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Elevated temperature plasma nitriding of Cr-Mo-V based tool steel was performed by varying 

the treatment time to enhance hardness and wear resistance. Steel samples after metallographic 

polishing were placed on the conducting substrate holder in the nitriding reactor and evacuated to 

0.5 Pa pressure. The sample holder was then negatively biased at 250 V to accelerate the ions 

toward the surface of the samples. A gas mixture of N2 and H2 was then passed into the vacuum 

chamber to generate the plasma. After plasma generation nitriding was performed at variable 

temperatures 500oC and 550oC for 6 and 10 hrs. Then X-ray diffraction (XRD) and Scanning 

Electron Microscope/Electron Dispersive Spectroscopic (SEM/EDS) studies were followed to 

understand the structural modifications. XRD analysis predicted the presence of iron nitrides 

whereas SEM/EDS had shown the presence of N availability from the surface to the core of the 

steels. Following the structural characterization hardness and wear resistance were measured by 

using Vicker’s microhardness tester and ball-on-plate method respectively. It was found that the 

hardness, case depth, and wear resistance of the steel were significantly enhanced mainly due to 

nitrogen solid solnution and nitride formation. Thus, it has been proved that a longer time or 

higher temperature of nitriding may be beneficial for such improvement.

Keywords: Plasma nitriding, 90CrMoV8 Tool Steel, Electron Microscopy, Wear,               
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1. Introduction
Recently, tool industries realized the premature failure of tools due to electrochemical and

mechanical degradation. Cutting tools encounter frequent frictional forces in the service 

conditions and thus causing damage to the surface. Especially wear and tear is the commonly 

found surface degradations that cause premature failure of the tools and thus challenge their 

longevity in the service life. To avoid the disruption of the industrial processes immediate 

replacement of the tools is necessitated. This leads to a huge loss of material and cost along with 

the loss of time and energy. In order to prevent premature failure of the tools and enhance their 

longevity the surface must be protected against these degradations. For the protection of the 

material surface, deposition of hard and corrosion-resistant layers by following physical and 

chemical vapour deposition had long been practiced (Ref. 1– 4). However, the delamination of 

these layers due to inadequate adhesion limits its widespread applications. It has also been 

realized that these processes require a high temperature and longer treatment time, use of 

corrosives, explosives, and toxic precursors which could be challenging to the safety of the 

workers and the environment. 

Surface engineering of materials by following laser and plasma processing had been recognized 

as a better solution to overcome the problems due to layer deposition. It has been reported earlier 

that selective laser melting produced a duplex layer of Ti6Al4V on  316L stainless steel. The 

duplex structure so formed was then exposed to glow discharge plasma oxidation process at 

650oC and 750oC for 1 and 4 hrs. It was shown that the hardness and wear resistance of the 

duplex structure were better than that of 316L stainless steel due to the formation of titanium 

oxide phases and diffusion zone depth (Ref. 5).  Hilmi et al. (Ref.6) also worked on selective 

laser melting to form Ti6Al4V on 316L stainless steel and then followed oxidation in plasma 

atmosphere. TiO2 layer was formed on the surface of the Ti6Al4V/316L duplex structure to 

several layer thicknesses. In this study, it was shown that the plasma oxidized layer has better 

corrosion resistance in simulated body fluid solution than that of 316L stainless steel. The 

improvement was better when oxidized at the higher temperature of  750oC for 4 hrs.

The present study is focused on plasma processing to engineer the surface for improved hardness 

and wear resistance without employing any coating techniques like physical and chemical vapour 

deposition. Plasma nitriding as one of the plasma processing techniques is an eco-friendly and 

efficient process had been recognized as a better solution for the improvement of hardness and 

wear resistance properties (Ref. 7 -10).  Recently, 90CrMoV8 alloy steel used for making cutting 

tools has drawn the attention of the tool industries. Though, this steel retains its mechanical 

properties over a wide range of temperatures, however not been accepted for wider applications. 

The service life of the parts/tools made up of this steel is severely affected in its applications in 
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wood machining where the parts are exposed to an environment causing wear and corrosion. 

