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Climate Interconnectedness
and Financial Stability

Miia Chabot®*, Jean-Louis Bertrand®, and Valentin Courquin®

ABSTRACT

Climate risks directly affect a wide range of non-financial firms, and indir-
ectly affect the financial institutions that lend to or invest in them. In this
paper, we explore the influence of climate risks on financial stability of
European financial institutions using network analysis and panel regres-
sions. The determination of interconnectedness variables and the graphical
representations of climate networks allow the identification of climate sys-
temic important financial institutions and risk concentrations. Our work
contributes to the development of new macroprudential metrics to capture
climate risks and address climate-related risk from a systemic perspective.

REsume

Les risques climatiques affectent directement de nombreuses entreprises
non financieres et indirectement les institutions financieres qui les financent.
Dans cet article, nous explorons I'influence des risques climatiques sur la
stabilité¢ financiere des institutions financiéres européennes en utilisant
I'analyse des réseaux et les régressions en panels. La mesure des variables
d’interconnexion et les représentations graphiques des réseaux climatiques
permettent d'identifier les institutions financieres d'importance systémique
et les concentrations de risques. Notre travail contribue au développement
de nouvelles mesures macroprudentielles en permettant d’identifier les
risques climatiques et de les gérer d'un point de vue systémique.
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1. Introduction

Climate change is becoming a major financial stability issue and one of
the most important challenges facing global economies (Alt et al., 2015;
Carney, 2015; WEF, 2022; Ranger et al., 2022). The consequences of
climate change are systemic in nature (Aglietta and Espagne, 2016). They
affect the whole planet, through rising variability, accumulated GHG
emissions, and localized extreme events that can propagate to larger terri-
tories using different channels, physical, social, and financial. Climate
change incorporates in fact the three components that define systemic
risk, namely contagion risk, macro shock risk, and the risk of unravelling
imbalances accumulated over time (ECB, 2009).

Banks play a central role in the economy through the choices they
make about the activities they finance and the assets they invest in, as the
2007 financial crisis has highlighted (Cornett et al., 2016; Berger et al.,
2017). The financial system’s exposure to climate change is mostly indi-
rect, but significant enough that 102 central banks and supervisors joined
forces in 2017, explicitly considering climate risks as part of a supervisory
mandate, and challenging policymakers, other central banks, and super-
visors to act to limit the catastrophic impacts of runaway climate change
(NGES, 2019). The Financial Stability Board (FSB) has identified three
main channels through which climate change can affect financial stability,
and has defined the risks associated with each channel using the terminol-
ogy of transition, physical, and liability risk (Carney, 2015). Transition
risk refers to the financial risks that the implementation of climate policies
and regulation poses directly to high-emitting companies and indirectly to
their lenders and investors. Physical climate risks refer to the financial
impact on economic activity and financial assets of climate variability,
encompassing both extreme weather events and gradual changes in cli-
mate. Physical risks are termed “acute” when they arise from extreme
events including tornadoes, storms, flooding, droughts, or forest fires, and
“chronic” when they result from progressive shifts, including climate
variability driven by the effects of elevated temperatures (ECB, 2020).
Finally, liability risks relate to financial compensation for victims of cli-
mate change insofar as a court can make a company legally liable for the
climate-related damage suffered.

This paper is motivated in particular by the ECB’s recent commitment
to take greater consideration of the potential impact of physical climate



risks on the financial system. Indeed, in assessing the effects of climate
change on financial stability, the initial focus has been mainly on transi-
tion risk (Bressan and Romagnoli, 2021; ECB, 2021). However, given the
increase in climate variability, the ECB is concerned that physical climate
risks could comparatively be more consequential and that amplification
mechanisms arising from the concentration of exposures, correlation of
cross-risks, and overlapping portfolios of financial institutions may rein-
force this concern. In addition, given the lifetime of GHG emissions
already accumulated and the inertia of the atmospheric system, no signif-
icant improvement in climate variability is possible before 20 to 30 years,
whatever the emission reduction scenario. It is therefore necessary to
measure the financial consequences of physical risks in order to put in
place the necessary tools and adaptation measures (Battiston et al., 2021;
Ranger et al., 2022). This paper is also motivated by the European Secu-
rities and Markets Authority’s decision in early 2022 to create a new risk
category that distinguishes climate risk from other categories, including
liquidity, market, credit, contagion, and operational risks, in its risk man-
agement, assessment, and monitoring framework, and to encourage the
emergence of climate-specific risk monitoring indicators to measure the
systemic nature of climate risk and possible "amplification mechanisms".
In particular, regulators fear market sell-offs due to the lack of information
on banks’ exposure to physical weather risks. In this regard, the ECB
acknowledged that none of the 115 lenders it supervises are currently
meeting their climate risk disclosure obligations (Arnold, 2022; Elderson,
2022). In addition, half of these banks admitted to being "materially"
exposed to climate risks (Elderson, 2022). One important objective of this
paper is to explore the effects of physical climate risks by examining how
they affect individual financial institutions (Z-score and Default Probabil-
ity) and how they affect the European financial system as a whole (Finan-
cial Conditions and Volatility).

In this paper, we empirically investigate the influence of physical cli-
mate risks and transition risks on financial stability using a dataset of 130
European financial institutions. Our empirical analysis extends from Jan-
uary 2000 to December 2021. The analysis is conducted in three steps.
The first step consists in examining the correlation of chronic, acute
climate risks (number and costs), and transition risks with various mea-
sures of financial stability. The second step focuses on the nature of the
interconnections of financial institutions related to climate risks and the



visualization of these networks. The third step of this work is to test the
influence of climate risk factors and their climate interconnectedness mea-
sures on European financial stability, using panel regressions. To assess the
influence of climate variability, we use temperature and precipitation
anomalies (Bertrand et al., 2015). The potential effects of physical climate
risk on financial stability are measured using a proprietary database that
exhaustively records all extreme climate events since 2000, their geogra-
phical location and propagation, their duration, and their human and
financial cost. The cost is cross-estimated from multiple sources (rein-
surers, governments, NGOs). Transition risk is measured using CO2
emissions. We consider four different measures of financial stability. Two
of them apply to individual financial institutions, and the other two apply
to the financial system as a whole. These measures are based on financial
performance, probability of default, market conditions and the volatility of
the financial markets.

First, we show that chronic and acute physical climate risks signifi-
cantly influence financial stability. Second, as we compare the influence
on financial stability of climate variables and interconnectedness variables
in climate networks, we find that there is a phenomenon of amplification
of climate risks within the financial system. Third, in comparing the
influence of climate network interconnectedness variables on financial
stability to conventional financial interconnectedness variables, we find
that the influence of climate risk is of comparable magnitude to the
influence of conventional financial parameters used by regulators to mon-
itor systemic risk. Fourth, network analysis based on climate risk cate-
gories and climate interconnectedness measures provide the opportunity
to identify financial institutions at risk and potential risk concentrations.
To our knowledge, this is the first time that climate networks constructed
from climate and extreme event data have been used to identify the
influence of climate risks on the financial stability of institutions and the
system in which they operate. In particular, network analysis allows us to
build an analytical database of interconnectedness characteristics by finan-
cial institution, to observe their evolution over time, and to identify
among financial institutions those that should be monitored closely, either
because of their importance in the network or because of their individual
exposure to the consequences of climate risks. This study contributes to
the development of new tools and metrics to measure climate risks and



capture their systemic consequences. It also contributes to filling the gaps
in the current prudential framework related to material climate risks.

The remainder of the paper is organized as follows. The next section
describes the Data. Section 3 presents the conceptual framework and
methodology. Section 5 discusses the descriptive statistics of variables, and
the main results. Finally, section 6 concludes and offers some policy
implications.

2. Related literature

In the literature, measures of systemic risk can be organized into two
broad approaches (Bisias et al., 2012; Billio et al., 2016). A first approach
links financial institutions to the market and relies on conditional Value-
at-Risk (Adrian and Brunnermeier, 2011) or Marginal Expected Shortfalls
(Acharya et al., 2010), and pays particular attention to the study of
financial return tails. The second approach focuses on the networks of
connections between financial institutions (Battiston et al., 2012; Loepfe
et al., 2013; Barro and Basso, 2010; Mistrulli, 2011; Billio et al., 2016;
Elliott et al., 2014; Elliott and Hazell, 2016). Based on the concepts of
feedback centrality (Battiston et al., 2012), topology (Loepfe et al., 2013),
and entropy (Barro and Basso, 2010; Mistrulli, 2011; Billio et al., 2016),
this second approach allows to analyze the entire system, and to highlight
the potential propagation channels. The risk of default of a large portion
of the system is assessed on the basis of interconnectedness of financial
exposures between institutions (Battiston et al., 2012; Elliott et al., 2014;
Elliott and Hazell, 2016; Torri et al., 2018). Our study is embedded in
this second approach and the emerging literature on the application of
network analysis to climate risks (Battiston et al., 2017; Roncoroni et al.,
2021; Zhang et al., 2022).

