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Abstract. It is well known that locomotion-dominated navigation tasks
may highly provoke cybersickness effects. Past research has proposed
numerous approaches to tackle this issue based on offline considerations.
In this work, a novel approach to mitigate cybersickness is presented
based on online adaptive navigation. Considering the Proportional-
Integral-Derivative (PID) control method, we proposed a mathematical
model for online adaptive navigation parametrized with several parame-
ters, taking as input the users’ electro-dermal activity (EDA), an efficient
indicator to measure the cybersickness level, and providing as output
adapted navigation accelerations. Therefore, minimizing the cybersick-
ness level is regarded as an argument optimization problem: find the PID
model parameters which can reduce the severity of cybersickness. User
studies were organized to collect non-adapted navigation accelerations
and the corresponding EDA signals. A deep neural network was then
formulated to learn the correlation between EDA and navigation accel-
erations. The hyperparameters of the network were obtained through
the Optuna open-source framework. To validate the performance of the
optimized online adaptive navigation developed through the PID control,
we performed an analysis in a simulated user study based on the pre-
trained deep neural network. Results indicate a significant reduction of
cybersickness in terms of EDA signal analysis and motion sickness dose
value. This is a pioneering work which presented a systematic strategy
for adaptive navigation settings from a theoretical point.

Keywords: Virtual reality · Cybersickness · Navigation · Neural
computing

1 Introduction

Thanks to increasing computing power and the availability of many affordable
head-mounted displays (HMDs) such as HTC Vive and Oculus Quest, the word
“metaverse” has aroused profound discussion on the application of VR technolo-
gies among the public including mass media, industry, and academic community.
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Engineers are able to develop dozens of applications including training for med-
ical operations, the organization of 3D virtual conferences, playing immersive
games, visualizing 3D models, etc. [32]. When exposed to immersive environ-
ments, users can easily perform many tasks in a virtual world after wearing VR
glasses, including walking/running, shooting, and fighting. The accomplishment
of these tasks requires users to navigate through multiple virtual environments,
which could be the most fundamental interaction process [42]. However, along
with the navigation process, users usually experience cybersickness due to mis-
matched visual and vestibular information in the brain: users visually perceive
objects moving while the body is still in position [36]. Therefore, this sensory
conflict leads to sickness symptoms, such as headache, vomit, nausea, and sweat-
ing.

In this paper, we present a novel method to improve navigation experience
in virtual environments. Our approach relies on online adaptation of navigation
parameters based on pre-trained neural networks and laws from system control.

1.1 Cybersickness Evaluation

Due to the individual susceptibility to cybersickness, the severity of the symp-
toms experienced distributes differently among users [8]. Many subjective evalu-
ation methods were proposed in past research, such as the well-known Simulator
Sickness Questionnaire (SSQ) [24] that asks user to evaluate sixteen sickness
symptoms after an immersive experience and classifies them into three cate-
gories: nausea, oculomotor and disorientation. However, researchers often stick
to the overall cybersickness level. In this case, it might be meaningful to repeat-
edly ask participants a single question about their well-being, instead of asking
about multiple symptoms. The Misery Scale (MISC) [6,7] and the Fast Motion
Sickness Scale (FMS) [25] have been proposed accordingly for such convenience.
However, subjective questionnaires are generally administered after users have
performed an experiment; therefore they have to shift attention away from the
experiment to personal feelings, leading to much disturbance on the resulting
data [9].

Alternatively, biosignals are regarded as one of the most objective ways to
represent individual differences (e.g., electrodermal activity (EDA), electroen-
cephalography (EEG), heart rate variability (HRV), Eye tracking, etc.) [9].
Recent work has demonstrated success in assessing and predicting cybersickness
by involving these signals, especially thanks to deep learning approaches [10,18,
37]. For example, a pioneering work presented the encoding of EEG signals to the
cognitive representation relative to cybersickness, and by transferring it to VR
video-based deep neural networks, the authors can predict cybersickness without
any EEG signal [27]. This work subtly integrates individual EEG information
into the visual information, making it possible to predict individually different
cybersickness. Islam et al. [21,22] put forward a multimodal deep fusion neural
network that can take stereoscopic videos, eye-tracking, and head-tracking data
as inputs for predicting the severity of cybersickness. Particularly, when using a
combination of eye-tracking and head-tracking data, the authors found that their
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network can predict cybersickness with an accuracy of 87.77%, which has out-
performed state-of-the-art research. Their approach gains strong feasibility for
being used in current consumer-level HMDs having already integrated eye and
head tracking sensors. However, the adoption of measurement devices such as
EEG and eye tracking may be hindered by their intrusiveness and inconvenience
for collection and analysis. Typically, the collection of EEG signals requires the
experimenter to put several electrodes on the user’s head [31]. Despite EEG
signals usually being noisy, such settings of real-time cybersickness evaluation
may distract participants from the immersive experience. Recent progress in
the development of wearable sensors provides insights for easy integration in
immersive applications. One measurement that particularly attracted interest
for several years in the VR community is the EDA (e.g., [38]). Indeed, the EDA
signal can be easily recorded through a cheap electrical circuit, and is commonly
regarded as a reflection of the sympathetic arousal [39]. In this work, we decided
to opt accordingly for the EDA as a reliable cybersickness indicator.

