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A B S T R A C T

Architectured materials exhibit unconventional properties directly linked to their geometry. When composed of
slender elements, architectured materials can undergo large deformations exhibiting geometric non-linearities
through buckling or snapping behaviours of the cell walls. This can create a new pattern in the material with
different properties than the original structure. In this article, we present a review of methods for studying
pattern generating architectured materials caused by elastic instabilities. We start by reviewing the relevant
studies on a classical example : hexagonal honeycombs under compression. We highlight their importance
in identifying the underlying bifurcation phenomenon and their contributions to the elaboration of methods
for studying mesoscopic (unit-cell length) pattern changes in architectured materials. We then exhaustively
review the methods and tools used up to now to study the post-bifurcated behaviour of such materials subject
to elastic instabilities.

1. Introduction

Challenges faced by modern engineering have pushed the limits of
materials science and called for a new class of material to be created:
architectured materials. These materials, sometimes called architected
or even hybrid materials, were conceived to fulfill the increasingly de-
manding requirements of engineering applications when conventional
bulk materials could not be used (Ashby and Bréchet, 2003; Bouaziz
et al., 2008; Barthelat, 2015; Estrin et al., 2019). Over the past decades,
their development has been a growing field of interest (cf. Fig. 1),
especially due to the improvement and recent breakthroughs in addi-
tive manufacturing (Schaedler and Carter, 2016; Frenzel et al., 2017;
Surjadi et al., 2019; Maconachie et al., 2019; Kadic et al., 2019; Spiegel
et al., 2020; Mayer et al., 2020; Feenstra et al., 2021; du Plessis et al.,
2021; Christensen et al., 2015). They are constructed from carefully
chosen materials with a specific geometry, topology and morphology.
By precisely controlling these parameters, new unprecedented proper-
ties mainly related to the architecture of the material can be created or
enhanced, expanding the material-property space. As a consequence,
previously correlated material properties such as strength and density
can be separated and tailored for the required application.

It is commonly accepted to identify three scales in architectured
materials (Brechet and Embury, 2013; Barthelat, 2015; Poncelet et al.,
2018): the microscopic scale, describing the constitutive material’s

∗ Corresponding author.
E-mail address: rachel.j.azulay@gmail.com (R. Azulay).

(or materials’) microstructure; the macroscopic scale, describing the
architectured material as a whole; and the mesoscopic scale describ-
ing the constitutive material’s (or materials’) arrangement in space,
i.e. the architecture. The specificity of architectured materials is
that their novel properties mainly arise from its mesoscopic archi-
tecture as opposed to conventional materials where it arises from their
microstructure (Gibson and Ashby, 1982; Ashby and Bréchet, 2003;
Bouaziz et al., 2008; Dunlop et al., 2011; Barthelat, 2015; Bertoldi,
2017; Viard et al., 2020; Wang et al., 2023). The scale separation in
conventional and architectured materials is illustrated Fig. 2. Therefore,
in architectured materials, the mesoscopic architecture can be adjusted
to change the macroscopic material properties to suit a particular
application.

The development of metamaterials – which refer in this article to
architectured materials for photonic and phononic crystals (Lu et al.,
2009; Pennec et al., 2010), wave guides and noise reducing structures
– has resulted in transferable concepts for the design of the mesoscopic
architecture. More specifically the distinction made between passive
metamaterials, which have unchanged bulk properties when subject
to external stimuli, and active metamaterials, which undergo changes
to molecular arrangements, material phase or crystal microstructure
caused by external stimuli (Shaw and Hopkins, 2015; Pishvar and
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Fig. 1. Number of publications and citations containing ‘‘architectured materials’’ or ‘‘architected materials’’ from 2007 to 2022.
Source: Data from Web of Science.

Fig. 2. Difference in scale separation in conventional materials and architectured materials. (a) In conventional materials, there are two distinct scales: the macroscopic scale and
the microscopic scale, (b) In architectured materials, there are three distinct scales: like in classical materials there are macroscopic and microscopic scales but a third, intermediate
‘‘mesoscopic’’ scale exists of the order of the material’s cell size.

Harne, 2020) have inspired the design of shape-reconfigurable archi-
tectured materials. For example, when composed of slender elements,
architectured materials can undergo large deformations exhibiting ge-
ometric non-linearities through buckling or snapping behaviours of the
mesostructure (Bertoldi et al., 2017). Other mechanisms, out of the
scope of this article, such as origami and kirigami (Bertoldi et al., 2017)
can be used for shape-morphing architectured materials but they rely
on kinematics, whereas elastic instabilities take into account mechani-
cal notions such as force or internal stress. In a large majority of cases,
buckling or snapping are considered failure phenomena to be avoided
but it is not necessarily catastrophic as stable post-buckling behaviours
can be attained. The first study to observe such mesoscopic (unit-
cell) post-buckling in architectured materials was conducted by Papka
and Kyriakides (1994). The authors noticed a new localised pattern,
presented Fig. 3(a) caused by periodic buckling of the cell walls. The
pattern was then stabilised in the material by Mullin et al. (2007) who
observed uniform pattern transformations throughout the specimen
generated by elastic instabilities for an elastomer composed of a square
array of holes under compression (see Fig. 3(b)).

Later on, this phenomenon has been proved useful for controlling
wave propagations as Bertoldi and Boyce (2008) demonstrated that
mechanical deformation could be used to control the band structure of
an elastomer composed of square arrays of circular holes and hexagonal
arrays of circular holes. Shan et al. (2014) showed that for a honey-
comb which exhibits three distinct patterns for three distinct boundary

conditions, the wave propagation properties are entirely different, be-
having like four distinct materials (one undeformed and three patterns).
In both cases compressing the material removes certain band gaps,
shifts others and create new ones which did not exist for the initial
structure. To illustrate this phenomenon, the results from Shan et al.
(2014) are presented Fig. 4. Furthermore, the study conducted by Shim
et al. (2015) characterised the link between the change in material
properties to the amount of deformation of the structure. Although this
paragraph has expanded on phononic applications, other applications
of patterning include modifying the material’s Poisson ratio, effective
negative swelling ratio or chirality (Bertoldi et al., 2017).

There exists multiple control strategies for triggering shape-recon-
figuration in architectured materials. Mechanical loading is the most
commonly found stimuli in the literature (Li et al., 2021; Fang et al.,
2018; Overvelde et al., 2017, 2016; Babaee et al., 2016; Chen et al.,
2014; Yang et al., 2018; Shang et al., 2018; Blees et al., 2015; Song
et al., 2015; Neville et al., 2016; Mullin et al., 2007; Bertoldi et al.,
2008) but swelling has also been investigated and seems to be a
promising approach for triggering pattern switches (Kang et al., 2013;
Wei et al., 2020; Curatolo, 2018; Turcaud et al., 2011; Harrington et al.,
2011; Guiducci et al., 2014, 2015, 2016; Le Duigou et al., 2019, 2021;
Liu et al., 2016). Other, less common methods which include the use of
magnetic fields (Danas et al., 2012; Psarra et al., 2017; Lefèvre et al.,
2017; Liu et al., 2019; Psarra et al., 2019), temperature (Qu et al., 2017;
Wang et al., 2016), electrochemical stimuli (Xia et al., 2019) and even



Fig. 3. Localisation and stabilisation of pattern formation (a) Localisation bands following localised pattern formations in polycarbonate circular-celled honeycomb, from Papka
and Kyriakides (1999a); (b) Homogeneous pattern formation in an elastomeric specimen, from Mullin et al. (2007) .

Fig. 4. Adapted from Shan et al. (2014) : For each mode, comparison between the numerical dispersion relations (left) and the experimental frequency response functions (right)
of the system obtained for different values of the loading path angle 𝜃. (a) Undeformed configuration; (b) Biaxial load; (c) Equibiaxial load; (d) Uniaxial mode.

actuation (Song et al., 2016; Shaw and Hopkins, 2015) have been suc-
cessfully experimented. Additionally, a large number of experimental
studies have proven that the geometric parameters of the mesostructure
along with its constitutive material have a significant influence on the
post-buckling behaviour of the architectured material (Overvelde et al.,
2012; Hu et al., 2013; He et al., 2017; Gao et al., 2018; Combescure
et al., 2016; Bertoldi and Boyce, 2008; He et al., 2018).

A major finding from the study of these types of architectured
materials is that the new pattern may need more than the original
unit cell to be described as buckling of the cell walls may occur at a

larger wavelength than the initial geometric unit cell (Geymonat et al.,
1993; Overvelde and Bertoldi, 2014; Hoyle, 2006). This creates addi-
tional difficulties that need to be taken into account when modelling
architectured materials as thorough investigations, which must include
a possible change in pattern periodicity, are necessary before modelling
their behaviour under compression.