The literature on the relationship between climate risk and financial
stability is still in its early stages (FSB, 2020). Most of the current work
focuses on estimating the potential consequences of climate policies on
transition risks, and projecting these consequences over the long-term
using IPCC transition scenarios and data from integrated assessment
models (McGlade and Elkins, 2015; NGFS, 2020). Dafermos et al.
(2018) investigate climate change-induced financial instability and its
feedback mechanisms using a stock-flow-fund ecological model. Stolbova



et al. (2018) highlight the limitations of existing economic models of
climate policies effectiveness evaluation that ignore the role of the financial
sector. They tend to overestimate their effectiveness by neglecting financial
interconnectedness, contagion effects, and potential network feedback
loops that can amplify negative shocks coming from climate policies.
Safarzynska and van den Bergh (2017) show that systemic risk increases
significantly if climate policy is implemented too late and too suddenly.
When market participants do not anticipate this sudden policy change,
adjustment costs are likely to be higher than expected and to foster finan-
cial instability (Battiston and Martinez-Jaramillo, 2018). Roncoroni et al.
(2021) study the impact on financial stability of interactions between
climate policy shocks and market conditions, designing a framework that
they empirically apply to Mexican banks through contagion scenarios,
adding to the mainstream literature on stress testing, a tool commonly
used by financial authorities to assess the resilience of the financial system
(Borio and Drehmann, 2014; Battiston et al., 2016; ECB, 2021). Lam-
perti et al. (2021) rely on emissions data to test the efficiency of green
policies in their ability to reduce the climate risks. In a recent paper, Dunz
et al. (2021) examine the ability of climate finance policies that support
investment in green assets and penalize brown assets (high-emitting firms)
to enhance financial stability. Dafermos and Nikolaidi (2021) takes a
similar approach to test whether these policies can reduce physical risks,
by redirecting credit availability and investment toward low-carbon assets.
This leads to the other, less prolific strand of the climate risk literature,
that explores the resilience of the financial system to physical risks. The
development of this strand is hampered by the accessibility of data on
extreme events, which are not as widely available as data on GHG emis-
sions or climate policies. To overcome this obstacle, researchers resort to
proxies, a recent example being the study of financial stability by Flori
et al. (2021), which relies on the evolution of agricultural commodity
prices, themselves influenced by climatic conditions. Bressan and Romag-
noli (2021) consider weather derivatives and analyzes how their use can
reduce exposure to physical weather risk and improve financial stability.
Caby et al. (2022) use CDP scores, governance, management, and climate
change strategy indicators, and country-specific climate risk scores as
proxies for physical risks. Ranger et al. (2022) identifies shortcomings of
widely used scenarios and available stress tests for physical climate financial
risk scenarios, and proposes an additional approach called "realistic



catastrophe scenario” derived from the insurance industry. They highlight
inconsistencies in the extreme events considered, as well as uncertainties in
climate models, compound scenarios, indirect economic impacts, and
feedback loops between the financial sector and the real economy. Con-
sistent with Stolbova et al. (2018), these uncertainties expose policy mak-
ers to underestimation of risk. They are barriers to mobilizing short-term
financial resources to manage what is perceived as a long-term risk. How-
ever, to our knowledge, no study analyzes the impact of physical risk on
financial stability by directly testing the influence of climate variability and
extreme events. Similarly, no study considers the interconnection net-
works resulting from physical climate risks and their influence on financial
stability. These are two gaps we propose to address. In this paper, we
successively investigate the influence of climate risks on financial institu-
tions and financial stability. The two hypotheses we test in this paper are:
H1: Climate risks influence the default risk of financial institutions; H2:
Climate risks have a systemic influence on financial stability.

3. Methodology and framework

The theoretical mechanism underlying the propagation of climate risk
to the financial system is increasingly well understood (Carney, 2015;
Aglietta and Espagne, 2016; Batten et al., 2016; Nieto, 2019; Bank of
England, 2019; NGES, 2020; TCFD, 2020; Bardoscia et al., 2021; ECB,
2021; Elderson, 2022). We have synthesized the different approaches to
graphically illustrate how climate risk is transmitted from the real econ-
omy to the financial system (Figure 1).

Transition risk arises from a shock related to an abrupt change in
climate policy or a sharp increase in the cost of carbon. This shock initially
directly affects cash-flows and values of assets, increases the probability of
default of the most exposed firms, spreads to the market for the loans and
bonds that make up the assets of financial institutions, which themselves
potentially face a drop in collateral value, and an increase of the cost of
capital. The consequence is a deterioration of earnings and prudential
ratios, a downgrading of their credit rating, financial distress for some,
that can spread to other financial institutions within the network of the
financial system. Chronic physical risks, i.e., too hot, too cold, too wet,
too dry, affect demand, sales, productivity, earnings, and potentially credit
rating of many firms, which again leads to a deterioration of cash-flows



Figure 1: Conceptual Framework of the Transmission Channels of Climate

Risks. Adapted from Batten et al. (2016), TCFD (2020
and ECB (2021)
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and earnings, and potential defaults on loans financial covenants or repay-
ments. Acute physical risks cause direct impacts on productive assets,
infrastructure, supply chains, and result in business interruption, leading
to reduce trade and investments, reduced value of assets, increased cost
due to recovery and reconstruction, all of which are transmitted to the
financial system through the banks that are most involved with firms
directly or indirectly affected by climate disasters.

Our methodology proceeds in three phases. Phase 1 consists in the
study of the correlation between financial stability measures and transition
risk, chronic, and extreme climate risks (number of events and cost). Phase
2 focuses on the interconnections between financial institutions resulting
from climate risks. It consists in computing the interconnectedness vari-
ables, and then graphically visualizing the networks using a Kamada-Kawai
algorithm (Kamada and Kawai, 1989). This algorithm allows to position
the nodes of a network in a two-dimensional space in a way that mini-
mizes the number of possible crossing edges, thus offering a simple and
readable visualization of potentially complex networks. An important fea-
ture of a Kamada-Kawai graph is that the total balance of the layout is
linked to each individual characteristic. Phase 3 and final phase in this
work is to test the influence of climate risks and climate interconnected-
ness on financial stability, using panel regressions. Kolstad and Moore
(2020)’s recent literature review on statistical approaches applied to cli-
mate and economics showed that the use of panel analysis is highly



relevant when the research question aims to understand the response of a
system as a whole to climate change (Deschénes and Greenstone, 2007;
Dell et al., 2012; Burke and Hsiang, 2015; Colacito et al., 2019). In
particular, panel analysis allows us to assess the conceptual aspects over
time by analyzing a succession of years of observations of the same finan-
cial institutions and, for a given year, over the total observed population.

4. Data and econometric model

Our study covers the period from January 2000 to December 2021
and is supported by several databases. Financial and accounting data are
extracted from a Bloomberg terminal. GHG emissions are published by
Eurostat. The climate data used for chronic physical risk are daily tem-
perature and precipitation observations from national meteorological ser-
vices. The climate data range from January 1991 to December 2021 to
allow for the calculation of seasonal normals as defined by the World
Meteorological Organization (WMO). Extreme events were retrieved
from the BD CatNat from Ubyrisk. In this section, we describe the
sample of financial institutions and the financial stability dependent vari-
ables. We then focus on the climate independent variables and define the
climate network interconnectedness variables. The variables used in this
study are summarized and described in Table 2.

4.1. Sample of Financial Institutions

The construction of Europe has gone hand in hand with the develop-
ment of the European banking market, which has evolved considerably
over the past decades. The initial deregulation has allowed players of very
different sizes, legal and shareholding structures to cross national borders
to grow within the EU. In a second phase, banking harmonization has
spread with the implementation of the Single Supervisory Mechanism in
November 2014, along with the Single Resolution Mechanism (Chabot,
2021). Some institutions have been taken over, others have merged, and
others have appeared. While still more fragmented than the US market,
the European financial market is such that financial institutions within the
EU are all subject to identical monetary and prudential supervision, oper-
ate on liberalized banking markets, and face the same regulation regarding
payment systems, financial services and capital mobility (Scholtens and



Van’t Klooster, 2019). We also included insurance companies in our
database to reflect two growing concerns. On the one hand, their activity
makes them collectively the largest investors in Europe with a growing
share of investments on risky assets in search of financial performance for
their clients. They also share credit, operational and currency risks with
banks. Finally, the increase in damages related to climate change is
leading some central banks to question whether the current capital
framework for insurance companies is “fit for purpose” when it comes
to integrating climate risks (IAIS, 2011, 2016; Ellul et al., 2018;
Grimaldi et al., 2020). In addition, financial markets are prompted to
revalue assets that are directly or indirectly exposed to climate risks,
which adds risk to insurers’ investment portfolios and their own stock
market valuations. With this background, and since our work is explora-
tory by nature, we built a database of the European financial institutions
of different sizes, different shareholders structures (public versus
mutual), from systemically important financial institutions (SIFIs) to
national to regional banks. The geographical breakdown of the 130
financial institutions for which we had a complete set of variables, is
provided in Table 1. All financial data, both specific and market data,
were extracted from Bloomberg.