EDA signals can be decomposed into two components: the skin conductance
level (SCL) and the skin conductance response (SCR) [2]. SCL, associated with
the tonic level of the EDA signal, changes slowly with a time scale of tens
of seconds to minutes. Because of the differences in hydration, skin dryness,
or autonomic regulation between respondents, SCL varies accordingly and can
be significantly different among respondents. On the other hand, SCR, known
as the phasic component of the EDA signal, rides on top of the tonic changes
and demonstrates much faster variations. Alternations in SCR components of an
EDA signal are observable as bursts or peaks in the signal. The phasic component
is associated with specific emotionally arousing stimulus events (event-related
SCRs, ER-SCRs). The rise of the phasic component can reach a peak within
1-5 s after the onset of stimuli [39].

The SCL at the forehead and finger area can demonstrate correlation with
cybersickness occurrences but not during the recovery stage [16]: the SCL will
increase after users are exposed to visual stimulation [30]. According to the spec-
trometer measurement of water vapor produced by sweating, an increased SCL
is linked to an increased sweating. After the termination of the visual stimuli,
the conductive path through the skin remains open despite reduced or absent
sweat gland activity. Additionally, past research has found that the SCR presents
strong correlation with both the onset of and the recovery from cybersickness
[16]. SCRs collected from the forehead significantly indicate a sudden and sus-
tained burst of activity preceding an increase in subjective cybersickness ratings.
Though, SCRs gathered from the finger palmar site may not be related to the
cybersickness, as the palm is less sensitive than the human forehead in both
phasic and tonic levels [30]. Further past studies [15,17] confirmed that phasic
changes of the skin conductance on the forehead can be used to measure the
level of cybersickness. Last, it has been shown that the width of the SCR col-
lected from the wristband could be an index of cybersickness [34], which further
supports our approach to collect the EDA with a wristband sensor.
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1.2 Adaptive Navigation

Adaptive navigation in virtual reality refers to the use of techniques and algo-
rithms that adjust the users’ virtual experience based on their behavior and
preferences. It is a way to enhance the interaction experience by customizing the
virtual environment to their needs and abilities. The severity of cybersickness
symptoms increases with time, and after some time spent in the VR, the sickness
severity either begins to stabilize or decrease; therefore, adaptive navigation in
the VR environment appears to be meaningful and deserve investigating [11].

Many strategies have been proposed in past research to mitigate cybersick-
ness by adapting navigation settings. For example, fuzzy logic has been used to
integrate three user factors (gaming experience, ethnic origin, age) to derive an
individual susceptibility index to cybersickness [45]. This work opens the possi-
bility to adapt navigation settings based on individual characteristics. Fernandes
and Feiner [12] explored the way to dynamically change the field of view (FOV)
depending on the users’ response to visually perceived motion in a virtual envi-
ronment. As a result, users experience less cybersickness, without decreasing the
sense of presence and minimizing the awareness to the intervention. However,
Zielasko et al. failed to confirm the correlation between the reduced FOV and
the severity of cybersickness, although a reduction of FOV allows the users to
travel longer distances [47]. To reduce the risk of cybersickness, Argelaguet and
Andujar [3] designed an automatic speed adaptation approach in which the nav-
igation speed is computed on a predefined camera path using optical flow, image
saliency and habituation measures. During navigation, users usually manipu-
late the speed based on the task and personal preferences, but they have to
involuntarily adjust the speed frequently and unsmoothly, resulting in severe
cybersickness. Hu et al. [19] carried out similar work for reducing cybersickness
with perceptual camera control while maintaining original navigation designs.
Considering the effect of speed on cybersickness, Wang et al. [44] proposed an
online speed protector to minimize the total jerk of the speed profile consid-
ering both predetermined speed and acceleration constraints, leading users to
report less severity of cybersickness. Additionally, Freitag et al. [13] developed
an automatic speed adjustment method for travel in the virtual environment by
measuring the informativeness of a viewpoint.