Instability-induced pattern generation in architectured materials
involves complex mechanisms and is conditioned on a wide range
of parameters. Consequently, this intricate behaviour has led to the



Fig. 5. Pattern changes for a hexagonal arrangement of circular holes. The 𝑥 axis runs horizontally and the 𝑦 axis vertically. (a) Undeformed configuration, (b) Uniaxial compressed
vertically, (c) Biaxially compressed with a 1:3 ratio, (d) Equibiaxially compressed.
Source: Adapted from (Papka and Kyriakides, 1999a).

development of methods, all interdependent, for modelling the prin-
cipal path, the bifurcation point and the post-bifurcated pattern. These
specific and very effective models will be presented in detail in this
review. In the first part of the article, we will present an extensively
studied example of such materials, the honeycomb lattice, as studying
this architecture has been the starting point of many theoretical and nu-
merical approaches. In the second part, we will develop on the existing
methods which model mesoscopic pattern generation in architectured
materials.

2. Historic example: 2D hexagonal honeycombs under compres-
sion

Hexagonal honeycombs subject to in-plane crushing have been ex-
haustively studied for the past 40 years due to their wide variety of
applications (Gibson and Ashby, 1982; Zhang et al., 2015). We present
here a chronological review of the behaviour of these structures as each
contribution has played a key role in understanding the mechanisms
and setting the theories for studying architectured materials under
compression. The regular honeycomb structure exhibits both distinct
pattern changes for different loading conditions and a change in period
after pattern transformation takes place.

Many studies on the in-plane compression of hexagonal honeycombs
have been carried out since the 1980s (Gibson and Ashby, 1982; Guo
and Gibson, 1999; Chung and Waas, 2002). Nevertheless, the first
study to mechanically characterise and explain the in-plane compres-
sive response of hexagonal honeycombs was conducted by Papka and
Kyriakides (1994). Their experiments aimed to be as simple as possible
to fully dissociate any biasing effects such as bi-axial loading, inertia
or any three-dimensional effect which may alter their characterisation.
They performed quasi-static compression tests on 9 rows by 6 columns
aluminium hexagonal cell specimens under displacement control and
obtained the well-known stress–strain curve for cellular solids (Gib-
son and Ashby, 1988). The observed behaviour is divided into three
parts: first, the sample undergoes an initial high stiffness regime which
the authors associated to a stable uniform elastic deformation in the
specimen. Then a plateau stress regime appears where the material
behaves as if it had zero stiffness. During this phase, both collapsed and
uncollapsed cells coexist, and the collapse phenomenon propagates row
by row until the final regime, when all the cells have collapsed and the
response becomes stiff again, now due to densification. Coupled with
numerical simulations, the authors established the connection between
the existence of a bifurcation point on the principal loading path and
the instant when the specimen begins to collapse.

The same authors (Papka and Kyriakides, 1998) conducted a second
experiment, much like their first, for studying the uniaxial compression
a hexagonal arrangement of 15 × 10 polycarbonate circular cells.
This specific polymeric material was chosen to study the compres-
sive response and crushing behaviour of a rate-dependent specimen.
The results showed the same overall response as their previous study
with three distinct regimes. It was found that the specimen required
more compressive stress to trigger the initial instability when the

displacement rate increased. Their experiments were coupled with full-
scale numerical analyses which confirmed the method previously used
in Papka and Kyriakides (1994) and proved the accuracy at which the
behaviour of these materials can be predicted.

Having gained this insight, Papka and Kyriakides (1999a,b) went
deeper into understanding the in-plane crushing of honeycombs by con-
ducting a more extensive study to characterise their biaxial compressive
behaviour. This time, the specimens were composed of a hexagonal
arrangement of 18 × 21 polycarbonate circular cells. As they needed to
test the response of their specimen under very large displacements, they
custom built a testing device specifically designed for the biaxial com-
pression of low density cellular materials. Their results confirmed their
previous work concerning uniaxial compression. After testing multiple
biaxial loads, three distinct patterns and mechanisms were identified:
Mode I, a shear-like mode obtained when the specimen is compressed
uniaxially, Mode II, which appears when biaxially compressed with a
ratio of 3 and Mode III, a flower-like mode obtained for equibiaxial
compression, cf Fig. 5.

The second part of the study consisted in a full-scale finite element
analysis of the specimen under several biaxiality ratios. For the sake of
calculation resources, they reduced the size of their numerical specimen
but still obtained results in accordance with their experimental results.
They concluded that the boundary condition imposed on the specimen
influence the critical load necessary to attain the onset of instability but
may not have an influence on the pattern generated when the instability
is reached (Papka and Kyriakides, 1999a).

From these experiments, came the necessity of elaborating a method
to determine the bifurcation point for cellular solids. Triantafyllidis and
Schraad (1998) conducted a hybrid analytical and numerical analysis
of the failure surfaces in aluminium honeycombs of infinite size. The
authors tested their honeycomb for a specified ratio of principal stresses
and certain load orientations in both finite and infinite media. The
specimen being subject to a quasi-static compression, it satisfies the
equations for static equilibrium and its behaviour is governed by them.
As a result, the authors defined the bifurcation point as a loss of unique-
ness for the solution, in the macroscopic stress–strain space, satisfying
the equilibrium equations. In addition, the experiments conducted on
the compression of hexagonal honeycombs showed that the patterns
formed may occur on more cells than the initial unit cell. To take this
into account and consider the appropriate unit cell for pattern transfor-
mation, the instabilities were investigated at both the macroscopic and
mesoscopic scale by applying Bloch’s Theorem at boundary nodes, as
first proposed by Geymonat et al. (1993). The method is explained in
detail in Section 4 which reviews all methods used for determining the
post-bifurcated solutions of a structure.

For design purposes, researchers were interested in understanding
and anticipating the patterns obtained for hexagonal honeycombs.
The work by Ohno et al. (2002) numerically investigates the under-
lying mechanism for pattern generation in infinite specimens. The
authors proposed a homogenisation framework and criterion for the
infinite structure in order to determine the onset of bifurcation. For
their analysis, they examined a 2 × 2 unit cell which corresponds to
the mesoscopic pattern wavelength observed in experimental studies.
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Fig. 6. (a) Undeformed hexagonal honeycomb, (b–d) Adapted from (Ohno et al., 2002): Identified modes for a hexagonal honeycomb under compression. (b) Mode I — uniaxial
compression, (c) Mode II — Biaxial compression, (d) Mode III — Equibiaxial compression. (e–h) Adapted from (Combescure et al., 2020): Identified modes for a circular-celled
honeycomb under compression. The coloured walls indicate the minimum number of cells necessary to describe the pattern. (e) Undeformed hexagonal honeycomb; (f) Mode I —
uniaxial compression; (g) Mode II — Biaxial compression; (h) Mode III — Equibiaxial compression.

Multiple Cauchy stress compression ratios were numerically analysed
and mesoscopic instabilities were found for all loading paths. They
identified the bifurcation point as being a symmetric bifurcation point,
i.e. typical pitchfork shaped bifurcation branch, explained by the high
degree of symmetry in the structure. Their analysis concluded on the
existence of three types of bifurcation points, one for each distinct pat-
tern, which were all obtained numerically. Simple bifurcation points,
where only one eigenvalue of the tangent stiffness matrix becomes zero
at the critical load, exist when the compressive stress is transferred
to only one direction of the cell walls. Double and triple bifurcation
points, for which two or three eigenvalues of the tangent stiffness
matrix simultaneously become zero at the critical load, exist when two
directions of the cell walls are compressed. The authors also found that
the pattern generated correspond to two or three linear combinations of
the simple mode for double and triple bifurcation points respectively.

Continuing this work, Okumura et al. (2002) aimed to shed light
on which mesoscopic buckling modes, or patterns, are experimentally
observed. The authors performed macroscopic and mesoscopic stability
analyses for stress and strain controlled of boundary conditions on
the same 2 × 2 unit cells as in Ohno et al. (2002). The mode was
considered stable if the unit cell internal energy was minimal compared
to the other possible modes. They mapped the buckling modes under bi-
axial compression for macroscopic stress and strain control and found
there were major differences for the two different boundary conditions,
especially concerning the flower-mode. More specifically for Mode III,
the authors find it to be mesoscopically stable for macroscopic strain
control and unstable when controlling macroscopic stress. The authors
conclude on the macroscopic stability of the specimen but the reasons
for this seem to require further investigations according to Combescure
et al. (2016).

