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A B S T R A C T

Variable Angle-Tow (VAT) laminates offer a promising alternative to straight fiber composites. By varying fibers
orientation within the structure plane, ambitious design and performance goals can be achieved. However, the
wider design space results in a more complex problem with more parameters to consider. Carrera’s Unified
Formulation (CUF) has been used in previous works performing buckling, vibrational and stress analyses of
VAT plates. Usually, one-dimensional (1D) CUF beam models are used, while two-dimensional (2D) plate
models are obtained as a particular case of shells by considering a null curvature. In most cases, a linear law
is considered to describe the variation of fibers orientation in the main plane of the structure. The purpose
of this article is to extend the CUF 2D plate finite elements family to the mechanical analysis of composite
laminated plate structures with curvilinear fibers. The main contribute consists in the development of a CUF
FE model within the Reissner’s Mixed Variational Theorem (RMVT) context for an improved calculation of the
out-of-plane stress components. Results show that RMVT can predict in-plane stresses and satisfy the though-
the-thickness transverse stresses continuity due to inter-layer equilibrium. The accuracy of RMVT-based models
is also investigated using two different approximation points distributions along the plates thickness.

1. Introduction

In the last decades, composite materials have shown attractive
properties for aerospace applications. This is due to the high stiffness-
to-weight ratio they exhibit, which is useful in those contexts where
both weight and mechanical performance of the system are considered
as primary properties [1]. Straight fibers composites with constant
thickness are typically used, but a common thought is that the po-
tential of fiber reinforced structures has not been fully exploited yet.
For example, it is not possible to fully profit from the directional
properties of this kind of materials by keeping the fiber orientation
constant in each layer. This limitation could be particularly restrictive
for geometries which present geometrical discontinuities like holes.
Modern production techniques, like additive manufacture processes,
allow to overcome these limitations, going beyond the classical de-
sign configurations of composites. Variable-Stiffness Composite (VSC)
structures can be obtained with different approaches [2], involving the
point-wise variation of thickness and material properties. For aerospace
applications, the idea of locally varying fibers angle along the structures
in-plane directions appears to be one of the most promising to improve
the versatility of composite materials. In this way, VAT laminates
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can be obtained allowing to expand the design space of a specific
structure. One of the principal drawbacks of using VATs is related to
the complexity of the analysis. In these cases, it is necessary to consider
an increased number of unknowns and unfeasible fibers patterns could
be obtained in an optimization process.

In the following, a short review of common methods that are used
for the analysis of VSCs mechanical response is presented, with a major
focus on VAT cases. One of the first methods that has been developed
assumes that the fibers angle is constant within each element in a
Finite Element Method (FEM) solution. In this manner, the continuous
variation of fibers direction is approximated in a stepwise discrete way.
This is, for instance, the case presented by Hyer and Charette [3],
where, in each element, the fibers are aligned along the principal stress
direction to improve the tensile strength of a plate. A similar approach
was applied by Hyer and Lee in [4], where a sensitivity analysis was
used to improve the buckling load of a composite plate. In order to
maximize the buckling load of the entire structure, the orientation
associated with the maximum buckling load was determined for each
element through multiple analyses. Finally, the sensitivity of the buck-
ling load to small changes in the orientation of each element was
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analyzed using a gradient-search technique. The technique involved
iteratively adjusting the orientations of the elements to optimize the
overall buckling load while considering the influence of element in-
teraction. The main drawback of these approaches lies in the use of
an element-wise representation of the fibers path. Without the use
of an appropriate continuous and smooth representation or the fiber
orientation angle, the optimized solutions may be characterized by a
discontinuous fibers path, thus cannot be manufactured and require a
time-consuming post-processing phase to correct [5]. This often results
in a mismatch between the structural responses calculated on the opti-
mized fibers path and those calculated after post-processing (recovery)
of the optimized solution.

In [6], the classical lamination theory was used to obtain the
equilibrium equations of VAT plates. The obtained governing equations
were solved both in closed-form and through an iterative numerical
technique to study plates under uniaxial compression. The same theory
was used by Gürdal et al. in [7], where the Rayleigh–Ritz method was
used in buckling analyses of VAT plates. Non-linear static analyses of
VAT shells were performed by Gupta and Pradyumna [8], where the
Third-order Shear Deformation Theory (TSDT) was coupled with the
Murakami zigzag function: von Kármán relations were used in order
to develop a non-linear problem solved through the Newton–Raphson
method. Non-linear problems were also studied by Akhavan, Ribeiro,
and De Moura [9] through the Newmark method with p-version finite
elements based on TSDT. Günay and Timarci [10] studied the static
behavior of single-cell VSC beams with closed cross-section by using
two-node beam elements characterized by seven variables per each
node. Static and dynamic analyses of VAT plates were performed by
Sharma et al. [11], piezoelectric layers were also considered and eight-
node isoparametric elements based on the first-order shear deformation
theory were used. The effects of delamination and fibers angle variation
were considered as well. The Hellinger–Reissner mixed variational
principle was used by Groh and Weaver [12,13] to study tow-steered
composite plates including zigzag effects. The same mixed approach
was used by Trinh et al. [14] for the flexural analysis of VSC beams in
the framework of an inverse differential quadrature method. Sciascia
et al. [15] proposed an innovative approach for the dynamic analysis
of prestressed VAT shells. The Ritz formulation was used for the eigen-
value analysis, considering the first-order shear deformation theory to
describe the shell kinematics. Olivieri and Milazzo [16] analyzed the
postbuckling behavior of VAT stiffened panels. The structures were
modeled through the domain decomposition by enforcing the boundary
conditions for each component. The Rayleigh–Ritz method was used to
solve the problem governing equations obtained through the first-order
shear deformation theory.

