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With recent advancements in space technology, there is a need to develop technologies to ensure a sustainable
environment for human survival. Among these, treatment of human and organic waste aboard manned space
missions is a challenging task for which supercritical water oxidation using hydrothermal flames has been
proposed as a possible solution. The critical step in readily adopting this technology from established ground-
based setups is scaling the process to microscale, In addition to the challenge of physical realization of the
microreactors at these high pressure and temperature (P > 22MPa. T > 350C) conditions, the need to explicitly
analyze the process dynamics at microscale is inevitable owed to the size of the reactors under consideration, the
physics being significantly different from meso/mini scale systems. One of the primary objectives is to identify
the operating physical parameters for which formation of hydrothermal flames can be obtained. Before pro-
ceeding with an expensive computational or experimental approach to determine the exact ignition map, an
initial estimate based on physical arguments can help in providing insights into the process. We address this
problem using homogeneous ignition calculations to develop machine learning models to predict autoignition as
well as ignition delay time. The ingenuity of the work lies in defining autoignition criteria in relation to flow time
scales expected at microscale. Various classification models were trained and tested for predicting autoignition
and regression models were demonstrated to predict the ignition delay time. While predicting autoignition is a
straightforward process, a two-step approach is proposed for ignition delay time, Finally, how machine learning
can be used more explicitly, particularly for understanding and designing efficient microreactors, is presented
which highlights that machine learning approach is not merely restricted to prediction but can also have real
implications on improving the process as a whole.

1. Introduction

tion (SCWO) with hydrothermal flames, this process has been proposed
to meet the aforementioned technological requirements [1,2]. Hydro-

Over the recent years, there has been an unprecedented growth in
the space industry and it is envisioned to have deep space missions
involving humans in the near future. It is thus inevitable to develop
technologies which can aid in sustaining life aboard these missions.
Among these, treatment of organic and human waste and converting
them back to reusable resources is identified as one of the essential
technologies. The generated by-products can be reused in some form
thereby reducing the burden of carrying additional resources during
space launches. Tapping on the potential of supercritical water oxida-

thermal flames are the flames which exist in supercritical (near critical)
water due to autoignition of organic matter. The phenomenon is
attributed to reduction in autoignition temperature of organic matter,
which also acts as a fuel, in supercritical water conditions (P > 22.1MPa.
T = 374C). While water is polar at ambient conditions, it becomes non-
polar at supercritical conditions. This facilitates dissolution of several
non-polar gases such as oxygen, nitrogen, as well as organic matter.
With both organic matter and oxygen dissolved in supercritical water
(SCW), it provides a uniform medium for the oxidation of organic
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matter. Tn these conditions, when the concentration of organic matter
(fuel) exceeds a certain limit, i.e. threshold concentration at a given
pressure and temperature, the oxidation reaction leads to autoignition
and thus the formation of hydrothermal flames. The motivation to use
hydrothermal flames for SCWO are two folds. Firstly, it permits the in-
jection of reactants at lower temperature than the critical point of water
which circumvents the problems of clogging in the inlet section of the
reactor — one of the major drawbacks of SCWO [2]. Secondly, a higher
heat generated due to hydrothermal flames promote a faster reaction
and decomposition of waste, recalcitrant molecules, etc. This process
has been successfully demonstrated for ground-based applications
[4-7]. An important constraint in readily adapting the designs and un-
derstanding of hydrothermal flames from ground-based applications to
the space sector is the size of reactors under consideration. Most of the
reactors for ground applications are at meso/mini scale with the volume
of reactor being of the order of a few liters. However, with volume and
weight being a limitation in space applications, it is inevitable to have a
device with similar functionalities but which is compact and light in
weight. In pursuit of advancing the technology of SCWO using hydro-
thermal flames for space applications, we have proposed to carry out
this process at microscale [8]. We define this process as uSCWO —H. The
feasibility to realize such microreactors (made of sapphire) which can
withstand such harsh pressure and temperature conditions along with
being chemically compatible with SCW has already been demonstrated
[8]. This was made possible due to patented developed technology to
etch sapphire [9]. In addition to fulfilling the criteria of compact design,
working at microscale augments the SCWO process capabilities by tap-
ping the advantages of a classical microfluidic system, such as further
reductions in reaction time, more uniformity in the reactions, etc.

The need to develop this technology, as evident from the above
discussion, necessitates an explicit study of hydrothermal flames at
microscale owing to differences in the physics with respect to meso/mini
scale reactors. One of the prime reasons can be ascribed to a high surface
area to volume ratio in a typical microsystem resulting in a higher heat
transfer, which can eventually render a different behavior to hydro-
thermal flames when compared to meso/mini scale systems. Though, it
can be argued that for utility in space, the absence of any gravity can
result in negligible heat loss due to natural convection, analysis on the
ground being the first step before moving to space applications neces-
sitates such an investigation. The second difference arises due to the
small reactor volume which implies a large amount of heat being
generated in a smaller region. Consequently, the effect of heat con-
strained within the system will significantly impact the flame dynamics.
Thirdly, owing to low flow rates encountered at microscale, the oper-
ating condition is primarily expected to be in laminar regime as
compared to the majority of the pertinent literature operating in tur-
bulent regime for hydrothermal flames, for example in [4,6].

