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Predictive control for a single‑blow cold upsetting using surrogate 
modeling for a digital twin

David Uribe1   · Cyrille Baudouin1   · Camille Durand1   · Régis Bigot1 

Abstract
In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle 
this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based surrogate model for a one-blow cold 
upsetting process in copper billets. This model effectively addresses the issue by accurately forecasting energy setpoints, 
billet geometry changes, and deformation fields following a single forging operation. It utilizes Bézier curves to parametri-
cally capture billet geometries and employs POD for concise deformation field representation. With a substantial database 
of 36,000 entries from 60 predictive numerical simulations using FORGE® software, the surrogate model is trained using 
a multilayer perceptron artificial neural network (MLP ANN) featuring 300 neurons across 3 hidden layers using the Keras 
API within the TensorFlow framework in Python. Model validation against experimental and numerical data underscores 
its precision in predicting energy setpoints, geometry changes, and deformation fields. This advancement holds the poten-
tial for enhancing real-time process control and optimization, facilitating the development of a digital twin for the process.

Keywords  Surrogate model · Forging processes · POD · Numerical simulation · Data-driven model · Bézier Curves

Introduction

In the domain of forging processes, achieving the desired 
product involves fulfilling multiple requirements, encom-
passing both geometric and mechanical criteria. To attain 
this, one of the crucial tasks involves defining optimal pro-
cess control parameters during the conception stage. This is 
usually accomplished by employing numerical, experimen-
tal, and optimization methods [1]. However, it's essential 
to note that these parameter definitions are often based on 
nominal conditions, neglecting the variabilities inherent in 
every process [2], and creating product specification devia-
tions [3–5].

Various control predictive models can be employed to 
tackle this challenge, ranging from analytical approaches 
like the slab method [6], which offers reactivity but lower 
accuracy, to numerical simulations[7], which provide higher 
accuracy but come with increased computation time.

The trade-off becomes apparent for real-time control of 
forging processes: the analytical models are fast but lack 
precision, while the numerical simulations are accurate but 
time-consuming. As a solution, surrogate models emerge 
as a crucial element for real-time predictions, striking a bal-
ance between reactivity and accuracy. Surrogate models, 
which are statistical representations of complex systems or 
processes, are data-driven models constructed using design 
of experiments (DoE) and interpolation methods[8]. These 
models provide an efficient alternative by creating a sim-
plified representation that captures the crucial relationships 
between input variables and output responses [9].

In the field of metal forming, researchers [10, 11] have 
explored the utility of these surrogate models for tool 
design. Additionally, various applications in hot roll-
ing processes have been conducted, such as rolling force 
prediction [12–14] and, strip crown prediction [15–17]. 
Within stretching processes, they have been combined with 
analytical models to predict plastic strain [18]. Similarly, 
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they have been coupled with semi-analytical models of 
the press to forecast the efficiency of the forging blows in 
upsetting operations [19]. Moreover, in extrusion, [20, 21] 
investigated the influence of process variables on forming 
behavior using surrogate models.

In certain applications, the scope of surrogate mod-
els extends beyond scalar predictions, necessitating the 
description of complete fields, such as deformation fields. 
To construct such models, Proper Orthogonal Decompo-
sition (POD) is widely employed to reduce their dimen-
sionality and facilitate their description, leading to what 
is known as POD-based surrogate models [22–24]. These 
models leverage the dimensionality reduction capabilities 
of POD to efficiently represent complex fields and improve 
the overall efficiency and accuracy of the surrogate mod-
eling process.

While POD-based surrogate models have been stud-
ied in sheet metal forming processes, focusing on process 
force–displacement curves [25], displacement vectors [26], 
and springback compensation [27, 28] POD frameworks, 
their potential in bulk metal forming processes remains rela-
tively unexplored.