The existence and stability of the three bifurcation modes were fur-
ther investigated by Combescure et al. (2016). The authors performed a
numerical analysis on the influence of the loading device on the stabil-
ity of the infinite hexagonal honeycomb. In their work, they compared
three stability criteria: Bloch Wave stability for mesoscopic stability,
loss of rank-one convexity for macroscopic stability and a third ad
hoc criterion which evaluates the positive definiteness of the second
derivative of the structure’s energy. In their article, the flower-mode is

discussed more in detail than the other two, as previous conclusions
concerning the stability of this pattern were not unanimous. To help
solve the highly symmetric stability and post-buckling analysis, ele-
ments from group theory were used to reduce the solution space and
guide the solver. With the help of Bloch wave analysis, Combescure
et al. (2016) computed the bifurcation point and the post-buckling
stability analysis for every mesoscopic wavelength under three types
of boundary conditions: displacement control, dead load Biot stress
control, and live load pressure control. For each of these configurations,
the equilibrium equations are solved by a branch-following algorithm
and the bifurcation point is identified as the instant the solution loses
its uniqueness. Each bifurcation point is observed to break up the
symmetry of the original structure by increasing the size of the pattern
unit cell. Both Mode I and II present mesoscopic and macroscopic
stability. Mode III was found mesoscopically stable under displacement
controlled loads but macroscopically unstable for the infinite specimen.
Their numerical analysis pinpointed the dependence of the macroscopic
loading device on the stability of the bifurcated paths. In addition they
explained the reason for experimentally observing mode III on finite-
sized specimens. The authors found the mode to be stable for large
finite wavelengths, in particular for the wavelengths corresponding to
the size of the experimental specimen. Furthermore, it was found that
the ad hoc stability criterion is insufficient to conclude on the stability
of the structure.

Until recently, most theoretical analyses were performed on hexag-
onal honeycombs but very few on hexagonal arrangements of circular-
celled honeycombs. Combescure et al. (2020) decided to analyse the
stability and post-buckling analysis of circular cell honeycombs for both
square and hexagonal arrangements. The infinite-sized specimen was
loaded parallel or at an angle to the axes of orthotropy for different
constituting materials of the cell walls. For their analysis, the same
theories and methods employed in Combescure et al. (2016) were
used and they observed identical behaviour for the hexagonal matrix
of circular cells and hexagonal cells, shown Fig. 6. The authors also
found that for square arrangements, the bifurcated mode is never
macroscopically stable therefore never creates any pattern.

Other buckling pattern, distinct from the three modes presented
before, have been experimentally observed for surface-attached honey-
comb structures (Kang et al., 2013). By binding the cellular structure to



Fig. 7. Buckling-induced reversible pattern formation in a supported macroscale honeycomb lattice. The ratio length over the height of a wall 𝑙∕ℎ of the honeycomb struts is
modified between (b) and (c) to obtain different buckled patterns (a) Undeformed honeycomb (b) Achiral buckled configuration (𝑙∕ℎ = 2) (c) Chiral configuration (𝑙∕ℎ = 3.17).
Source: Adapted from Kang et al. (2013).

a rigid substrate, the authors numerically and experimentally showed
that a higher buckling mode could be reached. In their experiments,
they tuned the modes by changing the thickness over length ratio (𝑡∕𝑙)
and the length over the height of a wall (𝑙∕ℎ), also called aspect ratio
of the plate. Even if they used swelling to experimentally trigger the
instabilities, they also specified that mode could be reached under in-
plane compressive loads. This finding is particularly interesting as the
patterns reached by the authors preserves the translational symmetry
of the structure, unlike the previously discussed modes (see Fig. 7).

Studying hexagonal honeycombs under in-plane compressive loads
has been the prelude to many, more general methods for studying peri-
odic architectured materials due to the complex behaviours it is able to
exhibit simultaneously: multiple buckling modes, change in periodicity
and stability of its buckled configurations. In the following section, we
will review the methods used for modelling elastic buckling in periodic
architectured materials. We highlight that even if the methods were
employed on a 2D architecture, they are not limited to this and are
also valid for 3D architectured materials.

3. Modelling elastic buckling in architectured materials

Modelling pattern generating mechanical structures is not limited to
the field of architectured materials. Of the wide range of systems which
exhibit such buckling behaviour, all have in common that their special
feature can be explained by bifurcation theory. In this section, we will
first present concepts and methods relative to bifurcation theory and
its connection to the study of shape-morphing architectured-materials.
Then, we will present numerical methods for predicting the material’s
behaviour and the creation of bifurcation modes.

Throughout this article, scalars, vectors and tensors will be re-
spectively denoted by 𝐴, 𝐁 and 𝐂. Time derivatives will be written
𝐱̇.

3.1. Equilibrium and stability

Compressing architectured materials appears to be an initially ho-
mogeneous deformation which, at a certain critical point, becomes
heterogeneous and a regular deformation pattern emerges. This is a
perfect illustration of a phenomenon which is explained by bifurcation
theory. At a critical load level, the solution the system’s governing
equations ceases to be unique and stable, creating a bifurcation point on
the ‘‘principal’’ loading path. This generates drastic changes in the sys-
tem, generating alternative, ‘‘bifurcated’’ deformation patterns (Bigoni,
2012) as observed experimentally in hexagonal honeycomb structures.

Bifurcation and stability analyses are closely related, especially con-
cerning engineering applications. Therefore bifurcated solutions will
only be physically observed if the bifurcated path is stable. In the
following paragraphs, we present the general theory for determining
bifurcation points and stable bifurcation paths for quasi-static compres-
sion.

Fig. 8. Illustration of the system’s configurations. M is a point in the elastic body .

3.1.1. Equilibrium configurations
The first step for finding bifurcation points is to calculate the prin-

cipal equilibrium path. For solving the system’s governing equations,
a hypothesis concerning the initial conditions needs to be formulated.
Therefore, we suppose the equilibrium equation to be unique and stable
in some neighbourhood of the initial stress-free configuration.

Two equivalent methods exist for finding equilibrium configura-
tions: the principle of virtual power applied in Bertoldi et al. (2008)
and the principle of total potential energy used by Combescure et al.
(2016). We will present both, which are completely equivalent.

First we consider an elastic body  occupying the region 𝛺 with
surface area 𝛤 . We define the reference coordinates of the initial
undeformed configuration 𝛺0 as 𝐗, and the current coordinates 𝐱(𝐗, 𝐭)
at any time 𝑡 using Lagrangian formulation (cf. Fig. 8).

The deformation gradient is given by:

𝐅(𝐗, 𝑡) = 𝜕𝐱
𝜕𝐗

𝐹𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑋𝑗

, (𝑖, 𝑗) ∈ 𝑁 ×𝑁
(1)

And 𝐽 = 𝑑𝑒𝑡(𝐅).
The displacement 𝐮 is defined by:

𝐮(𝐗, 𝑡) = 𝐱(𝐗, 𝑡) − 𝐗 (2)

The Cauchy stress tensor 𝝈 is defined by:

𝝈 ⋅ 𝐧𝑑𝛤 = 𝐭𝑑𝛤 (3)

With 𝐧 the unit normal vector to a surface element 𝑑𝛤 in the current
configuration and 𝐭 the vectorial stress on a plane of normal 𝐧.



Nanson’s formula ties 𝐧 the unit normal to a surface element 𝑑𝛤 in
the current configuration to 𝐍 the unit normal to a surface element 𝑑𝛤0
in the initial configuration:

𝐧𝑑𝛤 = 𝐽𝐅−𝑇𝐍𝑑𝛤0 (4)

With 𝛤0 the initial surface of the undeformed body . By combining
Eqs. (3) and (4), we obtain the first Piola–Kirchhoff stress tensor:

𝐒 = 𝐽𝝈𝐅−𝑇 (5)

Principle of virtual power
From the definitions presented above, we state the principal of vir-

tual power which defines the equilibrium configuration of our system.
In full Lagrangian description we have:

−∫𝛺0

𝐒 ∶ 𝐅̇ 𝑑𝛺0 +

[

∫𝛺0

𝐽 𝐟 ⋅ 𝐱̇ 𝑑𝛺0 + ∮𝛤0

𝑑𝛤
𝑑𝛤0

𝐭 ⋅ 𝐱̇ 𝑑𝛤0

]

= 0 (6)

The principle provides the Lagrangian form of equilibrium:

𝑑𝑖𝑣(𝐒) + 𝐽 𝐟 = 0 (7)

with 𝐟 the body forces acting on 𝛺.