The introduction of VSCs complicates the optimization analysis
since the material anisotropy affects multiple scales of the problem.
Also manufacturing constraints play an important role and they should
be considered during the analysis to obtain feasible (i.e., manufac-
turable) solutions. The Multi-Scale Two-Level (MS2L) approach allows
to split the optimization problem in two sub-problems. During the
first step, the composite is represented as an equivalent homogeneous
anisotropic plate: the aim of this phase is to determine the best dis-
tribution of geometrical and mechanical design variables governing
the behavior of the VSC structure at this scale. Among the different
representations of the anisotropy at the macroscopic scale, the most ef-
ficient one is that based on polar parameters (see Montemurro [17,18]).
During the second step, the goal is to find at least one stack match-
ing the optimized distribution of the polar parameters resulting from
the first optimization step. Montemurro and Catapano [19] applied
the MS2L method to VAT plates to optimize their buckling response:
B-spline surfaces allow to obtain a continuous and differentiable distri-
bution of the polar parameters over the structure, while manufacturing
constraints are introduced during the second step. A rigorous theoreti-
cal/numerical framework for the gradient-based optimization of VAT
structure was introduced by Montemurro and Catapano in [20,21],

where the formal expression of the gradient of the compliance was
provided and the constraint related to the minimum admissible radius
of curvature of the tow at the mesoscopic scale was formulated as
an equivalent constraint in the space of the polar parameters at the
macroscopic scale during the first step. Fiordilino, Izzi and Monte-
murro [22] generalized the framework by providing the analytical
expression of the gradients of objective and constraint functions were
derived for buckling problems. Finally, the failure index optimization
was analyzed by Catapano and Montemurro [23], while failure load
maximization and mass minimization were performed by Izzi, Catapano
and Montemurro [24].

A method which allows to study bi-dimensional VAT structures by
using an arbitrary expansion order along the thickness is represented
by Carrera’s Unified Formulation. This formulation can be used to
obtain both Equivalent Single Layer (ESL) and Layer-Wise (LW) de-
scriptions of plate kinematics in the context of a specific predefined
variational statement (Carrera [25,26]). For example, Carrera, Giunta
and Brischetto [27] used CUF to develop a Navier closed-form solu-
tion for the static analysis of isotropic plates under several loading
conditions. The same approach was used by Carrera and Giunta [28]
to perform failure analyses of isotropic plates. A further extension of
this method was shown by Giunta et al. in [29], where the indenta-
tion failure analysis of composite sandwich plates was performed. Hui
et al. [30] used a family of 1D CUF models in order to perform the
multiscale nonlinear analysis of composite beam structures, through the
asymptotic numerical method. The effect of microscopic imperfections
on the macroscale response was investigated by considering sinusoidal
geometries as fibers defects. CUF has also been applied to modern
computing techniques like the data-driven approach. For example, Hui
et al. [31] used 1D CUF models within the data-driven computational
mechanics paradigm in order to perform the static analysis of beam
structures. Results showed that the accuracy is influenced by the num-
ber of layers of the database. Viglietti et al. [32] and Fallahi et al. [33]
used a 1D CUF model for free-vibration and buckling analyses of VATs.
Buckling optimization of VATs was studied by Fallahi et al. [34] by
applying a genetic algorithm to a 1D CUF model. Also shell models
were studied for VAT cases to perform stress analyses [35]. Some
defects related to the manufacturing process of VAT plates can be
simulated with various stochastic techniques as shown by Pagani and
Sánchez-Majano [36,37] and Sánchez-Majano et al. [38].

An extension of CUF allows using a different expansion for each
component of the displacement vector. This generalization was applied
for the first time to the study of VSC plates with a LW model by Demasi
et al. [39], while it was extended also to ESL theories in [40] and plates
with a central circular cut out in [41]. Santarpia and Demasi [42] used
this approach for nonlinear analyses of VATs where large displacements
and rotations were considered. In all cases, triangular elements were
used to perform the analyses. Ritz’s method was used within CUF by
Vescovini and Dozio [43] for vibrational and buckling analyses. Static
analyses of VATs were presented by Tornabene et al. [44], who used
shell elements and the governing equations were solved through the
generalized differential quadrature method.

A further advantage of CUF is represented by the possibility to
combine it with different variational formulations. Reissner’s Mixed
Variational Theorem is an alternative to the classic Principle of Virtual
Displacements, where both displacements and out-of-plane transverse
stresses are considered as unknowns. RMVT was widely used within
CUF for the study of straight fibers composite structures. For example,
Carrera and Demasi [45] showed how to apply RMVT to CUF from a
theoretical point of view, while in the second part of the article [46]
static analyses were performed on straight fibers plates.

To the best of the authors knowledge, CUF has been applied to the
study of VATs mainly considering PVD as functional. To this end, the
aim of this work is to extend this framework to the RMVT formulation
to develop a family of plate finite elements which will be able to better
predict the out-of-plane stresses when curvilinear fibers are used. This
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approach was used in a previous work by Giunta et al. [47] for the
modal analysis of VAT plates.

The remainder of the paper is as follows. Section 2 introduces
the CUF approach and shows its application to the two mentioned
variational statements. In Section 3, three benchmark problems are
considered. For each of them, linear static analyses are performed
to discuss differences between PVD, RMVT and reference solutions
obtained in Abaqus by using three-dimensional (3D) elements. Finally,
Section 4 presents the concluding observations.

2. Carrera’s unified formulation

A plate is a structure without curvature characterized by an out-of-
plane dimension that is significantly smaller (i.e., negligible) than the
minimum in-plane dimension. Typically, the out-of-plane dimension is
the thickness ℎ, defined along the 𝑧 axis of the structure, while the in-
plane dimensions are indicated as 𝑎 and 𝑏 which refer, respectively,
to the characteristic lengths along 𝑥 and 𝑦 axes, respectively. The
geometry and the global reference system of the problem are shown
in Fig. 1. The displacement field is expressed as:

𝐮 =

⎧

⎪

⎨

⎪

⎩

𝑢𝑥
𝑢𝑦
𝑢𝑧

⎫

⎪

⎬

⎪

⎭

. (1)

The strain vector (Voigt’s notation) can be divided in two parts repre-
senting the in-plane and out-of-plane components:

𝝐𝑝 =
⎧

⎪

⎨

⎪

⎩
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⎪
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⎪

⎬

⎪

⎭

. (2)

The hypothesis of small displacements allows using a linear strains–
displacements relation:

𝝐𝑝 = 𝐃𝑝𝐮 ,
𝝐𝑛 =

(

𝐃𝑛𝛺 + 𝐃𝑛𝑧
)

𝐮 ,
(3)

where 𝐃𝑝,𝐃𝑛𝛺 and 𝐃𝑛𝑧 are differential operators:
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(4)

The same consideration can be applied to stresses:

𝝈𝑝 =

⎧

⎪
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⎪

⎩
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Hooke’s law reads:

𝝈𝑝 = �̃�𝑝𝑝𝝐𝑝 + �̃�𝑝𝑛𝝐𝑛 ,
𝝈𝑛 = �̃�𝑛𝑝𝝐𝑝 + �̃�𝑛𝑛𝝐𝑛 ,

(6)

where the terms �̃�𝑝𝑝, �̃�𝑝𝑛, �̃�𝑛𝑝 and �̃�𝑛𝑛 are the components of the
material stiffness matrix.