We believe that the evaluation and prediction of cybersickness is the first step,
while the final objective is to reduce cybersickness through adaptive navigation.
Therefore, through this work, we want to bridge the gap between evaluation and
adaptation. A similar idea can be found in previous studies. Plouzeau et al. [38]
created an innovative method to adapt the navigation acceleration in real time
based on the EDA signal, resulting in a significant decrease of cybersickness levels
among users while maintaining the same task performance. Similarly, Islam et
al. [20] designed a closed-loop framework to detect the cybersickness severity
and adapt the FOV during navigation. The framework can collect the user’s
physiological data (e.g., HR, BR, HRV, EDA) with which cybersickness can be
predicted, and based on the sickness severity, the system can apply dynamic
Gaussian blurring or FOV reduction to the VR viewer.
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These studies usually assume that the sickness severity has a linear cor-
relation with the adapted settings, and therefore the navigation settings are
adapted with a linear proportional function which is not confirmed to the best
of our knowledge. However, naturally, the perception of visual stimuli could be
a nonlinear process, and presetting a linear adaptation strategy may prevent
from finding the optimal adaptive settings. Accordingly, we propose to use a
Proportional-Integral-Derivative (PID) control to adapt the navigation settings,
without requiring any assumption beforehand. In this work, we propose to use
physiological signals, and particularly the electrodermal activity (EDA) that can
be obtained from a wristband sensor in real time (here an Empatica E4 wrist-
band1), to adapt navigation in real time, and therefore mitigate cybersickness.
By involving the EDA, we expect to further incorporate individual differences
into a customized navigation experience. We firstly use the phasic component
of the EDA signal as a measurement of the cybersickness level in real time.
Secondly, we formulate a mathematical relation based on the PID model with
several unknown parameters to adapt the navigation acceleration, taking the
sickness severity as input. Optimization is performed to determine the optimal
parameters to output a nonlinear adaptation strategy.

Past work proposed a similar idea as ours in which the navigation acceleration
is adapted from the real-time evolution of EDA [38]:

a(ti) = a(ti−1) − 0.5 ∗ dEDA(ti)
dt

(1)

where a(ti) and a(ti−1) are the accelerations at two successive frames,
EDA(ti) is the magnitude of the EDA signal at time ti−1. This formulation
is designed for an acceleration-based control scheme in which the joystick can
control the longitudinal or rotational acceleration directly until reaching a speed
limit. However, the user might fail to control the acceleration when EDA(ti)
keeps increasing or decreasing, which is the reason why this model is not suffi-
cient to mitigate cybersickness efficiently. We therefore propose another model,
based on the PID control scheme, adding a second term in Eq. 5 to stabilize the
acceleration. Our contributions are summarized as follows:

– We develop a novel mathematical model for adapting the navigation accelera-
tion based on the severity of cybersickness evaluated by the phasic component
of the EDA signal.

– We propose and validate the use of deep neural networks (NN) in our studies.
Deep NNs work as simulated users during the experiments, taking navigation
as input and sickness as output. Such approach opens avenues to the devel-
opment of intelligence in VR systems.

The paper is organized as follows. In Sect. 2, we will give a brief introduction
to PID control and 1D convolutional neural networks, and we will present math-
ematically the proposed adaptive navigation model. In Sect. 3, we will demon-

1 https://www.empatica.com/research/e4/.

https://www.empatica.com/research/e4/
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strate a feasible approach to find the optimal parameters for the adaptive model.
Further, we will discuss the results and the limitations of the work in Sect. 4,
before concluding.

2 Adaptive Navigation Design

2.1 PID Controller

PID is the abbreviation of proportional-integral-derivative and is a control loop
method with feedback widely used in industrial control systems and numer-
ous applications needing constantly modulated control [41]. A PID controller
continuously computes an error value e(t) representing the difference between
the expected setpoint and the measured process value, and applies a correction
determined by proportional, integral and derivative terms (denoted P , I, and D
respectively). The overall control function is given as,

u(t) = KP ∗ e(t) + KI ∗
∫ τ

0

e(t) + KD ∗ de(t)
dt

(2)

where, u(t) is the output of the PID controller, Kp, Ki and Kd are non-
negative coefficients for the proportional, integral and derivative terms respec-
tively, τ is the time and t is the integration variable. This controller contains
three terms with different control purposes:

– The proportional controller gives a feedback that is proportional to the error
e(t). If the error is large and positive, this term will also return a large and
positive output, taking into account the coefficient Kp. However, it can not
ensure that the system reaches the expected setpoint and maintains a steady-
state error.

– The integral controller is involved to remedy the steady-state error. It inte-
grates the historic cumulative value of the error until the error reduces to
zero. However, the integral term decreases its output when a negative error
appears, which will limit the response speed and influence the stability of the
system.

– The derivative controller enables the system to estimate the future trend of
the error based on its rate of change along time. It improves the stability of
the system by compensating for a phase lag resulting from the integral term.