4.2. Dependent variables: Financial Stability Measures

The individual risk of financial institutions and financial stability are
measured using two sets of dependent variables: Z-score (Z) and Default
Probablity (DP) apply to individual risk, Bloomberg Financial Conditions
(BFC) and Market volatility (V) measure financial stability of the financial
system. Z-scores are widespread measures of financial stability (Boutin-
Dufresne and Savaria, 2004; Basel Committee on Banking Supervision,
2015; Cornett et al., 2016; Bouslah et al., 2018). We follow Laeven and
Levine (2009), Lepetit and Strobel (2015), Tonzer (2015), and Berger
et al. (2017), and compute Z for each bank 7 over the time period ¢ as:

Zy = R (1)

ROA is the Return on Assets, EA is Equity over total Assets, and ozo4
the standard deviation of the Return on Assets. Second, bank risk is
directly measured through the 5-year probability of default (DP) estimated
by Bloomberg. This estimate incorporates fundamental factors such as
sector risk, market sentiment, and the economic cycle to determine the



Table 1: Breakdown of Financial Institutions per Country of Incorporation

Country Number of Financial Institutions Number of Banks
Austria 10 5
Belgium 12 2
Finland 4 1
France 12 8
Germany 12 8
Greece 4
Ireland 3 2
Ttaly 12 17
Netherlands 10 2
Spain 12 4
Sweden 12 8
Switzerland 11 8
United Kingdom 12 7
Total 131 76

probability of default. Default risk is calculated following Merton (1974),
Altman and Sabato (2005), and Altman (2010). It is based on a combi-
nation of measures such as profitability (ROA, ROE), capital structure,
liquidity (liquid assets and size), market information (distance-to-default
measures) and an estimate of insolvency based on the study of the insti-
tution’s equity.

The financial stability of the system is measured using the Bloomberg
financial conditions index (BFC), which assesses the overall level of finan-
cial stress in the euro area based on money, bond, equity markets and the
availability and cost of credit. A positive value indicates accommodative
financial conditions, and a negative value indicates tight financial condi-
tions. We also study the financial stability of the system with the market
volatility (V) measured by the Vstoxx index of the Eurozone. Its US
equivalent is known as the VIX index. Vstoxx is estimated using a meth-
odology developed jointly by Goldman Sachs and Deutsche Borse. The
higher the index, the greater the volatility of the market, the higher
financial instability (Osina, 2019).



4.3. Independent variables
4.3.1. Physical Climate Risk Variables

Chronic and acute physical climate risk variables combine measures of
climate variability and extreme events respectively. Climate variability
variables are based on daily observations of temperature and precipitation
measured across a wide range of ground weather stations in each European
country so as to create country temperature and precipitation national
indices.

In the specific case of Europe, banks™ corporate and retail clients are
mainly domestic (Chabot, 2021). Duijm and Schoenmaker (2021) ana-
lyze the proportion of domestic and European assets relative to total assets
for a panel of the 61 largest European banks. The data was hand-collected
as information about the distribution of assets between domestic and non-
domestic markets is not readily available. Their results for major European
countries are summarized in Table 12 in Appendix. A large proportion of
the assets are either domestic or European. In relative terms, a small
proportion of the assets is outside of the combined “domestic and rest
of Europe”.

In addition, in the ECB Occasional Paper No 281 on economy-wide
climate stress test, Alogoskoufis et al. (2021) find that "across countries,
banks have a strong home bias, giving loans predominantly to domestic
rather than foreign firms (...) In all countries, with the exception of
Ireland and Luxembourg, domestic firms make up at least 50% of bank
portfolios and at euro area level 80% of banks’ exposures are to domestic
firms. The composition of bank portfolios in terms of domestic versus
foreign firms determines the extent to which the country-level climate risk
of the firms (...) translates into country-level climate risk for banks."
Hence, in the absence of information on the geographical distribution
of assets and liabilities by each financial institution, national climate
indices are relevant climate indicators to capture not all but most of the
exposure to climate risks.

We used data from official national meteorological services (Table 13
in the Appendix). Data was cleaned when required so that there are no
missing data or discontinuities arising from changes in weather stations
(Aufthammer et al., 2013; Auffhammer, 2018). Following Quayle and
Diaz (1980), Parsons (2001), and Dell et al. (2014), and following World



Meteorological Organization’s guidelines for creating a set of national
climate indices (WMO, 2017), each country index is the weighted aggre-
gate climate data of regional stations using a fixed set of population
weights. The concept in creating a country climate index for economic
or financial modeling is to reproduce the average climate conditions expe-
rienced by economic actors in the considered area, not the average climate
conditions of the geographical area. To avoid any bias in the calculation of
climate anomalies measured as the difference between observed climate
conditions and their 30-year average (1991-2020), the trend was taken
into account. Climate anomaly indices are calculated following Baede

(2001) and Burke et al. (2009)2.

Access to data on extreme weather events is more challenging as most
databases are not public and by construction contain some bias. Biases are
reflected in damage thresholds, the nature of the events, the completeness
of the description of the events, their localisation, and their consequences,
and the countries covered. We reviewed four of the most complete data-
bases: BD Catnat, Munich Re, Swiss Re, and CRED?. Most of these
databases are created for the insurance sector. As a result, they tend to
over-represent events occurring in developed countries where the insur-
ance penetration rate is high, which for the purposes of our study in the
EU is not a limitation. A comparison of the databases over the period
2001-2021 indicates that the total estimated damages are relatively com-
parable between the 4 databases: $3,797 billion for BD Catnat, compared
to $3,752 for Munich Re, $3,604 for Swiss Re, and $3,066 for CRED. In
terms of number of events and completeness, we found BD Catnat to be
the most exhaustive, with 18,080 events compared to 16,294, 3,218 and
7,278 respectively. Extreme events in the BD Catnat database are grouped
into three categories: hydrological (HYD), climatic (CLI) and meteorolo-
gical (MET). They cover a wide range of climatic hazards, from floods and
freezing rain to fires and storms (Table 2). In addition, three intensity
measures are provided for each event: the severity (SEV); the human cost
covering the number of victims, deaths, evacuees, etc. (HUM); and the
material cost covering the estimated damage to buildings, infrastructure,

2 The complete process to transform daily temperature and precipitation data into monthly, quarterly, or annual
temperature and precipitation anomaly index is developed in Bertrand et al. (2015) and Bertrand and Parnaudeau
(2017).

3 Munich Re and Swiss Re are reinsurance companies, CRED is maintained by the University of Leuven (Belgium), and
BD Catnat is from Ubyrisk, a private risk management consulting firm. Other providers include the Asian Disaster
Reduction Center, EMA (Australia), the Federal Emergency Management Agency (USA), and Reliefweb.



and other local, regional, national or international material consequences

(MAT).

4.3.2. Network Interconnectedness Variables

A network consists of a set of financial institutions (nodes) and a set of
relationships (edges) between them. A network is generally built on the
basis of a bilateral exposure matrix (BEM) between banks, on which an
adjacency matrix is calculated (Co-Pierre, 2013). We use an approach
based on correlation filters. This approach allows us to filter the networks
and to keep only the relationships for which the common exposure (cor-
relation) between individuals is higher than a specific threshold. Once the
network is constructed, it is possible to identify the financial institutions
that play an important role in terms of interconnections in this network.

To compute climate network measures, we follow Chabot (2021) who
developed a prominence analysis focused on edge attributes. The metho-
dology starts by calculating the clustering coefficient (C) and the average
path length (L), which are defined as follows (Bullmore and Sporns, 2009;
Telesford et al., 2011):

= “’i(j:il) ; L= n(nl—l) ;Pfj (2)
7y

where C is the proportion of edges ¢; between the neighbors of a node 7
relative to the total number of possible edges &; between these neighbors.
High clustering implies specialisation between nodes, which means that
the financial institutions concerned are highly interconnected. L is the
average path length and 7 is the number of nodes in the network. The
average path length is calculated as the average of the shortest distance
between all possible pairs. P; is the shortest path between i and and j. It
equals zero if j cannot be reached from i. Small values of L imply that
information easily spreads throughout the financial institutions in the
networks. The next step is to compute Closeness (CL;) and Betweenness
(Bt;) measures that we use in this paper (Bech and Atalay, 2008)%. They

are defined as follows:
-1 Z Pir(i)

g el
CLZ' = § 1 dfz‘j X Bt,‘ = % (3)
J= ’

4 see also Boss et al. (2004), Soramaki et al. (2007), Embree and Roberts (2009), Gémez et al. (2013), Minoiu and Reyes
(2013), Langfield et al. (2014), Silva et al. (2016), Aldasoro et al. (2017), Berndsen et al. (2018), Hasan et al. (2018),
Houston et al. (2018), Lozano and Cazalda-Infante (2018), Silva and Souza (2017), and Brunetti et al. (2015).



where ds;; is the distance between individual 7 and the other individuals j
in the network, Py (i) is the shortest path between j and k that contain
node i, while Py is the shortest path between j and k.

