1–4].
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Various approaches have been explored in the literature for representing the dynamics
of forging machines, ranging from the finite element method approach for the machine
to methods like multi-body systems and mass-spring-damper systems [1, 5–10]. These
models have been coupled to numerical simulations of the forging process to capture
the interactions between the machine and the workpiece [11]. However, coupling these
models with forging simulations can be computationally expensive and time-consuming,
which limits their effectiveness for real-time control and optimization of the forging
process.

Surrogate models have emerged as a promising alternative to simulations in such
cases. A surrogate model is a simplified representation of the original system that can
reproduce its key features with lower computational cost and higher speed [12]. While
simulations provide accurate predictions of systems behaviors, surrogate models offer
the advantage of faster and more cost-effective predictions with acceptable accuracy.
While surrogatemodels have been extensively tested in variousmanufacturing processes
[13–16], their application in forging is limited. Moreover, there is a lack of research
on the coupling of these surrogate models and the machine models presented before.
Therefore, this study develops a methodology to create a surrogate model predicting
the billet behavior (load-displacement curve) in a multiple-blow forging operation and
coupling it with a mass-spring-damper machine model. This coupling allows real-time
prediction of the billet-interface-machine behavior giving a corrected energy setpoint
for piloting the process.

The requirements of the model are responsiveness, fidelity, and predictivity. The
responsiveness is achieved using surrogate modeling techniques. The predictivity is
ensured by using calibrated numerical simulations for the surrogate model training and
the fidelity is enabled by using real operation conditions as the variabilities of the process
are considered.

The proposed methodology has four steps: Realization of a parametric sensitivity
study to determine the process dominant variables. Creation of a database with the help
of optimized numerical simulations. Training and validation of the surrogate model.
And, coupling of the surrogate model to a mass-spring-damper model of the press. This
methodology is detailed for one case: a multiple-blow cold upsetting of a copper billet.

2 Surrogate Modeling Design

2.1 Experimental Setup and Numerical Modeling

The forging operation studied is a cylindrical copper billet’smultiple blowcold upsetting.
The billet is forged with the LASCO SPR400 screw press of the VULCAIN platform at
Arts et Métiers Metz in France (see Fig. 1). This press can provide a maximum forging
energy of 28,9 kJ for a ram speed of 680 mm/s. The press is controlled by a setup energy
adjustable from 1% to 100% of its maximum capacity. Tools with smoothed flat dies
were used for the upsetting operations.

For this operation, a cylindrical pure copper billet defined by its Initial Diameter
(ID) and Initial Height (IH) is forged at room temperature along its revolution axis n
times until it reaches a Final Height (FH-n), passing by intermediate Final Heights (FH1,
FH2…). The resulting upsetting part is usually a preform for other forging processes,



Fig. 1 Experimental setup: screw press overview and focus on the flat dies and the billet.

such as ring rolling for billet with large dimensions. The final height of the upset is a
crucial factor as it influences the load and energy required for subsequent operations,
such as piercing and ring rolling [17]. Controlling the final height of the upsetting part
means knowing the forging energy setup for each blow, considering the workpiece’s
initial, actual, and final status (See Fig. 2).

Fig. 2 Multiple-blow upsetting: workpiece schematic.

The correspondent process is modeled using FORGE NxT® the Finite Elements
software from Transvalor. A rigid die 2D axisymmetric simulation is performed (see
Fig. 3). A reduced Hensel-Spittel law for the copper rheology has been extracted from
[18]. Other numerical parameters (friction law, heat transfer coefficients, etc.) are taken
from the literature [19, 20].

Comparing the simulation results with the ones coming from the experimental test
should allow the validation of the model. If the simulation results do not match the
experimental ones, some optimization techniques should be followed to calibrate the
numerical parameters, as proposed by [21, 22] and deployed by [18].



