
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/24822

To cite this version :

Cosimo TARSIA MORISCO, Jean-Christophe ROBINET, Julien HERPE, Didier SAUCEREAU -
Impinging shear layer instability in over-expanded nozzle dynamics - Physics of Fluids - Vol. 35,
n°11, p.116118 (1-17) - 2023

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/24822
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Impinging shear layer instability in over-expanded
nozzle dynamics

C. Tarsia Morisco,1,a) J.-C. Robinet,1 J. Herpe,2 and D. Saucereau3

AFFILIATIONS
1DynFluid Lab., Arts et M�etiers Institute of Technology, 151 Bd. de l’Hôpital, Paris 75013, France
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ABSTRACT

When rocket engine nozzles operate at a high degree of over-expansion, an internal flow separation occurs with a strong unsteady shock–
wave boundary layer interaction. The global dynamics results in a low-frequency mode, which is associated with the shock displacement, and
a high-frequency mode, which is correlated with the shear layer–boundary layer interaction. While the mechanism responsible for the low-
frequency oscillation is known, the one in charge of the high-frequency unsteadiness is not yet clear. The scope of this paper is to provide a
physical explanation for this mechanism. To do that, a delayed detached eddy simulation is used to numerically reproduce the flow in the
case of a sub-scale cold-gas truncated ideal contour nozzle. The obtained results are successfully compared to the experiments and confirm
the presence of two non-axisymmetric wall pressure signatures at Strouhal numbers St ¼ fDj=Uj ’ 0:2 and 0.3 with different azimuthal selec-
tions. To reveal the origin of such modes, a power spectral density analysis is performed in the separated region. The analysis shows that both
modes originate from the external shear layer and behave as “twins” in the separated region. The reason is that both modes are two sides of
the same impinging shear layer instability: the acoustic mode propagates with the sound velocity, while the hydrodynamic one propagates
with the supersonic shear layer velocity. In this context, the resulting self-sustained dynamics may be due to an acoustic–hydrodynamic feed-
back loop involving the impinging shear layer instability of the external supersonic shear layer and the separated region.

I. INTRODUCTION

The rocket nozzle’s design is crucial in today’s launchers. In fact,
the performance of a nozzle depends on its contour and on a specific
operating parameter known as nozzle pressure ratio (NPR), which rep-
resents the ratio between the combustion chamber total pressure and
the ambient static pressure ðp0=paÞ. To achieve optimal performance
throughout the flight trajectory, the nozzles are designed to prevent
any shock occurrence before the exit. Unfortunately, at ground level
(high ambient pressure) or during engine start up (low total pressure),
they are usually over-expanded, which causes shocks inside the diver-
gent duct. In this condition, the resulting shock wave/boundary layer
interaction triggers a self-sustained mechanism involving large sepa-
rated regions, supersonic shear layers, and Mach disks. Specifically, the
experiments performed by Nave and Coffey1 on full-scale and cold-
flow sub-scale models of a J-2S engine revealed for the first time the
existence of two unsteady separation patterns: the one with flow reat-
tachment, called restricted shear separation (RSS), and the other with-
out, called free shock separation (FSS). The same nozzle was observed

switching from FSS to RSS regimes at a certain value of NPR.
However, the appearance of one or the other regime depends on the
nozzle contour. For instance, truncated ideal contour (TIC) and coni-
cal nozzles only display FSS, whereas thrust-optimized contour (TOC)
and thrust-optimized parabolic (TOP) nozzles can experience both
regimes. Complexity of dynamics and the scarce numerical resources
at that time first led to the launch of several experimental campaigns
on two-dimensional (2D) small-angled divergent diffusers2,3 with the
intent of better understanding these unsteady phenomena. In these
cases, separation is induced by strong lambda-pattern shocks and
exhibits complex self-sustained dynamics driven by high-frequency
turbulent structures and upstream propagating shocklets as well as
low-frequency shock oscillations.4,5 With the advancement of technol-
ogy, many experimental studies were conducted on supersonic or
hypersonic cold sub-scale rocket nozzle flows. In this context,
Torngren6 observed that a TIC nozzle can only experience the dis-
placement of the internal shock if there are outer pressure fluctuations
and non-reattached flow separation. The key role of the outer pressure
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fluctuations in sustaining low-frequency shock oscillations was con-
firmed by €Ostlund et al.7 In this experiment, the flow inside the sepa-
rated region is intermittent, and the wall pressure perturbation
results in a combination of a low- and high-frequency part, correlated
with the shock displacement and the shear layer-boundary layer
interaction, respectively. By computing a power spectral density
(PSD) for each azimuthal mode of the wall pressure perturbation,
Baars et al.8 demonstrated that the entire power spectrum was dis-
tributed over the first two Fourier modes. In particular, the zeroth
mode’s energy decreases in the streamwise direction, while the first
mode’s energy remains relatively constant. Some experiments, carried
out by Jaunet et al.9 on a TIC nozzle experiencing an FSS regime at
different NPR values, revealed an azimuthal axisymmetric shape (i.e.,
zeroth mode-like) for the low-frequency mode related to the shock
displacement, as well as the existence of high-frequency organized
structures, which are mainly contained in the asymmetric (i.e., first
mode-like) component.

Similarly, many efforts have been devoted to study this unsteady
phenomenon from a numerical perspective. Chen et al.,10 by means of
Reynolds-averaged Navier-Stokes (RANS) calculations, numerically
showed the existence of two solutions at the same NPR value for the
same nozzle geometry previously investigated by Nave and Coffey:1

one with a recirculation bubble inside the separated region at the noz-
zle lip and another with a large trapped vortex behind the Mach disk.
Although unsteady Reynolds-averaged Navier-Stokes (URANS) methods
turned out to be very efficient in capturing unsteadiness in many com-
pressible flows such as airfoil buffetting11–13 as well as in evaluating low-
frequency oscillations in sub-scale rocket models,14–16 they fail when wall
turbulence and self-sustained oscillations get close in terms of frequencies
(e.g., less than one order of magnitude). On the other hand, solving a
direct numerical simulation (DNS) or a wall-resolved large eddy simula-
tion (WRLES) for such turbulent flows (the Reynolds number ranging
between 105 and 107) is difficult or even impossible with the current tech-
nology. The compromise adopted by Olson and Lele17 was to lower the
Reynolds number of their LES calculations. In this case, although the
low-frequency shock oscillation detected was slightly different from
experiments, the shock position and the amplitude oscillations were sig-
nificantly different, because of their strong dependence on the incoming
boundary layer. Two alternative solutions involving a hybrid turbulence
modeling exist: the wall-modeled large eddy simulation (WMLES)18 or
the detached eddy simulation (DES), first proposed by Spalart et al.19 The
interest in the DES methodology, permitting a computational resource
saving for the RANS-treated boundary layer resolution, has highly
increased in recent years. Deck20 and Shams et al.21 highlighted the
capacity of delayed detached eddy simulations (DDESs) in capturing RSS
self-sustained unsteadiness in an axisymmetric TOC nozzle. Recently,
Martelli et al.22 and Bakulu et al.23 performed a DDES calculation of an
over-expanded TIC nozzle experiencing an FSS regime. Simulations, vali-
dated with experimental measurements, confirmed for a prescribed NPR
the existence of a low-frequency breathing mode as well a higher fre-
quency contribution. The azimuthal PSD analysis of the wall pressure
perturbation revealed a zeroth shock oscillation mode associated with the
low-frequency as well a first mode related to the higher frequencies,
which is compatible with the screech correlation proposed by Tam
et al.24 and the findings of Jaunet et al.9 A feedback-loop model, involving
the turbulent shear layers, the triple point and the second Mach disk, was
proposed to explain the unsteadiness related to the first azimuthal mode.