Closeness centrality is the inverse of the sum of all the distances ds
between node (financial institution) i and the other nodes (financial insti-
tutions) j in the network. A financial institution (node) with a high level of
closeness therefore has a central location in the network with respect to the
considered climate risk. The higher the Closeness centrality, the more the
institution is located at the heart of the network of relations, the more
important its role in the network is. In other words, the institution
characterized by a high Closeness centrality is connected to many institu-
tions and the distance by which it is connected is short.

Unlike Closeness centrality, which focuses on measuring observed
distances, Betweeness is about triangles of relationships. Betweenness mea-
sures the extent to which a node sits between pairs of other nodes such
that a path between the other nodes has to go through that node. A
financial institution (node) with a high betweenness is prominent because
it is in a position such that risk predominantly goes through this financial
institution. The more an institution is an inevitable node, and the shorter
the path that connects it to the other institutions in these relationships,
the more influential the institution is. The role of this institution in the
network becomes more than a simple intermediary, but that of an insti-
tution capable of exercising a strong influence over the exchanges that take
place within the network.

We calculate CL and BT of each financial institution 7 in the networks
of relationships resulting from each variable of physical risks, namely
temperature and precipitation anomalies (ANOT and ANOP), the three
categories of extreme climate events (HYD, CLI, and MET). So, for
instance, CLyyp,BTwyp, are respectively the Closeness and Betweeness
of financial institution 7 with respect to HYD that relates financial insti-
tution i.

4.3.3. Control Variables

The economic variables we use are the traditional determinants of
financial stability identified in the literature. Following Caccioli et al.
(2013), Brunetti et al. (2015), Kanno (2015), Liu et al. (2015), and
Paltalidis et al. (2015), we use asset price (PX), interbank assets (/7BA),



non performing assets (NPA), and Tier 1 (T1). We also use real GDP
growth rate (RGDP) and the 3 month money market rate (3M). We also
calculate interconnectedness variables applied to the price (PX) and inter-
bank assets (/7BA) for control purposes.

4.3.4. Econometric Model

The general model for measuring the influence of climate risks on the
riskiness of each financial institution follows:

FSil’ld,‘t =+ 6,‘COHII‘01,¢ + ’inIimateit + 5,‘NCtWOl‘kSl‘t + QZGHGZ-,
+ €ir (4)

where FSind;, is an individual Financial Stability measure (successively Z
and DP). Control;, are asset prices (PX), the 3-month money market rate
(3M), real GDP (RGDP), interbank assets (ITBA). The Climate;, vari-
ables are transition, chronic, and acute climate variables (GHG, ANOT,
ANOP, CLI, HYD, MET, SEV, HUM, and MAT). Network;, are the
network measures Closeness (CL) and Betweeness (BT) applied to
ANOT, ANOP, HYD, CLI, and MET. «; is a constant and ¢; is the
perturbation term. Models 1 measure the influence of control variables.
Models 2 measure the influence of physical climate risks (anomalies and
number of extreme events). Models 3 measure the influence of transition
risks. Models 4 measure the influence of physical climate risks (anomalies
and severity of extreme events). Models 5 measure the influence of control
variables and climate network measures.

The general model for measuring the influence of climate risks on the
financial stability follows:

FSeurir =, + ﬂl‘COHtI‘OIZ‘t + ’inlimateit + (SZ‘NCtWOI‘kS,‘t + HZ‘GHGl‘t
+ Eit (5)

where FSeur;, is a Eurozone Financial Stability measure (successively BFC
and V). Control,, are asset prices (PX), the 3-month money market rate
(3M), real GDP (RGDP), interbank assets (ITBA). The Climate;, vari-
ables are transition, chronic, and acute climate variables (GHG, ANOT,
ANOP, CLI, HYD, MET, SEV, HUM, and MAT). Networks;, are the
network measures Closeness (CL) and Betweeness (BT) applied to
ANOT, ANOP, HYD, CLI, and MET. «; is a constant and ¢; is the
perturbation term. Models 1* measure the influence of control variables.
Models 2* measure the influence of physical climate risks. Models 3*



measure the influence of transition risks. Models 4* measure the influence
of physical climate risks. Models 5* measure the influence of control
variables and climate network measures.

5. Results

This section presents the descriptive statistics of our databases and
discusses the results of the influence of climate risks on financial stability.

5.1. Descriptive statistics and Correlation Analysis

While the descriptive statistics of the financial data do not call for
particular comments, the variables relating to physical and climatic risks
provide some insights. We first focus on chronic risk variables, i.e, those
that describe the evolution of climate anomalies often referred to as cli-
mate variability. The average temperature anomaly of the last decade
(2011-2020) is 0.39°C higher than the first decade (2001-2010). From
one decade to the next, the standard deviation of temperature anomalies
increased by almost 50%, from 0.32°C to 0.48°C. Both statistics confirm
the rising temperatures due to climate change and the increased variability.
Average precipitation over the same periods however did not exhibit any
trend or significant change in the standard deviation. We then focus on
acute risk variables, i.e., extreme events. Over the same periods, extreme
events increased both in terms of the number of events (+33%) and their
financial consequences (+62%), in line with the findings of the latest
IPCC (2021) report. In the database of European extreme climate events,
events categorised as meteorological were the most frequent (54%), fol-
lowed by climatic events (29%) and hydrological events (17%). A sum-
mary of the descriptive statistics for the climate variables is displayed in

Table 3.

A correlation analysis between the financial stability variables and the
set of explanatory variables is then carried out. In particular, we test the
correlation of the physical climate risk variables (Table 4 ) and the climate
interconnectedness variables (Table 5) with financial stability. We note
the remarkable fact that some of the correlations between financial stabi-
lity and climate interconnectedness variables are higher than those with
physical climate risk variables, which tends to confirm the existence of a
phenomenon of amplification of climate risks in the network of financial



Table 2: List and description of variables

Abbrev. Variable Description Frequency
Z Z-score Measure of financial stability of each Annual
financial institution
DP Default Measure of default probability of each Daily
Probability financial institution
BFC Financial Measure of overall level of financial stress in | Daily
Conditions the euro area based on credit availability
estimated by Bloomberg
\% Volatility Measure of overall level of financial stress | Daily
measured by Vstoxx
RGDP Real GDP Real Gross Domestic Product per country | Quarterly
3M Money market | 3-month money market rate Daily
rate
PX Asset Price Daily closing price of each financial Daily
institution
ITBA Interbank Assets | Interbank assets of each financial institution | Annual
NPA Non-Performing | Non-performing assets of each financial Annual
Assets institution
Tl Tier-1 Tier 1 Capital of each financial institution | Annual
CDS CDS 5-year Credit Default Swap 5-year price of each | Daily
financial institution
ECBXLIQ | ECB Liquidity | ECB Eurozone Excess Liquidity Daily
GHG Emissions Level of GHG emissions Annual
ANOT Temperature Average difference between observed Daily
Anomaly temperatures and their 30-year average
ANOP Precipitation Average difference between observed Daily
Anomaly precipitations and their 30-year average
HYD Hydrological Number of Flooding and mudflow events | Annual
CLI Climatological Number of Forest fires, coldwaves, Annual
heatwaves, and droughts
MET Meteorological Number of cyclones, storms, hail, Annual
tornadoes, waterspouts, blizzards,
avalanches, and freezing rain
SEV Severity Scale from 0 to 6 ranging from no damage | Annual

to cataclysm




Table 2 (Continued): List and description of variables

Abbrev. Variable Description Frequency
HUM Human Number of people who were evacuated, Annual
injured, homeless, or killed
MAT Materiality Damage to buildings, infrastructure, and Annual
economic impact
BTy,i Climate Network measure of the importance of a | Annual
Betweeness financial institution 7 in a network of
correlations based on X ; X is successively
ANOT, ANOP, HYD, CLI, and MET.
CLy,i Climate Network measure of central financial Annual
Closeness institutions 7 in a network of correlations

based on X ; X is successively ANOT,
ANOP, HYD, CLI, and MET.

Z,DP, BFC, and V are the dependent variables; RGDP, 3M, PX, ITBA, NPA, T1, CDS, and ECBXLIQ are
control variables; GHG is a transition risk variable; ANOT and ANOP are chronic climate risk varirables; HYD,
CLI, MET, SEV, HUM, and MAT are acute climate risk variables; BT and CL are interconnectedness variables.
Data are annualized when used in the models. All variables are stationary except for ECBXLIQ which is expressed
in first difference.