In order to develop this technology, it is vital to identify operating
regimes (flow rates, fuel & oxidizer concentration, operating tempera-
ture, pressure) for which autoignition and thus, the formation of hy-
drothermal flames can be attained. While development of an exact
ignition map can be achieved from experiments or high-fidelity nu-
merical simulations, understanding autoignition conditions based on
homogeneous 0D calculations can aid in narrowing down the opera-
tional window to search upon the optimum conditions. Homogeneous
ignition analysis involves solving the reaction kinetics in time assuming
a zero-dimensional reactor using the reaction scheme for a given fuel
under consideration. The conventional utility of this approach is limited,
such as predicting autoignition parameters (ignition delay, maximum
heat release etc.) for given set of operating conditions. However, it holds
enormous potential in the context of the present problem, which could
be tapped by using data-driven models. For instance, upon successful
training the machine learning models, these can be used to predict the
desired output parameters for new operating conditions. Further, direct
mapping of field parameters to ignition related parameters can help to
better understand the formation of ignition kernel, flame dynamics,

design of reactors, etc.

Machine learning over the recent years has garnered significant
attention in diverse fields of physical systems - fluids, thermal, and
combustion. Brunton et al. [10] have presented an overview on how
various machine learning methodologies can find their applicability in
the various areas of fluid mechanics, addressing a wide range of prob-
lems, such as modeling and controlling fluid flows. The authors
described how optimization performance as well as convergence time
can be improved by posing several objectives in fluid mechanics as
optimization and regression problems. Brenner et al. [11] and Brunton
[12] in their recent articles have further provided insights into
advancing fluid mechanics using machine learning. Machine learning
models have also been used to predict thermodynamic properties of pure
fluids and mixtures, equilibrium compositions in liquid-vapor flash
calculations, heat transfer coefficients, ete. [13-18]. In the context of
combustion, Zheng et al. [19] reviewed the recent progress and appli-
cability of machine learning in combustion studies. The authors high-
lighted several key pertinent sub-domains where machine leamning
could have significant impact, such as detection of combustion oscilla-
tions due to thermoacoustic, investigating physiochemical properties of
fuels and subsequently designing a new generation of fuels, and recon-
struction of cellular surface of gaseous detonation, to name a few. A
more comprehensive review has been recently presented by Zhou et al.
[20]. The authors highlighted developing relations between input pa-
rameters (temperature, pressure, species etc.) and output parameters of
interest (chemical kinetics etc.) for combustion simulations using
various machine learning models. Here again, feasibility of fuel design,
predicting physical properties of fuel (such as density, heating value),
their ignition delay time, flash point, etc. using neural networks was
presented. In addition, the authors addressed the challenges of
combining machine learning with combustion research and aptly
mentioned that one of the key challenge lies in judiciously framing the
physical problem in the framework of machine learning. This not only
requires in depth understanding of the machine learning aspects, such as
data selection and pre-processing, appropriate choice of machine
learning models, tuning the models, etc., but most importantly, an in-
depth understanding of the physical problem. In the context of the
current problem, relevant work in auto-ignition is scarce and only a few
of them can be found in literature, Pan et al. [21] used Support Vector
Machine model to predict autoignition temperature of organic fuels
based only on their molecular structure. The relationship was developed
between autoignition temperature in terms of descriptors which were
selected using a genetic algorithm. This algorithm is known to mimic
natural selection evolutionary processes primarily, selection, gene
crossover, and mutation to obtain global optima solutions. The first step
comprises of initially creating a population, which is a set of individuals
with each individual representing the solution that is to be solved. In
order to decide which individuals will be selected from the population, a
fitness function is defined to evaluate the fitness score. Using the fitness
score, two pairs of individuals are selected with individuals having a
higher fitness score are more likely to be selected. Subsequently, off-
spring’s are created from genes (here gene represents variables on which
individuals are dependent) after selecting a crossover point. The off-
springs are continually added to the population and the algorithm ter-
minates when convergence is attained, ie. when no new offspring
significantly different from existing ones can be formed. A similar work
has been reported by Suleiman et al. [22] where using molecular weight
along with the number of carbon, hydrogen, and oxygen atoms as pa-
rameters, the authors were able to predict autoignition temperature of
organic energetic compounds using hybrid support vector regression.
More recently, Shah et al. (23] used Random Forest and deep learning
algorithms to predict autoignition and flame properties (flame speed,
fuel octane ratings, ignition delay time) in multicomponent fuels. Both
the methodologies were found to have high predictability even using a
small data set. Cui et al. [24] developed models for ignition delay using
Back propagation neural network for n-butane/hydrogen mixtures. In



addition, genetic algorithm optimized back propagation model was also
developed and performance of both were compared over a wide range of
operating conditions (pressures varying from 20 to 25 bar, temperature
varying from 722987 K, equivalence ratio from 0.5-15) and the per-
formance metric (average correlation coefficient) in case of the latter
was found to be superior. Lehn et al. [25] used neural networks to pre-
dict the laminar burning velocity using pressure, temperature, fuel/air
ratio, and twelve molecular groups as the input variables. Using sensi-
tivity analysis to analyze the impact of functional groups, the laminar
burning velocity was found to increase with unsaturation, which was
coherent with observations in literature. Cui et al [26] used back
propagation neural network to predict the ignition delay time in sur-
rogate fuels where data for training and validation was generated using
0-D ignition calculations. An interesting result reported was comparison
of computational time using 0D simulation and trained back propaga-
tion neural network. While the former took 28s for a single calculation,
176 cases were evaluated in 3.2s using the latter highlighting significant
gain using neural networks. More recently, Huang et al. [27] studied the
impact of hydrogen addition on the ignition delay time for aviation fuel
using artificial neural network (ANN). It was found that a large local
relative error occurs when the ignition delay time was very small. In
order to improve the performance, a sub-ANN model was developed by
training on the subset of data points corresponding to the poor pre-
dictions from the initial ANN. Thus, if the predicted ignition delay time
from the initial ANN was below the selected threshold of 10%us, the sub-
ANN was used to update the output value.