Wear and corrosion synergistically degrade the tools and reduce their service life. Hence for its 

widespread applications, the enhancement of wear and corrosion-resistant properties is highly 

desirable. It has already been shown by Manee et al. (Ref. 11) that the wear and corrosion 

resistance of 34CrNiMo6 low alloy steel can be highly improved by modifying the surface 

following plasma nitriding. Rad et al. (Ref. 12) had shown improved resistance to wear after 

plasma nitriding. Some other workers also had shown improved wear resistance after plasma 

nitriding  (Ref. 13 – 17). 

In the process of nitriding nitrogen diffuses into the near-surface region of the metallic materials 

resulting in the formation of hard and wear resistant nitrided layer without depositing the layer 

on the surface. It is possible by conventional gas nitriding or plasma-assisted nitriding. However, 

plasma nitriding has received more attention than conventional gas nitriding due to more 

controllability and cost-effectiveness. So far, various types of steel had been treated by plasma 

nitriding process for the achievement of desirable properties (Ref. 18 – 21). However, less is 

known about the nitriding of 90CrMoV8 steel and its effects on wear, corrosion, and fatigue 

resistance. Corinne et al. (Ref. 7) reported the hardness improvement after plasma nitriding of 

the same steel. In their work, the hardness of the steel was improved to around 1150 Hv but no 

significant improvement in corrosion resistance. This study was limited to plasma nitriding for 

the improvement of hardness only but its effect on wear resistance was left. Later Rao et al. (Ref. 

22, 23) attempted nitriding of the same steel and showed an improvement in hardness and 

corrosion resistance after nitriding. Trinadh et al. (Ref. 24) and also Bhadraiah et al. (Ref. 25 – 

27) realized the improvement of hardness and corrosion resistance of the same steel nitrided at

the lower temperature of 450 and upto 500oC. 

As mentioned above the improvement of hardness of plasma nitrided 90CrMoV8 steel had been 

reported however, to our knowledge, so far there is no information regarding the improvement of 

wear resistance. Effects of elevated temperature plasma nitriding above 500oC - 550oC where the 

risk of tempering may deteriorate the hardness and wear resistance have not been studied much. 

Corinne et al. (Ref. 7) reported the plasma nitriding of this steel for the improvement of hardness 

but not the wear resistance. BOUZID et al. (Ref. 28) worked on the CrN deposition by following 

the magnetron sputtering method for the improvement of the wear resistance of the same steel. 

Aouadi et al. reported the wear resistance of 90CrMoV8 steel after coating with the CrN layer by 

following magnetron sputtering technique (Ref. 29).

Plasma nitriding modifies the surface with enhanced hardness and corrosion resistance with no 

risk of delaminations of layer as found in PVD and CVD processes hence it may be useful for the 

surface engineering of steel for its widespread applications. The present study was focused on 
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elevated temperature plasma nitriding of 90CrMoV8 steel for the enhancement of hardness and 

wear resistance properties.

2. Materials and Methods

Samples of dimension 10 mm × 10 mm × 5 mm were cut from a big steel sheet after the 

hardening and tempering heat treatment processes. The compositional analysis can be presented 

in Table1 as below:

Table 1: Chemical composition of 90CrMoV8 steel

Elements Cr Si Mo Mn C V Fe

Content (wt.%) 8.0 1 1.5 0.5 0.5 0.5 balance

Plasma Nitriding Processing

All the steel samples were placed on the sample holder in the reactor chamber after 

metallographic polishing and ultrasonic cleaning. 

The sample holder was connected to a D.C. power supply for biasing it negatively. These 

samples were kept biased at -250V. To the sample holder, an external heater was connected for 

temperature control. For recording the temperature a thermocouple was connected to the sample 

holder. The reactor chamber was evacuated by using a combination of rotary and diffusion 

pumps. It was pumped down to 0.5 Pa pressure before feeding the plasma-generating gases. 

Then Ar gas was fed into the chamber and generated the Ar plasma. Ar+ ions from the plasma 

were bombarded on the surface of the samples for the removal of native oxide and dirt/greasy 

materials. 

Ion bombardment and external heating raised the temperature of the samples to achieve the 

desired temperature. Once the desirable temperature was attained Ar+ bombardment was 

stopped and N2 and H2 (4:1) gases were filled up to 550 Pa working pressure. Plasma was then 

triggered and the nitriding cycle was initiated. At 500 and 550oC, nitriding had been performed 

by varying the processing time between 6 and 10 h. Steel samples corresponding to treatment at 

500 for 10 h,  550oC for 6 and 10 h are represented hereafter as S31, S29, and S28 respectively. 