2.1. Variable angle-tow composite plates

When considering VAT structures, the components of the material
stiffness matrix vary along the in-plane directions. It is possible to write

Fig. 1. Plate geometry and reference system.

Fig. 2. Example of in-plane fibers path.

Fig. 3. Acronym system.

the equation which allows to rotate the material stiffness matrix 𝐂
according to a specific angle 𝜃 around the 𝑧-axis as:

�̃� = 𝐓𝐂𝐓𝑇 , (7)

where 𝐂 is the material stiffness matrix in the material reference
system, while �̃� is the same matrix after a rotation. Matrix 𝐓 represents
the rotation matrix which depends on the angle 𝜃. For the sake of
brevity, the components of 𝐂 and 𝐓 are not reported here. They can
be found in Reddy [48]. A linear variation law can be expressed as:

𝜃 (𝛼) = 𝛷 + 𝑇0 +
𝑇1 − 𝑇0

𝑑
|𝛼| . (8)



Composite Structures 327 (2024) 117717

4

D.A. Iannotta et al.

Fig. 4. In-plane fibers variation path, case 1.

The angle 𝛷 describes the original direction along which 𝜃 varies, 𝛼 is
a generic spatial variable obtained as 𝛼 = 𝑥′ cos (𝛷)+𝑦′ sin (𝛷). 𝑥′ and 𝑦′

denote the axes of the angle reference system. 𝑇0 is the starting angle
of the fiber when 𝛼 = 0, while 𝑇1 is the angle of the fiber when 𝛼 = 𝑑.
Fig. 2 represents an example of fibers path. As shown in Fig. 2, fibers
angle is always measured with respect to 𝑥′ axis for all the analysis
cases. The variation direction of 𝜃 can be 𝑥′, 𝑦′ or a combination of
the two, for this reason it is specified case by case. In this work, the
following notation (based upon the above introduced parameters) is
used in order to describe the in-plane fibers path: 𝛷 < 𝑇0, 𝑇1 >. Further
details about fibers variation law can be found in Gürdal et al. [7].

2.2. Variational formulation

PVD and RMVT variational statements are considered in order to
obtain the problem governing equations. The main difference is that
the PVD considers only displacements as unknowns, whereas the RMVT
includes also the transverse stresses 𝝈𝑛 among the unknowns. For the
PVD case, the following equation applies:

∫𝛺 ∫ℎ

(

𝛿𝝐𝑇𝑝𝐺 𝝈𝑝𝐻 + 𝛿𝝐𝑇𝑛𝐺 𝝈𝑛𝐻

)

𝑑𝑧 𝑑𝛺 = 𝛿𝐿𝑒 , (9)

where the subscript ‘𝐺’ refers to the components obtained from geo-
metrical relations in Eq. (3), subscript ‘𝐻 ’ refers to the components
obtained from Hooke’s law in Eq. (6) and subscript ‘𝑇 ’ refers to the
transpose of a vector/matrix. 𝛺 is the in-plane middle surface of the
plate, 𝐿𝑒 is the work of the external forces and delta stands for a virtual
variation. For the RMVT case, the variational statement is:

∫𝛺 ∫ℎ

[

𝛿𝝐𝑇𝑝𝐺 𝝈𝑝𝐻 + 𝛿𝝐𝑇𝑛𝐺 𝝈𝑛𝑀 + 𝛿𝝈𝑇
𝑛𝑀

(

𝝐𝑛𝐺 − 𝝐𝑛𝐻
)

]

𝑑𝑧 𝑑𝛺 = 𝛿𝐿𝑒 , (10)

where the ‘𝑀 ’ subscript refers to the transverse stress components
considered as unknowns in the mixed formulation. In the RMVT for-
mulation, Hooke’s law is expressed as follows:

𝝈𝑝𝐻 = �̂�𝑝𝑝𝝐𝑝𝐺 + �̂�𝑝𝑛𝝈𝑛𝑀 ,
𝝐𝑛𝐻 = �̂�𝑛𝑝𝝐𝑝𝐺 + �̂�𝑛𝑛𝝈𝑛𝑀 ,

(11)

where �̂�𝑝𝑝, �̂�𝑝𝑛, �̂�𝑛𝑝 and �̂�𝑛𝑛 are obtained by the following transforma-
tion (see Carrera and Demasi [45]):

�̂�𝑝𝑝 = �̃�𝑝𝑝 − �̃�𝑝𝑛�̃�−1
𝑛𝑛 �̃�𝑛𝑝 ,

�̂�𝑝𝑛 = �̃�𝑝𝑛�̃�−1
𝑛𝑛 ,

�̂�𝑛𝑝 = −�̃�−1
𝑛𝑛 �̃�𝑛𝑝 ,

�̂�𝑛𝑛 = �̃�−1
𝑛𝑛 .

(12)

Fig. 5. Dimensionless displacements at (𝑎∕2, 𝑏∕2) versus the dimensionless thickness,
case 1, 𝑎∕ℎ = 10.

Regarding the work of external loads, for example, in case of a pressure
load applied to the plate middle surface, the term 𝛿𝐿𝑒 can be expressed
as:

𝛿𝐿𝑒 = ∫𝛺
𝛿𝐮𝑇 𝐩 𝑑𝛺 , (13)

where 𝐩 is a surface load.

2.3. Kinematic assumption and finite element approximation

In order to express the primary unknowns, CUF uses an axiomatic
approach along the through-the-thickness direction (see Carrera [26]).
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Fig. 6. Contour plots of the dimensionless displacements on plate middle plane (𝑧 = 0), 3LM4, case 1, 𝑎∕ℎ = 10.
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Fig. 7. Dimensionless in-plane normal stress �̄�𝑥𝑦 at (𝑎∕2, 𝑏∕2) versus the dimensionless thickness, case 1.