In this work, we demonstrate the use of machine learning models to
predict the autoignition characteristics of ethanol as a model fuel for the
formation of hydrothermal flames at microscale. Owing to microscale
dimensions under considerations, the ingenuity of the current work lies
in defining autoignition by accounting for residence (flow) time and
subsequently developing machine learning models to predict the output
parameters - possibility of autoignition and ignition delay time.
Furthermore, we also highlight how these data driven models can be
used to predict zone of formation of the ignition kernel from real
physical data, such as CFD simulations. This can eventually be used for
understanding the dynamics of hydrothermal flames as well as designing
better microreactors. The prime focus of the article is thus to exhibit how
by using a simple homogeneous ignition calculation in conjunction with
machine learning models, initial estimate of autoignition conditions and
corresponding ignition delay time can be predicted for microscale SCWO
process. We begin by describing the physical problem and means of data
generation. Subsequently, various machine learning algorithms are
applied on the data to predict the autoignition condition as well as
ignition delay time. Finally, we illustrate how this approach can have
physical implications for better understanding of the process dynamics

for development of this technology.

2. Problem description

The physical process to be investigated was described in the previous
section. In order to provide readers with more insights into the micro-
fluidic process of SCWO, a schematic of the microreactor design pro-
posed for the aforementioned application is shown in Fig. 1 (a).

The microreactor consists of two inlets feeding the system with
oxidizer (H;0 + H303) and fuel (H;0 + ethanol). Two serpentine
microchannels help preheating the two fluids (and ensure for the
oxidizing fluid the decomposition of H,0; in H20 and O;) before they
are put in contact in the injector. While details have been presented
elsewhere [ ], we present an example illustrating phenomenon of phase-
change of water at high pressure and temperature (Fig. 1(b)) conditions
supporting the feasibility to realize such extreme conditions at micro-
scale. For the current problem, the focus lies in the injection zone where
fuel and oxidizer streams mix with each other. The schematic of this
current physical process under consideration (injection zone) can thus
be described as shown in Fig. 2 and the long-term objective is to obtain a
sustainable hydrothermal flame in the presented microreactor,

The elementary design considerations as well as experimental ob-
servations [8] provided insights into how the considered physical di-
mensions (microscale reactor) could implicitly impact the phenomenon
of autoignition in the current system and thus finds relevance in the
context of the present problem. This can be explained as follows. Upon
injection of the fuel (ethanol in the present case) and oxidizer into the
reactor (microchannel), the species mix with each other resulting in a
chemical reaction.

Even though the reaction between fuel and oxidizer is omnipresent in
these operating conditions, autoignition will only occur under certain
conditions governed by the coupled phenomena, hydrodynamics, ther-
modynamics and chemical Kinetics of the system. An important char-
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Fig. 2. Schematic of microscale reactor for uSCWO —H.
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Fig. 1. (a) Schematic of the microreactor system proposed to be used for uSCWO —H.(b) Microscopy image of the injector head microfabricated in sapphire.



acteristic of the autoignition is the ignition delay, which is defined as the
time taken by a reacting mixture of a given composition to auto-ignite.
The ignition delay can thus be interpreted as the time when the first
ignition kernel may be expected to form. This ignition delay in the
current problem can be related to the constraint on the permissible
autoignition conditions due to the scale of the reactor under consider-
ation. It is evident that in order to have hydrothermal flame at micro-
scale, the ignition kernel needs to be formed within the reactor channel.
This implies that the ignition delay for a given mixture composition at a
given pressure and temperature should be less than the time taken by
this reacting mixture element to flow through the reactor microchannel.
Failure to meet this criterion implies that even though the mixture is
ignitable, it will not serve the purpose for the given physical system
under investigation. This is illustrated in Fig. 3 where we define the flow
time as t; = L/u with L being the length of the channel and u the axial
velocity., The above explanation thereby substantiates presenting the
schematic of the microreactor with physical dimensions in the present
homogeneous reaction/0D reactor study.

Thus, despite considering homogeneous calculation in the present
context, reference to the physical system and hydrodynamics is self-
explanatory as it will govern the criterion for deciding whether or not
we have autoignition. This forms one of the major differences in iden-
tifying autoignition conditions at microscale in comparison to meso/
mini scale reactors. Before proceeding further, it is worth mentioning
that in a real scenario where hydrodynamics will be considered, the
ignition limits (which will be presented below) will be modified owing
to several local dynamics playing their role. However, the utility of the
current approach lies in providing an initial estimate on the limits along
with physical implications it can have as discussed in §5.