The insight that nozzle low-frequency shock oscillations were due
to a standing wave produced by an upstream and a downstream prop-
agating traveling wave25 is now the commonly accepted theory22,26,27

and known as transonic resonance. On the contrary, the nature of the
high frequency unsteadiness is not yet clear, and it is often associated
with the screech, which is an acoustic instability prevalent in under-
expanded jets.24,28,29 In general, most of the recent studies devoted to
the supersonic nozzle dynamics focus either on the internal shock
dynamics or the jet noise. In the first research axis, Verma et al.30 and
Martelli et al.31 recently showed via PSD spectra that for both experi-
ments and LES calculations the most of energy is located at the shock
foot. Here, the dynamics is related to the shock wave/boundary-layer
interactions, and the dynamics is characterized by intermittency and
resonance tones. In the second research axis, Edgington-Mitchell
et al.32 and Weightman et al.33 made important progress in the under-
standing of the jet screech, detailing the existence of multiple feedback
and receptivity paths related to the dominant resonant mode of the
adapted jet. Although the transonic resonance and the screech appear
to be very different, one can reasonably believe in the transition from
one to the other when NPR increases and the first Mach disk moves
from the nozzle throat to the nozzle exit. In support of this, the correla-
tion formula predicting the characteristic Strouhal number St for both
phenomena intersects at a Mach jet numberMj � 2:1.9 Therefore, it is
in the authors’ opinion that a non-canonical screech dynamics could
settle when the first Mach disk occurs before the nozzle exits. At pre-
sent, the unsteady dynamics at moderate values of NPR is poorly
known. The only notable works on this subject are those attributed to
Jaunet et al.9 and Martelli et al.,22 who showed the emergence of a
tonal high-frequency dynamics. The mechanism at stake in this condi-
tion is poorly known and the most accepted hypothesis conjectures
about the existence of a feedback loop between the Mach disks.

The objective of this paper is providing many important insights
into the understanding of the tonal high-frequency dynamics in over-
expanded nozzles at moderate NPRs. To do that, the physical behavior
of an over-expanded TIC nozzle experiencing an FSS regime at
NPR¼ 9 will be reproduced by means of DDES simulations. The noz-
zle geometry is the same as that experimentally analyzed at Pprime
Institute.9 One of the novelty of this paper is the deployment of a PSD
map in the space and frequency domain, which permits the localiza-
tion of the involved high-frequency modes. The second contribution
concerns the explanation of the mechanism at stake via an original
acoustic–hydrodynamic feedback loop.

This paper is organized as follows: The modeling equations and
the numerical method adopted in this work are detailed in Sec. II. The
main flow features are qualitatively described in Sec. III. A quantitative
analysis in terms of statistical quantities is addressed in Sec. IV. In the
same section, a comparison with the available experimental data pro-
vided by the Pprime Institute is shown. In Sec. V, a power spectral
density (PSD) is computed on a long-time simulation. In Sec. VI, the
mechanism related to the high-frequency modes is described. A
dimensional analysis based on time average quantities indicates that
such a mechanism could be a particular impinging shear layer instabil-
ity, where both modes are the expression of the same perturbation
which is conveyed with different velocities. To conclude, a feedback
loop mechanism involving the recirculation bubble at the nozzle lip
and the impinging shear layer instability of the supersonic shear layer
is proposed to explain the self-sustained high-frequency dynamics.

pubs.aip.org/aip/phf


II. COMPUTATIONAL SETUP
A. Physical model

The methodology adopted here is based on the classical Reynolds
decomposition of the flow variables into a time average and a fluctuat-
ing part and solving the governing equations only for the former. The
obtained RANS equations employ a time averaging for density and
pressure, while the other variables undergo an additional mass-
weighted averaging. This approach is commonly known to be more
convenient in the case of non-constant density, such as high-Mach
compressible flows in supersonic jet nozzles. The consequent system of
equations consists in the Favre–Reynolds averaged version of the
three-dimensional (3D) Navier–Stokes equations for a compressible,
viscous, heat-conducting gas, written in differential form as
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The quantities of interest are the density q, the streamwise, wall-
normal and spanwise velocity components eui in the coordinate
directions xi (i¼ 1, 2, 3), the thermodynamic pressure p, and the total
specific energy eE . The latter is the sum of the specific internal energyee
and the specific kinetic one as

eE ¼ ee þ eui eui
2
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where K represents the turbulent kinetic energy contribution.
The total stress tensor esij is the sum of the viscous and the

Reynolds stress tensor as
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where sðtÞij acts either as a model or a subgrid space filter, depending on
whether a RANS approach or a LES turbulence modeling is adopted,
respectively. The turbulent stress tensor, under the Boussinesq hypothe-
sis, depends on the eddy viscosity �t and the strain-rate tensor eSij
¼ ð@eui=@xj þ @euj=@xiÞ=2. The turbulent kinetic energy K is ignored
by the fact that, in one-equation turbulence models, no relationship
exists for such quantity. Kinematic molecular viscosity � depends on

temperature eT through Sutherland’s law. Similarly, the total heat fluxeqj is the sum of a molecular and a turbulent contribution as

eqj ¼ eqj ðlÞ þ eqj ðtÞ ¼ �qcp
�
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@eT
@xj
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�
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@eT
@xj

;

(4)

where h00 ¼ cpT 00 is the turbulent heat flux. Pr and Prt are the molecu-
lar and turbulent Prandtl numbers and set at 0.72 and 0.9, respectively,

as usually done in the case of air. Assuming the fluid to be a calorically
perfect gas, the closing relations are

p ¼ qReT ; ee ¼ cveT ; (5)

where R ¼ R=M is the perfect gas constant divided by the molar mass
of the fluid, commonly set at 287:1Jkg�1 K�1 for air and cv is the spe-
cific heat capacity at constant volume. The latter is linked to the spe-
cific heat capacity at constant pressure cp by the specific heat ratio
c ¼ cp=cv, set at 1.4 for diatomic gas.

B. Turbulence modeling

The turbulence formulation adopted here is made by means of a
DDES,34 based on the Spalart–Allmaras turbulence model with
neglecting trip terms.35,36 The latter consists of a simple convection–
diffusion equation for the pseudo-turbulent viscosity variable e� where
the source term is obtained as a balance between a production term P
and a destruction termD associated with the same quantity, as
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D

: (6)

The presence of density q in the above formula is justified by the will
of extending the above equation to compressible flows.37 cb1; cb2, r,
and cw1 are standard-defined constants, while eS and fw are a modified
vorticity and a near-wall function, respectively. In addition, the
Edwards modification38 is used to improve the robustness and the
near-wall numerical behavior of the model.