2.2 1D Convolutional Neural Network

There exist multiple models of neural networks. Among them, 1D convolutional
neural networks (CNN) can achieve competitive performance compared to for
example long short term memory (LSTM) on certain sequence-processing prob-
lems, usually at a significantly cheaper computational cost. Recently, 1D CNNs
have been applied for audio generation and machine translation, obtaining great
success [29]. In this work, 1D CNNs will be used to process sequential data.
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2.3 Formulation of Adaptive Navigation

The objective of this section is to deduce the mathematical formulations for the
adaptive navigation technique based on the PID control system.

Let f(t) denote the phasic component of the EDA signal at time t, and the
objective is to stabilize f(t), given as,

Ef (ti) = f(ti) − f(ti−1) (3)

where Ef (ti) is the difference of the phasic component between the current
time step ti and the previous time step ti−1. In idle state, f(ti) is expected to be
0 which means that there is no visual stimuli. Therefore, Eq. 3 can be simplified
as,

Ef (ti) = −f(ti−1) (4)

As the EDA signal is decomposed into the phasic (SCR) and the tonic (SCL)
component, it implies that the variation of the EDA signal is associated with
the phasic and the tonic component. Knowing that the tonic component usu-
ally varies slowly and the phasic component varies rapidly overlying the tonic
component [5], in practice, we can use the phasic component to approximate the
variation of the EDA signal. Mathematically, the variation of the EDA signal
by time is noted as a temporal derivative, i.e., f = dEDA

dt . As depicted in Fig. 1,
there exists a similar variation trend between the derivative of EDA and the
phasic component of EDA.

As explained above, the SCR component is associated with arousing stimulus
events. When a user is exposed to visual stimuli in immersive virtual environ-
ments, bursts or peaks appear. The severity of visual stimuli is associated with
the salience of the burst or the signal’s peak. In other words, in an idle situa-
tion in which the user does not receive any visual stimuli, there should not be
any observable bursts or peaks. Furthermore, it means that we should design
a navigation technique in which the visual stimuli should not arouse excessive
physiological responses. Our goal is then to optimize navigation to stabilize the
SCR component of the EDA signal.

Fig. 1. Demonstration of one EDA signal including the phasic component, tonic com-
ponent, and temporal derivative.
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The navigation acceleration (both translational and rotational) a at time ti
can be parametrized by the following algebraic expression,

a(ti) = a(ti−1) + ψaEa(ti) + diag(β)ψfEf (ti) (5)

where

ψa(·) =
[
ψal

(·) 0
0 ψar

(·)
]

=

[
KPl(·) + KIl

∫ τ

0
(·) + KDl

d(·)
dt 0

0 KPr(·) + KIr

∫ τ

0
(·) + KDr

d(·)
dt

] (6)

ψf (·) =
[
ψf (·) 0
0 ψf (·)

]

=

[
KPf (·) + KIf

∫ τ

0
(·) + KDf

d(·)
dt 0

0 KPf (·) + KIf

∫ τ

0
(·) + KDf

d(·)
dt

] (7)

Ea(ti) =
[
Eal

(ti)
Ear

(ti)

]
=

[
ale(ti) − al(ti)
are(ti) − ar(ti)

]
(8)

Ef (ti) =
[
Ef (ti)
Ef (ti)

]
=

[−f(ti−1)
−f(ti−1)

]
(9)

diag(β) =
[
βl 0
0 βr

]
(10)

In Eq. 5, the second term ψaEa(ti) ensures that the acceleration can vary
around an expected value. Indeed, if the third term ψfEf (ti) keeps varying
monotonously, the acceleration would also vary monotonously and reach an
extremum. The third term implies then the adaptive quantity due to the visual
stimulus or physiological response. diag(β) represents diagonal coefficient matri-
ces used to balance the importance between longitudinal and rotational motion
in Eq. 5.

ale is the expected longitudinal acceleration; are is the expected rotational
acceleration; al is the measured longitudinal acceleration; ar is the measured
rotational acceleration. Both expected accelerations are 0.

ψa(·) and ψf (·) are the PID operators. ψal
(·) and ψar

(·) are elements of ψa(·)
with the following coefficients: KPl, KIl, KDl, and KPr, KIr, KDr, acting on
the longitudinal and rotational accelerations respectively; they are used to ensure
the accelerations to be around the expected values. ψf (·) is the element of ψf (·)
with the following coefficients: KPf , KIf , KDf , acting on the phasic component
of the EDA signal. Ea(ti) and Ef (ti) are the errors between the expected steady
states and the measured states at time step ti. The errors will be substituted to
the PID operators to compute the corrections.
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To summarize, an adaptive navigation system can be described by Eq. 5
and the supplementary equations: Eq. 6, Eq. 7, Eq. 8, Eq. 9, and Eq. 10. The
inputs of the system at time step ti are the measured longitudinal and rotational
accelerations, and the phasic component of EDA, and the outputs of the system
are the corrected accelerations in both directions.