3. Methodology
3.1, Data generation

In order to develop a machine learning model, having reliable and
sufficient data is of prime importance. In the present work, data is

generated using homogeneous ignition calculations based on a single
step reaction for oxidation of ethanol in SCW conditions as given in [8]:

CoHsOH + 30,200, + 3H,0 6}

with reaction rate evaluated as,
Cpoy =

a —-E,
1723 o\ ir 1341, 1055
10 cxp( R ) [EOH|" 7 [0,] (2)

The activation energy in the above expression is, E, = 214 2 (28]

Reacting
element

advection

Ignition
kernel

Fig. 3. Schematic illustration of how ignition delay () being larger than flow
residence time (&) implies failure of autoignition in uSCWO —H application.

The governing equations of conservation of mass, species, and energy
were solved in time using a simple first order Euler scheme. As the
physical system under consideration is at microscale, the relative change
in pressure is expected to be very small when compared to operating
pressure which is greater than 22.1MPa. Thus, homogeneous calcula-
tions in the current work correspond to a constant pressure reactor
system with density varying in the system. Appendix 1 in the supple
mentary information presents the governing equations used for data
generation. The parameters (independent variables) considered were
the mass fraction of ethanol (Y;), mass fraction of oxygen (Y,), the
temperature (T), and the pressure (P). Table | presents the range of each
parameter considered in the present work. The upper limit for fuel and
oxygen concentration arises due to the validity of reaction rate up to
these limits as mentioned in (&1,

Each operating point, denoted by [Yj;. Y,;. Ti. P;] for i data point,
was randomly generated using Python. The data set consists of 15,000
data points. The entire data set, termed as data set 1, comprised 15,000
data points and was used for training, validation, and testing various
models. It is intuitive to expect that once the models are trained, these
can further be used to predict the output (autoignition or not, ignition
delay time) for new conditions not included in this data set, such as those
coming from experiments. This could further aid in testing the trained
machine learning models. However, in the absence any such data at
present, another data set comprising 5000 data points was created
which can be considered as an example of data from experiments. We
term this data set as external data set and this is used only for testing the
trained models. The objective of doing this is to further test the
robustness of the trained models. For each data point, the time taken for
autoignition, i.e., ignition delay time, was evaluated as the time when a
sudden jump in the heat release rate is observed as shown for one case in
Fig. 4.

The output or dependent variables of interest are whether we have
autoignition or not (I}, and if yes, what is the ignition delay time (t,).
While the former is a categorical variable, the latter represents a
continuous output variable. As per previous discussion, categorizing I,
will depend on flow or hydrodynamic time scales under consideration.
Based on preliminary investigation on design aspects as presented in (8]
, 1s is chosen as the upper limit in the present case. This corresponds to
flow rates in the range 5 —100ul/min for channel dimensions of 300um
width and 20um etch depth and length 2500xm. The time limit pre-
sented is thus the maximum tentative flow time in these conditions
which nevertheless can be adapted for different flow conditions in the
future. Based on this criterion, the two data sets comprised of 52% and
53.2% cases corresponding to autoignition as shown in Fig. 5, which
represents a well distributed data.

3.2. Data treatment & preprocessing

One of the initial steps before developing machine learning models is
data preprocessing which includes several aspects such as checking for
any duplicate entries. Both the data sets, data set 1 and external data set,
were checked if any duplicate entries of operating conditions (Y.
Y,.T.P| were present and none was found. In terms of the range of
values of the individual parameters, there exists a large variation in their
magnitudes. Here mass fractions, owing to their definition, lie between 0
and 1, while temperature (350C ~450C) and pressure (225bar to
250bar) are O(10%). Training the models directly on this data can result

Table 1

Range of input parameters considered.
Parameter Range
Pressure (P) 225 -250bar

‘Temperature (T)
Fuel (ethanol)(¥)
Oxidizer (Y,)

350 -450C
0.5 —4 5|inpercent]|
0.5 -9 5|inpercent]|
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Fig. 5. Bar graph illustrating number of data points in the data sets (data set 1
and external) which correspond to conditions of autoignition (blue bar) and
which do not (dark red bar). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

in model inaccuracies due to bias towards features with larger values.
Several standard scaling methods, such as normalization (scaling be-
tween minimum and maximum value) and standardization (scaling such
that data exhibits properties of Gaussian distribution with zero mean
and unit variance), exist to address this issue. The primary objective of
this step is to ensure that all the features are of the same order. In the
present work, however, we resort to scaling based on physical aspects of
the problem — operating conditions. It is evident from the aforemen-
tioned range of the variables that scaling is required primarily for
temperature and pressure. As in supercritical water oxidation, the crit-
ical point of water (T., = 374C) serves as a landmark to define the