Table 3: Descriptive Statistics on Climate Variables (2000-2021)

ANOT ANOP|HYD CLI MET | SEV HUM MAT | GHG
Mean .18 1.00| 2.46 3.83 8.64| 1287 14.81 20.26 | 2057
Median 23 99 1 0 41 110 9 91 39.55
Maximum 1.73 1.33 19 74 66 |54386 95 197 693606
Minimum —1.96 .62 0 0 0 0 0 0 .06
Std. Dev. 52 10| 3.43 9.31 13.38| 4481 20.41 30.94 | 36755
Observations| 2882 2882|2751 2751 2751 | 2751 2751 2751 2356

institutions (Dafermos et al., 2018). For instance, the correlation between
DP and interconnectedness climate variables ranges from -.0867 to
+.1389, while that of climate variables falls within the narrow range of -
.0081 and +.0388. Similarly, the correlation between BFC and climate
interconnectedness in absolute value reaches .2225 for closeness related to
climatic extreme events (CLcy7) and .1333 for betweeness related to

meteorological extreme events (B7jr), while the correlation between
BFC and physical climate variables does not exceed -.0854 (ANOP) and
+.0634 (CLI).



Table 4: Correlation - Financial Stability and Climate Variables

V4 DP BFC \%
ANOT —.0377 .0228 —.0162 .0459
ANOP —.0089 —.0081 —.0854 .2250
HYD —.0781 .0388 —.0578 1141
CLI —.0470 .0262 .0634 —.0749
MET —.0743 —.0084 .0147 —.0457
SEV —.0108 0115 0212 .0377
HUM —.0820 .0190 .0260 —.0364
MAT —.0699 .0370 .0278 —.0447

Z and DP are measured for each financial institution. Z is the annual Z-score and DP the
probability of Default estimated by Bloomberg. BFC and V are Eurozone measures of
financial conditions and volatility. ANOT, and ANOP are chronic risks, and CLI, HYD,
MET, SEV, HUM, MAT are acute climate variables.

Table 5 also highlights a second remarkable result, namely that the
correlation levels between the financial interconnectedness variables and
some of the climate interconnectedness variables are of the same order of
magnitude. As an example, the correlation between DP and the betwee-
ness of climatic extreme events (B7zr) is +.1389, compared to the
correlation between DP and the betweeness of stock prices (B7px) of
+.1259. Similarly, the correlation between BFC and the climate intercon-
nectedness variables of extreme events HYD, CLI, and MET is overall
higher in absolute value than that with the interconnectedness variables of
PX and ITB financial variables.

5.2. Graphical Display of Climate Interconnectedness

Due to the large number of climate variables (8 in total between
climate anomalies and extreme events measured by their frequency and
cost), we cannot display all the climate networks in this paper. However,
the influence of each climate interconnectedness variable will be analyzed
in the following section on panel models. In this section, we illustrate the
graphical representation of financial institutions interconnections related
to temperature anomalies, as temperature is the most extensively
researched climate variable in the academic literature and the one that
captures attention in the Paris agreements. Based on the descriptive anal-
ysis that revealed an evolution of climate variability between the last two



Table 5: Correlation - Financial Stability and Interconnectedness (Financial and
Climate)

y4 DP BFC \%

BT o —.0147 —.0867 —.0402 0442
BTy, —.0440 —.0491 —.1122 —.0125
BTyt —.0387 .1389 —.1333 0153
CLyyp —.0063 —.0411 —.1512 0041
CLeys —.0019 —.04698 —.2225 .0440
CLyr —.0112 —.0371 —.1182 —.0173
BTy —.1944 1259 0347 —.0885
BTy —.1156 0749 0659 —.0577
CLpy 2142 —.1744 1127 —.0836
CLy73 0565 —.0982 0462 —.0575

Z and DP are measured for each financial institution. Z is the annual Z-score and DP the probability of Default
estimated by Bloomberg. BFC and V are Eurozone measures of financial conditions and volatility. BT and CL
stand for Betweeness and Closeness centrality. ANOT, and ANOP are chronic risks, and CLI, HYD, MET, SEV,
HUM, MAT are acute climate variables. PX is the annual average closing price of each financial institution. ITTBA
is the interbank asset value of each financial institution.

decades, we produced two network visualizations related to temperature
anomalies, one for the period 2001 to 2010 (Figure 2), and a second one
that covers 2011 to 2020 (Figure 3). To facilitate discussion of the evolu-
tion of the network between the two decades, we also propose a schematic
representation (Figure 4), that provides the names of the financial insti-
tutions instead of their mnemonic codes, keeping only the main institu-
tions for readability reasons.

In the first decade (2001-2010), the network that represents the most
important relationships of European financial institutions consisted of
four distinct and unrelated groups. The first group at the bottom left of
Figure 2 and Figure 4 gathers the largest number of institutions and
constitutes a dense core with a high degree of interconnectedness and
short average distances that favor a faster propagation of potential shocks
within this group of interconnected institutions. At the center of the
group, French financial institutions (Crédit Agricole, Natixis, Société
Générale and insurers like Axa or CNP) occupy a predominant position.
Around the French financial institutions evolve two groups of financial
institutions, mostly Italian such as Unicredit or Credito Valtelinese on the
left, and Spanish such as BBVA, Caixa or Santander on the right On



Figure 2: Temperature Anomalies Interconnectedness 2001-2010,
edge attr. 60%

either side of this core, there are predominantly Swedish institutions such
as Skandinaviska or Swedbank on the left, and predominantly German
institutions such as IndustrieBank or Deutsche Bank on the right, with
the latter preferentially attached to German institutions. A second, dense
and isolated core is made up mainly of insurers (Aviva, Ageas, Vienna
Insurance, Uniqa) and some banks (Dexia, KBC). A third isolated group,
less dense in terms of nodes and relationships, is made up almost exclu-
sively of financial institutions from the United Kingdom, with two pre-
ferential attachments to St James Place on the one hand and Lloyds Bank
on the other. Finally, the network representation displays a fourth group,



Figure 3: Temperature Anomalies Interconnectedness 2011-2020,
edge attr. 60%

composed mainly of Swiss financial institutions, banks and insurers, such
as UBS, Crédit Suisse, or Swiss Life. During this first decade, we note that
the climate network of temperature anomalies, and more generally the
climate networks we have studied, highlight privileged positioning and
connections between financial institutions whose main activities are linked
to the country in which they are incorporated or listed. Possible explana-
tions include the slowness of the effective opening of a true European
market, the legacy of local banking habits and practices that have led to a
very active presence of each institution in its domestic market, for the
main benefit of domestic clients, who were themselves mostly exposed to
domestic climate risks.



Figure 4: Schematic evolution of networks related to temperature anomalies
from one decade (2001-2010, left hand side) to the next (2011-2020,
right hand side)
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In the second decade (2011-2020), the network has evolved consider-
ably. It still has one large group of institutions, but now has five groups in
total that are closer to each other, three of which are interconnected
(Figure 3 and right hand side diagram of Figure 4). The main group of
financial institutions is larger. The position and the connections of each
institution in the group are less influenced by the country of origin. The
configuration of the network is such that a temperature shock could
propagate to a much larger number of institutions, either within the main
group of financial institutions or to institutions belonging to one of the
three interconnected groups. In the following section, we use panel mod-
els to test the influence on financial stability of all interconnectedness
variables of the climate networks (i.e., betweeness and closeness).

5.3. Panel Analysis

In this section, we present the estimates of models 1 (1*) to 5 (5%),
described in section 4.3.4, which analyse the influence of climate risks and
climate networks on the risk of each financial institution, measured as the
Z-score (Z) and the 5-year probaility of default (DP), and on the financial
stability of the system, measured as the Bloomberg Financial Conditions
index (BFC) and the volatility of the markets (V). Models 1 (1*) to 5 (5%)

test successively the traditional financial explanatory variables, climate



variables, greenhouse gas emissions, and climate interconnectedness vari-
ables. The results are summarised in tables 6, 7, and 8.

5.3.1. Financial Stability and Climate Risks

We verify that the traditional financial variables PX (Brunetti et al.,
2015), 3M, ITBA, and T1 (Battiston et al., 2012; Tonzer, 2015; Embree
and Roberts, 2009; Paltalidis et al., 2015) have a significant influence on
the financial stability of each institution measured by Z and DP (Models 1
in Table 6 and Models 1* in Table 7). In line with the literature, most
financial variables have a significant influence on both Z and DP at the
.01 level, with the exception of interbank assets which only affects DP but
not Z. As we add climate variables to the models, we find that both
temperature and precipitation anomalies affect Z, a result consistent with
previous findings on temperature (Deschénes and Greenstone, 2007; Dell
et al., 2012; Burke and Hsiang, 2015; Colacito et al., 2019; Newell et al.,
2021). The only extreme event category that has a significant influence on
Z and DP is MET, i.e., events such as storms, hurricanes, waterspouts,
and thunderstorms. These events tend to involve significant human and
material costs, although our analysis shows that only human costs (HUM)
significantly influence both Z and DP. As we look at the transition risk,
we find that GHG emissions only marginally negatively affect Z (at the
.1 level) but does not significantly influence DP, a result that may be
explained by the fact that the financial system’s exposure to transition risk
has hardly changed. In a context where corporate emissions have declined,
the exposure of euro area banks to the largest corporate issuers has

remained broadly stable (ECB, 2022).