In the DDES framework, the destruction term D is made grid-
sensitive by replacing the near-wall distance dw with ed as

fd ¼ 1� tanh ðC1rdÞ3
� �

; rd ¼ e�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@ui
@xj

@ui
@xj

s
j2d2w

;

ed ¼ dw � fd �max 0; dw �WCDESDð Þ; (7)

where fd is the boundary layer shielding function, which is supposed to
be 0 in the RANS region and 1 in the LES one. j is the von K�arm�an
constant, D is the subgrid filter width, and W is the function designed
to prevent the erroneous activation of the turbulence model near-wall
functions in low viscosity LES regions.34 In this work, the adjusted ver-
sion derived by Mockett39 for the Edwards modification is used.
Finally, C1 and CDES are two calibrated coefficients set at 16 and 0.2,
respectively, as by Martelli et al.22

According to Deck,40 though fd was conceived to avoid any LES
incursion inside the attached boundary layer, an exclusive use of D
¼ Dmax ¼ maxðDxiÞ as subgrid scale would delay the formation of
instabilities in free shear layers. For this reason, here the modified ver-
sion of the Extended Delayed Detached Eddy Simulation (EDDES)41,42

proposed by Pont43 is employed as

D ¼
Dmax; fd < fd0;

Dx; fd � fd0;

8><>: Dx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNf

i¼1

x � Si
2jjxjj

vuuuut
;

(8)
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where S and x are the vector of the cell face projections in the coordi-
nate directions xi and the local vorticity, respectively. fd0 is the shield-
ing function threshold value for the switching between the two criteria
and set at 0.8 as usual in the literature.

C. Flow solver description

The code used for all simulations here shown is Phoenix,44 an
in-house finite-volume structured code performing RANS/URANS
and DDES calculations, developed at Pprime Institute in collaboration
withDynfluid Laboratory. In the present work, the dimensionless com-
pressible RANS equations corresponding to Eqs. (1a)–(1c) are solved,
after being re-arranged in the following conservative form:

@

@t

ð
X
q dXþ

þ
@X

Fc � Fvð Þn dS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RðqÞ

¼ 0; (9)

with q ¼ ½q;m; qE�T and mi ¼ qui. RðqÞ is the residual vector com-
posed of Fc and Fv, the convective and viscous flux vector, respectively.
Any needed gradient is computed by means of Green’s theorem using a
second-order accurate finite difference formula for the face value
quantities. The residual vector is discretized by a third-order direc-
tional noncompact (DNC) scheme with the scalar dissipation scheme
of Jameson, Schmidt, and Turkel (JST).45 The one-equation turbulence
model in Eq. (6) is rearranged similarly as Eq. (9) and discretized with
a second-order TVD scheme46 withHarten’s entropy correction.

An implicit loosely coupled algorithm is used to integrate the
RANS equations and the turbulence equation separately.47,48

Particularly, a dual-time stepping (DTS) Technique is used to march in
time in concert with a matrix-free method,49,50 which provides a fast
and low-storage convergence for the inner fictitious steady problem. A
constant Courant–Friedrichs–Lewy (CFL) number is used.

D. Numerical strategy

The nozzle geometry considered in this work is a truncated ideal
contour (TIC), obtained by means of a two-dimensional axisymmetric
method of characteristics (MOC) technique with a boundary layer cor-
rection based on Delery’s strategies.51 The resulting nozzle shape is
provided in Fig. 1. The geometrical properties are listed in Table I and
expressed with respect to the throat radius Rt.

The reference quantities chosen are the free-stream stagnation
ones (a0;1; q0;1;T0;1). Under the assumption of isentropically resting
flow at free-stream conditions, T0;1 and p0;1 are set equal to the noz-
zle combustion chamber temperature ð260KÞ and the standard sea-
level pressure ð0:1MPaÞ, respectively. The reference length considered

is the nozzle throat radius, i.e., Lref ¼ Rt . The value of the throat radius
Rt is a confidential information.

The Reynolds number, based on the free-stream stagnation quan-
tities, is consequently

Re10 ¼ q0;1a0;1Lref
l0;1

¼ 5:0� 105: (10)

The three-dimensional computational domain includes the nozzle and
the far-field region, and it is discretized with nine blocks. The nozzle
and the external region obtained from its extrusion up to the outlet are
made up of five blocks meshed together with an O–H topology to pre-
vent any singularity about the longitudinal axis (see Fig. 2). The grid
was generated with the Cadence Fidelity Pointwise software.

The far-field region is composed of additional 4 O-grid blocks.
Domain boundaries are four and two times the overall nozzle length
ðL� ¼ l þ LÞ far from the nozzle exit in the streamwise and radial
directions, respectively. The resulting multiblock mesh is shown in
Fig. 3. For the O–H structured blocks of the domain, the grid resolu-
tion is nx¼ 813 in the longitudinal direction (697 of which within the
nozzle and 117 in the exterior part) and nr¼ 177 ðnh ¼ 89Þ in the
radial (azimuthal) direction for each of the four blocks surrounding
the core nozzle. The longitudinal cut plane of the grid is shown in
Fig. 4, showing the grid refinement in the nozzle core. The 4O-grid
blocks in the exterior part have 117, 309, and 352 points in the longitu-
dinal (x), radial (r), and azimuthal ðhÞ directions, respectively. The dis-
cretization was driven by the will of ensuring as much as possible

FIG. 1. TIC nozzle axisymmetric geometry, Md ¼ 3:5.

TABLE I. TIC nozzle shape parameters.

Design Mach Md ¼ 3:5

Throat radius Rt

Exit radius Re=Rt ¼ 2:55
Divergent length L=Rt ¼ 9:63
Convergent length l=Rt ¼ 3:68
Curvature radius q ¼ Rc=Rt ¼ 10

FIG. 2. Visualization of the O–H topology grid structure.
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quasi-isotropic cells in the streamwise and tangential directions inside
the nozzle. The resulting grid consists in 69� 106 hexahedra.

Given that the objective of this work is the analysis of the mecha-
nism related to the tonal components of the self-sustained unsteadi-
ness (i.e., St¼ 0.2 and St¼ 0.3), all the temporal quantities will be
expressed in terms of the period of such dimensionless frequencies. In
this regard, the physical time step considered is 200 times smaller than
the period of a single-frequency wave oscillating at St¼ 0.2 (see Table
II). The grid resolution is based on a previous convergence study on
the separation point provided by a steady RANS calculation, used to
initialize the corresponding DDES calculation. It is worth pointing out
that no specific inflow boundary condition is used to promote the
development of resolved turbulence. Turbulent structures naturally

developed near the nozzle exit and propagate throughout the domain
during a long numerical transient t0, as one can see from the Table II.
After that, a self-sustained unsteadiness settles without any need to be
sown. The maximum value of yþ is about 12; therefore, a wall function
boundary condition with adiabatic temperature and pressure extrapo-
lation is prescribed at the nozzle walls. The nozzle inflow is assumed to
be subsonic, and the primitive variables ðq; p; uÞ are computed here by
coupling the linearized outgoing characteristic equation, the 1D isen-
tropic relations, and the state equation by imposing the total tempera-
ture T0 ¼ T0;1, total pressure p0 ¼ NPRpa, and the flow angle
a ¼ 0	.52,53 The resulting system of equations is iteratively solved by a
Newton method. The outflow is assumed to be subsonic with a pre-
scribed pressure pa ¼ p0;1, while both the far-field lateral boundaries
and the fictitious wall at the nozzle exit are treated with a non-
reflective boundary condition54 and imposed free-stream Mach num-
berM1 ¼ 0:05.