On the other hand, while working with bulk forming pro-
cesses, a common challenge arises due to the presence of 
complex geometries that pose significant difficulty in direct 
parametrization for surrogate modeling. These intricate 
shapes often require a reduced parametric description before 
they can be efficiently represented using a surrogate model. 
One promising approach to address this issue is through the 
use of Bézier curves for parametric representation of the 
geometries and curves[29, 30]. Bézier curves offer a flexible 
and efficient way to describe complex shapes using control 
points and curve segments [31, 32].

This present paper proposes a POD-based surrogate 
model to approximate the energy setpoint (piloting varia-
ble), deformation field, and geometry of a copper billet dur-
ing a one-blow cold upsetting process in a screw press. To 
achieve a reduced representation of the deformation fields, 
the widely employed POD method has been utilized. Addi-
tionally, considering the axial symmetry of the billet, the 
geometry is represented as a profile, known as the "bulging 
profile," effectively parametrized using Bézier curves. An 
artificial neural network control predictive model has been 
developed to integrate different process variables with para-
metrized fields and geometries, forming the foundation for 
the development of a digital twin for the forging operation.

Materials

Experimental Setup

The metal-forming machine used for the study is the screw 
press LASCO SPR400® (see Fig. 1a), installed in the VUL-
CAIN platform of the Laboratory of Design, Manufactur-
ing, and Control (LCFC) at Metz, France. This press can 
deliver a maximum forging energy of 28.9 kJ for a maximum 
ram speed of 680 mm/s. It is part of the energy-controlled 
machines. For this press, the energy setpoint is introduced 
as an integer value from 1 to 100, being a percentage of the 
maximum energy. Adjusting this energy setpoint turns into 
controlling the ram speed before it impacts the billet.

The study focuses on the cold one-blow upsetting pro-
cess of cylindrical billets made of pure copper. These billets 
encompass a range of initial diameters spanning from 18 
to 32 mm, with upsetting ratios (height/diameter) ranging 

Fig. 1   Experimental setup: a 
Energy-controlled screw press. 
b Optical 3D scanner



between 1.5 and 2.5. A graphite-based aerosol lubricant has 
been used. For this operation, the tooling is mounted on the 
press and it is equipped with flat surface dies positioned 
both at the top and bottom. During the forming operation, 
the billet, characterized by its initial diameter ( Di) and initial 
height (Hi) , undergoes forging along its axis of revolution 
and is transformed into a forged part with a final height, 
and its original cylindrical shape is altered due to friction 
conditions, leading to the formation of a bulging profile (see 
Fig. 2).

A high-resolution 3D optical scanner GOM ATOS II Triple 
Scan® (see Fig. 1b) was utilized to extract the final geometry 
of the billets, with specific attention to the bulging profile. To 
enhance the accuracy of the measurements, the billets were 
coated with titanium oxide powder to reduce light reflection 
and improve surface contrast. Each billet’s resulting 3D file 
(.stl) was then processed using GOM Inspect® Software to 
extract the final height and bulging profile as scattered points.

Numerical Setup

Numerical simulations have been implemented using the com-
mercial software FORGE® by Transvalor. The assumption of 
axial symmetry is made, enabling a denoted 2D simulation and 
resulting in reduced computational costs (See Fig. 3).

The reduced Hansel-Spittel constitutive equation has been 
employed to represent the billet's rheology, where the flow 
stress �s is denoted as: 

where � and 𝜀̇ are strain and strain rate respectively; T  is 
the temperature; A,m1,m2,m3,m4 are material constants, 
with specific values of 411.19, -0.00121, 0.13, 0.01472, 
and 0.002 respectively, as the numerical model was rigor-
ously validated against experimental data to ensure accuracy. 
Material physical properties are listed in Table 1.

(1)𝜎s = A ⋅ em1⋅T ⋅ 𝜀m2 ⋅ 𝜀̇m3 ⋅ em4∕𝜀

Fig. 2   One-blow cold upsetting 
of a copper billet

Fig. 3   One-blow cold upset-
ting numerical setup: a Before 
Upsetting, b After upsetting



Furthermore, thermal exchanges have been assumed 
at 2000W∕m2K between the billet and the tools, and at 
10W∕m2K between the air and the billet. Friction conditions 
follow a Coulomb limited Tresca Model:

where  �n is the contact pressure; � and m the friction coef-
ficients, equal to 0.1 and 0.2, respectively.