We now focus on the financial stability of the system measured by
BFC and V. We find that financial variables do not significantly influence
BFC and V (Models 1* in Table 7). However, the influence of some of
the financial variables (PX, 3M, RGDP) become significant at the .01
level for both BFC and V as we add climate variables to the models.
Models 2* that consider the potential influence of both chronic and
extreme climate variables on financial stability show that temperature
anomalies, and extreme events such as floods or mudslides (HYD) very
significantly affect BFC and V. In the case of V, there is also a significant
influence of events such as heat waves, forest fires, or cold waves (CLI).
This is consistent with Burke and Hsiang (2015) who showed that agri-
cultural and industrial production is penalized by a rise in temperature in



both rich and poor countries. It is also in line with Kahn et al. (2021) and
Colacito et al. (2019) who found that temperature shocks and increased
temperatures variability has a negative impact on economic growth. Over
the last two decades in Europe, the 2003 heat wave was the first significant
temperature-related severe event. It caused a very significant excess of
deaths and had important economic consequences. Miller et al. (2021)
estimate that the 2003 heat wave cost 35 billion euros (1.7% of GDP) in
France alone. In recent years, both climate variability and the number of
hot days (5°C above normal temperatures in summer months) have con-
tinued to increase. The 2019 European summer heatwaves was in fact
considered the world’s most lethal climate disaster, specifically in France,
Belgium, and the Netherlands with over 2,500 deaths (CRED, 2020).
Models 4*, which consider the cost of extreme events, confirm a very
significant influence of temperature. In addition, we find that precipita-
tion anomalies and the severity of extreme events both affect financial
stability (BFC and V). This is an important result when considering the
importance of physical weather risks in Europe in 2021, with major
floods, mudslides, storms and fires in Germany, France, Belgium, Italy
and Greece, and the hottest July on record disrupting business activity,
directly affecting business and household assets, and thus indirectly the
profitability of banks and insurers (Arnold, 2021; Bernard and Smith,
2021).

5.3.2. Financial Stability and Climate Interconnectedness

Models 5 and 5* test the influence of the climate interconnectedness
variables on the risk of individual European financial institutions and on
the European financial system as a whole (Table 8).

First, we consider the influence of climate interconnectedness on indi-
vidual financial institutions (Z and DP) and investigate the networks
related to chronic climate risks. We find that the interconnectedness
variables of the networks of temperature and precipitation anomalies have
a very significant influence. When looking at the temperature anomalies
network, we find that the interconnectedness measures betweeness and
closeness influence Z and DP at the .01 level. This means that both the
position of a financial institution in the network (closeness) and its impor-
tance in the network (betweeness) are to be considered in the propagation
of a temperature shock. This is an important result when considering the
expected rising variability of temperature induced by climate change and



Table 6: Climate Risks and Financial Stability (Z and DP)

Z DpP zZ DP
Model 1 2 3 1 2 3 Model 4 4
PX .09%** .09%** 91F | 028 — 02 33| PX 097 — 027
(2.73) (3.18) (1.56) (2.42) (—2.53) (.82) (3.18)  (—3.63)
3M 16% 02% 247 | =03 .004% 24| 3M 019% 004
(4.23) (4.73) (2.64) | (—4.03) (3.70) (.54) (475  (3.63)
RGDP .01 .06 1.04*+* .006 .006 —.14| RGDP .006 .005
(.33) (.24) (2.28) (.33) (52) (-1.02) (.26) (:44)
ITBA A3 —1379% 1529 | —32% —.05 .07 | ITBA —1.24** —-.16
(37)  (=235) (-1.82)| (-1.87) (=.27) (.66) (-2200  (—.81)
NPA —2.90%*  —2.78*** —1.42 .93% .89+ 1.30 | NPA —2.83" 90%**
(=6.24) (=325 (=91 | (3.60) (232)  (1.20) (—3.38)  (2.35)
T1 1.30%* 1.52%% 1519 | — 487 =53 =30 | T1 1.52%%% 50"
(3.37) (4.20) (3.52) | (—3.38) (—3.25) (-1.81) (4.18)  (-.78)
ANOT L03** —.004 ANOT 03% —-.005
(2.04) (—.67) (2.11)  (=.78)
ANOP 0% —.037* ANOP .08** —.03*
(2.21) (—1.54) (1.86)  (—1.41)
CLI .0007 .0009 SEV 1.03 2.05
(1.04) (22) (.73) (:44)
HYD —.001 .004 HUM 001004
(=.52) (.54) (2.100  (2.05)
MET 001+ —.0004** MAT —.0003 .002
(2.40) (=2.37) (—.86)  (1.30)
GHG —9.28* —3.80
(=1.36) (—.84)
c 03— 11 93 047 —.08*** —.02| ¢ —.09** 8%
(1.67)  (=1.97) (2.86) | (2.38) (3.08)  (-.19) (=1.67) (294
F-test 12,159 8.16™*  3.93** | 3.93** 4327 2.67°** | F-test 8.09* 426
Rsq. 30 £ 48 2 37 41| Rsq. 43 27
Hausman | 33.90"**  42.85***  25.91"* | 22.11™*  28.85"* 19.64** | Hausman | 40.82** 30.58***
SE Clust. No No No No No No [ SE Clust. No No

Z and DP are measured for each financial institution. Z is the annual Z-score and DP the probability of
Default estimated by Bloomberg. Model 1: Financial stability and PX, 3M, RGDP, ITBA, NPA, and T1
as control variables; Model 2: Financial stability, control variables, ANOT, and ANOP as chronic risks
and CLI, HYD, and MET as the number of acute climate events; Model 3: Financial stability, control
varaibles, and GHG ; Model 4: Financial stability, control variables, chronic risks, and SEV, HUM, and
MAT as the severity and cost of acute climate events. F-test is a test a joint relevance of the variables in the
models. R-squ. is the goodness of fit. The Hausman test verifies the presence of random effects. SE Clust.

verifies the absence of standard error clustering (period and cross-sections

**: significant at the .05 level; *: significant at the .10 level.

). FE

significant at the .01 level;




Table 7: Climate Risks and Financial Stability (BFC and V)
BFC v BFC v
Model * 2 3 * 2 3* Model | 4 4%
PX 143 1447 349 | —456 —479" 6.01 | PX L4270 4,58+
(139)  (249) (1.75) | (=1.38)  (=3.07)  (1.00) (258 (-3.29)
3M —6.09  —.62%* 5124|1284 137 5747 | 3M — 647 147
(—14) (~1510)  (=6.38) | (81) (10.42)  (6.84) (-17.39)  (10.20)
RGDP 90 1.02 317 ~1032 10.14**  1.82** | RGDP L10™*  10.67°*
(51) (.69 (147) | (-1.36)  (1607) (847 772 (19.37)
ITBA ~2.61 1.24 179 133 3339 —3.63|ITBA 1.74 22.32
(=.30) (15) (62| (04 (139  (-36) (21) (91)
NPA —5.43 406 —7.96*| 213 1336 2.61"*| NPA —643  28.19*
(—87) (105 (=3.20)| (L10)  (1.08  (2:56) (-171) 2.12)
T1 69 155 263|882 1447 —596| Tl L15 9.31*
(:84) (.95) 47| 77 @6 (-89 (:69) (1.55)
ANOT —37% —2.42% ANOT 354 240"
(~5.10) (-9.02) (—4.61)  (~8.13)
ANOP 74 413 ANOP 05% 8.03%
(1.09) (1.29) (07) (2.57)
CLI 01 —12% SEV 647 —.0003**
(1.13) (~2.44) 375 (=5.37)
HYD 07 — 44 HUM 003 026
(-2.12) (=4.5%) (30) (81)
MET 007 —.04 MAT 002 —.0019
(.64) (-1.32) (—.86) (=91)
GHG -222 -3.71
(—.69) (~.28)
c =56 —L17% —16.79* | 22.82%* 17.79%* 197.69"** | ¢ —61* 1447
(-141)  (-1.61)  (=8.05) | (13949 (550  (897) (~.80) (4.57)
Frtest | 1677 10.11%%  1.09** | 10.79"*  9.59**  6.36"* | F-test 1005 8.96**
R-sq. 44 45 .60 19 45 52| Resq. 45 44
Hausman | 41.11%%  47.95%* 826 | 16.04™* 24.95**  7.64** | Hausman | 45.94** 2227
SE Clust. No No No No No No | SE Clust. No No

BFC and V are Eurozone measures of financial conditions and volatility. Model 1*: Financial stability and
PX, 3M, RGDP, ITBA, NPA, and T1 as control variables; Model 2*: Financial stability, control variables,
ANOT, and ANOP as chronic risks and CLI, HYD, and MET as the number of acute climate events;
Model 3*: Financial stability, control varaibles, and GHG ; Model 4*: Financial stability, control variables,

kK,

chronic risks, and SEV, HUM, and MAT as the severity and cost of acute climate events. ***: significant at
the .01 level; **: significant at the .05 level; *: significant at the .10 level. F-test is a test a joint relevance of
the variables in the models. R-squ. is the goodness of fit. The Hausman test verifies the presence of random
effects. SE Clust. verifies the absence of standard error clustering (period and cross-sections).




its increasing impact on the economy. For the precipitation anomalies
network, we also find betweeness and closeness to influence respectively
DP and Z at the .01 level. We next investigate the networks related to
extreme events. We find that Z and DP are influenced by betweeness and
closeness of CLI and HYD networks, i.e., flooding, heatwaves, coldwaves,
droughts, which are among the most frequent types of extreme events in
Europe. These results confirm that not only are financial institutions
indirectly affected by the climate exposures of the assets in which they
are invested, but they are also affected by physical climate risk of other
financial institutions within the European financial system.