The numerical parameters used for DDES calculations are listed
in Table II.

III. FLOWFIELD FEATURES

Before analyzing the flow from a statistical point of view, it would
be interesting to take a look to its instantaneous features. Let us consider
the traceless part of the gradient velocity tensor A ¼ ru� 1

3r � u. The
Q-criterion is here defined as the second invariant of the tensor A.22

Positive values of Q correspond to regions in the flowfield where

FIG. 3. Computational grid used in the calculation. Axonometric view (left) and longitudinal cut plane (right). The nozzle length is L�. Domain boundaries are 4� L� and
2� L� far from the nozzle exit in the streamwise and radial directions, respectively.

FIG. 4. Computational grid used in the calculation. Longitudinal cut plane.

TABLE II. Numerical parameters.

Physical time step Dt ¼ TSt¼0:2=200
Numerical transient time t0 ¼ 24 TSt¼0:2

DTS iterations CFL 30
DTS iterations 60

JST k2 coefficient 0.5
JST k4 coefficient 0.09
Harten coefficient 0.05
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vorticity dominates strain. The iso-surface of Q, colored by the stream-
wise velocity component, is shown in Fig. 5. In this DDES simulation,
the reader can note that the unsteadiness triggering is located near the
wall separation point. The shape of the flow structures is more and
more anisotropic and elongated in the advection direction,
downstream.

To enrich this preliminary and qualitative analysis, a longitudinal
view of the instantaneous density gradient norm k rq k is provided in
Fig. 6. At the pressure ratio considered in this work, i.e., NPR¼ 9, the

nozzle does not operate in adapted conditions. In this regard, by means
of a 2DMOC, it is possible to show that adaptation is obtained at NPR
’ 18.55 On the other hand, in the case here considered, the flow re-
compresses inside the nozzle by oblique shock waves. Being the angle
of these oblique shock waves greater than the critical one compatible
with a regular reflection, a Mach reflection settles. Two Mach disks are
clearly visible. The first one is inside the divergent part of the nozzle,
while the second one just downstream of the nozzle exit. As shown in
Fig. 6, the over-expansion of the nozzle leads to a massive separation
of the turbulent boundary layer in the form of a free shock separation
(FSS). In these conditions, a supersonic jet remains confined by two
shear layers: the first one coming from the separation point (which
will be called external shear layer hereafter) and the second one com-
ing from the triple point (denoted as internal shear layer). Figure 7
shows a closer view of this zone. Clearly, the most of the unsteady
dynamics is located both in the separated zone and inside the super-
sonic jet. Particularly, it seems that such unsteadiness, transmitted by
the shear layers, leads to significant oscillations (in amplitude) of the
second Mach disk. The reason for that seems to be some instabilities
originating close the separation point. Here, some compression waves
similar to shocklets (already observed in Ref. 10) radiate from the
internal shear layer to the external one. These structures grow when
advecting in the streamwise direction and eventually are triggered
where the reflected shock coming from the triple point hits the external
shear layer. The same phenomenon was observed by Martelli et al.22

From this point to downstream, more and more turbulent eddies seem
to detach and propagate upstream, possibly closing the loop.
Moreover, those structures detaching from the external shear layer
near the second Mach disk seem to interact with the nozzle lip, from
which some aero-acoustic radiation appears to emanate into the exter-
nal environment. The fully three-dimensional aspect of the flow is well
visible in the asymmetric dynamics of the shear layers. A transverse
view of the second Mach disk is given in Fig. 7, on the right. A pretty
complex dynamics in the azimuthal direction is well visible and will be
analyzed in Sec. V. It is important to note that the first Mach disk is
also unsteady but it oscillates with a lower amplitude. After qualita-
tively detailing the instantaneous features of the flow, in Sec. IV, we
will analyze its statistics and compare them with the experimental
results provided by the Pprime Institute.9

IV. STATISTICAL ANALYSIS

The time average wall pressure pw along the streamwise direction
is shown in Fig. 8. Blue, red, and black lines correspond to DDES sim-
ulations performed on the same TIC nozzle for NPR¼ [6, 9, 12],

FIG. 5. Q-criterion colored by the streamwise velocity component.

FIG. 6. Unsteady DDES solution at NPR¼ 9. Contours of density gradient ðjrqjÞ
on a longitudinal view. Logarithmic scale.

FIG. 7. Contours of the density gradient
(logarithmic scale). Longitudinal view (left)
and transverse view (right) at
x=L ¼ 1:142. The red line indicates the
transverse plane.
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respectively. Numerical results concerning NPR¼ 6 and NPR¼ 12
will not be detailed here. If the reader is interested can refer to Ref. 55.
In this figure, the over-expanded state of the TIC nozzle under consid-
eration is well visible. The wall pressure pw isentropically decreases in
the streamwise direction down to separation. Here, an oblique shock
occurs and pressure immediately jumps up to a plateau value reaching
ambient pressure at the exit. This almost constant trend for the wall
pressure proves that flow does not reattach as in the case of nozzles
experiencing an FSS regime. DDES calculations are here compared
with two experimental campaigns carried out on the same nozzle at the
same operating conditions. The data related to these two campaigns are
indicated with filled and empty circles. In view of the uncertainty in
measurements, the pressure trend is in a good approximation with
experiments given that numerical data fall almost between the experi-
mental ones coming from both campaigns. Only a slight discrepancy is
observed in separation point capturing. It is in the author’s opinion that
the separation point upstream shifting is due to a non-perfect RANS/
LES transition, as already mentioned in Ref. 22. The data in Figs. 8(a)
and 8(b) are extracted from two generatrix at the azimuthal positions
h ¼ 0	 and h ¼ 180	 in the counterclockwise rotation, respectively.
The position h ¼ 0	 (respectively, h ¼ 180	) corresponds to the posi-
tive (respectively, negative) wall-normal y coordinate. The mutual

coherence in the numerical results corresponding to these different azi-
muthal positions confirms the mean flow axisymmetricity.