The room temperature is 20 °C, which is also the initial 
temperature of the billet and the tools.

The meshing of the billet consists of tetrahedrons with an 
average surface mesh size of 0.2 mm. Initial billet diameters 
vary within the range of 15 mm to 35 mm, while the initial 
upsetting ratios (Height/Diameter) fall within the span of 
1.5 to 2.5. The press is modeled with two rigid dies, and its 
behavior adheres to that of the experimental setup. On aver-
age, the computational time amounts to 15 min for one case 
( Di,Hi,Energyi).

This numerical model forms the basis for the training data-
base used in this study.

Methods

Description of the billet’s geometry using 
a parametric Bézier curve

To accurately represent the bulging profile of the billet after 
upsetting, a parametric approach using Bézier curves is used. 
These curves are a widely used mathematical technique for 
creating smooth and continuous curves based on control points 
[33, 34]. They are denoted as the path defined by the function 
Bn , referred to as the Bézier polygon or the B-polygone, as 
outlined below [35]:

where the points P0,P1,… ,Pn are called the control points 
(CPs) of the Bézier’s curve placed in 2D/3D coordinates, 
n the degree of the B-polygon, and bn

i
(t) are known as the 

Bernstein basis polynomials of degree n . The notable advan-
tage of employing these types of curves is rooted in the 
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concept of CPs, which constitute a set of coordinates facili-
tating the parametric representation of multiple curves. The 
determination of the appropriate quantity of CPs to utilize 
in a specific scenario depends on the degree of the curve 
being represented

In cases of experimental geometries obtained through 
optical scanning, complete axisymmetric conditions cannot 
be guaranteed. To represent a single profile of the billet's 
bulging section, 36 profiles are extracted at 10-degree inter-
vals around the axis of revolution. Subsequently, an average 
discretized section is derived in the 2D plane, accompanied 
by an associated uncertainty value.

In numerical 2D simulations, perfect axial symmetry is 
assumed, simplifying the representation of geometries in the 
plane using a set of 2D coordinates. The number of these 
coordinates varies depending on the billet's dimensions and 
the simulation mesh size.

Once both types of geometries, numerical and experimen-
tal, are represented in the plane, a discretization process is 
applied using a regular horizontal grid. This step ensures 
consistency and enables comparisons among different bil-
lets. The process involves conducting linear interpolation 
along the axis of revolution to standardize the number of 
2D coordinates used to represent any billet (refer to Fig. 4a).

For a precise depiction of the different billets, encompass-
ing both experimental and numerical cases, around 30 to 50 
points are needed to ensure an accurate representation of 
the overall profile of the geometry and the bulging profile 
(see Fig. 4b–c).

To find the coordinates of the Bézier CPs, an optimi-
zation algorithm is implemented in Python. The aim is to 
find the optimal coordinates of different numbers of CPs 
which minimizes the mean squared error (MSE) between the 
reconstructed and the original points. The results indicate 
that the performance does not exhibit a significant decrease 
beyond the utilization of 5 control points, where the root 
mean square error (RMSE) is 0.026 mm, and any enhance-
ments observed are below 0.01 mm. Therefore, 5 control 
points have been selected to represent the different bulging 
profiles, using a total of 10 data points (2 coordinates for 
each control point), as illustrated in Fig. 5a.

The upper and lower symmetry, as well as the axial 
symmetry, are assumed. So, a new variable convention is 
adopted to minimize the number of parameters required 
to describe the bulging profile. These parameters, named 
a, b, c, rminandh can be observed in Fig. 5b.