process, we scale the feature temperature (T)as T = (T —T,,,)/100. With
temperatures varying from 350C —450C, this results in T being the
same order as mass fractions. Similarly, pressure, which in the current
scenario varies from 22.5 — 25 MPa (225 bar — 250 bar), was scaled by
100. These scaling ensures that all the variables (features) are now same
0(1) in the current problem. The motivation to opt for the proposed
scaling is its simplicity in implementation. This will be particularly
useful when using these models with external data from physical anal-
ysis, such as from experiments or entire 2D/3D space from CFD simu-
lations, wherein the physical variables can be obtained in the proposed
scaled manner and thus be directly fed into the models for predicting
autoignition and ignition delay time rendering ease of using machine
learning methodology for real process. For output parameters, I; was set
to 1 when we had autoignition else it was assigned the value of 0. Tn
addition to identifying whether or not we have autoignition, predicting
the ignition delay time is also a parameter of interest. One of the key
challenges is how to describe ignition delay time when the input oper-
ating parameters corresponded to no autoignition condition. This is
because, in a physical sense, no autoignition implies that despite having
left the reacting mixture element for considerable long duration, we do
not observe any sudden increase in HRR. Thus, a very large value could
be used to define no autoignition. However, in the present context no
autoignition is identified when ¢;; > f; and thus, in principle, any value
greater than t; could be assigned to t . One of the primary concerns with
this approach is that many data points with this same value could create
a bias towards this assigned value., Thus, errors may creep in during
training and subsequent testing. In order to minimize this, we assign
value 0 to these instances. It is to be mentioned that assigning 0 does not
have any physical meaning and is just an indicator of no-autoignition
event. It may be argued that this may also create a bias towards lower
values of ignition delay time, and this is what will be explored in the
subsequent section and an appropriate strategy to predict ignition delay
time will be discussed.

3.3. Machine learning models and performance criteria

The first part of the presented problem represents a classification
problem wherein the objective lies to predict whether we have auto-
ignition. Various supervised machine learning models were trained to
predict the autoignition (I,) for a given set of input variables. These
include logistic regression (Logistic), Decision Tree (DT) [29], Random
Forest (RF) [30], Support Vector Machine Classifier (SVC) |31, k-Nearest
neighbors (kNN) [32], and AdaBoost classifier (Ada). The motivation to
use different models was to analyze which model could well capture the
desired trend and be subsequently used for further analysis. The models
were implemented in Scikit-learn [33] in Python 3.9. The performance
of each model is known to depend on several parameters and values of
these parameters need to be tuned to have their optimum values, the
process known as hyperparameter tuning. The objective of this process is
primarily to ensure that the model achieves a global minimum, which
may otherwise be skipped when considering the default values. These
optimal parameters were obtained by using the GridSearchCV function in
Python using an 8-fold cross validation. A similar methodology was
adopted for predicting ignition delay time. Since ignition delay time is a
continuous variable, here regression models were used, namely Ridge
regression [34], Decision Tree regressor, Random Forest regressor, k-nearest
neighbor regressor, Adaboost, and Gradient boost regressor (GB). While
details of each model can be found in the cited reference, we briefly
describe each model in simple terms.

¢ Linear models: Ridge and logistic models form a part of generalized
linear models. Logistic regression is a classification algorithm used to
predict the probability of an event. It is one of the easiest models to
implement, train, and test. The model assumes there is no or very
minimal multicollinearity between the independent variables. The



probability of an event (p) is converted to odds (ratio of success and
failure probability, p/(1 —p)) on which a logit transformation is

applied. This is known as log of odds and is described by |og(]gp) -

fo + Z{‘,,p‘x,. The coefficients (/) are obtained by maximizing the
log of likelihood. Ridge regression is a form of a linear regression
model where the model is penalized using sum of squared of the
weights (coefficients) in order to prevent overfitting. Here, the re-
sidual sum of squares can be evaluated given by
SN (Yn = 52 +AE B2 where ¥, = S°F | 5.X; and 1 is a parameter
which governs the severity of the penalization.

* Tree based models: Decision Tree, Random Forest, AdaBoost, and
GradientBoost models fall under the category of Tree Based models. In
these models, a tree like structure is developed based on certain
conditions applied on the input variables and a decision is made to
predict the output. Thus, the prediction can be obtained using simple
if-else conditions rendering these models quite intuitive to interpret.
These kinds of models can be used both for classification as well as
regression problems.

Decision Tree is the simplest model in this category. Starting with the
base of the tree, also termed as the root node, the data is split into
branches leading to decision nodes. The terminal node where a decision
is made, are called the leaves of the tree. Usually, the tree is not allowed
to grow to its full depth to prevent overfitting and some parts of the tree
are removed, the process being termed as pruning.

Random Forest comprises of several decision tress operating
collectively to predict the output. The trees are developed by boot-
strapping the data and each tree predicts an output, Subsequently, the
output with maximum number of votes is taken to be the model pre-
diction. Random Forest forms a part of ensemble models, i.e. the models
where several models (trees in this case) are generated and the output is
governed collectively from these models. While Random Forest operates
in parallel, averaging out error over all trees, AdaBoost and Gra-
dientBoost work sequentially to reduce the errors. In these models, the
errors in the previous models (trees) are corrected in the successive
models. In Adaboost, only a single split is permissible in each tree
resulting in two leaf nodes and the trees are called stumps. Initially,
equal weight is assigned to each data set and the weights are adjusted
while developing subsequent stumps. This is attained by assigning a
higher weight to incorrectly classified data point in order to correct in
subsequent classification. Unlike Adaboost, no limitation is posed on the
number of leaves and splits in GradientBoost algorithm. The peculiarity
of latter method is that leaf nodes predict residuals and with addition of
tree, the residuals are reduced.

o k-Nearest Neighbor It is a form of non-parametric (i.e. it does not
assume any form of mapping function between input and output) and
supervised learning classifier which uses proximity between data set
to classifications. “k“signifies how many neighbors will be used to
predict the output. The proximity is calculated in terms of distance
metrics, the most common being the Euclidean distance. These
models are easy to implement and have very few parameters to
hyper-tune. However, it fails to perform well with the increase in
dimensionality of the data.