Principle of minimum total potential energy
The principle of minimum total potential energy states that if a body

is in equilibrium, the admissible displacement field 𝐮𝟎 which minimises
the total potential energy  of all admissible displacement fields 𝐮
corresponds to the equilibrium solution. Therefore, the equilibrium
configurations are found by setting to zero the first derivative of the
total potential energy  with respect to the displacement 𝐮. Such first
derivative written  ,𝐮 is a linear operator on R𝑁 , 𝑁 the total number
of degrees of freedom of the structure. Such a derivative is the ‘‘Frechet
derivative’’ defined by:

lim
‖𝛿𝐮‖→0

(𝐮 + 𝛿𝐮) − (𝐮) −  ,𝐮 𝛿𝐮
‖𝛿𝐮‖

= 0 (8)

𝛿𝐮 can be fixed in R𝑁 such that 𝛿𝐮 = 𝜖𝐝 with 𝐝 a unit vector and
𝜖 → 0. Eq. (8) becomes:

 ,𝐮 𝐝 =
[

𝜕(𝐮 + 𝝐𝐝)
𝜕𝜖

]

𝜖=0
(9)

The system is therefore at an equilibrium when:

 ,𝐮 𝛿𝐮 = 0, ∀𝐮 ∈ R𝑁 (10)

The total potential energy of a body is the sum of the strain energy
stored in the body ( ) and () the work done by external forces.

 =  +  (11)

The strain energy stored in the body ( ) is established using strain
energy density functions (𝑊 ).

 = ∫𝛺
𝑊 (𝐅) 𝑑𝛺 (12)

For small strains the energy density function is well established, but
for large strains and large deformations the density functions depend
on the choice of the constitutive material’s behaviour model.

The following equation gives the total work done by applied body
force 𝐟 and surface force 𝐭.

 = −
[

∫𝛺
𝐟 ⋅ 𝐮 𝑑𝐱 + ∮𝛤

𝐭 ⋅ 𝐮 𝑑𝛤
]

(13)

Therefore:

 = ∫𝛺
𝑊 (𝐅) 𝑑𝛺 −

[

∫𝛺
𝐟 ⋅ 𝐮 𝑑𝐱 + ∮𝛤

𝐭 ⋅ 𝐮 𝑑𝛤
]

(14)

As a result, the equilibrium configurations satisfy:

 ,𝐮 𝐝 = ∫𝛺
𝑊 ,𝐮 (𝐅)𝐝 𝑑𝛺 −

[

∫𝛺
𝐟 𝐝 𝑑𝐱 + ∮𝛤

𝐭 𝐝 𝑑𝛤
]

= 0 (15)

The equilibrium configuration helps identify critical points, de-
fined as the instant the equilibrium solution loses its uniqueness. Crit-
ical points are classified into two categories: limit load points and
bifurcation points, as depicted Fig. 9.

3.1.2. Stability of an equilibrium path
After defining the equilibrium criterion, we are now interested in

assessing the stability of bifurcated paths.
Architectured materials are considered as conservative systems with

finite degrees of freedom. Therefore, the stability criterion to satisfy is
the one stated by Lejeune-Dirichlet (Rouche et al., 1977). Considering
the system described by the equilibrium equations presented above, the
system is necessarily and sufficiently stable in an equilibrium state 𝐮𝐞
if:
[

( ,𝐮𝐮 𝛿𝐮)𝛿𝐮
]

𝐮=𝐮𝑒
> 0 (16)

With  ,𝐮𝐮 a bilinear operator defined similarly to Eq. (9), 𝐝,𝐡 unit
vectors of R𝑁 and 𝜖, 𝜅 ∈ R:

( ,𝐮𝐮 𝐝)𝐡 =
[

𝜕2(𝐮 + 𝝐𝐝 + 𝜿𝐡)
𝜕𝜖𝜕𝜅

]

𝜖=𝜅=0
(17)

3.2. Full-scale simulations and finite element analysis

For studying architectured materials, part of the community has
been relying on full field finite element analyses to capture the instabil-
ity observed in experimental results. We present here the formulation
of instabilities in finite element analysis and the methods used for
buckling and post-buckling analyses.

3.2.1. Finite element formulation of instabilities
Computing instabilities and its non-linear effects is a key aspect of

structural analysis. The existence of simultaneous solutions after the
onset of instability has required specific algorithms to be implemented
which detect both bifurcation points and limit points. We present here
the finite element considerations for the specific field of architectured
materials. The results are of use in static analyses and solely in the
elastic domain of the constitutive material.

For discrete systems under single parameter loads, the equilibrium
state is described by:

𝐊𝑇 𝛥𝐔 = 𝛥𝜆 𝐏 (18)

where 𝐊𝑇 the system tangent stiffness matrix, 𝐏 the loading vector and
𝛥𝐔, 𝛥𝜆 are the displacement vector increment and proportional loading
scalar increment, respectively.

Unstable behaviour can either be caused by the simultaneous exis-
tence of multiple equilibrium solutions for a given load, or a general
loss of stiffness in the structure when loaded. In finite element for-
mulation for hyperelastic materials, the computation of critical or
instability points is analogous to finding the instant the tangent stiffness
matrix becomes singular. The finite element formulation for Eq. (10) is
equivalent to the criterion: 𝑑𝑒𝑡(𝐊𝑇 ) > 0.

This corresponds to a positive definite tangent matrix 𝐊𝑇 . The
general method for checking on the positive definiteness of this matrix
is achieved by either computing its determinant and assessing its sign or
checking a change of sign in the diagonal elements of the diagonalised
matrix (Wriggers, 2008). The stability condition on the determinant
of the tangent matrix can be re-written by studying the standard
eigenvalue problem:
(

𝐊𝑇 − 𝛼𝑖𝐈
)

𝝎𝑖 = 𝟎 (19)

With

𝑑𝑒𝑡(𝐊𝑇 ) =
𝑛𝑑𝑜𝑓
∏

𝑖=1
𝛼𝑖 (20)

where 𝛼𝑖 are the eigenvalues and 𝜔𝑖 the eigenvectors of 𝐊𝑇 .



Fig. 9. Schematic representations of critical points.

We point out that in conservative systems, the tangent matrix is
symmetric (Bufler, 1993). Hence, using the spectral decomposition the
tangent matrix can be decomposed as follows: 𝐊𝑇 = 𝐖 𝐃𝛼 𝐖𝑇 , where
𝐖 is the orthogonal matrix composed of the eigenvectors 𝝎𝑖 of 𝐊𝑇 and
𝐃𝛼 , the diagonal matrix of eigenvalues 𝛼𝑖.

As stated in Section 3.1, the previous criterion identifies two types
of instabilities: limit load points, and bifurcation points. The distinction
between both types of instabilities is made by computing the eigen-
vectors associated with the eigenvalue analysis. From the eigenvalue
analysis computed in Eq. (19) the instability points are defined as
follows and illustrated Fig. 9:

𝝎𝑇
𝑖 𝐏

{

= 0 if bifurcation point
≠ 0 if limit point

(21)

Additionally, when dealing with highly symmetric systems such
as honeycombs, as discussed in Section 3, bifurcation points can be
multiple, meaning that more than one eigenvalue becomes null for
the same loading parameter. Assessing the sign of the determinant, in
this case, can lead to missing a bifurcation point since the determinant
will not change its sign when an even number of eigenvalues change
sign simultaneously. It is therefore highly recommended, when working
with such symmetric systems, to work with a criterion based on the sign
of individual eigenvalues rather than with the sign of the determinant.

3.2.2. Buckling and post-buckling analyses
Buckling in architectured materials can be predicted in finite ele-

ment analysis by performing buckling analyses. This function is avail-
able in most finite element (FE) software to estimate the critical buck-
ling load and associated buckled geometry of the structure. In most

engineering applications, a linear buckling analysis is sufficient to
check design requirements, but if a more complex problem involving
material non-linearity, multiple simultaneous buckling modes or an
unstable post-buckling response arises, a more complex non-linear
buckling analysis is necessary (Ellobody, 2014). In this section, we
present the general framework used by most FE codes for computing
the analysis, which corresponds to solving an eigenvalue problem for
the stiffness matrix.

The eigenvalue problem is obtained by splitting the tangent stiffness
matrix into three distinct parts:

𝐊𝑇 = 𝐊𝐿 +𝐊0 +𝐊𝜎 (22)

With 𝐊0 the part of the stiffness matrix related to the initial defor-
mations, 𝐊𝐿 the linear stiffness matrix and 𝐊𝜎 the stress stiffness matrix
comprising geometric non-linearity effects.