Description of the deformation fields using 
a parameterized vector system through Proper 
Orthogonal Decomposition (POD)

Deformation fields are derived from numerical simulations. 
They are represented by triangular elements with node 

Table 1   Physical properties of billet at 20°C

Material Young’s 
modulus 
(MPa)

Poisson’s 
ratio

Density 
(kg/m3)

Thermal 
conduc-
tivity 
(W/m–K)

Specific 
heat (J/
kg-K)

Pure Cop-
per

110,000 0.3 8100 401 435



coordinates and corresponding unitary deformations at the 
barycenter of each element in the 2D plane. The large num-
ber of elements (which can differ from one simulation to 
another) doesn't permit real-time applications.

To be able to represent deformation fields in real time 
and to integrate them into a further model, it is necessary to 
establish a reduced parametrized representation. The Proper 
Orthogonal Decomposition (POD) technique is used for this 
purpose. This technique allows the characterization of the 
fields through a parameterized vector system, which cap-
tures their dominant features or patterns. By selecting the 

most influential vectors (also called modes), the quantity of 
data needed to represent accurately the deformation fields 
is reduced.

The number of elements in the simulation’s mesh can 
vary depending on the size of the billet. To ensure a uniform 
representation of the fields before implementing the POD, 
a discretization process is employed, converting each defor-
mation field into a matrix format of 100 × 100. This matrix 
discretization involves incorporating horizontal grids along 
the billet's height and curved vertical grids along the billet's 
radius, as illustrated in Fig. 6. The selection of a 100 × 100 

Fig. 4   2D Scattered points: a Discretization process in numerical/experimental profiles, b Overall billet's geometry after discretization (c) Bil-
let’s bulging profile after discretization

Fig. 5   Parametric representation of the bulging profiles: a CPs coordinates, b Reduced parameter representation



matrix size was determined through gradient analysis of the 
subsequent field. To determine the deformation values for 
each point of the matrix, an interpolation method utilizing 
specific Delaunay triangulation was employed [36]. This 
approach enables the accurate estimation of deformation 
values within the standard discretized matrix for a compre-
hensive representation of the billet's deformation field.

Once the discretization process is defined, the POD is 
applied to a database constructed using numerical simula-
tions. The objective is to represent any deformation field 
using the same vector modes while allowing for changes 
only in the vector coefficients. To achieve this, the database 
used for the POD must encompass a wide range of deforma-
tion behaviors observed during the upsetting operation. To 
fulfill this, a reduced design of experiments consisting of 
50 simulations was devised using a Latin Hypercube Sam-
pling, covering the same operational range of the surrogate 
model. This range encompassed billets with initial diameters 
ranging from 15 to 50 mm and slenderness ratios ( Hi∕Di ) 
between 1.5 and 2.5.

From each simulation, an average of 740 snapshots was 
extracted, resulting in a total of 37,000 snapshots represent-
ing various billet configurations and deformation states. For 
applying the POD technique, each snapshot is discretized as 
presented before, then vectorized into a 10,000-size vector 
(from 100 × 100 matrix), and finally stored in a single data-
base matrix 37,000 × 10,000, which is centered and stand-
ardized to improve the POD results.

The results of the POD analysis revealed that the first 
mode exhibited a significantly higher singular value com-
pared to the rest, capturing over 75.5% of the total energy in 
the dataset. As additional modes were considered, the cumu-
lative sum of the first two, three, and four modes increased 
to 79.8%, 81.7%, and 82.9%, respectively. This represented 
an improvement of 4.8%, 1.9%, and 1.2% for each additional 
mode (see Fig. 7 and Table 2).

To evaluate the accuracy of the reconstructed deformation 
fields, we computed the Mean Squared Error (MSE), Mean 
Absolute Error (MAE), and Mean Absolute Percentage Error 
(MAPE) between the generated 100 × 100 matrices fields 
from simulations and those generated with different numbers 
of modes (see Table 2).

Observing that the first three modes captured more than 
80% of the cumulative energy in the dataset, and additional 
modes did not significantly reduce errors, the decision was 
made to utilize only these three modes to represent defor-
mation fields within our operational range. While the incor-
poration of supplementary modes could yield enhanced 
precision, factors such as computation time, the requisite 
variables for representation, and storage considerations had 
to be considered.