Fig. 3 Multiple-blow cold upsetting of a cylindrical copper billet: numerical simulation

2.2 Sensitivity Analysis and Database Creation

A parametric sensitivity analysis (SA) is performed based on the calibrated numerical
simulation. The SA allows the identification of the most significant variables impacting
the selected outputs of the system (final height, maximum load) and it also allows the
determination of how thesemost impacting variables contribute to the overall behavior of
the forging operation [23, 24]. With this knowledge, the creation of the surrogate model
is optimized by focusing on the most influential variables. To do that, dimensionless
local sensitivity analysis techniques were chosen for their simplicity. Figure 4 shows
the sensitivity analysis results: The sensitivity percentage value is compared for every
parameter, supporting the surrogate model’s architecture choice.

Fig. 4 a) Sensitivity analysis of initial parameter on final height. b) Sensitivity analysis of initial
parameter onmaximum load. c)Model’s architecture choice deduced from the sensitivity analysis.

Once the inputs and outputs of the model are chosen, a full factorial design of
experiments of five levels is defined, with the variables range determined thanks to
operational data. For our case, 150 simulations were computed.

2.3 Creation of the Surrogate Model

The given architecture of the surrogate model leads to scalar predictions (Energy, Max-
imum load). Artificial neural networks have been chosen given their capabilities in



forming processes [15, 25–27]. The creation of the model involves two main steps:
specifying the architecture of the network and training the network with the database.
First, regarding the architecture of the network, the number of neurons in the hidden
layers was estimated with the equation proposed by [28]:

h = Number of Training Sets

10(m+ n)
(1)

where h is the number of neurons in the hidden layers, m is the number of neurons in
the input layer, and n is the number of neurons in the output layer. In our case, the initial
architecture should have more than forty neurons in its hidden layers.

Regarding the training of the network, the default activation function is the rectified
linear unit function (ReLU) for the hidden layers and the linear function for the out-
put layer [29]. The mean squared error (MSE) is the default loss function for training
regression problems [30].

The simulation’s initial dataset is normalized and divided into training, validation,
and test data sets. A later experimental validation is also performed. The model is
developed in Python programming language using Keras API.

The evaluation of the model requires three input values: Initial Height (IH), Initial
Diameter (ID), and Final Height (FH), and predicts the energy setpoint and themaximum
load for the operation (Fig. 4). The computation time is lower than 200ms. For a set of
input points (IH, ID, FH), if the model is iteratively evaluated with FH = [IH, FH], a
set of points representing the current height-maximum load relationship, i.e., the load-
displacement representation can be obtained/deduced (see Fig. 5). An energy-height
curve could also be extracted for the same evaluation.

Fig. 5 Load-height curve obtained from an iterative evaluation of the surrogate model FH = [IF,
FH].

3 Billet-Interface-Machine (BIM) Model and Surrogate Model
Integration

The surrogate model allows the prediction of the energy setpoint, which corresponds to
the plastic energy in our numerical model with rigid dies (see Fig. 3).



However, this model lacks predictivity in a multiple-blow operation since it does
not consider the blows’ efficiency, which decreases after each forging step [19]. n the
forging sequence, the energy transmitted by the press will be higher than the plastic
energy transferred to the billet.

To determine the blow efficiency, one should model the billet, the machine-specific
dynamic behavior, and their interactions, as done by [10], where a mass-spring-damper
model (denoted BIM model) is used for the LASCO SPR400 screw press and could
also be applied to other forming machines [1]. Using this BIM model, the total energy
could be deployed in five energies: the kinetic of the masses, the elastic energy stored by
the springs, the damping energy dissipated by the dampers, the friction energy between
tools and billet, and the plastic energy absorbed by the billet. (Fig. 6)

Fig. 6 Billet-Interface-Machine model for the screw press. Edited from [10]

During a blow, the kinetic energy, being the available energy at the beginning of the
process, decreases as the ram transmits its equivalent energy to the rest of the system.
It means that kinetic energy is transformed into the other four types of energy. For
the calculation, the BIM model needs access to the billet’s forging load for a given
displacement. A numerical [10] and an analytical model [1] have been proposed to
obtain this load-displacement curve.

Coupling the BIM and the surrogate models should allow a high-fidelity real-time
prediction of the final height, the maximum load, and the blow efficiency for a multiple-
blow operation.