The generic unknown component 𝑓 = 𝑓 (𝑥, 𝑦, 𝑧) can be approximated
as:

𝑓 (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧) 𝑔𝜏 (𝑥, 𝑦) , 𝜏 = 0, 1, … , 𝑁 , (14)

where 𝑓 is a displacement component in a formulation derived by the
PVD, whereas it can also be an out-of-plane stress component when a
RMVT formulation is considered. 𝐹𝜏 is an approximation function along
the thickness and 𝑔𝜏 is an unknown two-dimensional function account-
ing for the in-plane variation. According to Einstein’s notation, a twice
repeated index implies a sum over that index range. Finally, 𝑁 is the ap-
proximation order. Both 𝑁 and 𝐹𝜏 can be imposed a-priori. This feature
of CUF allows to obtain multiple theories in the same formulation.

According to the choice of 𝐹𝜏 , it is possible to obtain ESL or LW
models. In the ESL case, the number of unknowns does not depend on
the number of layers of the structure. For this reason, the total stiffness
contributes are obtained as a weighted average of the layers stiffness
along the thickness. Taylor’s polynomials are the most common choice
to develop an ESL model:

𝐹𝜏 (𝑧) = 𝑧𝜏 , 𝜏 = 0, 1, … , 𝑁 . (15)

ESL models are able to predict the general response of relatively thin
laminates and are characterized by a reduced computational cost. On
the other hand, they are not able to predict accurately the behavior of
thick plates especially in the case of a high degree of anisotropy. Since
they are based on 𝐶∞ approximation functions, ESL approaches cannot
describe correctly the zigzag displacements effect (nonetheless, it could
be possible to include this feature by adding Murakami’s function, as
explained in Carrera [49]).

In order to improve the accuracy of the model, it is possible to con-
sider a LW approach, where the kinematics of each layer is formulated
independently. In this case, the number of unknowns depends on the
number of layers, and it is necessary to impose the continuity of the
problem main unknowns at an interface between consecutive layers.
LW models usually use Lagrange or Legendre polynomials to approxi-
mate the unknown fields. In the LW approach, the approximation along
the thickness direction reads:

𝑓 𝑘 (𝑥, 𝑦, 𝑧) = 𝐹𝑏 (𝑧) 𝑔𝑘𝑏 (𝑥, 𝑦)+𝐹𝑟 (𝑧) 𝑔𝑘𝑟 (𝑥, 𝑦)+𝐹𝑡 (𝑧) 𝑔𝑘𝑡 (𝑥, 𝑦) , 𝑟 = 2, … , 𝑁 ,

(16)

where the superscript ‘𝑘’ refers to a specific layer of the structure with
𝑘 ranging between 1 and 𝑁𝑙, the latter being the total number of layers.
Subscripts ‘𝑡’ and ‘𝑏’ refer to the top and the bottom faces of the generic
layer, respectively. In the case of Legendre polynomials, the through the
thickness approximating functions are:

𝐹𝑡
(

𝑧(𝜉𝑘)
)

=
𝑃0 + 𝑃1

2
, 𝐹𝑏

(

𝑧(𝜉𝑘)
)

=
𝑃0 − 𝑃1

2
,

𝐹𝑟
(

𝑧(𝜉𝑘)
)

= 𝑃𝑟 − 𝑃𝑟−2, 𝑟 = 2, … , 𝑁 ,
(17)

where 𝑃𝑖 = 𝑃𝑖
(

𝜉𝑘
)

is the i-order Legendre polynomial defined in the
domain of the 𝑘th layer and −1 < 𝜉𝑘 < 1. LW models are able to predict
the zigzag through-the-thickness behavior of the displacement field.
Nevertheless, LW models demand a higher computational cost, since
they provide an independent approximation for every layer of the plate.
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Fig. 8. Dimensionless out-of-plane shear stress �̄�𝑥𝑧 at (𝑎∕2, 𝑏∕2) versus the
dimensionless thickness, case 1.

When a FEM approximation is applied, the shape functions need
to be introduced into the formulation. In the case of a bi-dimensional
model, Eq. (14) becomes:

𝑓 (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑧)𝑁𝑖 (𝑥, 𝑦) 𝑔𝜏𝑖 , 𝜏 = 0, 1, … , 𝑁, 𝑖 = 1, … , 𝑁𝑛 , (18)

where 𝑁𝑖 represents the shape functions that are used for the approx-
imation of the unknowns into the plane of the plate and 𝑁𝑛 is equal
to the number of nodes used for the domain discretization. Classical
Lagrange shape functions are used. They are not here presented for the
sake of brevity but they can be found in [50].

Fig. 9. Dimensionless out-of-plane shear stress �̄�𝑥𝑧 at (𝑎∕4, 𝑏∕2) versus the
dimensionless thickness, case 1.

2.4. Acronym system

An acronym system is introduced in order to identify the derived
theories. This system is shown in Fig. 3. The first letter refers to the
approximation level that is used: ‘E’ corresponds to ESL models, while
‘L’ corresponds to LW models. The second letter refers to the variational
statement: ‘D’ or ‘M’ stand for PVD or RMVT, respectively. The last
number refers to the expansion order used along the plate thickness.
The first number, when present, refers to the number of virtual layers
that have been used for the LW model to represent every single physical
layer: if the number at the beginning of the acronym is not present, it
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Fig. 10. Contour plots of the dimensionless transverse stress �̄�𝑥𝑧 on plate middle plane
(𝑧 = 0), case 1.

is tacitly assumed that only one virtual layer has been used for each
physical layer.

For example, in EDN models, the displacement field can be ex-
pressed in the following form:

𝑢𝑥 = 𝑢𝑥0 + 𝑢𝑥1𝑧 + 𝑢𝑥2𝑧2 + ⋯ + 𝑢𝑥𝑁𝑧𝑁 ,

𝑢𝑦 = 𝑢𝑦0 + 𝑢𝑦1𝑧 + 𝑢𝑦2𝑧2 + ⋯ + 𝑢𝑦𝑁𝑧𝑁 ,

𝑢𝑧 = 𝑢𝑧0 + 𝑢𝑧1𝑧 + 𝑢𝑧2𝑧2 + ⋯ + 𝑢𝑧𝑁𝑧𝑁 .