Surrogate model’s architecture and database 
creation

The primary objective of the surrogate is to predict three key 
aspects: the energy setpoint, the geometry, and the deforma-
tion field for a forged billet based on its initial geometry 
( Hi,Di ) and the desired final height ( Hf ).

The parametric representation of the bulging profiles and 
the Proper Orthogonal Decomposition (POD) framework for 
the deformation fields allows for dealing exclusively with 
scalar variables in both the inputs and outputs, as illustrated 
in Fig. 8.

As the surrogate model relies on data-driven techniques, 
the establishment of a reliable database becomes impera-
tive for its training process. The same simulations that were 
employed for constructing the POD framework were uti-
lized to generate the surrogate database. This database was 
designed using a Design of Experiments (DoE), involving 
the deliberate manipulation of factors, namely the Di, the 
slenderness ratio (expressed as SR = Hi∕Di ) and the ES.

Fig. 6   Standard discretization using interpolation by Delaunay triangulation for representing the deformation fields in 100 × 100 matrix



Incorporating the SR and ES instead of the Hi and Hf  
as outlined in the surrogate model's input–output archi-
tecture carries noteworthy implications. First, the Hi must 
adhere to the experimental buckling constraint dictated 
by the SR , a prerequisite aimed at averting undesirable 
buckling occurrences. Secondly, the substitution of the Hf  
with the ES arises from a practical consideration. The Hf  

is a parameter not easily manipulable in numerical simu-
lations, which can limit its usefulness as a factor in the 
design of experiments. In contrast, the ES is intentionally 
selected owing to its inherent correlation with the Hf .

In essence, this strategic selection of input param-
eters brings enhanced practicality and alignment with 
real-world constraints to the database creation process, 
bolstering the overall effectiveness and reliability of the 
subsequent surrogate model's training.

A reduced DoE Latin Hypercube Sampling of 50 com-
binations is performed for the following variation ranges:

• Di = [15 − 50]mm

• SR = Hi∕Di = [1.5 − 2]

• ES = [0 − 60]%or[0 − 17.34]kJ

Each simulation is performed and the results are pro-
cessed to have the inputs and outputs scalar magnitudes as 
presented in Fig. 8. From each simulation, an average of 
740 snapshots (computation increments) were taken, for a 
total of 37,000 combinations of the dataset.

Fig. 7   POD results: a Singular values. b Singular values cumulative sum

Table 2   Choice of the number of modes: errors between the discre-
tized fields and the fields generated with the POD framework

Number 
of modes

Cumulative

Energy

ΔCumulative

Energy

MAPE [%] MSE MAE

1 75.55% 75.55% 0.335 0.00471 0.0210
2 79.83% 4.28% 0.332 0.00152 0.0209
3 81.77% 1.94% 0.167 0.00086 0.0121
4 82.97% 1.20% 0.159 0.00061 0.0113
5 84.10% 1.13% 0.121 0.00039 0.0078
100 93.21% 9.11% 0.016 0.00001 0.0015

Fig. 8   Surrogate model's inputs/
outputs (I/O) architecture



Surrogate model’s training, testing, and validation

The utilization of the surrogate model aims to establish a 
correlation between input and output variables. Leveraging 
a limited dataset derived from a finite number of numeri-
cal simulations, the primary objective involves employ-
ing interpolation techniques to extend insights across its 
domain. This objective is pursued through the implemen-
tation of a multilayer perceptron artificial neural network. 
The standard protocols for training, testing, and validation 
commonly employed in such contexts will be adhered to.

Initially, the input variables in the database were nor-
malized to bring them within a similar range by using their 
minimum and maximum values. Next, the database was 
divided into training and testing datasets in an 80–20 ratio. 
The selected architecture for the network includes three 
hidden layers with 92, 184, and 24 neurons, respectively, 
using the Rectified Linear Unit (ReLU) activation func-
tion. Additionally, a linear activation function was opted 
for the output layer. The loss function is the MSE. During 
the training and testing processes, the model demonstrated 
an adjusted coefficient of determination (R2) exceeding 
0.99 and MAPE below 1%. For the energy setpoint predic-
tion, being the key piloting variable, the MAE was below 
0.1 kJ and the Root Mean Squared Error (RMSE) was 
below 0.15 kJ. Notably, both values were well below the 
minimum controllable energy of 0.289 kJ, equivalent to 
1% of the maximum forging energy.