As specified in the previous paragraph, the structure is stable only
if the stiffness matrix 𝐊𝑇 is positive definite. Therefore, the onset of
instabilities is computed by searching for the loads when 𝐊𝑇 is singular.
The problem becomes finding non-trivial incremental displacement
vectors 𝛥𝐔 (Waszczyszyn et al., 2013; Reddy, 2014) solutions to:

𝐊𝑇 𝛥𝐔 = 𝟎 (23)

A linear buckling analysis supposes that the displacement and stress
states are completely independent close to the instability point. It
often the case for beam and shell structures where the unstable be-
haviour does not depend on the membrane states (Wriggers, 2008).
Therefore Eq. (22) is transformed into the following eigenvalue prob-
lem (Waszczyszyn, 1983; Nagy, 1979):
[

𝐊𝐿 + 𝜆
(

𝐊0 +𝐊𝜎
)]

𝜱 = 𝟎 (24)



Fig. 10. Difference between primitive and unit cells when considering the bifurcation of an infinite 2D honeycomb medium.

If the influence of the initial displacement state can be neglected,
the problem is simplified by setting 𝐊0 = 0. The eigenvalue problem to
solve is then:
[

𝐊𝐿 + 𝜆𝐊𝜎
]

𝜱 = 𝟎 (25)

Solving Eq. (24) or Eq. (25) yields the critical load parameter 𝜆𝑐𝑟
and its corresponding eigenvector 𝛷 describing the buckling ‘‘shape’’,
more commonly called ‘‘mode’’. Once the buckling load and mode
have been calculated, an imperfection, in the shape of the buckling
mode, can be introduced in the geometry of the structure, helping
the solution buckle according to the previously identified mode. This
method makes it possible to study the post-bifurcated behaviour of
the structure (Nguyen, 2000; De Borst et al., 2012). Specific details
on the imperfection method are out of the scope of this article, but
more information can be found in De Borst et al. (2012), Budiansky
and Hutchinson (2003).

When dealing with more complex materials or structures which
exhibit any of the previously stated mechanisms (multiple simultaneous
buckling modes or an unstable post-buckling response), a more intricate
non-linear analysis is required for evaluating the critical load and
buckling mode of the structure.

Full-scale finite element analyses are very useful as a first approach
for studying buckling in architectured materials. In most engineering
applications, this type of analysis is enough to evaluate the post-
buckled configurations of the structure, and their associated behaviour.
Even if in most cases these methods are sufficient to assess the post-
bifurcated behaviour of structures, they show certain weaknesses for
more in-depth understanding of the bifurcation phenomena in architec-
tured materials. For instance, most finite element methods are designed
to miss the bifurcation point, as stopping a calculation step exactly on
the bifurcation point generates an impossible equation to solve with
a non-invertible tangent stiffness matrix. As a result, a more specific
field studying bifurcations in architectured materials has emerged, pre-
senting more specialised techniques from the broad field of bifurcation
theory to solve such problems. These more precise studies provide
an opening for the development of a design tool for architectured
materials.

3.3. Bifurcation theory on infinite periodic architectured materials

Modelling the mechanical response of architectured materials is of
major interest, especially for implementing their use in engineering
applications. To do so, shape-reconfigurable architectured materials of
infinite medium have been investigated. One of the major difficulties
when studying these materials is that their buckled patterns may need
a higher number of cells than the initial primitive unit cell to be
described. This complicates the elaboration of homogenisation frame-
works capable of modelling these materials as this phenomenon need to

be taken into account. Indeed, the Representative Volume (or Surface)
Element (RVE) may not be the one described by the undeformed unit
cell. Another difficulty arises in determining the length-scale of the
buckled pattern. The criterion for stability needs to be adapted for
studying the mesoscopic scale (buckling at the cell length-scale) and
macroscopic stability.

In this section we will first discuss the framework used for modelling
periodic architectured materials of infinite medium. Then we will
present the method and criteria for finding the bifurcation point on a
loading path. Finally we will explicit how to compute the post bucking
analysis of two-dimensional architectured materials.

3.3.1. Infinite periodic medium
The description of 2D shape-morphing lattice materials coincide

with the one described in the work of Triantafyllidis and Schraad
(1998) for rate-independent solids subjected to equi-biaxial compres-
sive loads. It is based on the use of a unit cell and uses periodicity on its
boundaries to describe the infinite medium. The major difficulty in pat-
tern changes is, as Geymonat et al. (1993) reported in their work, that
the eigenmodes of microscopic bifurcation can have a longer periodic
length than the geometrical unit cell for infinite periodic solids. More
specifically, if the lattice material has an initial geometric periodicity
𝛼, the initial microscopic deformation satisfies the 𝛼-periodicity up to
a critical point where the periodicity may break down which creates a
pattern on larger amount of cells than 𝛼. As a consequence, a unit cell of
suitable size needs to be considered in order to capture the wavelength
corresponding to the instability of interest. If a unit cell does not have
an appropriate size, the instability might be missed by the computation.

When working with an infinite periodic medium, the choice of the
periodic unit cell describing the geometry is not unique. In crystallog-
raphy, where periodic infinite systems are very common, 2 types of
unit cells are classically used : the primitive unit-cell which allows to
reproduce the infinite structure using the smallest possible periodicity
vectors, and an 𝑛×𝑚 unit-cell composed of 𝑛 primitive unit cells along
the first periodicity vector and 𝑚 along the second (cf. Fig. 10).

As stated previously, for modelling the infinite 2D periodic struc-
ture, periodic boundary conditions are applied at boundary nodes
according to the lattice periodicity vectors. Like in Elliott et al. (2006b)
or (Combescure et al., 2016), we present the Lagrangian formulation for
Cauchy–Born kinematics. Hence the deformed position 𝐱 of a node 𝑖 is
described by:

𝐱𝑖 = 𝐅(𝐗𝑖 +Ξ𝑖), 𝑖 ∈ N (26)

Where 𝐅 is the macroscopic deformation gradient described in the next
section, 𝐗𝑖 is the reference position of node 𝑖 and Ξ𝑖 is the internal
periodic fluctuation, corresponding to the mesoscopic displacements in
the unit-cell of node 𝑖, illustrated Fig. 11.



Fig. 11. Illustration of the decomposition in Eq. (26).

The displacement 𝐮 of a node 𝑖 is given by:

𝐮𝑖(𝐗, 𝑡) = 𝐱𝑖(𝐗, 𝑡) − 𝐗𝑖 (27)

Therefore:

𝐮𝑖 =
(

𝐅 − 𝐈
)

𝐗𝑖 + 𝐅Ξ𝑖 (28)

3.3.2. Equilibrium and stability of infinite periodic architectured materials
For periodic solids, the equilibrium criterion Eq. (7) or Eq. (15)

is adapted (Elliott et al., 2006b) to the description of the periodic
lattice presented in the previous paragraph : Two scales need to be
assessed, the macroscopic scale, represented by the deformation gra-
dient 𝐅 and the mesoscopic scale, represented by the internal periodic
fluctuation Ξ. The criterion can therefore be separated into two parts,
corresponding to the scale separation. The infinite periodic medium is
under stress-free equilibrium if the following conditions are satisfied
simultaneously:
𝜕(𝐅,Ξ)

𝜕𝐂
= 0,

𝜕(𝐅,Ξ)
𝜕Ξ

= 0 (29)

With 𝐂 = 𝐅𝑇𝐅 the right stretch tensor. Note that the use of the
derivative with respect to the right stretch tensor is required to avoid
cumbersome rigid body rotations in the equilibrium equations.

The scale separation also exists for assessing the structure’s sta-
bility. For studying macroscopic stability the commonly used energy
convexity condition, as described in Eq. (10), is used. This criterion
only gives information on the global behaviour of the infinite structure.
As a consequence, the information on if the instability is mesoscopic
or macroscopic cannot be identified. Elliott et al. (2006a) determined
an adjusted stability criterion to assess the structure’s mesoscopic and
macroscopic stability. For the body to be considered in a stable equi-
librium, its energy density should be rank one convex. In other terms,
its second derivative with respect to the deformation gradient should
be positive:

𝜕2
𝜕𝐅2

> 0 (30)

Eq. (30) gives a criterion for a loss of stability of the infinite periodic
architectured material with respect to macroscopic perturbations. If
only periodic perturbations are of interest, the following criterion can
be considered (Combescure et al., 2016):

𝜕2
𝜕Ξ2

> 0 (31)

This criterion will, however only predict instability for wavelengths
equal to the length of the unit cell used in the computation.

3.3.3. Pattern formation in infinite periodic architectured materials
Of interest here is determining the critical wavelength of the insta-

bility that generates the pattern of interest when architectured materi-
als are subject to compressive loads. We provide a review of the various
methods which have been employed for studying this phenomenon.