(19)

In a vectorial form:

𝐮 = 𝐹0𝐮0 + 𝐹1𝐮1 + ⋯ + 𝐹𝑁𝐮𝑁 = 𝐹𝜏𝐮𝜏 , 𝜏 = 0, 1, … , 𝑁 , (20)

being 𝐹𝜏 = 𝑧𝜏 and 𝐮𝜏 = 𝐮𝜏 (𝑥, 𝑦). Also, classical theories are obtained as
a particular case of the ED1 solution: Classical Lamination Theory and
First-order Shear Deformation Theory are indicated as CLT and FSDT,
respectively. FSDT is obtained through the penalization of the 𝑢𝑧1 term,
while for CLT also transverse shear stresses need to be penalized. The
material stiffness matrix is reduced to account for a plane stress state
in both CLT and FSDT.

In LW theories, 𝑁 refers to the approximation order used in ev-
ery layer. For LDN solutions, only displacements are considered as
unknowns:

𝐮𝑘 = 𝐹0𝐮𝑘0+𝐹1𝐮𝑘1+⋯+𝐹𝑁𝐮𝑘𝑁 = 𝐹𝜏𝐮𝑘𝜏 , 𝜏 = 0, 1 … , 𝑁 , 𝑘 = 1, 2, … , 𝑁𝑙 .

(21)

For LMN solutions, also transverse stresses are included among the
unknowns. Indeed, the transverse stresses field can be expressed as:

𝝈𝑘
𝑛 = 𝐹𝑏𝝈𝑘

𝑏 + 𝐹𝑟𝝈𝑘
𝑟 + 𝐹𝑡𝝈𝑘

𝑡 , 𝑟 = 2, … , 𝑁 , 𝑘 = 1, 2, … , 𝑁𝑙 . (22)

It can be observed that ESL theories can be considered as a particular
case of LW ones. While in the first case the integration along the
thickness is performed in order to represent composite properties
through an equivalent single layer, for the second case the integration
is computed layer by layer. This allows to represent the kinematic of
each layer separately for LW models.

Unless otherwise stated, LDN solutions are obtained with Lagrange
polynomials with equally spaced nodes, whereas LMN ones are ob-
tained with Legendre polynomials. The symbol ‘∗’ refers to the case
where Lagrange polynomials are used considering Chebyshev-Lobatto
nodes. This kind of nodes distribution has been proven to improve the
convergence of numerical solutions [51] and it can be expressed as:

𝜉𝑖 = −cos
( 𝑖 ⋅ 𝜋

𝑁

)

∈ [−1, 1] , 𝑖 = 0, … , 𝑁. (23)

2.5. Stiffness matrices expression

In the PVD case, the primary unknown field is the displacements
field. Considering Eq. (18), the displacements field can be written as
follows:

𝐮 = 𝐹𝜏𝑁𝑖

⎧

⎪

⎨

⎪

⎩

𝑞𝑥𝜏𝑖
𝑞𝑦𝜏𝑖
𝑞𝑧𝜏𝑖

⎫

⎪

⎬

⎪

⎭

= 𝐹𝜏𝑁𝑖𝐪𝜏𝑖 . (24)

Through the substitution of Eqs. (3), (6) and (24) into Eq. (9), the
governing equations of the PVD method can be obtained:

∫𝛺
𝛿𝒒𝑇𝜏𝑖

[

𝐃𝑇
𝑝
(

𝑁𝑖𝐈
)

�̃�𝜏𝑠
𝑝𝑝𝐃𝑝

(

𝑁𝑗𝐈
)

+ 𝐃𝑇
𝑝
(

𝑁𝑖𝐈
)

�̃�𝜏𝑠
𝑝𝑛𝐃𝑛𝛺

(

𝑁𝑗𝐈
)

+𝐃𝑇
𝑝
(

𝑁𝑖𝐈
)

�̃�𝜏𝑠,𝑧
𝑝𝑛

(

𝑁𝑗𝐈
)

+

+𝐃𝑇
𝑛𝛺

(

𝑁𝑖𝐈
)

�̃�𝜏𝑠
𝑛𝑝𝐃𝑝

(

𝑁𝑗𝐈
)

+ 𝐃𝑇
𝑛𝛺

(

𝑁𝑖𝐈
)

�̃�𝜏𝑠
𝑛𝑛𝐃𝑛𝛺

(

𝑁𝑗𝐈
)

+𝐃𝑇
𝑛𝛺

(

𝑁𝑖𝐈
)

�̃�𝜏𝑠,𝑧
𝑛𝑛

(

𝑁𝑗𝐈
)

+

+
(

𝑁𝑖𝐈
)

�̃�𝜏,𝑧𝑠
𝑛𝑝 𝐃𝑝

(

𝑁𝑗𝐈
)

+
(

𝑁𝑖𝐈
)

�̃�𝜏,𝑧𝑠
𝑛𝑛 𝐃𝑛𝛺

(

𝑁𝑗𝐈
)

+
(

𝑁𝑖𝐈
)

�̃�𝜏,𝑧𝑠,𝑧
𝑛𝑛

(

𝑁𝑗𝐈
) ]

𝒒𝑠𝑗𝑑𝛺 = 𝛿𝐿𝑒 ,

(25)
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Fig. 11. In-plane fibers variation path and stacking sequence, cases 2 and 3.

Fig. 12. Dimensionless in-plane shear stress �̄�𝑥𝑦 at (𝑎∕4, 𝑏∕2) versus the dimensionless
thickness, case 2.

Fig. 13. Dimensionless transverse shear stress �̄�𝑥𝑧 at (𝑎∕4, 𝑏∕2) versus the dimensionless
thickness, case 2.
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Fig. 14. Dimensionless transverse normal stress �̄�𝑧𝑧 at (𝑎∕4, 𝑏∕2) versus the
dimensionless thickness, case 2, 𝑎∕ℎ = 5.