This parametrized model features the following eleven coefficients: KPl, KIl,
KDl, KPr, KIr, KDr, KPf , KIf , KDf , βl and βr. As the objective of adaptation
is to mitigate cybersickness, the nontrivial question is: can we find the optimal
parameters to adapt the acceleration to reduce cybersickness?

Fig. 2. Strategy to find the optimal parameters that can mitigate cybersickness in the
adaptive model.

We can see two possibilities to answer this question, depicted in Fig. 2. The
first approach is to assign different values to these coefficients and perform user
studies to determine the best one that can mitigate cybersickness. As there are
eleven coefficients and each of them is independent to the others, the combina-
tion of optimal coefficients reaches at least hundreds or thousands of groups. To
prove that a specific group of coefficients can reduce cybersickness with a statis-
tical significance, dozens of participants are required to evaluate the adaptation
system, with much time needed to complete all the experiments. In general, three
steps are required for this approach that we will call classical:

1. A group of users navigates through a virtual environment without adaptive
navigation and evaluates the corresponding cybersickness level according to
the EDA signal afterwards.

2. The same group of users navigates through the same virtual environment
with the PID adapted navigation. In this step, we have to manually find
appropriate values for the different parameters.

3. After evaluating the cybersickness level, a comparison between both
approaches is performed to determine potential significantly reduced cyber-
sickness levels.
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The recent strong development of artificial intelligence in various domains has
raised interest in developing intelligent systems that can predict phenomena at
a price of less efforts for developers and end-users. Although considering human
participants cannot be dismissed, the release of more and more efficient neural
network (NN) algorithms represents a formidable opportunity to introduce them
into VR applications and pave foundations for the development of more efficient
and individualized VR. Particularly, as in the classical approach above, parame-
ter tuning can be highly time-consuming and tiring for participants, using NNs
to simulate users may be an interesting alternative to explore. In fact, in the
issue considered in this work, the function of users is to map the motion pro-
files during navigation to the corresponding EDA signal through which we can
compute the cybersickness level. Fortunately, neural network (NN) models can
work for this purpose as they are widely regarded as nonlinear fitters. Therefore,
in this paper, we propose to investigate whether, and if so, how, with NNs, we
can determine the performance of the adapted navigation with less user studies;
and here comes the second approach: we propose to use NNs to simplify user
studies and evaluate the performance of the different coefficients. This approach
includes three steps:

1. The first step is similar to that of the classical approach. We collect from
past user studies longitudinal and rotational accelerations and EDA signals
during navigation in an immersive environment. The collected data are then
used to train the NN model.

2. With the trained NN model, any navigation acceleration can be ingested to
output the corresponding EDA signal. Therefore, in this step we can replace
users by the trained NN model, allowing not to conduct a vast number of
user studies. The focus of the work becomes then to search for appropriate
parameters that can mitigate cybersickness, which corresponds exactly to a
parameter optimization problem. In mathematics, parametric optimization
can be solved with different methods that have already been implemented
in open-source softwares such as Optuna [1]. Once the objective of the opti-
mization is determined, Optuna can find the optimal parameters of our model
through a Bayesian optimization, especially sequential model-based optimiza-
tion with Tree-Structured Parzen Estimator.

3. Similar to that in the classical approach, the third step investigates whether
adapted navigation can reduce cybersickness by comparing the artificially
generated ER-SCR feature of the EDA signal to that coming from non-
adapted navigation.

Compared to the classical approach, the benefits of the second approach are:
(1) replacing users by an NN, which alleviates the challenge of recruiting numer-
ous participants; (2) transposing the adaptation problem to an optimization
problem that can be solved with existing open-source software. In this case, the
objective of the experiment is to collect enough data to train the NN model.
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Fig. 3. Flowchart for the experiment including user navigation with HTC Vive Pro
and data collection with Empatica E4 wristband.

Fig. 4. Virtual scenario in which the participants navigate along the highlighted path.

3 Data Collection and Parameters Computation

3.1 Data Acquisition

To avoid performing excessive user tests, we had to train an NN model that can
map the navigation behavior (acceleration in this context) to the corresponding
EDA signal. However, cutting down the number of user tests does not imply that
we can completely get rid of them, we still need to collect enough data to train
a high-quality NN model. Hence, we carried out a user experiment to collect the
required data.

Participants. We invited 53 participants (Mage = 26.3, SDage = 3.3, Females:
26) from the local city to participate in a navigation task in an immersive envi-
ronment. To obtain much more samples, all participants were asked to partici-
pate three times on three different days, hence we collected 159 samples. They
were rewarded with different gifts afterwards. Upon arrival, they were asked to
fill one pre-exposure questionnaire to investigate on their health conditions and
experience in playing games and using VR devices. From this questionnaire, no
participants reported any health issues that would affect the experiment results.
A consent form was signed by participants.
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Task Design. The general experimental procedure is presented in Fig. 3. The
whole experiment was carried out using an HTC Vive Pro head-mounted display.