Next, we analyse the influence of climate interconnectedness on the
financial stability of the whole European financial system (BFC and V).
We start with temperature and precipitation anomalies. We find that the
financial stability of the system, whether measured by BFC or V, is not
significantly influenced by betweeness, but strongly influenced by close-
ness, in other words the centrality of the position in the network. This
implies that financial institutions such as KBC, Crédit Agricole, Vienna
Insurance, Dexia, Société Générale, Attica Bank are potentially important
nodes in the event of temperature or precipitation shocks (Figure 4).
Similarly, in the parts of the network made up of the three groups of
financial institutions, HSBC, Swedbank, Swiss Life, and Banco Popolare
are institutions that could contribute significantly to the propagation of a
climate shock. If we now consider the networks of extreme events, we find
that financial stability, again whether measured as BFC or V, is affected at
the .01 level by both the position (Closeness) and the importance
(Betweeness) of financial institutions in their network for all categories
of extreme events, i.e., CLI, MET and HYD. This again is a very impor-
tant result that needs to be considered in the context of systemic risk and
climate-related regulatory and supervisory practices.

To date, there is no binding climate-related prudential regulation with
respect to capital requirements (Feridun and Gungor, 2020). In the UK,
the Prudential Regulation Authority (PRA) published supervisory expec-
tations for banks and insurers asking them to consider how they can assess
the climate-related financial risks associated with their clients and counter-
parties (Bank of England, 2019). Since, the Bank of England’s Systemic
Risk Survey which is conducted on a bi-annual basis showed that 24% of
respondents cited climate risk as a source of risk to the UK financial
system, an increase of 21 percentage points from the 2019 survey.



Table 8: Financial Stability and Climate Interconnectedness

Model 5 | 5* zZ DP BFC A%
PX .03* .01* 1.72%%* —5.92%%*
(1.60) (1.43) (4.58) (—4.31)
3M 027 —.008* —.96%** 2.87%%
(1.99)  (—1.40) (—=16.27) (12.53)
RGDP 147 —.05* VA S —9.03™**
(2.75)  (=1.56) (4.62) (—8.82)
ITBA 62 =560 —9.68 39.07*
(1.14)  (-2.35) (—1.45) (1.47)
NPA —1.84*** 53" 2.60 —2.97
(—2.70) (1.51) (1.20) (—.54)
T1 1147 —.33%* 21 —6.35
(4.80)  (—2.86) (.16) (—1.18)
BTanor —.0005%* .001%* ~.0019 01
(—3.98) (2.62) (=.31) (.48)
BT nop .0001 —.0001*** —.0002 9.59**
(1.03)  (=2.07) (—.41) (.04)
BTy .001*  —.0005* —.01%** .04%x*
(1.30)  (—1.55) (3.16) (3.28)
BT 001 — 0007 —.004 055
(2.57)  (=2.64) (—1.06) (2.14)
BTyer -2.29 .0002* —.002%** 01
(—.08) (1.64) (=3.11) (3.32)
CLinor 83.817 —18.22%* | 1183.94™* 3749 57+
4.32)  (—2.45) (18.28)  (—16.12)
CLanop 248.34*** —33.77 | —1966.32***  9127.43***
(2.78)  (=1.01) (—5.80) (4.72)
CLcwr —119.35%* 19.47* 273.27%*  —1360.91***
(=3.35) (1.54) (3.32) (—3.88)
CLyyp —133.43** -9.07 —720.56* 627.56
(2.11) (—.51) (—1.44) (.33)




Table 8 (Continued): Financial Stability and Climate

Interconnectedness
Model 5 | 5* V4 DP BEC \%

CLyET 39.41 24.77%| 1491.18%* —5938.31***
(.49) (1.37) (2.34) (—2.69)
c —.12%** Q7+ —.93%** 23.97***
(—2.98) (4.006) (—10.03) (78.04)
F-test 7.90%** 4.15%%* 21.86%** 10.03***
R-sq. .60 42 51 44
Hausman 57.75%** 21.06* 7.12% 5.97**
SE Clust. No No No No

Model 5 | 5*: FSind (Z and DP), and FSeur (BFC and V) successively as the dependent
variable, PX, 3M, RGDP, ITBA, NPA, and T1 as control variables, climate interconnect-
edness variables. ***: significant at the .01 level; **: significant at the .05 level; *: significant
at the .10 level. F-test is a test a joint relevance of the variables in the models. R-squ. is the
goodness of fit. The Hausman test verifies the presence of random effects. SE Clust. verifies

the absence of standard error clustering (period and cross-sections).

Participants include UK banks, large foreign banks, and insurance com-
panies, for which Charlotte Gerken announced in March 2022 that the
PRA is considering assessing whether the current capital framework for
insurance companies is "fit for purpose” when it comes to incorporating
climate risks. Policy makers and supervisors are gradually considering
revising the prudential framework to take full account of the implications
of climate-related financial risks for financial stability (Carney et al., 2019;
Baranovic et al., 2021). The ECB is continuing its work on incorporating
climate-related risks into assessments of financial stability. In particular, it
is enhancing its approaches to understanding, monitoring and assessing
financial institutions’ exposures to transition and physical risks. In the
May 2022 Financial Stability Review, the ECB stated that established
and recent measures do not clearly indicate a reduction in climate-
related risks, but rather reveal the potential for amplification mechanisms
arising from the concentration of exposures, correlation between risks, and
overlapping portfolios of financial institutions (ECB, 2022). Given that
financial institutions’ exposure to climate change is mostly indirect, one
way to improve their ability to better assess their risk is through better
corporate climate-related disclosures. The moves from the UK govern-
ment, the Securities Exchange Commission, and the International
Accounting Standards Board to make TCFD-aligned climate risk



disclosure mandatory is a step in the right direction (TCFD, 2020; IFRS,
2021; Simpson, 2022). Another avenue supported by the ECB is to
develop new tools, such as concentration risk measures, to address
climate-related risks from a systemic perspective. The database we created,
which assigns each institution a dynamic closeness and betweeness value
for each type of climate hazard, makes it possible to rank financial insti-
tutions, reveal risk concentrations and identify "Climate-SIFIs", i.e.,
financial institutions that are systemically important with respect to
climate risks.

5.4. Robustness

Given that the unusual and substantial economic and financial events
of the Great Recession (GR) of 2008 strongly influenced financial stability
conditions in the euro area, we examined the robustness of our results. We
divided the full sample into three periods, i.e., pre-GR (2000-2006), GR
(2007-2008), and post-GR (2010-2021). We also considered two addi-
tional GR-related control variables: a liquidity measure (ECBXLIQ), and a
credit risk measure (CDS). ECBXLIQ is the ECB Eurozone Excess
Liquidity and CDS is the Credit Default Swap 5-year price for each
institution for which such security exists. If our results are robust, know-
ing that climate risk is a separate risk category (ESMA, 2022), then the
2008 crisis, which is a liquidity and credit risk crisis, should not question
the influence of climate risks on financial stability. We verified that there
are no significant correlations between the measures of risk, financial
stability and interconnectedness. We verified that all series of variables are
stationary. We also confirmed the absence of endogeneity for all of the
regressors in the various considered models.

The estimates of our models in three sub-periods are presented in
Table 9 (Financial stability and climate risks) and Table 10 (Financial
stability and climate interconnectedness). The segmentation into three
sub-periods, one of which is very short (GR), makes it necessary to aggre-
gate the measures of climate interconnections before integrating them into
the panel regression models (models 6 and 7, and 6* and 7*). The net-
work effects remain robust from one period to another, which reinforces
our results on the influence of climate risks on financial stability.

We then controlled the robustness of the results by considering
another measure of financial stability commonly used in the literature,



namely SRISK (Acharya and Yorulmazer, 2008; Browlees and Robert,
2016). Similarly, we verified that all series of variables are stationary.
We confirmed the absence of endogeneity (Granger causality tests). The
results displayed in Table 11 confirm the influence of the climate vari-
ables, particularly in their systemic dimension (models 9 and 10 in

Table 11).