Fig. 15. Geometry of case 3: the red dot represents the point 𝑃 where results have
been plotted.

where:
(

�̃�𝜏𝑠
𝑤𝑟, �̃�

𝜏,𝑧𝑠
𝑤𝑟 , �̃�

𝜏𝑠,𝑧
𝑤𝑟 , �̃�

𝜏,𝑧𝑠,𝑧
𝑤𝑟

)

=
(

�̃�𝑤𝑟𝐸𝜏𝑠, �̃�𝑤𝑟𝐸𝜏,𝑧𝑠, �̃�𝑤𝑟𝐸𝜏𝑠,𝑧 , �̃�𝑤𝑟𝐸𝜏,𝑧𝑠,𝑧

)

∶ 𝑤, 𝑟 = 𝑝, 𝑛 ,

(26)

(

𝐸𝜏𝑠, 𝐸𝜏,𝑧𝑠, 𝐸𝜏𝑠,𝑧 , 𝐸𝜏,𝑧𝑠,𝑧

)

= ∫ℎ

(

𝐹𝜏𝐹𝑠, 𝐹𝜏,𝑧𝐹𝑠, 𝐹𝜏𝐹𝑠,𝑧 , 𝐹𝜏,𝑧𝐹𝑠,𝑧

)

𝑑𝑧. (27)

Index ‘𝑧’ when preceded by a comma refers to the derivative in the
thickness direction. In a compact vectorial form, Eq. (25) reads:

𝛿𝒒𝑇𝜏𝑖𝐊
𝜏𝑠𝑖𝑗𝒒𝑠𝑗 = 𝛿𝒒𝑇𝜏𝑖𝑷 𝜏𝑖 , (28)

where 𝐊𝜏𝑠𝑖𝑗 is a 3x3 Fundamental Nucleus (FN). 𝐏𝜏𝑖 is the FN of the
external loads vector. Through the loops on the indices 𝜏, 𝑠, 𝑖 and 𝑗
it is possible to build the stiffness matrix and the loads vector of the
whole plate element.

In the RMVT case, also transverse stresses represent an unknown
field:

𝝈𝑛 = 𝐹𝜏𝑁𝑖

⎧

⎪

⎨

⎪

⎩

𝑔𝑥𝑧𝜏𝑖
𝑔𝑦𝑧𝜏𝑖
𝑔𝑧𝑧𝜏𝑖

⎫

⎪

⎬

⎪

⎭

= 𝐹𝜏𝑁𝑖𝐠𝜏𝑖 . (29)

Through the substitution of Eq. (3), (11), (24) and (29) into Eq. (10),
the governing equations of the RMVT can be obtained:

∫𝛺
𝛿𝒒𝑇𝜏𝑖

[

𝐃𝑇
𝑝
(

𝑁𝑖𝐈
)

�̂�𝜏𝑠
𝑝𝑝𝐃𝑝

(

𝑁𝑗𝐈
)]

𝒒𝑠𝑗 + 𝛿𝒒𝑇𝜏𝑖
[

𝐃𝑇
𝑝
(

𝑁𝑖𝐈
)

�̂�𝜏𝑠
𝑝𝑛
(

𝑁𝑗𝐈
)

+𝐃𝑇
𝑛𝛺

(

𝑁𝑖𝐈
) (

𝐸𝜏𝑠𝐈
) (

𝑁𝑗𝐈
)

+

+
(

𝑁𝑖𝐈
)

(

𝐸𝜏,𝑧𝑠𝐈
)

(

𝑁𝑗𝐈
) ]

𝒈𝑠𝑗 + 𝛿𝒈𝑇𝜏𝑖
[ (

𝑁𝑖𝐈
) (

𝐸𝜏𝑠𝐈
)

𝐃𝑛𝛺
(

𝑁𝑗𝐈
)

+
(

𝑁𝑖𝐈
)

(

𝐸𝜏𝑠,𝑧 𝐈
)

(

𝑁𝑗𝐈
)

+

−
(

𝑁𝑖𝐈
)

�̂�𝜏𝑠
𝑛𝑝𝐃𝑝

(

𝑁𝑗𝐈
) ]

𝒒𝑠𝑗 − 𝛿𝒈𝑇𝜏𝑖
(

𝑁𝑖𝐈
)

�̂�𝜏𝑠
𝑛𝑛
(

𝑁𝑗𝐈
)

𝒈𝑠𝑗𝑑𝛺 = 𝛿𝐿𝑒 ,

(30)

where:
(

�̂�𝜏𝑠
𝑤𝑟, �̂�

𝜏,𝑧𝑠
𝑤𝑟 , �̂�

𝜏𝑠,𝑧
𝑤𝑟 , �̂�

𝜏,𝑧𝑠,𝑧
𝑤𝑟

)

=
(

�̂�𝑤𝑟𝐸𝜏𝑠, �̂�𝑤𝑟𝐸𝜏,𝑧𝑠, �̂�𝑤𝑟𝐸𝜏𝑠,𝑧 , �̂�𝑤𝑟𝐸𝜏,𝑧𝑠,𝑧

)

∶ 𝑤, 𝑟 = 𝑝, 𝑛.

(31)

In a compact form:

𝛿𝒒𝑇𝜏𝑖𝐊
𝜏𝑠𝑖𝑗
𝑢𝑢 𝒒𝑠𝑗 + 𝛿𝒒𝑇𝜏𝑖𝐊

𝜏𝑠𝑖𝑗
𝑢𝜎 𝒈𝑠𝑗 = 𝛿𝒒𝑇𝜏𝑖𝑷 𝜏𝑖 ,

𝛿𝒈𝑇𝜏𝑖𝐊
𝜏𝑠𝑖𝑗
𝜎𝑢 𝒒𝑠𝑗 + 𝛿𝒈𝑇𝜏𝑖𝐊

𝜏𝑠𝑖𝑗
𝜎𝜎 𝒈𝑠𝑗 = 0.

(32)

In this case, four fundamental nuclei are obtained. The in-plane in-
tegrals are computed through Gauss quadrature so it is important to
consider a correct number of Gauss points in order to obtain correct
results. Since the material stiffness coefficients are not constant, it will
be necessary to increase the number of Gauss points according to the
variational law of fibers angle. Reduced integration is used in order to
correct the shear locking phenomenon. A grid of 4 × 4 Gauss points is
used for the fully integrated terms, while a 2 × 2 grid is used for the
reduced ones.