Eigenvalue analysis of RVE of increasing size
Much like the method presented for finite element analysis, the

mesoscopic stability of an infinite periodic honeycomb has been as-
sessed by computing successive eigenvalue analysis of RVEs of increas-
ing size (Bertoldi et al., 2008). With this method, the authors aimed to
capture the change in periodicity of the buckled pattern by iteratively
conducting the analysis. Each RVE, subject to the appropriate periodic
boundary conditions, undergoes an eigenvalue analysis for its corre-
sponding tangent stiffness matrix 𝐊𝑇 . For each iteration, the critical
buckling load 𝜆𝑐𝑟 is stored and compared with the other values obtained
for different RVE sizes. The wavelength of the buckling pattern is
obtained by finding the RVE size corresponding to the minimum of all
𝜆𝑐𝑟.

Even if this method is relatively easy to implement, it presents
significant drawbacks. It is impossible to compute an infinite amount
of eigenvalue analyses. Even if the buckling wavelength is generally
of the order of a few unit cells, some larger wavelengths which are
not computed may be missed. Finally, with this method, the finite
element tangent stiffness matrix computed gives information on 𝜕2

𝜕𝐮𝜕𝐮
and therefore does not separate macroscopic and mesoscopic scales.

Bloch Wave analysis
The Bloch wave criterion makes it possible to assess the stability of

the equilibrium configuration for bounded perturbations of all wave-
lengths (Elliott et al., 2006a; Andersen et al., 2021; Meaud and Che,
2017; Wilcox, 1977). The criterion is equivalent to testing the previous
eigenvalue analysis for all possible unit cells while only calculating on
the primitive geometrical unit cell (Geymonat et al., 1993; Bertoldi
et al., 2008). Bloch Wave Analysis on the primitive cell gives the
loading intensity at which the instability occurs and the new periodicity
of the structure.

Considering a lattice material with periodic lattice vectors 𝜶𝟏 and
𝜶𝟐 which may or may not be orthogonal. At the bifurcation point, any
space function 𝛹 must satisfy the periodic conditions for any point 𝐗:

𝛹 (𝐗 + 𝑙1𝜶𝟏 + 𝑙2𝜶𝟐) = 𝛹 (𝐗), (𝑙1, 𝑙2) ∈ Z2, (32)

Bloch’s theorem generalises these periodic boundary conditions and
states (Wilcox, 1977):

𝛹 (𝐗 + 𝑙1𝜶𝟏 + 𝑙2𝜶𝟐) = 𝛹 (𝐗) 𝑒[𝑖𝐤⋅𝐗], (33)

With 𝑖 the imaginary unit number, 𝐤 = 2𝜋 ⋅ (𝑘1𝜶̃𝟏 + 𝑘2𝜶̃𝟐) the eigen-
perturbation wave vector defined by the reciprocal lattice vectors 𝜶̃𝟏
and 𝜶̃𝟐 and 𝑘1 =

1
𝑙1

, 𝑘2 =
1
𝑙2

.
Applying Bloch’s theorem to eigen-perturbations for the equilibrium

configuration:

𝛿𝐮(𝐗 + 𝑙1𝜶𝟏 + 𝑙2𝜶𝟐) = 𝛿𝐮(𝐗) 𝑒[𝑖𝐤⋅𝐗], (34)

Bloch’s theorem does not determine the primitive unit cell per-
turbation 𝛿𝐮 as it depends on the wave vector 𝐤. Instead, it solves
an eigenvalue problem for all 𝐤 and calculates the eigenvalues 𝛬𝑖(𝐤)
associated with the eigenvectors 𝛿𝐮𝑖.

An equilibrium configuration is stable if the Bloch wave stability
criteria is satisfied:

𝑚𝑖𝑛 (𝛬𝑖(𝐤)) ∀𝑖 ∈ 𝑛𝑑𝑜𝑓 (35)

The critical wavelength of the bifurcated path is given by wave
vector 𝐤 and is associated with the lowest loading parameter which
leads to a null eigenvalue of the tangent stiffness matrix. Reverting back
to the original lattice, the wave vector 𝐤 gives the number of cells on
which the bifurcation takes place.



Fig. 12. Illustration of stability criteria : (a) Rank one convexity instability, (b) Primitive cell instability, (c) Bloch wave instability.

The Bloch wave analysis can be implemented in standard finite
element software by separating the real and imaginary parts of the
displacements into two separate tensors. However, it takes a lot of
computational resources since the eigenvalue analysis must be carried
out for all values of wave vector 𝐤 in its range of variation. However,
these computations are completely independent between one another
and could be easily parallelised. Furthermore, all these computations
take place on the smallest possible periodic unit cell (the primitive unit
cell) therefore limiting the computation cost even more. Finally, using
crystallography, the problem can be reduced to the first irreducible
Brillouin Zone (Combescure et al., 2016) thus limiting the range of
variation for the wave vector 𝐤.

Examples of bifurcated modes captured by the three criteria pre-
sented so far are proposed Fig. 12.

3.4. Group-theoretic bifurcation theory

In most cases, a bifurcation phenomena generates a loss of sym-
metry in the bifurcated path. Such bifurcation is referred to as a
‘‘symmetry-breaking bifurcation’’, as the symmetry of the bifurcated
path is often (Golubitsky et al., 1988; Ohno et al., 2002; Hoyle,
2006; Ikeda and Murota, 2010) less than the symmetry of the original
structure. When considering periodic architectured materials, both
rotational-type symmetries, i.e. point-group symmetries, and transla-
tional symmetries can be broken. The latter is noticed by a change in
the RVE shape and size before and after bifurcation. The mechanisms
of such pattern changes are subject to rules which can be explained by
group theoretic methods (Golubitsky et al., 1988; Hoyle, 2006; Ikeda
and Murota, 2010).

As of today, two procedures exist for finding the post bifurcation
behaviour of honeycombs. The first method is a rather theoretical
approach based on the Equivariant Branching Lemma (EBL) as first
described by Vanderbauwhede (1980). To our knowledge, this method
has only been used for simple point-groups and never applied in
this field of materials science. The second method, used for studying
the flower-like mode in Saiki et al. (2005) is based on a Lyapunov–
Schmidt–Koiter (LSK) decomposition of the system’s governing equa-
tions. After assessing the symmetry of the problem from a mathematical
standpoint, authors use LSK decomposition to determine the post-
bifurcated branches and the symmetry of the associated bifurcated
solution (Saiki et al., 2005; Ikeda and Murota, 2010; Combescure et al.,
2016, 2020).

The aim of this section is to present the second method in detail. It is
used in Saiki et al. (2005) to determine the nature of the flower patterns
which appear in honeycombs under equi-biaxial compression. The
structure’s behaviour is governed by a system of non-linear equilibrium
equations, as in Eq. (15), which can be rewritten, in the framework of
bifurcation theory (Hoyle, 2006), as:

 ,𝐮 (𝐮, 𝜆) = 𝐅(𝐮, 𝜆) = 0, 𝐅 ∶ R𝑁 × R ⟶ R𝑁 (36)

Where 𝐮 is the displacement vector of the system and 𝜆 the loading
parameter and the notation  ,𝐮 stands for the Fréchet derivative of the
system’s total potential energy.

The principal path is the set of solution points (𝐮0, 𝜆0) satisfying the
equilibrium Eq. (36) and passing through the point (0, 0). Along the
principal path, there can be critical points (𝐮𝑐 , 𝜆𝑐) at which the system’s
Jacobian matrix becomes singular. At these critical points, we can find
a set of basis vectors of {𝜼𝑖𝑐 , 𝑖 = 1,… , 𝑁} ∈ R𝑁 , spanning what is
called the kernel, or the null space  of 𝐉(𝐮𝑐 , 𝜆𝑐 ), satisfying:

𝐉(𝐮𝑐 , 𝜆𝑐 )𝜼𝑖𝑐 =  ,𝐮𝐮 (𝐮𝑐 , 𝜆𝑐 )𝜼𝑖𝑐 = 𝟎, ∀𝑖 = 1,… , 𝑚. (37)

Where 𝑚 ∈ N is the dimension of the kernel of 𝐉(𝐮𝑐 , 𝜆𝑐 ). Note that, in
the case of equilibrium of mechanical systems, the Jacobian matrix is
the tangent stiffness matrix.

The multiplicity of the critical point is equal to 𝑚, the number of null
eigenvalues of 𝐉(𝐮𝑐 , 𝜆𝑐 ) at the critical point. If the multiplicity is equal
to 1, not much needs to be done since the dimension of the kernel is
uni-dimensional and thus only one equilibrium branch stems from the
critical point. However, as soon as the multiplicity of the critical point
becomes larger, the question of finding the equilibrium paths that are
lines in a multidimensional kernel arises. In order to find the tangents
to these lines, Lyapunov–Schmidt–Koiter decomposition is employed as
follows.