6. Conclusion

As the IPCC reports accumulate (IPCC, 2021), awareness of the speed
and magnitude of climate change and the need to reduce greenhouse gas
emissions is gaining momentum. The transmission channels from the real
economy to the financial system and the associated risks are also increas-
ingly better understood (Carney, 2015). The transition away from fossil
fuels and the rise in climate variability and extreme events expose firms
and the financial institutions that finance them to increasing risks, to the
point that regulators have identified climate change as a separate risk
category and as a source of systemic risk, with potential severe conse-
quences for financial institutions. The efforts of academics and regulators
have so far focused mainly on transition risk, but work on physical risk is
still in its early stages while regulators are concerned that physical climate
risk may be comparatively more substantial and that potential amplifica-
tion could arise from risk concentration (ECB, 2021). This study is
motivated by the need to close these gaps and develop new approaches
and metrics to advance understanding of physical climate risks.

In this paper, we analyze the influence of climate risks both transition
and physical on the financial stability in the European financial system.
We follow TCFD guidance in defining physical climate risks, which
include chronic risks that relate to changes in weather patterns and acute
risks that arise from extreme events. Our objective was to explore the
influence of climate risks on European financial institutions on the one
hand, and on the other hand to investigate the networks and possible risk
concentrations related to climate change as they apply to the European
financial system. Our methodology is supported by correlation studies,
network analyses and panel regressions. To measure the influence of
physical risks, we rely on a proprietary database that records the number
of extreme events classified by category and their material and human
consequences since 2000. To our knowledge, this is one of the first papers
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Table 11: SRISK as Financial Stability dependent variable

Model 8 Model 9 Model 10
PX —.005 PX —.006 | PX .001
(-.92) (-.94) (.15)
3M —6.98 3M 2.82 3M 3.41
(-.58) (.90) (.15)
RGDP —15.68 RGDP —99.72 | RGDP —14.08
(-.22) (-.75) (-1.19)
ITBA —.003* ITBA —.001 | ITBA —-1.95
(-1.52) (-.56) (-11)
NPA 9.47 NPA 22.25%*| NPA 57.65%*
(.96) (2.29) (5.94)
T1 —18.82** | T1 —1.54 | TI —11.96***
(-3.11) (-.18) (-2.14)
ECBXLIQ —5.23 ECBXLIQ —1.54 | ECBXLIQ —5.01
(-.06) (-.18) (-.67)
CDS —.02 CDS —.05 BTeps 1.95
(-.66) (-1.09) (1.3)
CLcps 11.51%
(6.67)
ANOT —15.64 | BT nor —4.65**| BTynor —77.33%*
(-.67) (-1.82) (-7.27)
ANOP ~132.88 | BTunor —34 | BTavor 52+
(-1.01) (-1.19) (1.66)
CLI —1.10 B¢y .35 BT¢ry 10. 11+
(-.50) (.19) (4.30)
HYD 19.17* | BTuyp 4.94*** | BTyyp —28.26***
(3.37) (2.57) (-4.35)
MET 143 | BTygr 1.81%* | BTyer 7.09%%
(-.81) (3.04) (7.23)
CLanoT 61 CLanoT 18.97
(.19) (1.35)
CLanor 3230 | CLanop —19.68%*
(1.74) (-3.26)




Table 11 (Continued): SRISK as Financial Stability dependent variable

Model 8 Model 9 Model 10
CLcry —10.97*| CL¢yy —43.46%**
(-1.65) (-3.56)
CLuvp ~26.22*| CLywp 12.34%%
(-1.62) (3.65)
CLyer 89.71 CLyer 12.71%*
(.54) (5.41)
c 23.82** c 17.03**| ¢ —67.65%**
(1.70) (2.90) (-5.28)
F-test 4.29%** F-test 5.21%* | F-test 10.75%*
R-sq .11 R-sq 21 R-sq 42
Hausman test 2.56*** Hausman test 2.14*** | Hausman test 5.87***
SE clustering No SE clustering  No SE clustering No

Model 8: SRISK as the dependent variable, PX, 3M, RGDP, ITBA, NPA, T1, ECBXLIQ, and CDS as
control variables, and climate variables; Model 9: SRISK, PX, 3M, RGDP, ITBA, NPA, T1, ECBXLIQ,
and CDS as control variables, and climate interconnectedness variables; Model 10: SRISK, PX, 3M,
RGDP, ITBA, NPA, T1, ECBXLIQ, and CDS interconnectedness as control variables, and climate
interconnectedness variables. ***: significant at the .01 level; **: significant at the .05 level; *: significant
at the .10 level. F-test is a test a joint relevance of the variables in the models. R-squ. is the goodness of
fit. The Hausman test verifies the presence of random effects. SE Clust. verifies the absence of standard

error clustering (period and cross-sections).

that does not rely on proxies to explore the role of extreme events in
financial stability. Our work highlights several important results. First,
we find that both chronic and acute physical climate risks significantly
influence the risk of European financial institutions as measured by the
Z-score and the probability of default. We also show that both chronic
and acute climate risks affect financial stability. Second, the comparative
analysis of the influence on financial stability of climate variables and
climate network interconnection variables shows that there is a phenom-
enon of amplification of the consequences of climate risks, with their
influence on financial stability measured in their networks being greater
than their direct influence. This is an important result. Third, another
analysis comparing the interconnectedness variables of climate networks
with those of conventional financial networks shows that the influence of
climate risks is comparable in magnitude to the influence of conventional
financial parameters used by regulators to monitor systemic risk. This is



also an important result that confirms the systemic importance of climate
risk. Fourth, network analysis based on climate risk categories and the
determination of climate interconnectedness variables offer the possibility
to identify financial institutions at risk and possible risk concentrations.
This is the first time that climate networks constructed from climate and
extreme event data have been used to identify the influence of climate
risks on the financial stability of institutions and the system in which they
operate. Network analysis makes it possible to build an analytical database
of interconnectedness characteristics per financial institution, to observe
their evolution over time, and to identify among the financial institutions
those that should be carefully monitored, either because of their impor-
tance in the network or because of their individual exposure to the con-
sequences of climate risks.

One of the limitations of this work, which also leads to the main
recommendation, is the lack of standardized information on climate risk
provided by banks (Arnold, 2022; Elderson, 2022), which themselves
depend on information from the companies in which they are invested.
Indeed, while both our work and that of the ECB (ECB, 2021) show that
physical risks have a significant influence on financial stability, the results
are biased due to the absence of geo-localized information on the amount
of assets at risk held by banks. The future Corporate Sustainability Report
Directive (CSRD), which aims to standardize extra-financial reporting for
better comparability between companies, and to extend the scope of
application to more than 50,000 companies in Europe, is an opportunity
to create standardized climate risk metrics within the framework of the
new CSRD standard ESRS E1 on climate change, which is still in the
draft stage. The double materiality, on which the CSRD is based, imposes
a fine granular analysis of climate issues as an entry point for the future
sustainability report of non-financial companies and, in turn, of the banks
that finance them. As such, our analysis contributes to the policy debate
on mandatory disclosures and the need to propose standardized climate
risk indicators and make climate data available so that companies can
estimate their own risks. Given the materiality of the impact of physical
climate risks, regulators should initially propose a list of perils so that
climate data providers and corporate risk managers can together produce
more useful location-based risk information than the current boilerplate
disclosures. As a second step, regulators should require banks to rely on
this information to produce an accurate, geo-localized statement and



valuation of their climate risk exposures. Finally, prudential rules should
incorporate the potential losses associated with chronic and acute climate
risks, and incorporate the climate interconnectedness measures highlighted
in this work to take into account potential amplification mechanisms.
With improved information, future research should provide a better mea-
sure of the systemic nature of climate risk.

7. Data availability

Some of the data used in this study are not publicly available as they
are derived from proprietary databases. This is the case for climate and
extreme event data, and financial data extracted from Bloomberg to which
the authors have access through a subscription from the research organisa-
tion with which they are affiliated. The data is available from the corre-
sponding author upon reasonable request, provided that the proprietor of
the requested data agrees.

8. Appendix

Table 12: Geographical distribution of assets per country as a percentage of
total assets. Adapted from : Duijm and Schoenmaker, (2021).

Domestic Rest of Europe Total
France 66.4 20.4 86.8
UK 55.0 8.8 63.8
Germany 50.2 247 74.9
Spain 47.4 26.9 74.3
Netherlands 61.2 23.5 84.7
Italy 67.7 293 97.0
Sweden 48.8 46.3 95.1
Belgium 59.2 37.1 96.3




Figure 5: Correlation between annual temperature anomalies
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Table 13: Data Sources for the computation of temperature and precipitations

anomalies

Country Source

Austria Zentralanstalt fiir Meteorologie und Geodynamik
Belgium Royal Meteorological Institute

Finland Finnish Meteorological Institute

France Meteo-France

Germany Deutscher Wetterdienst

Greece Hellenic National Meteorological Service

Irland Met éireann

Ttaly Servizio Meteorologico

Netherlands Koninklijk Nederlands Meteorologisch Instituut
Spain Agencia Estatal de Meteorologia

Sweden Swedish Meteorological and Hydrological Institute
Switzeland MeteoSwiss

UK Met Office
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