The time average DDES solution at NPR¼ 9 is shown in Fig. 9,
in terms of pressure field p (a) and streamwise velocity field u (b). As
expected, the resulting shock system is composed of a first Mach disk
(located at xd1), originating from the oblique shock coming from the
separation point, and a series of expansion fans and compression
waves forming a cellular pattern of Mach disks in the streamwise direc-
tion. Only two Mach disks (located at xd2 and xd3) are visible in this
periodic spatial structure, while the others are necessarily smoothed by
the grid decreasing refinement toward the outlet of the domain. As it
happens for over-expanded nozzle flows, the separation point (xs) is
inside the nozzle. The coordinates of such points in the streamwise
direction are listed in Table III. Black lines in Fig. 9(b) are sonic lines,

FIG. 8. Comparison between experiments and DDES in terms of mean wall pressure along the same generatrix for different NPRs. Solid lines, DDES; filled (respectively,
empty) circles, measurements from experimental campaign of 2016 (respectively, 2019). Black, red, and blue color stands for NPR¼ [6, 9, 12] data, respectively.

FIG. 9. Mean DDES solution at NPR¼ 9, longitudinal view. On the left, contours of the mean pressure ratio p ¼ P=pa, where P ðPaÞ is the dimensional pressure. The gray
color in the color-map corresponds to p ¼ P=pa ¼ 1 (i.e., where mean pressure P matches ambient pressure pa) to highlight the shock system. xs is the average separation
point, while xd ¼ ðxd1; xd2; xd3Þ the average location of the first, second, and third Mach Disk. On the right, contours of dimensionless streamwise velocity u ¼ U=a0;1. The
continuous black and red lines are the sonic line and 0-value streamwise velocity isolines, respectively.

TABLE III. Time average (mean) DDES solution at NPR¼ 9. Location in the stream-
wise direction x of: separation point xs, first Mach disk xd1, second Mach disk xd2,
and third Mach disk xd3.

xs=L xd1=L xd2=L xd3=L

0.426 0.669 1.116 1.526
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which permit identifying two annular regions: the inner one limited
by the internal shear layer, and the second one between the internal
and the external shear layer. Particularly, the latter appears to be
strictly supersonic while the former is subsonic just downstream a
Mach disk and accelerates up to supersonic conditions just before the
following Mach disk. This is possible thanks to the external annular
region that, “bending” toward the internal one because of the expan-
sion fans, reduces the inner region flow section. The red lines are
null-streamwise velocity isolines, which denote the presence of some
recirculation at the nozzle lip. This feature is a key aspect for the
explanation of the dynamics inside the separated region in Sec. VI. As
one can state by observing this figure with special attention, the mean
flow seems to be not perfectly axisymmetric: this happens because, as
we will see in Sec. V, the unsteady solution is very rich in terms of fre-
quency spectrum with a large amount of energy located at very low
frequency. Consequently, since a mean flow is statistically converged
only when all its frequency content is converged, the higher is the
energy present at low frequencies, the higher is the time necessary to
converge this solution. For this reason, in the case of highly unsteady
flows, the time required is so huge that it is even not affordable in
terms of computational resources. It should be remembered that the
scope of this paper is providing a physical explanation to the mecha-
nism related to the high frequency spikes at St¼ 0.2 and St¼ 0.3.
Thus, as a trade-off between spectral content convergence and com-
putational cost, the signal length over which the unsteady solution
was averaged is 100 periods of a single-frequency wave oscillating at
St¼ 0.2. From a quantitative point of view, such simulation provides
the resolvability of about DSt ¼ 0:002, which guarantees a good statis-
tical convergence for the high frequency part of the spectrum. It is
worth noting that the restitution time for a 1.5-periods simulation
corresponds to 24h on 308 processors of the national HPC facilities
(i.e., Occigen). Accordingly, the total computational cost amounts to
4� 106 h.

Concerning the deviations from the time average solution,
Fig. 10 gives interesting insights. Standard deviation ðrÞ, i.e., the
RMS of the unsteady solution, shows a sharp spike at the separation
point due to shock oscillations, as shown in previous works about
nozzles experiencing an FSS regime.7,22 The pressure signal at the
streamwise location of this spike is shown in Fig. 11. As one can state
by observing this figure, pressure jumps between two levels, one

corresponding to a point outside the separated region and the other
inside. This is the result of an intermittency inside the separated
region, already observed early by Kistler56 for supersonic flows over a
forward-facing step and later by €Ostlund et al.7 in nozzle flows expe-
riencing an FSS regime.

V. SPECTRAL ANALYSIS

The analysis of the unsteady wall pressure perturbation p0 is per-
formed by means of a power spectral density (PSD), referred here with
hpmp�mi, where pm is its azimuthal decomposition defined as

pmðx; tÞ ¼ 1
2p

ð2p
0
p0ðx; h; tÞeimh dh with m ¼ 0; 1; 2 ;…; n:

Frequency is expressed in terms of the Strouhal number
ðSt ¼ fDj=UjÞ, which is based on the fully expanded jet velocity ðUjÞ
and the fully expanded jet diameter ðDjÞ, given by

FIG. 10. Comparison between experiments and DDES in terms of wall pressure RMS along the same generatrix for different NPRs. Solid lines, DDES; filled (respectively,
empty) circles, measurements from experimental campaign of 2016 (respectively, 2019). Black, red, and blue color stands for NPR¼ [6, 9, 12] data, respectively.

FIG. 11. Unsteady DDES solution at NPR¼ 9. Wall pressure signal at the separa-
tion point xs=L.
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where T0 is the stagnation temperature, De is the nozzle exit diameter,
andMj is the fully expanded jet Mach number defined as

Mj ¼ NPR c�1ð Þ=c � 1ð Þ 2
c� 1ð Þ

� 	1=2
: (12)

The PSDs are computed using Welch’s method,57 i.e., subdividing the
pressure signal into N blocks with 50% overlap that are then individu-
ally Fourier-transformed. The PSD spectrum is finally obtained by
averaging the discrete Fourier transform (DFT) energy spectra of the
various segments, in order to minimize the variance of the power spec-
tral density estimator. To better recognize the dominant frequency
ranges, PSDs are here shown in a pre-multiplied form and normalized
by the dynamic pressure of the fully expanded jet cPjM2

j (i.e.,
St�hpmp�mi=cPjM2

j ). Pj is the ambient pressure pa.
By means of PSD, the unsteady wall pressure perturbation has

revealed specific signatures in frequency. First Baars et al.,8 and later
Jaunet et al.9 for the same TIC nozzle considered here, shown a precise
azimuthal selection for the spikes present in the PSD spectrum. For
this reason, a PSD of the first three wall pressure perturbation azi-
muthal modes at x=L ¼ 0:665 is presented in Fig. 12. For the case at
NPR¼ 9, the DDES reproduces the same distribution provided by the
experiments in terms of azimuthal selection for each frequency com-
ponent. Particularly, the component at St¼ 0.3 is associated almost
exclusively with the mode m¼ 2, while the more energetic St¼ 0.2
component is related to the mode m¼ 1. The high-frequency bump
ðSt � 1Þ contributes in terms of energy to all azimuthal modes, con-
firming to be related to stochastic turbulent structures. In contrast to