Plasma nitriding parameters are summarized and represented in Table 2.
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 Table 2: The parameters of plasma 

nitriding

Characterization

To understand the structural modifications the bare and the nitrided steels were subjected to 

XRD studies (utilizing an X-ray diffractometer (XRD - INEL CPS 120) with a radiation source 

of Co-kα (λ = 0.17902 nm)). After XRD, all the steel samples were cut across the cross-section, 

mirror polished, and etched with Villela’s reagent. Then subjected to SEM and EDS (SEM 

JEOL, JSM 5900) analyses for the microstructural characterization and elemental availability. 

After structural characterization, the hardness of all the nitrided steels along with the bare steel 

was measured by using a Vickers microhardness tester (LECO MST 210) at an applied load of 

50 g. All the measurements were repeated 6 times to the accuracy level within ~ (±) 20 Hv and 

then the hardness vs. depth profile was plotted.

The wear study was performed with a ball-on-plate wear tester (TR-208-M1, Duccom 

Instruments Pvt. Ltd.) for 10 minutes each on the surface of the nitrided and bare steels. A dry 

sliding condition was employed for the wear test which was carried out with a 10 kg load and   

15 rpm speed on a 4 mm track diameter resulting in a sliding speed of 3.14 mm/s. As the counter 

body, a diamond cone (Rockwell diamond geometry) was employed. Wear depth vs. sliding 

distance plots were obtained from the tests. For each sample, tribological tests were carried out 

twice and the deviation in the final wear depth was calculated in % of total wear depth. If the 

variation was less than 5% then the sliding wear vs. wear depth plot having lower noise was 

taken for the manuscript. For all the samples, two tests were sufficient due to less than 5% 

deviation. Moreover, the wear tracks of the samples whose data are provided were analyzed by 

SEM and EDS to understand the wear mechanism and to find any preferential chemical change 

due to the wear damage respectively.

Sample code S30 S28 S29

N2:H2 Gas ratio 80:20 80:20 80:20

Initial Pressure (Pa) 0.5 0.5 0.5

Working Pressure (Pa) 550 550 550

Voltage (negative bias) (V) 250 250 250

Temperature (oC) 500 550 550

Time (h) 10 10 6
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3. Results and Discussion

3.1 X-ray diffraction analyses and phase formation

 Nitrided steels were exposed to detailed XRD and SEM/EDS analyses to understand the phase 

formation. Diffraction patterns of the S0 (bare steel) revealed the Fe peaks ((110), (200), and 

(211)) as shown in Fig. 1. Steel nitrided at 550oC for 10 h (S29) had shown the peaks of           

Fe-nitrides → Fe4N (γ’) and Fe2-3N (εN). Fe4N (γ’) and Fe2-3N are known to improve the 

hardness and wear resistance of the steel (Ref. 26, 27). Low-intensity peaks of Cr-nitrides also 

appeared after nitriding at a higher temperature.  As the Cr concentration is 8.0% in the steel, it 

could be enough to produce the CrN phase after nitriding at the higher temperature of 550oC. 

The presence of these nitrides is attributable to the improvement in the hardness of the steel. 

Fig. 1 shows the intensity of γ’ (Fe4N) peak is lower than that of the εN peaks. It may also be 

observed that the peak intensities of εN and the γ’ (Fe4N) phases increased with the increase in 

nitriding temperature. Hence, it may be concluded that higher-temperature nitriding is beneficial 

more than nitriding at a lower temperature for enhancing wear resistance. A careful observation 

of Fe peaks indicates the dilation of Fe peaks. This could be due to the nitrogen over-saturation 

and hence stress generation in the crystal lattice leading to the improvement in the hardness and 

wear resistance.