The surrogate load-displacement curve obtained from the surrogate model is the
input of the BIM model, which will give a real-time prediction of the blow’s final
heights (FH1, FH2,…, FH’), the blow’s efficiencies, and a corrected load-displacement
curve (see Fig. 7).

The final height FH used in the surrogate model is a target. The FH’ is the predicted
final height after the energy dissipation. Thus, FH will be lower than FH’.



Fig. 7 Integration of the surrogate model in the BIM model (PL = Plastic, EL = Elastic, DA =
Damping, FR = Friction).

4 Results

An experimental campaign is carried out to validate the multiple blow predictivity of
the model. The model is trained using billets with ID = [15,20,25,30,35] mm, whereas
the billets out of the training set with ID = 18 mm, and ID = 32 mm were forged.
Each billet has been forged four times. The ID = 32 mm was forged at 20% of the
maximal press energy (5.780kJ). The ID = 18 mm was forged at 5% of the maximal
press energy (1.445kJ). The load-displacement curves fit with the experimental data, and
the prediction of the billet’s heights has an error below 5%, corresponding to 0.6 mm
(see Fig. 8). The prediction of the blow efficiency was also evaluated with errors below
5% (see Table 1).



Table  1. Blow efficiency and energy repartition: the gap between experimental and predicted 

data. (EL = Elastic, DA = Damping, FR = Friction).

Billet Blow Blow efficiency [%] Error Energy repartition:
Surrogate + BIM

Experimental Surrogate +
BIM

EL [%] DA [%] FR [%]

ID = 32,00
IH = 48,24

1 98,56% 98,79% 0,23 0,49% 0,11% 0,61%

2 96,20% 97,27% 1,07 1,22% 0,48% 1,40%

3 89,23% 93,59% 4,36 4,99% 0,56% 1,05%

4 85,75% 86,87% 1,12 11,71% 0,72% 0,70%

ID = 18,00
IH = 35,92

1 98,73% 99,45% 0,72 0,20% 0,04% 0,31%

2 95,65% 98,61% 2,96 0,71% 0,26% 0,42%

3 94,81% 96,36% 1,55 2,91% 0,38% 0,35%

4 91,44% 92,63% 1,19 6,79% 0,44% 0,14%

Fig. 8 Load-displacement curves: experimental and surrogate + BIM model and error in the
prediction of the heights. a) billet with ID = 32,00 mm; IH = 48,24 mm. b) billet with ID =
18,00 mm; IH = 35,92 mm.

5 Discussion

The coupled model has been evaluated in a four-time blow upsetting operation and
compared to experimental results (see Fig. 8). The training of the model being made
for the range ID = [15–35], two billets near the training limits have been tested ID =
[18;32].

The model allowed the prediction of both the intermediate heights and maximum
loads of the blows, using load-displacement curves. Additionally, the model estimated
the efficiency of the blows, as well as their energy repartition.



The load-displacement curves prediction is representative of the actual process, with
all the curves nearly overlapping (see Fig. 8). However, these predictions show better
results for the first blow: errors increase from less than 1% in the 1st blow to almost
5% in the 4th blow for final height prediction and from 5% to almost 9% in maximum
load prediction. This can be explained by different factors: first, an error occurs in
the prediction of the first blow and this error propagates with the increasing number of
blows. In addition, we are approaching the training limits of the model, since the strain is
increasing considerably (from 0 to 1.8 on average). Finally, the model has its limitations,
since only three input variables are taken for training (ID, IH, FH). For a more robust
and performant model, more process variables should be integrated, such as the billet’s
temperature, work hardening, geometry, or the press ram velocity.

The press’s behavior has already been integrated into previous studies to calculate
the blows’ efficiency. However, in those cases, the data was taken from numerical [10]
or analytical [1] models and integrated post hoc into the BIM model. Whereas in our
case, the predictive surrogate model allows a calculation of the efficiency a priori in less
than 30 s (see Table 1).

According to Table 1, the distribution of energy aligns with previous findings in the
literature regarding copper upsetting using a screw press [10], where the elastic energy
increases considerably after each blow, and the friction energy increases until it finds
its maximum in the first blow, and then decreases as the compression ratio (IH/FH) and
the blow efficiency decreases. As for the energy dissipated by damping, it is slightly
increasing and less representative compared to the other two dissipated energies.