the experiments, the most energetic contribution in the DDES calcula-
tion is due to the mode m¼ 0, which is related to a low-frequency
bump at St � 0:02. It should be remembered that, even though the
cutoff frequency of the sensors is around 40 kHz (Ref. 9) and it is com-
patible with the frequency sampling of the recorded fields
½1=ð10� DtÞ � 42:5 kHz�, the total simulation time (T � 0:05 s) is
not equivalent to the experimental signal length (T � 90 s). From a
qualitative point of view, the spikes at St¼ 0.2 and St¼ 0.3, as well as
the high-frequency bump at 1 < St < 2, were not observed changing
anymore in terms of frequency starting from a 60-period recording.
However, in order to have a better convergence in terms of amplitude
for such portion of the spectrum, a longer signal (i.e., 100-period one)
was recorded. As mentioned in Sec. IV, such longer recording guaran-
tees an error estimate of about DSt ¼ 0:002. This means that frequen-
cies below DSt are not captured. However, there is no guarantee that
higher frequencies are statistically converged. In fact, if 60 periods are
required for the emergence of the spikes at St¼ 0.2 and St¼ 0.3, it
appears reasonable that a low-frequency broad band could need even
more periods to be statistically converged. In fact, the authors observed
that the energy of the bump at St � 0:02 decreases with increasing sig-
nal length. In this simulation, this frequency is discretized “only” with
ten periods. Therefore, it is in the authors’ opinion that, with enough
computational resources, the numerical spectra could resemble more
to the experimental one.

In order to investigate the nature of the different modal contribu-
tions, the azimuthal PSD of wall pressure perturbations was computed
for several axial positions. The resulting map is shown in Fig. 13. The
low-frequency energy (St< 0.1) as well the high-frequency one
appears to be similarly distributed in all three azimuthal components.
The resulting low-frequency component, located around the average
separation point (x=L � 0:45), is compatible with the stochastic
behavior characterizing a shock-wave boundary layer interactions and
confirms what observed in Jaunet et al.9 On the other hand, the high
frequency contribution located near the nozzle lip are related to the
fully turbulent structures of a recirculation bubble. As previously
shown in similar cases,8,9,22 the zeroth azimuthal PSD component

FIG. 12. Pre-multiplied PSD Main of wall pressure perturbation main azimuthal modes at a fixed streamwise location. Green, light-blue, and orange color stand for mode
m¼ 0, 1, 2, respectively.
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dominates the energy wave-number spectrum and decreases in the
axial direction toward the nozzle exit. Moreover, two specific high-
frequency wall pressure signatures at St¼ 0.2 and St¼ 0.3 are well visi-
ble in the spectrum and related to the first and second azimuthal
mode, respectively. Particularly, these two spikes seem to emerge over
the entire spectrum in the separated region sufficiently far from both
the separation point and the nozzle lip at around 0:5 < x=L < 0:7.

Although the wall pressure perturbation PSD indicates the region
where these signatures in the frequency domain are prevalent, it gives
no information about the growth area of the structures related to
them. For this reason, an accurate investigation in the spatial domain
inside the nozzle was conducted by using several pressure probes
located (i) in the region between the external shear layer and the wall,
(ii) on the nozzle axis. The positions of the probes put on the shear
layers, on the axis and at the wall are shown in Fig. 14. We did not pur-
posely indicate all the probes placed in the separated region in order
not to undermine the sketch clarity. The time signal recorded through-
out the DDES simulation permitted to provide a 3D map in terms of
pressure perturbation azimuthal PSD.

A. Spatial organization of the pressure frequency
content

To better understand the nature of the different frequency con-
tent contributions, the main azimuthal modes PSD was computed at
different axial and radial locations. Figure 15 shows the spatial distri-
bution of the zeroth azimuthal mode inside the nozzle. As one can
state by observing this figure, near the average separation point
(x=L � 0:5), the structures characterized by this modal contribution
seem to have birth in the external shear layer with only those at

Strouhal number St � 0:02 propagating toward the separated region.
Moving from the separation point downstream, this selection is more
and more evident until approaching the triple point (x=L � 0:7),
where the external shear layer shows a broadband high energy content
(St< 0.2), a signature at St¼ 0.3 and fully developed turbulent struc-
tures at high frequencies (St � 1) detaching from the shear layer and
rapidly dissipating in the separated region. Moving more downstream
up to the nozzle lip, it seems that the region near the shear layer
becomes less and less energetic in favor of the turbulent structures
which manage to “survive” in the separated region.

Now, let us analyze the first azimuthal modal frequency contribu-
tion. In Fig. 16, the reader can note that near the separation point the
spectral content exhibits a low frequency bump around St � 0:02 as
well as the emergence of an energetic spike at St � 0:1 with its sub-
harmonics at St � 0:2 and St � 0:3. At this point, it seems that there
are no structures departing in the separated region, but if we focus our
attention near the wall [see Fig. 13(b)], where the hydrodynamics ener-
getic content in the shear layer is no more present, we can capture the
presence of a high-frequency signature at St � 0:2. This probably indi-
cates that only those structures at this particular frequency detach and
depart in the separated region. Moving downstream along the external
shear layer at x=L � 0:58, the previous observation becomes the prev-
alent scenario. The low-frequency energy contribution seems to lower
in favor of a more and more energetic signature at St � 0:2 and sug-
gesting an energy transfer from the shear layer to some high frequency
structures which spread in the separated region. At this axial location,
we can see an energy spike at the level of the external shear layer,
which decreases in the radial direction. However, this scenario changes
while approaching the average first Mach disk position (x=L � 0:63).
Here, the signature at St¼ 0.2 seems to get another “burst of energy”
at y=L � 0:15. This “extra” energy contribution does not dissipate
quick as before, and the signature at St¼ 0.2 seems to stay energetic
throughout the separated region up to the wall. The same conditions
still exists at least at x=L ¼ 0:7 where, in the vicinity of the triple point,
the external shear layer becomes immediately more energetic as well as
the structures related to the signature at St � 0:2. If we take a look at
Fig. 13(b), it is possible to see for this mode an energy boost even at
the wall at 0:63 < x=L < 0:7. Moreover, even though the external
shear layer is even more energetic at x=L ¼ 0:76, the energy of the sig-
nature at St¼ 0.2 decreases faster in the radial direction as happens
before x=L � 0:58. Moving more and more downstream, this mode is

FIG. 13. Contours of the main azimuthal mode of the wall pressure perturbation pre-multiplied PSD in the space and frequency domain.

FIG. 14. Time average streamwise velocity field at NPR¼ 9. Probes’ locations for
the azimuthal PSD 3D map are denoted with red crosses. L is the divergent length.
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not more visible and the energy content seems to pass from a low-
frequency broadband, prevalent related to the external shear layer, to
high-frequencies contribution which characterize the fully turbulent
structures near the nozzle lip.