1. Before the test, we gave the participants a brief introduction about how to
control navigation with the HTC Vive Pro hand controllers. Due to the occur-
rence of cybersickness, they were allowed to terminate the experiment when-
ever they felt sick or severe discomfort.

2. The experimenter put an HTC Vive Pro on the participants’ head and an
Empatica E4 wristband on one participants’ arm. The Empatica E4 can sam-
ple EDA at a frequency of 4Hz and the EDA signal is sent during navigation
to a processing computer through Bluetooth.

3. The participants were immersed in the virtual environment displayed in Fig. 4
and started to navigate following the trajectory highlighted in brown. The
user could control the motion in different directions through the touchpad on
the HTC Vive Pro hand controller. Together with the EDA signal, the longi-
tudinal and rotational navigation accelerations were recorded synchronously.

4. The navigation task continued for four minutes, and the participants were
removed from the head-mounted display at the end.

3.2 Model Architecture

Fig. 5. Schematic representation of the data collected from one user session including
the longitudinal and rotational accelerations, and the phasic component of EDA. Note
that both accelerations were computed from the navigation speeds, and the phasic
component of EDA was also preprocessed by the Neurokit2 package.

During the experiment, we collected three signals with the same starting
and ending times: the longitudinal acceleration, the rotational acceleration, and
the EDA signal. As the phasic component is associated with arousing stimulus
events, the NN model should link the navigating accelerations to the phasic
component of EDA. Therefore, we extracted the phasic component from the
original EDA thanks to Neurokit2 [35], a Python toolbox for neurophysiological
signal processing. Figure 5 represents a schematic representation of the data
recorded from one participant session. Individual differences leading to different
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Fig. 6. Architecture of the deep neural network. The network is composed of fourteen
1D convolutional layers and one fully connected layer; the kernel size for the convolu-
tional is 3.

magnitudes in the phasic response could make the model difficult to train; thus
we normalized all the data to range between zero and one.

To allow the model to learn the local relationship between the acceleration
and the phasic signal more easily, we used a moving window on the signal and
reformulated the data structure. The current time clip of the phasic signal was
associated with the accelerations from the previous time clip and the next time
clip. For example, with a clip length of 1 s, to predict the phasic signal between
1 s and 2 s, we used the acceleration data from 0 s to 3 s; to predict the phasic
signal between 2 s and 3 s, we used the acceleration data from 1 s to 4 s. The
duration of the window clip was considered as a hyper-parameter for the NN
model. In total, we collected 159 pairs of data2 among which we used 119 pairs
to train the model, and the rest of them (40) to test whether the model could
reduce the level of cybersickness. With 119 pairs of data, we obtained 90530 clips
as the training set, and 22633 as the testing set for the NN model.

Table 1. Settings of the hyper-parameters obtained from Optuna.

Phasic signal length 2.25 s

Dropout rate 0.00099
Learning rate 0.000288
# Convolutional layers 14
Epoch 1800
Batch size 256

The proposed model was implemented in the Tensorflow framework on an
Nvidia GeForce RTX 2070 graphic card. Adam was chosen as the optimizer.
Other hyper-parameters in the NN model (dropout rate, learning rate, the num-
ber of convolutional layers, the number of epochs, batch size) were optimally
determined by Optuna. It took approximately three hours to train the model,

2 One pair of data includes longitudinal and rotational accelerations and the corre-
sponding EDA signal from one user session; one pair can be regarded as one data
sample.



338 Y. Wang et al.

and Optuna spent around ten days to find the optimal hyper-parameters inside
the searching space. Eventually, Optuna reported the best prediction accuracy in
terms of the mean absolute error (MAE) is 0.015 (1D CNN) and 0.058 (LSTM).
Therefore, we used 1D CNN in this work considering the lower loss error.

The hyper-parameters of the 1D CNN model are reported in Table 1. The
model structure is given in Fig. 6.

3.3 Computing the Adaptive Coefficients

With the previously determined hyper-parameters, we obtained the best NN
model that can map the accelerations to the phasic component of the EDA
signal. At this stage, we can further find the optimal adaptive coefficients using
the 40 pairs of data mentioned above. The idea is to employ Optuna again to
use the number of ER-SCR as the optimization objective, and search for the
best adaptive coefficients that can reduce the number of ER-SCR. For the non-
adapted navigation, the phasic component of EDA is obtained from the data
collected during the user study, while for the adapted navigation, the phasic
component of EDA is predicted from the pre-trained NN model. The detailed
steps of the process to find the optimal coefficients of the adapted navigation
model (the eleven coefficients introduced in Sect. 2) are,

Fig. 7. Comparison between non-adapted (in red) and adapted (in blue) longitudinal
(left) and rotational (right) accelerations. The adapted accelerations are determined
by the phasic component of EDA (zoomed part in the left graph). (Color figure online)

1. With the 40 pairs of data, we can compute the number of ER-SCR for the
non-adapted navigation of each sample, denoted by a vector Nraw, used as a
baseline to be compared with the adapted one.