6 Conclusions and Perspectives

Themethodology proposed in this study integrates a surrogatemodel in a billet-interface-
machine (BIM)model. The surrogate model predicts the load-displacement behavior for
a forged billet. This behavior is taken by the BIMmodel, which simulates its interaction
with the machine for a given number of blows. The BIM model returns a corrected
load-displacement curve, in which the intermediary heights and maximum loads for
each blow can be extracted, as well as the blows’ efficiency and energy distribution. The
latter is divided into plastic, elastic, damped, and friction energy.

The prediction of the intermediate heights and the efficiency of the blows allow pilot-
ing the forging operation under the screw press, knowing the energy setpoint required
to reach the desired final part.

The surrogate model’s architecture has been defined thanks to the results of a para-
metric sensitivity analysis. The surrogate chosen is an artificial neural networkmultilayer
perceptron that has been trainedwith a database provided by a calibrated numerical simu-
lation. The results obtained from themodel are consistent with the observations recorded
in the literature. Consequently, the following conclusions were deduced:

1. The coupling of the surrogate and machine behavior model works as a decision-
making tool for real-time piloting of the machine during a forging process. In the case
of upsetting, the model’s input parameters are the Initial Height, Initial Diameter, the
number of blows, and the Final Height (a target). The outputs are the energy setpoint,



the blows efficiency, the energy repartition, and the load-displacement curves, from
which the final height and the maximum load for each blow can be extracted.

2. A further surrogate model should integrate more process variables, such as the billet’s
temperature, work hardening, and geometry. This would improve the performance of
the model and its robustness.

Acknowledgments. We would like to express our sincere thanks to CETIM for their financial
support in this research project. Specifically, we would like to thank Valérie SULIS for her project
follow-up and advice. We would also like to thank Francisco CHINESTA, a university professor
and researcher at the Laboratory for Processes and Engineering in Mechanics and Materials
(PIMM), for his contribution to this project through his expertise in the dimensional reduction and
surrogate models. Finally, we would like to thank Sébastien BURGUN and Alexandre FENDLER
for their technical support during the various tests conducted.

References

1. Mull, J.-F., Durand, C., Baudouin, C., Bigot, R.: A new tailored solution to predict blow effi-
ciency and energy consumption of hammer-forgingmachines. Int/ J. Adv.Manufact. Technol.
111(7–8), 1941–1954 (2020). https://doi.org/10.1007/s00170-020-06237-2

2. Durand, C., Bigot, R., Baudouin, C.: Contribution to characterization of metal forming
machines: application to screw presses. Proc. Manuf. 15, 1024–1032 (2018). https://doi.org/
10.1016/j.promfg.2018.07.391

3. Bigot, R., Leleu, S., Martin, P.: Forming machine qualification by analysis of manufactured
parts geometry: application to aluminium forming process. Int. J. Adv.Manuf. Technol. 21(7),
476–482 (2003). https://doi.org/10.1007/s001700300056

4. Vajpayee, S., Sadek, M.M.: Effects of structural and forming parameters on the efficiency of
energy transfer in impact forming machines. J. Eng. Ind. 100(2), 113–118 (1978). https://doi.
org/10.1115/1.3439397

5. Vajpayee, S., Sadek, M.M., Tobias, S.A.: The efficiency and clash load of impact forming
machines to the second order of approximation. Int. J. Mach. Tool Des. Res. 19(4), 237–252
(1979). https://doi.org/10.1016/0020-7357(79)90013-1

6. Harwood,M.,Novak,M.:Uplift in hammer foundations. SoilDyn. Earthq. Eng.5(2), 102–117
(1986). https://doi.org/10.1016/0267-7261(86)90004-7

7. Swidergal, K., et al.: Experimental and numerical investigation of blankholder’s vibration
in a forming tool: a coupled MBS-FEM approach. Prod. Eng. Res. Devel. 9(5–6), 623–634
(2015). https://doi.org/10.1007/s11740-015-0640-9