« Support Vector Machine (Classifier) This method can be used both
for classification and regression analysis, the former being used in
the current study. It sorts the data into respective classes by defining
margins / hyperplanes between the classes. In the case of linearly
separable data, the best decision boundary (hyperplane) is identified
as the one which has the largest distance from the classes. The points
nearest to the hyperplane, termed as support vectors, are used to
evaluate the distance. In the case of non-linearly separable data, data
is transformed to higher dimensions using kernels, such as poly-
nomial, radial basis, in order to define linear decision boundary.

Several metrics exist to quantify the performance of machine
learning models [35], such as the absolute error (MAE), the mean
squared error (RMSE), and the coefficient of determination (R?) for
regression problems and accuracy, Fl-score, etc., for classification
problems. In the present case, performance of classification models was
evaluated in terms of accuracy, which is defined as the ratio of correct
predictions to total predictions while R* was opted for regression anal-
ysis and can be defined mathematically by (where symbols have their
usual meanings),
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3.4. Training, cross validation, and testing of models

The various machine learning models were built on data set 1 by
dividing it into training and testing subsets in the ratio of 9 : 1. Here,
10% of the data was reserved for final testing (termed as final test data
henceforth) and none of these data points were used at any stage during
the training/validation process to make sure that performance metrics
obtained for each model are fair by all means.

The other 90% of the data served two purposes. Firstly, it was used to
obtain hyper-tuned parameters using GridsearchCV function with 8-folds
cross-validation, Hypertuned parameters for all the models are pre-
sented in Appendix 2. Once the tuned parameters were obtained, this
data set was split into train and test in the ratio of 85% and 15% for
training and testing, respectively. The latter is termed as test data
henceforth. Subsequently, models were trained with best preforming
parameters and tested on this 15% data (test data). Finally, these models
were tested on the initial 10 % data (final test data) in addition to the
external data. A schematic of this procedure is illustrated in Fig. 6.

As mentioned previously, the two objectives of interests are to pre-
dict whether there is autoignition and ignition delay time. Fig. 7 Ilus-
trates a schematic of these two objectives highlighting the inputs,
predicted variables, and performance metrics. While training/testing
the models for whether we have ignition or not is pretty straightforward,
itis not so evident for ignition delay time, The complexity arises because
in the entire data, there are cases which do not correspond to auto-
ignition and for which the values have been set to zero. Here, two
different approaches are possible. Firstly, models can be trained (and
hyper-tuned) using the entire data set i.e. including zero as ignition time
for no autoignition cases. This implies that predicting ignition time will
be independent of whether we have ignition or not. In the second
approach, the models for predicting ignition time can be trained only
using the real ignition delay time data, i.e. data points corresponding to
autoignition cases. These methodologies lead to two different possibil-
ities of predicting the output variable on an entirely new data set
(external data set). For the sake of clarity, these are termed as method 1
(M1), where models are developed on the entire data set, and method 2
(M2), where models are developed only using the actual ignition delay
time. The advantage of former lies in its simplicity to predict the output
as in case of the latter, two models need to be developed and used, one
for predicting autoignition and second for predicting the ignition time
where the outcome of first model (classification) will have influence on
the overall outcome of the second model (regression). However, the first
method could be prone to more error due to manual bias introduced. We
thereby test both these approaches and compare the performance met-
rics of the models, which are presented in the next section.

4. Results and discussions

In this section, the performance of various machine learning models
is presented. However, before that, we do some data analysis of the
results from homogeneous ignition calculation to understand how the
data behaves and if the output yields meaningful results. This will
further aid in ensuring that proposed implications of using machine
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learning models can be successfully applied as described in §5.

4.1. Data analysis

We first try to seek the effect of various independent parameters on
whether we have ignition or not. It can be seen from Fig. & that with
increase in temperature, the likelihood of autoignition increases. Here,
for the sake of clarity, only 20% of the data points from data set 1 were
plotted by selecting every 5" data point. The trend in Fig. 8 can be
explained as increase in temperature represents a higher heat release
and thus a faster reaction rate, which results in a smaller autoignition
time. This is further supported from the ignition delay plot as shown in

Fig. 9. Further, both the outputs seem to be affected more by the oxidizer
(oxygen) percentage as compared to fuel concentration while there is a
very little impact of pressure. This can be inferred from Fig. 8 and Fig. 9
where the trend for autoignition as well as ignition delay remains nearly
flat with fuel percentage while it exhibits a non-linear trend (nearly
exponential) with oxygen percentage.

From a process engineering perspective, this trend is thereby ad-
vantageous as we have the possibility of autoignition without much
varying of the fuel concentration. This implies that we can nearly keep
this parameter constant when attempting to seek autoignition condi-
tions in real experiments and focus more on adapting the oxidizer
concentration.
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4.2, Performance of various machine learning models

Different models presented in the above section were first tested for
the classification problem of predicting autoignition. Fig. 10 illustrates
the performance metrics of different models for predicting I;. The met-
rics presented for each model correspond to three different test data sets
as was explained in §3.4. In most of the cases, the performance metrics
for all the three test cases remain nearly the same illustrating that the
models were trained, have a small variance and were not overfitted.
While the performance metrics of all the models seem to be quite
satisfactory, Random Forest is able to make predictions most accurately.
The performance is slightly better than Decision Tree, which as a similar
approach, but Random Forest goes a step further to bootstrap random
samples and eventually predicts the outcome for the tree with highest
votes. Averaging over all the trees subsequently averages out the

variance in each tree thereby optimizing the bias and variance of the
model in this classification problem. The performance of the support
vector machine classifier (SVC) is also comparable with that of Random
Forest. This can be ascribed to very clear distinguishment between the
classification variable, i.e. whether there will be autoignition or not, and
this model is known to perform quite well in such cases. Further, this can
also be attributed to no overlapping classes in the present case as each
instance of input parameter is assigned only a single class.