The validation process consisted of a single campaign 
that included both experimental and numerical tests con-
ducted using identical process parameters. The experi-
mental results were employed to validate the accuracy of 
geometric predictions, such as the final height and bulging 
profile. Meanwhile, the numerical results were employed 
to validate not only the geometry predictions but also the 
subsequent deformation field, which is challenging to 
measure directly in a real billet.

In the validation campaign, specific billets were care-
fully selected, ensuring they were within the training lim-
its of the model. These chosen billets were verified to be 
different from the ones used in the training and testing 
stages. They were measured before upsetting with a caliper 
with a tolerance of 0.05 mm. A single blow was performed 
for each billet, followed by a corresponding simulation 

using the same process parameters to analyze and evalu-
ate the results.

Results

Four billets were chosen for the validation. For each billet, 
different upsetting energy was imposed as it is the pilot-
ing variable of the process. The billets’ final geometry was 
extracted using the 3D optical scanner. The experimental 
final heights served as input parameters for the surrogate 
model, which enabled the prediction of the energy setpoints, 
geometric parameters, and deformation fields.

The prediction of the energy setpoint has errors below 
0.2 kJ for all the billets (see Table 3), which corresponds to 
less than the minimum controllable energy of the machine, 
which is 0.289 kJ, assuring the piloting of the process at ±1% 
of the machine’s capabilities.

To verify the accuracy of the geometry prediction, the 
average profiles of each billet scan are compared against 
those reconstructed using the predicted Bézier parameters, 
and those obtained using new numerical simulations per-
formed with the same process parameters for obtaining the 
same final height. As shown in Figs. 9 and 10, the predic-
tion of the resulting bulging profile is accurate for all the 
cases, with a maximum gap below 0.1 mm between the sur-
rogate and the experimental profiles, and under 0.03 mm 
between the surrogate and the numerical profiles. For the 
four experimental scenarios, the average Root RMSE and 
MAPE between the surrogate and experimental profiles are 
0.08 mm and 0.39%, respectively. Correspondingly, between 
the numerical simulations and the experimental profiles, the 
average values stand at 0.06 mm for RMSE and 0.26% for 
MAPE.

The predicted deformation field by the surrogate model is 
compared to the one obtained using the numerical simula-
tion for all the cases. The errors obtained are below 0.038 for 
RMSE and 1.17% for MAPE. Additionally, the gap between 
the mean deformation of the billets (predicted and numeri-
cal) in each case remains under 0.0035, while the maximum 
error between two deformation values at the same billet loca-
tion remains below 0.017. The generated fields and the dif-
ference between them (simulated – predicted) are presented 
for case II in Fig. 11.

Table 3   Billet index – 
validation campaign

Case Initial diam-
eter ( Di)

Initial height ( Hi) Energy setpoint: 
experimental

Experimental: 
final height (Hf )

Energy setpoint: 
prediction

I 24 mm 33.20 mm 4% 1.15 kJ 25.80 mm 3.79% 1.09 kJ
II 37.75 mm 9% 2.60 kJ 24.40 mm 8.61% 2.48 kJ
III 32 mm 44.30 mm 14% 4.04 kJ 32.15 mm 13.42% 3.88 kJ
IV 56.85 mm 30% 8.67 kJ 33.00 mm 29.37% 8.49 kJ



Fig. 9   Reconstructed geometry of the billets: a Case I, b Case II, c Case III, d Case IV (See Table 3)

Fig. 10   Reconstructed bulging profiles: a Case I, b Case II, c Case III, d Case IV ((See Table 3)



Discussion

• By employing Bézier's control points to represent various
bulging profiles, a reduced parametrization was achieved,
ensuring an accurate representation of different upsetting
geometries with only 5 parameters (assuming symmetry
in the upper and lower sections of the billet). However, to
strike a balance between parameterization reduction and
surface representativity, it is crucial to implement proper
optimization algorithms to determine the appropriate
number of control points. Since additional parameters to
predict can make difficult the training of the model.
	  Careful consideration must be given to the profile dis-
cretization process, and the symmetric hypothesis made, 
as they could affect the profile reconstruction.