3. Numerical results and discussion

Three benchmark problems are considered in this section: a mono-
layer plate, a multilayer plate and a multilayer plate with a central
circular cut out. For each case, a square plate (𝑎 = 𝑏 = 1 m)
is considered. Parametric studies are performed considering different
aspect ratios (𝑎∕ℎ = 100, 10, 5). In all cases, the plates are clamped
at the four edges and a constant pressure 𝑝𝑧 = 10 kPa is applied on the
top (𝑧 = ℎ∕2). Material properties are represented in Table 1. Reference
solutions are represented by Abaqus 3D models where quadratic solid
elements with reduced integration and three degrees of freedom per
node (C3D20R) are used. Since the Abaqus 3D solutions consider a con-
stant fibers orientation within each element, a refined in-plane mesh is
needed in order to obtain accurate results. For CUF solutions, nine-node
square elements are used (QUAD9). For each case study, a preliminary
convergence analysis is carried out to identify the appropriate mesh for
CUF and Abaqus solutions. Results are normalized as follows:

�̄�𝑖 =
𝑢𝑖
𝑎

with 𝑖 = 𝑥, 𝑦, 𝑧 , (33)

�̄�𝑖,𝑗 =
𝜎𝑖,𝑗
𝑝𝑧

with 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 , (34)

where �̄� = 𝑧∕ℎ. Percentage errors are evaluated as follows:

𝛿 =
|𝑣𝐶𝑈𝐹 − 𝑣𝐴𝑏𝑎𝑞𝑢𝑠3𝐷|

|𝑣𝐴𝑏𝑎𝑞𝑢𝑠3𝐷|
⋅ 100 with 𝑣 = �̄�𝑖, �̄�𝑖,𝑗 , 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧. (35)

3.1. Monolayer plate

The first case corresponds to a monolayer plate. It is assumed
that fibers angle is function of 𝑦′. For this problem axes 𝑥′ and 𝑦′

of local reference system of the fibers path are coincident with axes
𝑥 and 𝑦 of the global reference system of the plate. Therefore the
characteristic length of Eq. (8) is set to 𝑑 = 𝑏. Angle variational law
is expressed as 90 < 0, 90 > and it is represented in Fig. 4. This law is
taken from Viglietti et al. [32], where it is applied on a rectangular
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Fig. 16. Representation of the mesh used for case 3, 𝑎∕ℎ = 10, 5.

Table 1
Material properties.

𝐸1 𝐸2 = 𝐸3 𝐺12 𝐺13 𝐺23 𝜈12 𝜈13 𝜈23
Case 1 50 GPa 10 GPa 5 GPa 5 GPa 5 GPa 0.25 0.25 0.25
Cases 2, 3 137.9 GPa 8.96 GPa 7.1 GPa 7.1 GPa 6.21 GPa 0.3 0.3 0.49

Table 2
Number of degrees of freedom, case 1.

DOF

Abaqus 3D 4,457,151
3LM4 48,750
2LM2 18,750
3LD4 24,375
2LD2 9,375
ED6 13,125
ED2 5,625
FSDT 3,750
CLT 3,750

Table 3
Dimensionless transverse displacement �̄�𝑧 ⋅ −106 at (𝑎∕2, 𝑏∕2, ℎ∕2), case 1.
𝑎∕ℎ 100 10 5

Abaqus 3D 6544 8.768 1.877
3LM4 6527 8.760 1.875
2LM2 6530 8.781 1.890
3LD4 6526 8.759 1.876
2LD2 6526 8.725 1.858
ED6 6526 8.757 1.875
ED2 6522 8.435 1.741
FSDT 6542 8.481 1.712
CLT 6521 6.521 0.815

plate for vibration analyses. Abaqus reference solution contains 140
elements along each side and 18 elements along the thickness. Results
are plotted along the thickness in correspondence of plate central
point (𝑎∕2, 𝑏∕2). For CUF results, a 12 × 12 mesh is considered. The

number of Degrees Of Freedom (DOF) associated to every model are
represented in Table 2. It is possible to observe that high-order CUF
models are characterized by a number of DOF which is two magnitude
orders smaller than the Abaqus reference solution. This indicates a
great advantage in terms of computational cost. It is worth noting
that FSDT and CLT have the same number of DOF because of the way
they have been implemented within CUF. Indeed, even if for the CLT
an artificial shear stiffness in introduced to lock the rotational degree
of freedom, the linear system to be solved in both cases has the same
dimension. The table shows that LM models have double DOF number
in comparison with LD ones, considering the same expansion order
and the same amount of virtual layers. In this way it is possible to
compare different theories, considering the computational cost of each
model in terms of degrees of freedom. Table 3 shows the transverse
normal displacement at plate center top (𝑎∕2, 𝑏∕2, ℎ∕2), considering
several values of the ratio 𝑎∕ℎ. For thicker plates, classical theories
and low order displacement based theories show higher variations with
respect to the reference solution. LMN* solutions are not reported since
they show the same results of the correspondent LMN ones. Figs. 5
show the dimensionless displacements along �̄� for 𝑎∕ℎ = 10. �̄�𝑥 and �̄�𝑦
components are accurately approximated by the FSDT classical model,
for this reason no higher-order theories are reported in Figs. 5a and 5b.
In these two figures, the CLT model shows lower accuracy and it
reaches an �̄�𝑥 error of 16.60% at �̄� = −0.5. In Fig. 5[num=c]5(c),
the 3LM4 model is the closest one to the Abaqus reference solution,
with an �̄�𝑧 maximum error of 0.33%. CLT and FSDT models are not
reported in the �̄�𝑧 plot, since they are too far from the other theories.
For example, the maximum errors of CLT is 25.92%. Figs. 6 show the
distribution of the dimensionless displacement field, obtained with the
3LM4 model, at plate middle plane (𝑧 = 0) for 𝑎∕ℎ = 10. It is possible to
observe that, in all the figures, the plots are not symmetrical, because
of the fibers angle variation along 𝑦′ axis. In Fig. 6a, �̄�𝑥 is negative on
the left side of the plate (𝑥 = 0) and becomes positive on the right
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Fig. 17. Dimensionless displacements at point 𝑃 versus the dimensionless thickness,
case 3, 𝑎∕ℎ = 10.

side (𝑥 = 𝑎). Conversely, in Fig. 6b, the �̄�𝑦 distribution follows the
variation of fibers orientation along 𝑦′ axis. �̄�𝑦 is negative where fibers
are perpendicular to 𝑥′ (𝜃 = 90◦) and becomes mostly positive where
fibers are perpendicular to 𝑦′ (𝜃 = 180◦). In Fig. 6c, the �̄�𝑧 distribution
is slightly shifted towards the upper part of the plate at 𝑦 = 𝑏. Indeed,
the plate has a stiffer behavior where the fibers are perpendicular to
the clamped boundaries (𝑦 = 0).