The second part of the problem is to predict the ignition delay time.
As was explained previously, here two different approaches are fol-
lowed. We first present the results with method 1, i.e. where ignition
time is predicted independently of whether we have ignition or not.
Fig. 11 shows the performance metrics of various models used in this
case. Here, it can be seen that except Random Forest most of the models
perform quite poorly in predicting the ignition time. The objective to
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Fig. 11. R? values for different models for predicting ignition delay using
method 1 as described in the text.

illustrate these not so convincing results is to highlight that if not dealt
with and applied appropriately, despite their enormous potential, ma-
chine learning models can result in very poor outcomes. One possible
reason in the current case could arise due to training the models with
exact numerical value and expecting the prediction to be exact, which is
very unlikely especially within the limits of numerical accuracy. One
means to improve the performance could be to classify the ignition delay
time within certain ranges to make bins. This would reduce the error as
instead of predicting the exact value, we have a certain tolerance to the
exact value. This could also explain why Random Forest performs better
as compared to other models. Nevertheless, the poor performance of

most of the models could primarily arise due to imposition of zero as
ignition time for no autoignition cases. These cases, which even in
training set seem to have incurred manual bias, further worse the model
performance owing to likelihood of predicted values being close to zero
which otherwise would resemble no autoignition condition.

In order to be coherent with physical reasoning that ignition delay is
to be predicted only when autoignition is predicted, we test method 2 as
was described previously. The models in this approach are trained using
only the data points which correspond to autoignition and thus all the
cases corresponding to Iy = 0 are excluded. This results in 7891 data
points from data set 1. The rest of the procedure to define the training/
validation, testing, and final test data is the same as in the previous case
and explained in I'ig. 6. The only difference was that the number of data
points were reduced. Hyper tuning of the parameters was performed as
in the previous case using 8-fold cross-validation. Fig. 12 shows per-
formance metrics of different models on various test data sets, Here, for
testing the external data, data points corresponding to only autoignition
were used which comprised 2659 data points from the total 5000.

Comparing the performance of various models using method 1
(where we used the entire data to predict autoignition irrespective of
autoignition and as shown in Fig. 10), the performance of all the models
is significantly better using method 2 as can be seen in Fig. 12 (ie.
predicting ignition delay time in a two-step process, firstly predicting
autoignition and if found to occur, only then predict the ignition delay
time). This shows that there was a substantial effect of inaccuracies that
arose due to accounting for imposed ignition delay time in no auto-
ignition cases. It may be argued that using some other value instead of
zero could improve the performance using method 1. However, this may
not make a large difference because there will be a significant percent-
age of the population with the same (hypothetical) ignition time delay
which introduces manual bias in the data set itself. Therefore, in order to
predict the ignition delay, the second approach seems to be more
reasonable, given the condition that autoignition is well known. Thus, if
the operating parameter is known to yield autoignition, we can calculate
the ignition delay time quite precisely with various regression models as
shown in Fig. 12, However, in such case, attention must be paid as the
error in the output would be a combined error due to two models, firstly
due to predicting autoignition and subsequently in ignition delay time.

As a final step, we tested this approach to check how well the ma-
chine learning models as presented so far could find their utility in a real
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Fig. 12. R? values for different models for predicting ignition delay using
method 2 as described in the text.



application. Here, the external data set serves as the test case while a
more realistic case is presented in the next section. The input data
(external data) is first tested for whether we have ignition or not. Sub-
sequently, the data points for which autoignition is predicted are passed
as input to the models predicting the ignition delay time. Let us define
this output as V). For the remaining data points, i.e. for which no
autoignition was predicted, the corresponding output ignition delay
time was set to zero to be coherent with how non ignition is defined in
input data. Let us define this output as V5. It is to be noted here that zero
as ignition time serves no purpose for model development and is just a
numerical value to complete the output vector. These two sets (V;, V3)
are combined to obtain the final predicted ignition delay time output (¥)
and this is eventually compared with true values (y). As Random Forest
had the best performance for predicting autoignition, this model was
used in the initial step of predicting for autoignition. Subsequently, all
the aforementioned models were tested, and their performance metrics
are shown in Fig. 13, It can be seen that there is a significant improve-
ment over the model performance as compared to method 1. We further
present a comparison between actual values and predicted ones for three
different models. This is shown in Fig. 14 where in an ideal case all the
points should like on y = x straight line.

This thereby presents that a two-model sequential approach needs to
be followed to predict the desired output parameters with satisfactory
accuracy.

As a final step, we finally analyzed the importance of various features
on the model outputs. While this was briefly presented in the above
section based on graphical visualization, here we used feature impor-
tance metrics available in Random Forest algorithm. Fig. 15 presents the
feature importance metrics in case of autoignition as well as ignition
delay. It can be observed that temperature plays one of the major roles in
governing the outcome of both the parameters followed by oxygen mass
fraction, While there is a small difference in the extent to which these
features are important, the overall trend remains the same and is
coherent with physical understanding of the physical process considered
in the present work.