8. Novak, M.: Foundations for shock-producing machines. Can. Geotech. J. (1983). https://
www.semanticscholar.org/paper/Foundations-for-shock-producing-machines-Novak/f97002
aeeee038c94b7a122cba28b0addd79c4f0 (Accessed 03 Mar 2023)

9. Zheng, E., Zhou, X.: Modeling and simulation of flexible slider-crank mechanism with clear-
ance for a closed high speed press system. Mech. Mach. Theory 74, 10–30 (2014). https://
doi.org/10.1016/j.mechmachtheory.2013.11.015

10. Mull, J.-F., Durand, C., Baudouin, C., Bigot, R.: A fe billet model and a spring-mass-damper
model for the simulation of dynamic forging process: application to a screw press. In: Daehn,
G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds.) Forming the Future.
TMMMS, pp. 1131–1143. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75381-
8_95

https://doi.org/10.1007/s00170-020-06237-2
https://doi.org/10.1016/j.promfg.2018.07.391
https://doi.org/10.1007/s001700300056
https://doi.org/10.1115/1.3439397
https://doi.org/10.1016/0020-7357(79)90013-1
https://doi.org/10.1016/0267-7261(86)90004-7
https://doi.org/10.1007/s11740-015-0640-9
https://www.semanticscholar.org/paper/Foundations-for-shock-producing-machines-Novak/f97002aeeee038c94b7a122cba28b0addd79c4f0
https://doi.org/10.1016/j.mechmachtheory.2013.11.015
https://doi.org/10.1007/978-3-030-75381-8_95


11. Brecher, C., Klein, W., Tannert, M.: Optimization of multi-stage closed-die forging processes
by coupled simulation of the machine and the forging processes. Prod. Eng. 4(2), 279–286
(2010). https://doi.org/10.1007/s11740-010-0226-5

12. P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W. Schilders, and L. M. Silveira, Eds.,
System- and Data-Driven Methods and Algorithms, vol. 1. De Gruyter, 2021. doi: https://doi.
org/10.1515/9783110498967

13. Hürkamp, A., et al.: Combining simulation and machine learning as digital twin for the
manufacturing of overmolded thermoplastic composites. J. Manuf. Mater. Process. 4(3), 92
(2020). https://doi.org/10.3390/jmmp4030092

14. Gustafsson, E.: Optimization of Castings by using Surrogate Models (2007). http://urn.kb.se/
resolve?urn=urn:nbn:se:liu:diva-10192 (Accessed 04 Jan. 2022)

15. Ryser, M., Bambach, M.: Comparison of Linear regression and neural networks as surrogates
for sensor modeling on a deep drawn part. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E.,
Vivek, A., Yoshida, Y. (eds.) Forming the Future. TMMMS, pp. 611–623. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-75381-8_50

16. Cai, L., Ren, L., Wang, Y., Xie, W., Zhu, G., Gao, H.: Surrogate models based on machine
learning methods for parameter estimation of left ventricular myocardium. R. Soc. Open Sci.
8(1), 201121 (2021). https://doi.org/10.1098/rsos.201121

17. Giorleo, L., Ceretti, E., Giardini, C.: Energy consumption reduction inRingRolling processes:
a FEM analysis. Int. J. Mech. Sci. 74, 55–64 (2013). https://doi.org/10.1016/j.ijmecsci.2013.
04.008

18. Uribe, D., Durand, C., Baudouin, C., Bigot, R.: Vers l’asservissement du pilotage en
énergie d’une opération de forgeage : développement d’un métamodèle prédictif pour un
jumeau numérique. Presented at the 25e Congrès Français de Mécanique (CFM 2022) (Aug.
2022). https://hal.science/hal-03841517

19. Altan, T., Ngaile, G., Shen, G. (eds.) Cold and hot forging: fundamentals and applications.
Materials Park, OH: ASM International (2004)

20. Tschätsch, H.: Metal forming practise: processes - machines - tools (2006)
21. Marie, S., Ducloux, R., Lasne, P., Barlier, J., Fourment, L.: Inverse Analysis of Forming