The Lyapunov–Schmidt–Koiter decomposition method (Triantafyl-
lidis and Peek, 1992) is used to investigate the equilibrium around the
critical point (𝐮𝑐 , 𝜆𝑐 ). According to this method, the increment of the
displacement 𝛿𝐮 = 𝐮 − 𝐮𝑐 due to an increment in the load 𝛥𝜆 ≡ 𝜆 − 𝜆𝑐
is decomposed in two components: (i) one component ∑𝑚

𝑖 𝜉𝑖𝜼𝑖𝑐 , where
𝜉𝑖 is the projection of 𝛿𝐮 on 𝜼𝑖𝑐 , is on the kernel  of 𝐽 (𝐮𝑐 , 𝜆𝑐 ) and (ii)
the other component 𝛿𝐯 is in ⟂, i.e. orthogonal to the first, namely:

𝐮 = 𝐮𝑐 +
𝑚
∑

𝑖
𝜉𝑖𝜼𝑖𝑐 + 𝛿𝐯 𝛿𝐯 ∈ ⟂, 𝜉𝑖 ∈ R (38)

Therefore, the unknown displacement increment 𝛿𝐮 is in essence re-
placed by the equivalent set of unknowns (𝛿𝐯, 𝜉𝑖), 𝑖 = 1,… , 𝑚. Con-
sequently, the equilibrium Eq. (36) can be replaced by two sets of
equations in  and ⟂:

 ,𝛿𝐯 (𝐮𝑐 +
𝑚
∑

𝑖=1
𝜉𝑖𝜼𝑖𝑐 + 𝛿𝐯, 𝜆𝑐 + 𝛥𝜆)𝛿𝐯 = 0, ∀𝛿𝐯 ∈ ⟂ (39)

and

 ,𝝃𝒊 (𝐮𝑐 +
𝑚
∑

𝑖=1
𝜉𝑖𝜼𝑖𝑐 + 𝛿𝐯, 𝜆𝑐 + 𝛥𝜆)𝜼𝑖𝑐 = 0, ∀𝑖 = 1,… , 𝑚 (40)

By definition, the projected equilibrium equations in the space orthog-
onal to the kernel have a positive definite Jacobian matrix  ,𝛿𝐯𝛿𝐯, thus
the solution of Eq. (39) is smooth and unique in the neighbourhood
of the critical point, hence easy to determine. By focusing on the
equilibrium Eq. (40) in the kernel of the Jacobian matrix at the critical



Fig. 13. Schematic representations of LSK decomposition about the bifurcation point in the case of transcritical and pitchfork bifurcations. Left : representations of equilibrium paths in terms
of loading parameter and displacement amplitude; Right: representations of equilibrium paths in terms of loading parameter and bifurcation amplitude parameter.

point these equations can be expanded using a Taylor series expansion
about the critical point (𝐮𝑐 , 𝜆𝑐 ), or equivalently about (𝜉𝑖, 𝛥𝜆) = (0, 0) if
the expansion stays in the kernel:

0 = 𝛥𝜆 ,𝐮𝜆 𝐮𝑖 +
1
2

[ 𝑚
∑

𝑗=1

𝑚
∑

𝑘=1
𝜉𝑗𝜉𝑘𝑖𝑗𝑘 + 2𝛥𝜆

𝑚
∑

𝑗=1
𝜉𝑗𝑖𝑗𝜆

]

+ 1
6

[ 𝑚
∑

𝑗=1

𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝜉𝑗𝜉𝑘𝜉𝑙𝑖𝑗𝑘𝑙 +⋯

]

+⋯ (41)

where 𝑖𝑗𝑘 ≡  ,𝐮𝐮𝐮 𝐮𝑖𝐮𝑗𝐮𝑘, 𝑖𝑗𝜆 ≡  ,𝐮𝐮𝜆 𝐮𝑖𝐮𝑗 +  ,𝐮𝐮𝐮 (
𝑑𝐮0
𝑑𝜆 )𝐮𝑖𝐮𝑗 etc.

The above equation should provide a relation between the 𝜉𝑖 and
𝛥𝜆 along the equilibrium paths passing through the critical point. In
order to determine this relation, we introduce a bifurcation amplitude
parameter 𝜉, defined as the projection of 𝛿𝐮 on the unit tangent of
the equilibrium path 𝐭 =

∑𝑚
𝑖=1 𝛼𝑖𝜼𝑖𝑐 . Note that 𝜉 acts like an arclength

parameter along the bifurcating path. The question is then to find the
tangent parameters 𝛼𝑖 defining the tangent to the equilibrium paths at
the critical point.

Assume that 𝛥𝜆 and 𝜉𝑖 can be put in Taylor series expansions in
terms of 𝜉:

𝜉𝑖(𝜉) = 𝛼1𝑖 𝜉 + 𝛼2𝑖
𝜉2

2
+⋯ (42)

𝛥𝜆(𝜉) = 𝜆1𝜉 + 𝜆2
𝜉2

2
+⋯ (43)

Where 𝜉 = 𝐮 −
0
𝐮,
∑𝑚

𝑖=1 𝛼
1
𝑖 𝜼𝑖𝑐 .

These expansions can be inserted into the projected equilibrium
Eq. (41).

From this point, two cases are distinguished:

1.  ,𝐮𝜆 𝐮𝑖 ≠ 0 in which case the 𝜆𝑖 coefficients in Eq. (43) can be
determined uniquely with 𝜆1 = 0. It is the case of a limit load
where there is only one equilibrium branch through the critical
point and the solution is unique. The unique equilibrium branch
reaches a load extremum at the critical point since the sign of
𝛥𝜆 is independent to the sign of 𝜉. This case is easy to compute
and will be disregarded for the rest of this paragraph.

2.  ,𝐮𝜆 𝐮𝑖 = 0 where the 𝛥𝜆 − 𝜉𝑖 relation is no longer unique and
the critical point is a multiple bifurcation point of multiplicity
𝑚. The 𝛥𝜆 − 𝜉𝑖 relation is then described by the equation:

1
2

[ 𝑚
∑

𝑗=1

𝑚
∑

𝑘=1
𝛼1𝑗 𝛼

1
𝑘𝑖𝑗𝑘 + 2𝜆1

𝑚
∑

𝑗=1
𝛼1𝑗 𝑖𝑗𝜆

]

+
𝜉
6

[ 𝑚
∑

𝑗=1

𝑚
∑

𝑘=1

𝑚
∑

𝑙=1
𝛼1𝑗 𝛼

1
𝑘𝛼

1
𝑙 𝑖𝑗𝑘𝑙

+3𝜆2
𝑚
∑

𝑗=1
𝛼1𝑗 𝑖𝑗𝜆

]

+⋯ = 0 (44)

This latter case of multiple bifurcation point can be further subdi-
vised into two subcases whether 𝑖𝑗𝑘 ≠ 0, thus leading to a transcritical
bifurcation or 𝑖𝑗𝑘 = 0 leading to a pitchfork bifurcation. As Eq. (44) is
true for all 𝜉, the two subcases above lead to either 𝜆1 ≠ 0 which yields
a transcritical bifurcation, or 𝜆1 = 0 which yields a pitchfork bifurcation
(see Fig. 13).



Fig. 14. Illustration of the eigenvectors of the kernel of 𝐉(𝐮𝑐 , 𝜆𝑐 ) when the specimen is subject to equibiaxial compression. The top three images are the eigenvectors obtained
using the previously presented method. The bottom three images are the projections of the eigenvectors onto the symmetry-adapted basis adapted from (Combescure et al., 2016).

In any case, in order to pursue the computation of the bifurcated
branch, one has to be able to predict the non-null leading order
parameters 𝛼1𝑖 and 𝜆1 or 𝜆2. This is done by solving the non-linear
coupled Eq. (44) for the unknowns (𝛼1𝑖 , 𝜆1 or 𝜆2). In the traditional
case of simple bifurcations, where only one bifurcated branch stems
from the bifurcation point, there is only one 𝜉𝑖, 𝑖 = 1 and thus only
one 𝛼1𝑖 , 𝑖 = 1 and the computation is straightforward. However, when
multiple bifurcation points arises, a large number of combinations of 𝛼𝑖
can be found and not all of them corresponds to an equilibrium path,
meaning that not all of them are solutions to Eq. (44). Unfortunately,
the expressions for the higher order tensors 𝑖𝑗𝑘, 𝑖𝑗𝜆 and 𝑖𝑗𝑘𝑙 are com-
plex and often not available in standard finite element codes. This is
where symmetry group theory comes into play to predict the general
shape of these tensors thanks to representation theory (Auffray et al.,
2017).