2. Optuna will randomly choose values for the eleven unknown coefficients. With
the model proposed in Eq. 5, we can compute a value for the adapted navi-
gation accelerations based on the non-adapted one.
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3. After obtaining the adapted accelerations, we can use the pre-trained NN
model to compute the phasic component of EDA. As the pre-trained model
only reads and returns the clipped data (as shown in Fig. 5), an additional
step will reconstruct the phasic component obtained from multiple clipped
data to a single sequence, and further compute the number of ER-SCR which
is denoted by another vector Nadapted.

4. We compute the difference (Nraw − Nadapted) to record the reduction of the
number of ER-SCR, and the result is denoted by one vector N containing
both positive and negative numbers. A positive number means that the per-
son will experience reduced cybersickness, and a negative number denotes
increased cybersickness. The goal during this optimization process is to have
more positive numbers than negative ones, i.e., maximizing the percentage of
positive numbers among the 40 samples. As the Neurokit2 package provides
diverse methods for computing the ER-SCR, we employed three methods
from Kim [28], Gamboa [14], and Neurokit2 [35] to compute the percentage
of positive numbers. Next, another group of values will be randomly chosen
for the coefficients and investigation will be performed to further increase the
percentage of positive numbers, denoted by Ppn. The following formulation
summarizes the optimization process operated by Optuna to find the optimal
PID coefficients,

max
PID coefficients

Ppn =Percentage of positives︸ ︷︷ ︸
from Kim [28]

+ Percentage of positives︸ ︷︷ ︸
from Gamboa [14]

+Percentage of positives︸ ︷︷ ︸
from Neurokit2 [35]

(11)
5. Steps 2, 3 and 4 are repeated until the Ppn reaches a stable value. Once con-

vergence is achieved, the computed coefficients are considered as the optimal
ones, in our case, the ones reported in Table 2.

Table 2. Optimal coefficients of the adaptive model obtained from Optuna.

KPl KIl KDl KPr KIr KDr KPf KIf KDf βl βr

0.0113 0.0065 0.0137 0.0098 0.0012 0.0011 0.0730 0.2283 0.3724 0.0017 0.0012

3.4 Results

Based on the methodology presented above, a theoretical validation test was
conducted in which the trained NN replaced users and adapted navigation was
simulated numerically.
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Figure 7 demonstrates the difference between non-adapted and adapted accel-
erations in the longitudinal and rotational directions for one test in the scenario
presented in Fig. 4. During non-adapted navigation, the acceleration might reach
extremely large magnitudes because the user moves rapidly. Adaptive navigation
could compensate for such variation.

Table 3. The majority of samples (total is 40) report significantly decreased numbers
of ER-SCR and MSDV with our adaptive model.

Methods Positive number Percentage χ2 P-value φ

Kim2004 36 90% 25.6 <.01 0.8
Gamboa2008 29 72.5% 8.1 <.01 0.45
Neurokit2 36 90% 19.6 <.01 0.7
MSDVl 40 100% 40.0 <.01 1.0
MSDVr 40 100% 40.0 <.01 1.0

To validate whether the adapted model with the coefficients computed in
Table 2 can mitigate cybersickness, we compared the non-adapted navigation and
the adapted one from a statistical viewpoint. We used the Neurokit2 package to
compute the number of ER-SCR in each navigation modality. The significance
level was set to .05.

Results in Table 3 reveal that the adapted model can reduce the number of
ER-SCR. According to the evaluation from the method of Kim [28] and Neu-
rokit2 [35], 90% of the total samples presented a significant reduced number of
ER-SCR, (χ2(1, N = 40) = 25.6, p < .01, φ = .80) and (χ2(1, N = 40) = 8.1, p <
.01, φ = .45) respectively, whereas only 72.5% from the method of Gamboa [14]
provided significant results (χ2(1, N = 40) = 19.6, p < .01, φ = .70).

Additionally, to further validate the performance of the proposed adaptive
navigation model, still using the samples above, we computed the motion sickness
dose value (MSDV ) which is regarded as an objective cybersickness indicator [4,
26,40]: a small MSDV indicates less severity of cybersickness. The MSDV can
be computed with the following formula:

MSDV = n

√∫ T

0

an(t)dt (12)

where a is the navigation acceleration (m/s2), T is the whole navigation
time, and n equals to 2 here. The PID-adapted acceleration could significantly
reduce the MSDV along both longitudinal or rotational directions for all samples
(χ2(1, N = 40) = 40, p < .01, φ = 1.0).
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4 Discussion

Our model incorporates all accelerations (translational and rotational) and coef-
ficients into an algebraic form. In Eq. 1, the coefficient 0.5 was derived empirically
considering the physiological reaction time of the EDA [38], while in our model,
all coefficients were optimized based on existing datasets constructed from past
user studies.