Fig. 1 XRD using Co-Kα radiation source unfolds the Fe peaks for (a) S0 (bare steel) and            

Fe – nitrides for the (b) S30, (c) S29, and (d) S28 nitrided steels. 
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In S29 steel, which was nitrided for 6 h at 550oC, a shift of the Fe (100) peak from 52.6o to 51.5o 

was found (Fig. 2). S28 steel nitrided for a longer time of 10 h has also shown a shifting of Fe 

(100) peak to a lower angle. This peak shifting was earlier shown by Bhadraiah et al. (Ref. 23) 

for the steel nitrided at this process conditions. In the latter case, the peak has been shifted to 

51.7o. Though both the nitrided steels have shown the peak shifting to a lower angle, the extent 

of shifting is comparatively more but not significant for the steel S29 i.e. nitrided for a shorter 

duration of 6 h. The peak shifting indicates the stress generated could be due to the nitrogen 

inclusion in the crystal lattice. Nitriding for a shorter duration may thus lead to stress generation 

more than that after a longer duration of nitriding. This observation evidences the diffusion of 

nitrogen is more into the bulk of the steel after 10 h nitriding. Hence, nitrogen accumulation at 

the surface level is less thus causing lesser stress than shown by S29 steel treated for 6 h. In the 

latter one, nitrogen accumulation could be more at the surface level as diffusion of nitrogen is 

comparatively less. 

Fig. 2 Representation of shifting of Fe (100) peak of the bare steel S0 to lower angles after 

nitriding at 550oC for 6  (S29), and 10 h S28  (Ref. 25). 

Moreover, stress generation is known to influence fatigue, corrosion, and wear resistance 

properties. In Fig. 2, it is obvious that both the nitrided steels have higher stress when compared 

with the bare steel. Also, the S29 steel has more stress accumulation when compared to S28 

steel. This means the retention of nitrogen concentration may be more which may lead to the 

generation of more nitrides also. It may be suggested here that the stress generated in the nitrided 

steels may be responsible for the improved wear resistance. When compared to S29 steel, the 
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stress accumulation is less pronounced in S28 steel which could be the possible reason why S29 

steel exhibited better resistance to wear. However, the idea of stress generation is yet to be 

confirmed by further experimental evidences. This part of the work is beyond the scope of the 

present studies and remains for future work. 

3.2 Scanning Electron Microscopy (SEM) with Energy-Dispersive X-ray Spectroscopy (EDS)

 One of the nitrided steels S28 had been selected for the microstructural and elemental 

characterization using SEM and EDS across the cross-section. After polishing and etching with 

Villela’s reagent it was analyzed under SEM and EDS. It is seen from Fig. 3(a) that a very thin 

white layer has been formed at the top of the surface which may contribute to the corrosion 

resistance but maybe because of its brittle nature deteriorating the wear resistance.

From Fig. 3(b) it is clear that the N concentration is maximum at the top of the surface and 

gradually decreases towards the core of the steel. It is expected that more the nitrogen 

concentration more will be the Fe-nitride formation and also the stress generation. This may 

cause greater resistance to wear than that of steel with low nitrogen concentration in the solid 

solution. It has also been revealed from Fig. 3(b) that the layer with the nitrogen inclusion is 

more than 100 μm which indicates the range of case depth and in turn the protective layer.

Fig. 3 Cross-section of S28 steel from the surface towards the core observed under SEM: (a) 
microstructure and line scan across the cross-section, and (b) the elemental availability of N from 
surface to the core.   

3.3 Analysis of the surface hardness following microhardness measurements

To understand the effects on hardness, all the steel samples before and after nitriding were 

subjected to microhardness measurement. Fig. 4(a) represents the microhardness profiles of the 

S28 and S30 steels. 

It is observed from Fig. 4(a) that the maximum hardness of S30 steel at the near-surface level is 

~ 1260 ± 10 HV0.05 which is significantly higher than that of ~ 657  ± 20 HV0.05 of the bare 

steel. It can be observed that there is a fall of hardness from the surface toward the depth of the 
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steel. At ~137 µm depth the hardness had fallen to ~ 707 HV0.05 which is ~ 50 HV0.05 more 

than that of the bare steel. However, with the rise in temperature to 550oC for the same duration 

of 10 h for S28 steel, the depth was increased to ~ 152 µm. The increase in temperature caused 

the nitrogen to diffuse more inside the core and thus resulting in the formation of a wider case 

depth. However, the treatment at the higher temperature of 550oC for a longer time may result in 

the tempering of the steel which reduces the hardness. This can be observed in Fig. 4(a), where 

the hardness profile of S28 steel goes below the base hardness to some extent (after a distance of 

around 160 µm from the surface). The tempering effect may also be the reason for a lower 

surface hardness of S28 than that of S30 steel.