The analysis of the second azimuthal mode distribution inside
the nozzle, shown in Fig. 17, offers a scenario which is apparently very
similar to the previous one, except for the fact that the emerging signa-
ture is located at St � 0:3. In fact, near the separation point the PSD
spectrum exhibits for this mode a low-frequency bump and two well-
visible spikes at St � 0:1 and 0:2 < St < 0:3, but if we get away from
the shear layer and we approach the wall, Fig. 13(c) shows that at this
location the frequency selection at St¼ 0.3 is already present. The
energy of this mode is small if compared with that at St¼ 0.2 and in
contrast with the former seems to stay quite constant moving

downstream toward the triple point (x=L � 0:7). Moreover, even
though it is energized at the triple point as the first azimuthal compo-
nent, its signature in the separated region rapidly vanishes. Moving
more and more downstream, the more energetic characteristic of the
shear layer as well the fully developed turbulent structures near the
nozzle lip masks its presence, but if we look at the wall we can note its
presence.

To conclude our analysis, a pre-multiplied PSD spectrum for the
pressure perturbation p0 is extracted along the nozzle axis and shown
in Fig. 18. Given that the axis is a degenerated tube with a null radius,
there is no possibility to separate the different azimuthal contributions.
Here, all the energy is located at the average position of the Mach disks.
As expected, the second Mach disk is much less energetic than the first
one. However, both exhibit a lower-frequency broad band energy

FIG. 15. Zeroth azimuthal mode pressure perturbation PSD radial distribution for different axial locations.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

pubs.aip.org/aip/phf


content, which is quite similar to that observed at the separation point.
This suggests that the shock system oscillates rigidly with the separa-
tion point but the second Mach disk participates with a very low
amplitude if compared with the first one.

VI. PHYSICAL ANALYSIS

We saw in Sec. V that the dynamics in the separated region,
inside the supersonic nozzle considered in this work, has a specific sig-
nature in frequency. This signature is expressed by two modes with
different frequencies and spatial symmetry. Particularly, the high-
frequency unsteadiness is related to am¼ 2 azimuthal mode, while the
low-frequency one to a m¼ 1. In the regime at NPR¼ 9, the most
energetic mode is the low-frequency mode at St¼ 0.2, while the high-
frequency mode at St¼ 0.3 is less energetic. Conversely, preliminary

DDES calculations in Tarsia Morisco55 shown at NPR¼ 6 a different
condition: the high-frequency mode (St¼ 0.3) is energetic as the low-
frequency one (St¼ 0.2), while at NPR¼ 12 only the mode at St¼ 0.2
exists but it is very weak. Experiments in Jaunet et al.9 confirm the
DDES simulations in terms of frequency contents.55 However, until
now no clear mechanism has been proposed to explain such a
phenomenon.

On the other hand, in under-expanded nozzles the reason behind
the self-sustained unsteadiness is a well-known feedback close-loop
mechanism known as screech. In this case, turbulent structures are
conveyed in the mixing layer and interacts with the network of shock
cells. Such interaction creates acoustic waves that, spreading upstream,
excite the mixing layer at the outlet of the nozzle. This excitation give
rises to the disturbances in the mixing layer which in turn produce

FIG. 16. First azimuthal mode pressure perturbation PSD radial distribution for different axial locations.
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turbulent structures, closing the loop. Tam et al.24 realized that screech
frequencies ( f ) collapse on the same curve inversely decreasing with
the fully expanded jet Mach number (Mj), when the fully expanded
exit diameter (Dj) and velocity (Uj) are used as the length and the
velocity scale of the Strouhal number (St).

Until now in this work, we talked about two particular modes at
St¼ 0.2 and St¼ 0.3. It is worth remembering that the length scales
used to define such Strouhal numbers come from the under-expanded
jets literature. In this context, the fully expanded jet velocity Uj and jet
diameter Dj are the correct length scales because of the mainly acoustic
nature of the phenomenon involved. This is the reason why Tam’s cor-
relation works so good to predict screech frequencies. However, clearly
such length scales could not be representative for phenomena with dif-
ferent nature and/or different characteristic scales. An interesting

consideration is that, for the nozzle here considered, only the fre-
quency of the first azimuthal mode (St � 0:2) matches the screech
correlation formula. In addition, this matching works for all the NPR
(Mj) considered, as shown in Fig. 19, and was also observed in the
experiments.9 Therefore, it is very likely that the first azimuthal mode
could be related to a screech-like phenomenon, involving an acoustic
feedback loop. On the other hand, the St¼ 0.3 mode seems to have a
different nature.

In Sec. V, a spectral analysis based on the azimuthal PSD of the
pressure perturbation has shown that both modes have birth in the
first external shear layer before the triple point. Both survive in the sep-
arated region, where they behave as a signature up to the wall. A quali-
tative analysis of the instantaneous field in terms of density gradient in
Sec. III has shown in the separated region the formation of vortex

FIG. 17. Second azimuthal mode pressure perturbation PSD radial distribution for different axial locations.
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shedding due to the roll-up of the supersonic shear layers. Therefore, it
is very likely that both modes are related to such turbulent eddies.

This scenario involves an interaction between the Kelvin–
Helmholtz instability in the supersonic shear layer, and the von-
K�arm�an instability in the separated region, necessarily. In addition,
this interaction is known to happen when a separated shear layer
occurs in a cavity. In this case, shear layers become unstable and roll
up in vortex-shedding vortices. The resulting instability is called
impinging shear layer instability.58 Moreover, such instability can
occur with multiple vortex shedding modes at different frequencies.
This happens, for example, in the vortex excitation of a prism with
elongated cross section.58 In this case, it has been shown that the same
Strouhal number St can be obtained for all the modes if the correct
length scales are adopted to build it. It is in the authors’ opinion that
the same phenomenon occurs inside the nozzle at NPR¼ 9: here the
external supersonic shear layer rolls up in turbulent eddies producing
the signatures at St¼ 0.2 and St¼ 0.3. In this case, even though both

modes have the same origin, i.e., the supersonic shear layer, they could
be related to different velocity scales. The model proposed here sug-
gests that the modem¼ 1 is the expression of a perturbation propagat-
ing with the local speed of sound a, as an acoustic mode. On the other
hand, the nature of the m¼ 2 mode could be hydrodynamic. In this
perspective, the latter would be the result of a perturbation conveyed
with a convection velocity u, which would be the streamwise velocity
of the supersonic shear layer. To have a feedback close loop, both
modes require the same characteristic distance d, i.e., the traveled dis-
tance inside the loop. Thus, the following relation for the impinging
shear layer instability must be fulfilled:

St ¼ fSt¼0:2 � d
a

¼ fSt¼0:3 � d
u

; (13)

where fSt¼0:2 (respectively, fSt¼0:3) is the dimensional frequency of the
mode at St¼ 0.2 (respectively, St¼ 0.3).

To verify the plausibility of the model proposed, let us have a
look at Figs. 20 and 21, which show the average streamwise velocity u
and the local speed of sound a field, respectively. In the separated
region, the time average local speed of sound is a � 320m=s, while in
the external supersonic shear layer, the time average streamwise veloc-
ity is u � 485m=s.