Our adaptive navigation model was used to adapt the navigation accelera-
tion, while it is worth noting that it could be used to adapt other navigation
settings, e.g., field-of-view (FOV) vignetting [12] or geometry deformation [33].
To adapt different navigation parameters, we can replace the acceleration in Eq. 5
by the corresponding parameters and then follow the same procedure as shown
in this study to find the best parameters. The objective of this work was not to
compare the performance of different adaptive navigation settings for mitigating
cybersickess, but to design a model of an adaptive strategy, and showcase it to
one navigation parameter. For example, Islam et al. [20] developed a closed-loop
framework to detect cybersickness and adapt the FOV accordingly; their work
has gained advantage by using a deep LSTM neural network to predict real-time
cybersickness with physiological data including heart rate, heart rate variabil-
ity, EDA and breathing rate, while our work only used the phasic component
of EDA to detect cybersickness. Therefore, we can legitimately wonder whether
involving other physiological signals can improve the accuracy of adaptation.
Even so, the main difference here is that after getting a feedback signal (i.e.,
the level of cybersickness), our model can make use of the proportional, integral
and derivative components for adaptation, that can process problems with high
nonlinearities.

We used a framework called Optuna twice in this work with different inten-
tions. Optuna is an automatic hyperparameter optimization framework designed
for optimizing an NN model. First, to avoid performing massive user studies, we
needed an NN model to link navigation accelerations to the phasic component
of EDA, and Optuna could help find the optimal parameters for the NN model.
Although we came up with an NN model to reproduce human cognition, it could
be a promising method in many user interaction design: since the NN model has
been trained on the navigation data from real user experiments, our model can
predict the user response (e.g., EDA) according to the visual stimuli, allowing a
designer to improve the interaction interface based on the predicted response [46].
Second, after proposing the adaptive model, we had to determine the optimal
parameters allowing to significantly mitigate the cybersickness level; therefore,
we employed Optuna again for this parameter optimization problem.

Physiological measures have been praised as objective indicators for cyber-
sickness and affective experience [23,43]. There was no need to employ subjective
cybersickness measurements, such as SSQ, FMS, and MISC because the compu-
tational model evaluated cybersickness from an implicit point in real time instead
of explicit subjective or verbal feedback which can only evaluate cybersickness
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for a certain duration. However, physiological signals have opened the possibility
to continuously measure cybersickness, although the sensitivity of these signals
to visual stimuli might limit the performance. For example, the duration of SCR
windows usually varies from 1 to 5 s after the onset of stimulus, and there might
be overlapping in two subsequent ER-SCRs if the recovery time is large than the
inter-stimulus interval, leading to distortion of the ER-SCR [39].

Despite promising results achieved in simulation, more validation studies are
required. The optimal parameters for adaptive navigation were found from a
theoretical point, but we believe that an additional user study to compare the
non-adapted and adapted navigation can further confirm the effectiveness of our
approach. Put differently, the lack of user studies might weaken the reliability
of the parameters computed. An experimental validation after the theoretical
study not only can validate the performance of the adaptive parameters, but
also can help define the search range in Optuna and strengthen the relationship
between the model parameters, thus it can bring benefits to the tuning process.
We intend to carry out such studies in future research, and at this stage we
encourage readers to focus on the adaptive model apart from finding the optimal
parameters. In addition, our model involved eleven parameters in order to adapt
navigation. Future research can investigate deeply on the relationship between
these parameters and simplify the model to have less parameters.

5 Conclusion

We proposed a pioneering mathematical model for adaptive navigation in vir-
tual environments by integrating a PID controller, with a long-term vision that
immersive experience should be individualized. The premise to run this model
successfully requires the system to detect cybersickness accurately; otherwise the
adaptive power from the PID controller is weakened. Many adaptive VR systems
have been focusing on the detection and evaluation of cybersickness in immer-
sive environments, while we paid more attention to utilizing the cybersickness
to optimize the navigation settings backward. The work is a theoretical paper
with a solid simulated validation based on the number of ER-SCR and MSDV .
Our contribution is to lay down the foundations of intelligent VR, in which a VR
system can act as an assistant to help users perform better, which justifies the
need to build computational models of cybersickness involving the generation of
artificial data through AI. The pandemics has further been a great facilitator
to introduce such approach. Although we found optimal adaptive coefficients
thanks to simulation in Optuna, we are planning to run more user studies to
further improve its performance.
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