Fig. 4(b) displays the microhardness vs. depth profiles of the steel nitrided at a fixed temperature 

of 550oC for different treatment times of 6 h (S29) and 10 h (S28). It is noticed that with the 

increase in treatment time a wider case depth has formed. It is revealed that ~ 121 µm case depth 

has formed after nitriding at 550oC for 6 h treatment. This case depth is lesser than the case depth  

~ 137 µm formed after nitriding for a longer time of 10 h but at a lower temperature of 500oC 

(S30). Thus, it is concluded that nitriding at a higher temperature of 550oC for a shorter duration 

of 6 h can produce a case depth lesser than that produced after lower temperature nitriding at 

500oC but for a longer duration of 10 h. Moreover, a wider nitrided layer can be seen after 

nitriding at the higher temperature of 550oC. 

Fig. 4 Representation of microhardness vs. depth profiles of (a) S30 and S28 steels (similar to 
CM5510 as shown in (Ref. 25)), and the nitrided steels (b) S28 and S29 (HV0.05 for the bare 
steel (S0) is  ~ 657 HV0.05).
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The fall in the hardness is not that rapid in the case of S29 steel as can be seen in the S30 steel 

nitrided at 500oC for 10 h. When the treatment time increased to 10 h at the higher temperature 

of 550oC  (S28) a further increase in the case depth was observed. 

However, this is to be noted here that the maximum hardness at the near-surface region for the 

S28 steel is  ~ 1184 HV0.05 which is lower than that found in S29 steel which is ~ 1265 HV0.05. 

This indicates that the increase in treatment time favours nitrogen diffusion more into the core 

and thus retains less concentration of nitrogen in the surface region. Nitrogen dissolution in the 

solid solution is more in S29 steel which has raised the compressive stress more than that found 

in the other steel S28 treated for a longer duration of 10 h. It may also be possible to generate 

more amount of Fe - nitrides resulting in an improvement in hardness. However, in support of 

compressive stress generation, further experimental evidence is needed. 

3.4 Tests for Wear Resistance and analysis

Fig. 5 displays the sliding distance vs. wear depth of all the samples as obtained from the wear 

testing equipment. To compare the wear response of the samples (bare steel and nitrided at 

different conditions), these plots were smoothened and stacked in a single plot as displayed in 

Fig. 6(a).

Fig. 5 Wear depth vs. sliding distance plots (raw data) of (a) S0, (b) S28, (c) S29 and (d) S30 
steels.
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The S0 (bare steel) exhibits maximum wear depth or the least wear resistance due to its soft 

nature compared to hard nitrided layers. The improvement in wear resistance is remarkable after 

plasma nitriding of the steel. All the nitrided steels show similar wear depth. However, S29 steel 

displays the best wear-resistant properties among these tested steels. This is due to high hardness 

and the reason is already discussed in the hardness section.

S29 and S30 steel samples have shown similar wear depth and wear plots. It is worth mentioning 

here that  S30 and S29 steels had shown similar hardness. Though these two samples are 

different in terms of nitriding time and temperatures, their nitrogen intake may be the same 

because diffusion distance depends on diffusion time and temperature. Compared to these 

nitrided steels, S28 shows marginally lower wear resistance. This trend has also been observed in 

hardness profiles (Fig. 4(a,b)). This could be due to longer nitriding time allowing longer time 

for nitrogen diffusion and thus resulting in wider nitrogen distributed region. Moreover, a longer 

heating time at the elevated temperature caused the tempering of the steel mentioned earlier.

Fig. 6 (a) Smoothened wear depth vs. sliding distance wear plot and (b) friction coefficient vs. 

sliding distance plot of all the samples.
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For Peer ReviewFig. 7 Friction coefficient vs. sliding distance plots (raw data) of (a) S0, (b) S28, (c) S29 and (d) 
S30 steels.