• Furthermore, while utilizing the POD framework for
representing deformation fields, several important con-
siderations come into play:

– The interpolation used for discretization and stand-
ardization of the fields introduces errors that can
vary in significance depending on the chosen inter-
polation technique. Consequently, careful selection

of the most appropriate interpolation method is vital 
to minimize these errors. In our case, a method uti-
lizing specific Delaunay triangulation was employed.

– Careful consideration must be given to selecting the
number of modes, considering their sensitivity to
variations in the deformation field. Setting an overly
sensitive mode could hinder the model's training
without yielding substantial improvements in accu-
racy.

While the results obtained from the POD framework are 
satisfactory, other dimensionality reduction techniques could 
be explored, such as convolutional neural networks (CNNs), 
as demonstrated in [37] for geometry description in preforms 
and stamped parts.

POD offers clear advantages over CNNs in specific sce-
narios, including interpretability, dimensionality reduction, 
reduced training time, low data requirements, suitability 
for linear systems, and robustness to noisy data. However, 
CNNs are better suited for tasks involving complex visual 
data and non-linear patterns. Therefore, when dealing with 
more intricate deformation fields or geometries in other forg-
ing operations, it is crucial to consider evaluating the use of 
CNNs as well.

Fig. 11   Results of the deformation field for case II. a deformation field simulated and predicted (b) difference (simulated-predicted)



In comparison to the conventional analytical slab method, 
which neglects the bulging profile and assumes a cylindrical 
billet throughout the operation, the proposed model signifi-
cantly improves geometry prediction. Additionally, com-
pared to the classical numerical simulations, the proposed 
model exhibits remarkable responsiveness, with computa-
tion times approximately 900 times faster (compared to ‘fast’ 
2D simulations), completing calculations in less than 1 s, 
while maintaining high-quality results.

The accurate geometry, energy setpoint, and deformation 
state predictions provided by this model offer the potential 
to develop a multiple-blow operation model, where metal 
hardening and changes in geometry play important roles. 
However, the model consistently underestimates the amount 
of energy needed for each operation. This discrepancy may 
be explained by not taking into account the energy losses 
during the forging operation, a factor that increases with 
subsequent blows and significantly influences energy con-
sumption throughout the process [38]. Further investigation 
into energy losses and their inclusion in the model could 
improve the energy prediction accuracy.

Additional research efforts should also be directed toward 
other forging operations such as closed-die forging, where 
the material flow is controlled, or towards hot forging oper-
ations, where the time-dependent thermal behavior of the 
parts plays a crucial role.

Conclusion

This study presents the development of a POD-based surro-
gate model for controlling a copper cold upsetting operation. 
The model successfully predicted the energy setpoint, ensur-
ing precise machine piloting. Additionally, it accurately fore-
casted the subsequent bulging profile using Bézier curves 
for parametric representation, and the deformation field was 
efficiently described, approximated, and reconstructed using 
a POD framework.

In summary, the methodology implemented in this study 
facilitated a systematic simplification of various challenges. 
Initially, it translated complex geometric issues into scalar 
problems via the utilization of Bézier curves. Subsequently, 
a similar simplification was applied to field descriptions 
using the POD framework. Ultimately, the surrogate model's 
application allowed for responsive predictions of these para-
metric variables in conjunction with other process variables, 
resulting in a robust correlation between experimental and 
predicted outcomes. In this context, this model serves as a 
foundational element for the deployment of a digital twin.

Further investigations are warranted to incorporate the 
blow's efficiency and the thermal state of the part, which 
are expected to enhance the model's overall performance 
and accuracy.
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