Therefore, if we replace a (respectively, u) with a (respectively, u)
in Eq. (13),

St1
St2

¼ fSt¼0:2

fSt¼0:3
¼ a

u
� 0:66; (14)

which supports the scenario proposed. This means that both modes are
compatible with a vortex shedding related to the impinging shear layer
instability of the supersonic shear layer. The dimensional analysis
would suggest that the m¼ 1 mode at St¼ 0.2 could be related to an
acoustic radiation (as confirmed by Tam’s correlation), while them¼ 2

FIG. 18. Pressure perturbation PSD spectrum along the nozzle axis. MD and MD2
stand for first Mach and second Mach disk position, respectively.

FIG. 19. Comparison between Tam’s correlation24 and first azimuthal mode spike
frequency at different values of NPR (Mj). The same correlation was already
observed in the experiments.9

FIG. 20. Contours of the time average streamwise velocity uðm=sÞ inside the
supersonic nozzle, at NPR¼ 9.

FIG. 21. Contours of the time average local speed of sound a ðm=sÞ at NPR¼ 9.
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one at St¼ 0.3 to a hydrodynamic product. For this reason, it is very
likely that the turbulent eddies detaching from the external shear layer
are such hydrodynamic product. Here, due to the supersonic nature of
the shear layer, the acoustic mode has a lower frequency than the
hydrodynamic one. Finally, the contribution at St � 0:02 seems to be
related to the shock displacement about the separation point.

From Table III, we know that the time average separation point is
xs � 0:4 L, and consequently the traveled distance is d � 0:6 L. With
this new length scales, the modified Strouhal numbers for both modes
would be

St1 ¼ f1 � 0:6 L
a

� 0:65; St2 ¼ f2 � 0:6 L
u

� 0:64; (15)

which are in practice the same and support the model proposed. This
result is quite surprising because a Strouhal number St ¼ f � d=Uc

� 0:6 is commonly observed in previous experiments involving
impinging shear layer instabilities.58,59

At this point, we need to find the large-scale flow which maintains
the feedback loop. To do that, let us consider the time average Mach
number fieldM in Fig. 22. In this figure, streamlines, which are denoted
with continuous black lines, indicate the presence of a recirculation
region well visible at the nozzle lip. The same flow features were already
observed by Martelli et al.22 in an over-expanded TIC experiencing an
FSS regime.

The mechanism proposed here is based on an acoustic–hydrody-
namic feedback loop involving the shear layer instability and the sepa-
ration bubble at the nozzle lip. There are many cases in the literature, in
which the separation bubble acts as an amplifier of acoustic

disturbances.60,61 For instance, the transitional airfoil experiences
acoustic feedback-loop mechanisms involving multiple tones.62–64 In
these cases, hydrodynamic perturbations originate at the leading edge
and conveyed downstream. The disturbances are amplified by the recir-
culation bubble on the airfoil surface, and, at the trailing edge, acoustic
waves radiate upstream triggering new disturbances. For the case exam-
ined in this work, we propose a similar mechanism. In this regard, let
us rely on the sketch in Fig. 23. Some pressure fluctuations radiate from
the separation bubble up to the separation point in the time t1 ¼ d=a,
where d is the distance traveled and a is the local speed of sound in the
separated region. These fluctuations generate some kind of disturbances
at the separation point that are conveyed in the mixing layer down-
stream with a convection speed u in the time t2 ¼ d=u, with u the aver-
age velocity inside the external supersonic shear layer. Later, such
disturbances interact with the recirculating bubble for a period of time
t3 ¼ 1=fb, where fb is the frequency of the bubble. According to this
scenario, the following relation must be fulfilled:

d
u
þ N

1
fb
¼ d

a
; (16)

where the traveled distance d is the distance between the nozzle lip and
the separation point, while fb is the frequency of the separation bubble.
With N¼ 1, Eq. (16) reduces to

1
fb
¼ d

1
a
� 1
u

� �
;

which, with relation (14) becomes

fb 0:6 L ¼ St2 a
St2 � St1

:

After injecting Eqs. (11) and (12) in the above relation, a fre-
quency Stb � 0:9 is obtained. The reader can easily note that such fre-
quency is compatible with the high-frequency bump (St � 1) well
visible near the nozzle lip in the wall pressure PSD spectra in Fig. 13.

VII. CONCLUSION AND PERSPECTIVES

This paper brings several insights in the understanding of the
unsteady dynamics which characterizes over-expanded TIC nozzles
operating in a free shock separation regime. Previous experimental
data recorded two high-frequency signatures with specific azimuthal
symmetry (m¼ 1 and m¼ 2) at different axial locations on the walls

FIG. 22. Contours of the mean Mach number M at NPR¼ 9. Streamlines are
denoted with a solid black line. (b) is a zoom of the recirculation region near the
nozzle lip.

FIG. 23. Sketch of the mechanism linked to the high-frequency modes. The hydro-
dynamic mode at St¼ 0.3 is related to a perturbation conveyed with a velocity u in
the external supersonic shear layer. The screech-like mode is related to the pertur-
bation radiating at the speed of sound a. Both modes are the expression of a
Kelvin–Helmholtz instability at St � 0:65. The large-scale flow maintaining the
feedback loop is the recirculation bubble at the nozzle lip.
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of the nozzle. To reproduce this condition, the dynamics of the same
TIC nozzle at a fixed pressure ratio NPR¼ 9 has been modeled by
means of a delayed detached eddy simulation (DDES). Such dynamics
involves shock-boundary layer interaction, supersonic shear layers,
vortex shedding, and recirculation bubbles.

In order to understand the mechanism behind the characteristic
high-frequency signatures, a pressure perturbation power spectral den-
sity (PSD) has been performed on different axial rings inside the nozzle.
The richness of the resulting spectral content required a long time sig-
nal to have reasonably converged statistics to be compared with the
experimental data. The resulting spectra return two spikes with the
expected specific selection in frequency and spatial domain. These
modes have birth in the external shear layer and persist in the separated
region up to the wall. This suggests that the formation of these two
modes could be strictly related to the supersonic shear layer. The analy-
sis of the instantaneous field leads the authors to link both the modes to
the vortex shedding produced by a particular shear layer instability.
The hypothesis is supported by the fact that if we relate the low-
frequency mode to the local speed of sound in the separated region and
the high-frequency mode to the velocity in the supersonic shear layer,
the same modified Strouhal number is obtained. Moreover, numerical
results and experimental findings have observed only the m¼ 1 mode
collapsing on Tam’s correlation formula for the screech, supporting an
acoustic-like behavior for this mode. In this scenario, the authors pro-
pose an acoustic–hydrodynamic feedback loop maintained by a recircu-
lation bubble at the nozzle lip, which produces acoustic waves. These
waves excite the separation point, which triggers in turn the supersonic
shear layer roll-up and the consequent vortex shedding.

Regarding the perspectives of this work, the authors are planning
to push forward the analysis of the dynamics related to these two high-
frequency modes. As shown in this work, URANS calculations were
not capable of describing the above-mentioned dynamics. However, it
could be possible that these modes are linearly stable and need nonlin-
ear fluctuations to be triggered. In this scenario, a linear stability analy-
sis performed about the fixed point of the URANS equations (i.e., the
RANS solution) would answer this question.
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