Fig. 7 displays the friction coefficient values during the entire sliding path of all the samples     

((a) S0, (b) S28, (c) S29 and (d) S30). It is worth mentioning that the noise band of friction 

coefficient of S29 and S30 are the most stable and minimum among all the samples. This also 

reflects their superior wear response. Fig. 6(b) displays the smoothened friction coefficient plot 

of all the samples together for easy comparison. A comparison of these values may conclude that 

bare steel has the highest friction coefficient compared to nitrided steel. Higher friction is dealt 

with as a negative aspect in tribology as it can increase the wear rate/damage of the surface. On 

the other hand, S30 and S29 have almost the same steady-state value of friction coefficient 

different from S28 steel with marginally higher than these two steels.
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Fig. 8 displays the low-magnification SEM images of the wear tracks of S0, S28 and S29 steels, 

and these figures also provide an idea of the wear resistance properties of the samples. This 

figure also gives a quantitative explanation of the wear track width that can be used as a 

parameter to judge wear damage. Fig. 8(a) displays the wear track of the S0 steel and this wear 

track is the widest here. This observation is obviously due to its lower hardness and poor wear 

resistance compared to nitrided steel. S28 steel shows a comparatively lower wear track width 

(160 µm), but the value is higher than that of S29 (100 µm). The observation again conforms to 

the trend displayed in Fig. 6(a). 

Fig. 8 SEM images of the wear tracks: (a) S0, (b) S28, and (c) S29 steels.

For a better understanding of the damage caused by the sliding wear test, SEM images of all the 

above-mentioned samples at higher magnifications are displayed in Fig. 9. In all three figures 

(Fig. 9a, b, and c), the tracks are predominantly a result of an abrasive wear mechanism. The 

following two reasons can explain the mechanism. One of the reasons could be the mechanism of 

wear. There is a low possibility of wear by the adhesive mechanism as the counter body used 

here is a diamond indenter with a metallic body. The second reason is that all the bare and 

nitrided steels are hard and brittle (the hardness of bare steel is also about ~ 657 HV0.05) and 

responsive to the non-adhesive wear mechanism. In Fig. 9(a), severe damages occurred as 

rubbing marks and plowing. Moreover, there is the presence of a deep groove also caused as a 

result of severe plowing. Severe damage is natural due to the comparatively softer nature of the 

base steel. In the case of the S28 steel (Fig. 9(b)), rubbing marks and plowing signatures are less 

damaging than Fig. 9(a) as the sample has experienced hardening due to the nitriding process. 

The presence of flakes is also visible in this figure. But, in the case of S29 steel, the wear 

features presented in Fig. 9(c) are less pronounced. Only mild rubbing marks are visible, 

confirming the lowest wear attack as observed in Fig. 6(a) plot. No large-scale debris has been 

present in any of the wear micrographs. 
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Fig. 9 SEM images of the wear track with higher magnification: (a) S0, (b) S28, and (c) S29 
steels

It is also important to mention that in this study the wear test was done under a fixed load, as, in 

an earlier study (Ref. 30) on nitriding the wear response was the same irrespective of the load 

level. In the case of nitriding, the hardness gradually falls toward the bulk over a large depth and 

so the load variation does not impart significant variation in wear. Moreover, specimens tested 

below 10 kg load did not reveal visible wear tracks due to the high hardness of the samples.

For the investigation of any preferential removal of any phase/elements during the wear test, the 

wear tracks were analyzed under SEM/EDS. Here are EDS line scan plots for the elemental 

availability across the wear tracks captured. Results are displayed in Fig. 10 for samples (a) S0, 

(b) S28, and (c) S29. The plots superimposed on the wear tracks may conclude that there was no 

preferential wear attack/damage. Moreover, this can also rule out the possibility of oxidative 

wear mechanisms. So, the wear mechanisms were predominantly abrasive in type due to the hard 

nature of the samples (including the base material).

Fig. 10 EDS line scan across wear track of (a) S0, (b) S28, and (c) S29 steels.

Hence, the conclusion may be drawn that wear resistance has also been increased manyfold by 

nitriding the steel-like hardness. Based on the nitriding parameters, there are visible effects on 

the tribological properties. XRD analyses presented in the above sections suggest that there could 

be stress generation in the S28 and S29 steels (Fig. 2)  which is beneficial for enhancing the wear 
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resistance property.

It is clear that the shorter duration treatment of 6 h at 550oC (S29) has a slightly higher stress 

value when compared to that of S28 steel (for a longer time of 10h at the same temperature). 