So far, we have highlighted how homogenous ignition calculations
coupled with tentative flow time scale can be used to build data-driven
machine learning models, which when trained judiciously can predict
whether we can have autoignition as well as ignition delay time for a
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Fig. 13. R* values for different models for predicting ignition delay for external
data set.

given set of operating parameters. However, a more important question
which arises here is how these models can be further used to develop
understanding as well improving the SCWO process at microscale, We
discuss this aspect in next section.

5. Potential implication of ML models

In this section, we present a perspective on how these models and the
approach in general can be used to better understand and improve upon
SCWO process apart from the default utility in predicting the auto-
ignition as well as ignition delay time. One of utilities of this approach is
that the trained models can be used to map the flow field (in terms of
temperature, fuel concentration, etc.) at a given time from CFD simu-
lations to predict where in the flow domain autoignition is likely to
occur and what could be the corresponding ignition delay time. This can
provide insights into the probable region in the domain where ignition
kernel could form, an essential and important aspect in understanding
the flame dynamics. In order to explain this in a more qualitative way,
we perform CFD simulations for the schematic shown in Fig. 2. Owing to
symmetry in the domain (as highlighted in the figure) only half of the
domain is simulated. The modeling approach is similar to the one
described in [36] and is not been described here in detail as the prime
objective is to demonstrate the described implication without any
quantitively interpretations. Fig. 16 shows an example of the generated
2D field of fuel and oxygen concentration along with temperature con-
tours. It is to be mentioned that since the objective lies in predicting the
autoignition condition, we are not concerned about what happens after
the ignition using this methodology. The input data is fed to the machine
learning model following which regions where ignition is likely to
happen is identified. For the given configuration, it is likely that ignition
will happen in regions dominated by oxidizer concentration which is
expected. Mapping the ignition delay time on this contour plot shows
regions with small ignition delay time thereby highlighting the likely
regions for the formation of an ignition kernel.

Further implications of this methodology are briefly described as
follows. In a real scenario, autoignition will depend on how the flow
field evolves and thus hydrodynamics is bound to play an important
role. When the fuel and the oxidizer are injected into the reactor
microchannel, the temperature of the mixture element will start to in-
crease due to the reaction as the fluid element advects downstream.
Thus, even if we started with conditions corresponding to probability of
no ignition as per homogeneous calculation, the conditions can even-
tually change as the fluid element is advected and thus we can have
conditions leading to autoignition later in time. In such a scenario, it will
be intuitive to have the design of reactors, such as extending flow paths,
using bluff bodies, etc. to alter hydrodynamics and mixing dynamics,
which ensure that such conditions are attained as close as possible to the
inlet region. Thus, rather than running a large number of simulations or
experiments, mapping the simulation fields from several designs to
predict ignition as illustrated previeusly can significantly aid in
designing efficient microreactors. Furthermore, a similar mapping can
be done for ignition delay time. This can provide insights for better
understanding the impact of hydrodynamics on the autoignition phe-
nomenon. Besides, the methodology can be extended in analyzing the
impact of various process parameters, such as minimum inlet tempera-
ture at which ignition can occur, minimum fuel and oxidizer concen-
tration for wide range of physical dimensions of the microreactor. A
more important implication would lie in 3D analysis of the system.
Owing to the small scale of the system, running a 3D simulation can be
computationally very expensive, This may lead to limiting the para-
metric space of various geometric parameters to be explored and thus
constraint optimum microreactor design. However, extending the
methodology from 2D systems, an initial estimate can be made in 3D
design configurations. Thus, the implications of the current approach of
developing machine learning models are not only restricted to the trivial
application of predicting autoignition conditions but can significantly
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improve the understanding and design considerations of microreactor in
uSCWO —H. The presented approach will be used in the future with real
simulation data to understand the dynamics of hydrothermal flames at
microscale.

6. Conclusion and perspectives

Machine learning based models were trained and tested to predict
autoignition for a given set of operating parameters (in terms of pres-
sure, temperature, and fuel and oxidizer concentration) leading to the
formation of hydrothermal flames for supercritical water oxidation at
microscale for its application in the space industry. The autoignition
criteria was defined in relation to residence time of the fluid/reacting
element in the microreactor. Thus, despite homogeneous reaction cases
which may always yield autoignition, this was restricted in the present
case owing to limitation by flow time scales involved. Among several
classification models, Random Forest and Support Vector Machine were
able to predict outcomes with high accuracy. Subsequently, regression
models were used to predict ignition delay time where a two-step
sequential strategy consisting of first predicting autoignition followed
by ignition delay time for the corresponding cases. The developed
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approach was further tested on an example of a simple model system
with 2D simulation to highlight the potential of using Machine Learning
models beyond simple prediction of autoignition and ignition delay
time. Several further implications and utility of the machine learning
methodology were presented in the context of present problem high-
lighting how it can assist in understanding the onset of hydrothermal
flames at microscale and eventually design efficient microreactors. As a
future perspective, it is intended to couple the hydrodynamics of jets or
co-axial flow to account for more intricate hydrodynamic time scales
into the machine learning models. This will further improve the pre-
dictability of these models.
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