If the system described by 𝐅(𝐮, 𝜆) is symmetric, it satisfies the
equivariance condition of its symmetric group 𝐺 for all independent
vector 𝐮:

𝐓(𝑔)𝐅(𝐮, 𝜆) = 𝐅(𝐓(𝑔)𝐮, 𝜆), ∀𝑔 ∈ 𝐺 (45)

Where 𝑔 is an element of the group 𝐺, 𝐓 is a 𝑁 ×𝑁 matrix represen-
tation of 𝐺 on the N-dimensional space of 𝐮.

If (𝐮𝑐 , 𝜆𝑐 ) is a critical point on the principal path, then the solution
𝐮𝑐 in invariant under the action of any group element 𝑔 ∈ 𝐺:

𝐓(𝑔)𝐮𝑐 = 𝐮𝑐 , ∀𝑔 ∈ 𝐺 (46)

In the case of a symmetry-breaking bifurcation, the symmetry of the
solutions

1
𝐮 on the bifurcated branch, after bifurcation, is lower than

the symmetry of the critical point (𝐮𝑐 , 𝜆𝑐). It is defined by the subgroup
H satisfying:

𝐻 = {𝑔 ∈ 𝐺 ∕ 𝐓(𝑔)
1
𝐮 =

1
𝐮}, 𝐻 ⊆ 𝐺 (47)

Both
1
𝐮 and 𝐓(𝑔)

1
𝐮 are solutions of Eq. (36), for all 𝑔 ∈ 𝐻 .

All the representations of a symmetry group can be broken down to
irreducible representations, also called irreps (McWeeny, 2002). In the
case of finite symmetry groups, these irreps are tabulated and they can
be related to symmetry breaking (Golubitsky et al., 1988, 1984; Hoyle,
2006; Ikeda and Murota, 2010). Let 𝐓𝜇 be an irreducible representation

of 𝐺 and 𝑛𝜇 the dimension of this irreducible representation. The kernel
of 𝐓𝜇 is the subgroup defined by:

𝐺𝜇 = {𝑔 ∈ 𝐺 ∕ 𝐓𝜇(𝑔) = 𝐈𝑛𝜇} (48)

With 𝐼𝑛𝜇 the identity matrix of dimension 𝑛𝜇 .
At the critical point (𝐮𝑐 , 𝜆𝑐 ), the symmetry of the kernel of 𝐉(𝐮𝑐 , 𝜆𝑐)

and 𝐺𝜇 coincide. Therefore, 𝐺𝜇 also satisfies:

𝐺𝜇 = {𝑔 ∈ 𝐺 ∕ 𝐓(𝑔)
1
𝐮 =

1
𝐮, ∀

1
𝐮 ∈ 𝑘𝑒𝑟(𝐉(𝐮𝑐 , 𝜆𝑐 ))} (49)

As a consequence, by studying the eigenvectors belonging to the
kernel of 𝐉(𝐮𝑐 , 𝜆𝑐 ), it is possible to determine the subgroup 𝐺𝜇 of

the solutions
1
𝐮 along the bifurcating equilibrium paths. Along these

paths, we now have equivariance of equilibrium equations, like in
Eq. (46), but related to subgroup 𝐺𝜇 instead of full group 𝐺. As a
result, all the Taylor series expansions carried out following Lyapunov–
Schmidt–Koiter extension, into the null space of 𝐉(𝐮𝑐 , 𝜆𝑐 ) also satisfy
the equivariance condition with respect to subgroup 𝐺𝜇 . This applies
particularly to Eq. (44). Using representation theory, one can then
build the symmetry adapted generic shapes of higher order tensors
𝑖𝑗𝑘, 𝑖𝑗𝜆 and 𝑖𝑗𝑘𝑙, related to subgroup 𝐺𝜇 and, in special cases, have
enough information to solve Eq. (44). Indeed, 𝑖𝑗𝑘, 𝑖𝑗𝜆 and 𝑖𝑗𝑘𝑙 can be
projected onto the symmetry adapted basis of the problem (Golubitsky
et al., 1988; McWeeny, 2002) to obtain the bifurcated solutions (see
Fig. 14).

This was the case of double and triple bifurcations appearing when
studying the instabilities of hexagonal honeycombs studied in Saiki
et al. (2005), Ikeda and Murota (2010), Combescure et al. (2016, 2020).
However, in more complex cases, the generic shapes of higher order
tensors might not be enough to solve equilibrium equations projected
in the null space and different approaches should be taken to find
the bifurcated equilibrium path stemming from a multiple bifurcation
point. Among these different approaches one can think first of the group
theoretical approach based on the Equivariant Branching Lemma (EBL)
described by Vanderbauwhede (1980), but also of more numerical
methods like the perturbation or imperfection based methods briefly
discussed in 3.2.2.



4. Conclusion

Understanding the mechanical behaviour and properties of archi-
tectured materials is necessary to encourage their use in real-life appli-
cations. The honeycomb lattice experiments, presented in this article,
were the starting point for elaborating theoretical and computational
methods and have enriched our understanding of the underlying mech-
anisms of pattern generation in architectured materials caused by
instabilities. As of today, thanks to these newly developed methods,
classical problems (Combescure et al., 2020; Pandurangi et al., 2022)
are still revisited for a more accurate description and a better un-
derstanding of the phenomenon whilst taking into account possible
computational obstacles.

Studies on pattern generation are for the most part conducted on
2D architectured materials to reduce the computational complexity of
the problem. Even with such materials, significant drawbacks can be
found. For instance, in addition to being computationally costly clas-
sical finite element analysis cannot account for the multiplicity of the
bifurcated modes of deformation available for a given geometry, and
its computational cost increases drastically with specifically designed
algorithms for stability analysis (Al Kotob et al., 2020). Nevertheless, all
the previous discussions and findings can be extended to 3D using the
same theories presented in this review (Babaee et al., 2013; Shim et al.,
2012; Frenzel et al., 2017), but will come at a higher computational
cost. It is therefore essential to continue to develop and adapt existing
models to be even more accurate and efficient.

A first step in creating such techniques could be to combine the
recent improvements in modelling pattern generating architectured
materials. Indeed, the insight provided by group theory on symmetry-
breaking bifurcations has provided a powerful tool which could lead
to more complete description of the phenomenon, giving more in-
formation on how to predict the post-bifurcated patterns based on
the symmetry of the structure. Combined with a Bloch wave analysis
for determining the size of the RVE, this could become a first step
to tackle the problem from a design point of view – predicting the
experiments – rather than carrying out post-observation analyses and
could significantly increase the performance of current models.

Observations and breakthroughs in other fields of research which
exhibit pattern-generating arrangements have significantly improved
modelling methodologies for studying instability-induced pattern gen-
eration in architectured materials. For instance, the use of Bloch’s
theorem previously used by crystallographers has boosted the efficiency
and reliability of the prediction of the size of the RVE. Fluid mechanics
has also provided much of the background on bifurcation theory and
group theory presented in this review (Hoyle, 2006). The stability cri-
terion for the infinite periodic medium is transferred from the stability
criterion of martensitic transformations formulated by Elliott et al.
(2006a). Chemistry could be a source of inspiration as studying a
molecule’s symmetry group determines its physical properties (Bunker
and Jensen, 2018). Therefore, we highlight the importance of identify-
ing and studying relevant experiments as it is what could continue to
inspire new modelling approaches in the future.

Analogously, similar phenomena observed in other areas could ben-
efit from the techniques presented in this review. For instance, Miyoshi
et al. (2021) have found matching patterns to those of mode I, II and
III of the regular hexagonal honeycomb (amongst others) caused by
dimples in a gel film bonded to a soft substrate when in contact with
a solvent. The tools used to predict the patterns on the substrate are
identical to the ones presented in this article for architectured materials
: finite element eigenvalue analyses to compute the bifurcation point
and the introduction of an imperfection to determine the post-buckling
patterns. We can imagine that this particular application could benefit
from the group-theoretical methods for symmetry-breaking bifurca-
tions developed in the case of hexagonal honeycombs for a more
complete understanding of the phenomenon. These techniques could
also be used for a more complete understanding of pattern-generating

structures such as the periodic buckling structures in free-standing
graphene bilayers (Mao et al., 2011), the yoshimura pattern on twisted
cylinders (Hunt and Ario, 2005), pattern changes in switchable metal–
organic frameworks (Krause et al., 2019; Evans et al., 2016) and even
cortical folding (Jalil Razavi et al., 2015).
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