ProcessesBased onFORGEEnvironment (2014). https://doi.org/10.4028/www.scientific.net/
KEM.611-612.1494

22. Emmerich, M., Giotis, A., Özdemir, M., Bäck, T., Giannakoglou, K.: Metamodel—assisted
evolution strategies. In: Guervós, J.J.M., Adamidis, P., Beyer, H.-G., Schwefel, H.-P.,
Fernández-Villacañas, J.-L. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 361–370. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45712-7_35

23. Belur, B.K., Grandhi, R.V.: Geometric deviations in forging and cooling operations due to
process uncertainties. J. Mater. Process. Technol. 152(2), 204–214 (2004). https://doi.org/10.
1016/j.jmatprotec.2004.02.064

24. Wiebenga, J.H., Atzema, E.H., van den Boogaard, A.H.: Stretching the limits of forming pro-
cesses by robust optimization: a numerical and experimental demonstrator. J. Mater. Process.
Technol. 217, 345–355 (2015). https://doi.org/10.1016/j.jmatprotec.2014.11.018

25. Shang, H., Wu, P., Lou, Y.: Strain hardening of aa5182-o considering strain rate and tem-
perature effect. In: Daehn, G., Cao, J., Kinsey, B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds.)
Forming the Future. TMMMS, pp. 657–665. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-75381-8_54

26. Hedicke-Claus, Y., Kriwall, M., Langner, J., Stonis, M., Behrens, B.-A.: Validation of auto-
matically generated forging sequences by using FE simulations. In:Daehn,G., Cao, J., Kinsey,
B., Tekkaya, E., Vivek, A., Yoshida, Y. (eds.) Forming the Future. TMMMS, pp. 2867–2881.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75381-8_238

https://doi.org/10.1007/s11740-010-0226-5
https://doi.org/10.1515/9783110498967
https://doi.org/10.3390/jmmp4030092
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-10192
https://doi.org/10.1007/978-3-030-75381-8_50
https://doi.org/10.1098/rsos.201121
https://doi.org/10.1016/j.ijmecsci.2013.04.008
https://hal.science/hal-03841517
https://doi.org/10.4028/www.scientific.net/KEM.611-612.1494
https://doi.org/10.1007/3-540-45712-7_35
https://doi.org/10.1016/j.jmatprotec.2004.02.064
https://doi.org/10.1016/j.jmatprotec.2014.11.018
https://doi.org/10.1007/978-3-030-75381-8_54
https://doi.org/10.1007/978-3-030-75381-8_238


27. Li, S., Guo, Z., Cheng, S., Zhang, X.: Design optimization of sheet metal stamped parts by
CAE simulation and back-propagation neural network. Procedia Eng. 81, 1023–1028 (2014).
https://doi.org/10.1016/j.proeng.2014.10.135

28. Rao, K.P., Prasad, Y.K.D.V.: Neural network approach to flow stress evaluation in hot defor-
mation. J. Mater. Process. Technol. 53(3–4), 552–566 (1995). https://doi.org/10.1016/0924-
0136(94)01744-L

29. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. The MIT Press, Cambridge,
Massachusetts (2016)

30. Brownlee, J.: How to Choose Loss Functions When Training Deep Learning Neural Net-
works,MachineLearningMastery. com, Jan. 29 (2019). https://machinelearningmastery.com/
how-to-choose-loss-functions-when-training-deep-learning-neural-networks/ (Accessed 23
Jan 2023)

https://doi.org/10.1016/j.proeng.2014.10.135
https://doi.org/10.1016/0924-0136(94)01744-L
https://machinelearningmastery.com/how-to-choose-loss-functions-when-training-deep-learning-neural-networks/

	Towards the Real-Time Piloting of a Forging Process: Development of a Surrogate Model for a Multiple Blow Operation
	1 Introduction
	2 Surrogate Modeling Design
	2.1 Experimental Setup and Numerical Modeling
	2.2 Sensitivity Analysis and Database Creation
	2.3 Creation of the Surrogate Model

	3 Billet-Interface-Machine (BIM) Model and Surrogate Model Integration
	4 Results
	5 Discussion
	6 Conclusions and Perspectives
	References