From XRD it is observed that the nitride steels possess mainly the Fe-nitrides → Fe4N (γ’) and 

Fe2-3N responsible for the improvement of the wear resistance  (Ref. 31, 32). The shifting of the 

Fe peak as shown in Fig.2 could be due to the stress generation caused by nitrogen inclusion in 

the solid solution. It may improve the hardness. However, this is speculation only, which needs 

further confirmation by more experimental evidence. Hence, the determination of stress 

generation after plasma nitriding will be the focus of future work. Future work will focus on the 

gradient layer deposition of TiC on the surface of this steel. The hard and gradient layers may 

further improve the hardness and wear resistance of this steel. The deposited layer may be 

adherent to the substrate surface with comparatively less compressive stress than the directly 

deposited layer. This work remains for future studies.

4. Conclusions

The following conclusions may be drawn from the present study of elevated temperature plasma 

nitriding of Cr-Mo-V- based tool steel at varying treatment conditions:

 Nitrided samples show peak shifts in XRD due to nitrogen incorporation in the iron lattice.

XRD also exhibits the formation of nitride phases. However, the actual nitride phase and peak

intensity changes with nitriding parameters.

 Nitrogen incorporation was also evident from the EDS profile of the nitrogen across the cross-

section showing a gradual decrease in nitrogen content away from the surface.

 Nitriding at elevated temperatures is responsible for a significant improvement in hardness

due to nitrogen solid solution and nitride formation mainly.

 All the nitrided steels possess better resistance to wear than the bare steel in terms of wear

depth and friction co-efficient values. Wear mechanisms were found to be predominantly

abrasive in nature.

 Finally, the nitriding conditions in the present studies which are higher temperature and

shorter duration (S29 steel nitrided at 550oC for 6 h) and lower temperature but longer

duration (S30 steel nitrided at 500oC for 10 h), both are beneficial for the improvement of the

hardness and wear resistance significantly.
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Fig. 1 XRD using Co-Kα radiation source unfolds the Fe peaks for (a) S0 (bare steel) and  Fe – nitrides for 
the (b) S30, (c) S29, and (d) S28 nitrided steels. 
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Fig. 2 Representation of shifting of Fe (100) peak of the bare steel S0 to lower angles after nitriding at 
550oC for 6  (S29), and 10 h S28  (Ref. 25). 
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Fig. 3 Cross-section of S28 steel from the surface towards the core observed under SEM: (a) microstructure 
and line scan across the cross-section, and (b) the elemental availability of N from surface to the core. 
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Fig. 3 Cross-section of S28 steel from the surface towards the core observed under SEM: (a) microstructure 
and line scan across the cross-section, and (b) the elemental availability of N from surface to the core. 
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Fig. 4 Representation of microhardness vs. depth profiles of (a) S30 and S28 steels (similar to CM5510 as 
shown in (Ref. 25)), and the nitrided steels (b) S28 and S29 (HV0.05 for the bare steel (S0) is  ~ 657 

HV0.05). 
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Fig. 4 Representation of microhardness vs. depth profiles of (a) S30 and S28 steels (similar to CM5510 as 
shown in (Ref. 25)), and the nitrided steels (b) S28 and S29 (HV0.05 for the bare steel (S0) is  ~ 657 
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Fig. 5 Wear depth vs. sliding distance plots (raw data) of (a) S0, (b) S28, (c) S29 and (d) S30 steels. 
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Fig. 6 (a) Smoothened wear depth vs. sliding distance wear plot and (b) friction coefficient vs. sliding 
distance plot of all the samples. 
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Fig. 6 (a) Smoothened wear depth vs. sliding distance wear plot and (b) friction coefficient vs. sliding 
distance plot of all the samples. 
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Fig. 7 Friction coefficient vs. sliding distance plots (raw data) of (a) S0, (b) S28, (c) S29 and (d) S30 steels. 
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Fig. 8 SEM images of the wear tracks: (a) S0, (b) S28, and (c) S29 steels. 
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Fig. 9 SEM images of the wear track with higher magnification: (a) S0, (b) S28, and (c) S29 steels 
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Fig. 10 EDS line scan across wear track of (a) S0, (b) S28, and (c) S29 steels. 
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Table 1: Chemical composition of 90CrMoV8 steel 
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Table 2: The parameters of plasma nitriding 
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