Figs. 7 show the in-plane shear stress �̄�𝑥𝑦 at plate center for different
plate side-to-thickness ratios. For thin plates, all theories show a good
approximation of the reference solution. When 𝑎∕ℎ is decreased, higher-
order theories continue to match the reference solution, while classical
ones give a progressively worse estimation. Similar considerations can

Table 4
Dimensionless in-plane normal stress −1 × �̄�𝑥𝑥 at (𝑎∕4, 𝑏∕2, ℎ∕2), case 2.
𝑎∕ℎ 100 10 5

Abaqus 3D 967.580 12.020 4.253
LM4* 987.394 12.163 4.331
LM4 987.500 12.163 4.331
LM2* 983.937 11.587 3.818
LM2 983.911 11.587 3.818
LD4 1008.792 12.291 4.336
LD2 998.481 12.232 4.293
ED6 994.297 12.222 4.340
ED2 986.167 10.817 3.321
FSDT 992.994 9.941 2.565
CLT 992.820 9.924 2.480

be done for the other in-plane stress components, which are not pre-
sented for sake of brevity. Figs. 8 show the transverse shear stress
�̄�𝑥𝑧 at plate center considering three different side-to-thickness ratio
values (100, 10 and 5). Displacement based theories do not approximate
the transverse shear stresses well, even if multiple virtual layers are
applied in the case of a layer-wise approach. Only higher-order mixed
models model match the Abaqus solution. In Fig. 8a, the 2LM3 model
shows convergence problems due to the Runge phenomenon that are
overcome by applying Lagrange polynomials with Chebyshev-Lobatto
nodes, as demonstrated by the 2LM3* solution. It is important to
consider that by decreasing the plate thickness, the transverse stresses
become more and more negligible with respect to in-plane ones. For
example, it is possible to notice that for 𝑎∕ℎ = 100, the maximum
value of �̄�𝑥𝑥 is almost three orders of magnitude higher than the
maximum value of �̄�𝑥𝑧. In Fig. 8b, higher-order LM theories are not
shown since they give an approximation which is close to the 2LM2
model. In Fig. 8c, the results which use Chebyshev-Lobatto nodes
are not presented since no convergence problems have been detected
even for high-orders. LW theories show a discontinuity of the first
derivative in correspondence of the interface between virtual layers.
Indeed, while ESL models assume a 𝐶∞ function for describing primary
variables along the thickness, LW ones do not assure the continuity
of function derivatives along �̄�. Displacement-based theories are not
represented in Fig. 8a, since they are too far from the reference solution.
The dimensionless transverse shear stress �̄�𝑥𝑧 has also been plotted at
(𝑎∕4, 𝑏∕2) in Figs. 9 for comparison purposes. Indeed, at (𝑎∕4, 𝑏∕2), �̄�𝑥𝑧
values are one order of magnitude bigger than the ones computed at
(𝑎∕2, 𝑏∕2). Fig. 9a shows that in this case when 𝑎∕ℎ = 100, the 2LM2
model shows an error of 7.44% at �̄� = 0. This error can be reduced to
4.12% by upgrading the model to the fourth order. Fig. 9b and Fig. 9c
show that for 𝑎∕ℎ = 10, 5 the 2LM2 model is sufficient for a good
approximation of �̄�𝑥𝑧. In these cases also the ED6 model shows good
results since a single layer is considered and the anisotropy of the plate
is limited. Finally, Figs. 10 show the distribution of the dimensionless
out-of-plane stress �̄�𝑥𝑧, at plate middle plane (𝑧 = 0) for 𝑎∕ℎ = 100, 10,
5. The shape of the plots is similar for each 𝑎∕ℎ value, since �̄�𝑥𝑧 has a
positive value in proximity of 𝑥 = 0 and becomes negative at 𝑥 = 𝑎. It is
possible to observe that the positive and negative regions of �̄�𝑥𝑧 become
bigger from Fig. 10a to Fig. 10c, when the side-to-thickness ratio 𝑎∕ℎ
is decreased.

3.2. Multilayer plate

Case 2 is taken from Demasi et al. [40] and corresponds to a
multilayer plate. The plate is composed of two layers with the same
thickness (ℎ∕2). It is assumed that fibers angle is function of 𝑥′ only.
For this problem, axes 𝑥′ and 𝑦′ of the local reference system of the
fibers path are aligned with axes 𝑥 and 𝑦 of the global reference
system of the plate, but their origin is placed on the center of the
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Fig. 18. Dimensionless transverse shear stress �̄�𝑥𝑧 at point 𝑃 versus the dimensionless thickness, case 3.

Fig. 19. Dimensionless transverse normal stress �̄�𝑧𝑧 at point 𝑃 versus the dimensionless
thickness, case 3, 𝑎∕ℎ = 5.

plate (𝑎∕2, 𝑏∕2). In this case, 𝑎∕2 is considered as characteristic length
in Eq. (8) (𝑑 = 𝑎∕2). fibers angle behavior is represented for both
layers, starting from the bottom, as: 0 < 90, 45 > for layer 1 and
0 < 0, 45 > for layer 2. The stacking sequence is represented in Fig. 11.
As for the previous case, the Abaqus reference solution contains 140
elements along each side and 18 elements along the thickness. Results
are plotted along the dimensionless thickness coordinate at (𝑎∕4, 𝑏∕2).
For CUF results, a 16 × 16 mesh is considered. Table 4 shows the value
of the dimensionless in-plane normal stress �̄�𝑥𝑥 at plate top for different
theories and side-to-thickness ratios. For thin plates, in-plane stresses
become predominant with respect to out-of-plane ones and classical
theories get closer to the reference solution. For this case, the plots
of the dimensionless displacements are not presented since they are

similar to the ones of the previous case and similar considerations can
be done. In Figs. 12, the variation of �̄�𝑥𝑦 versus �̄� is presented for
𝑎∕ℎ = 100, 10 and 5, respectively. In this case the loss of linearity
due to the thickness increasing is more evident in comparison with
the previous case. This phenomenon causes the classical theories to
fail in the prediction of the in-plane shear stress, while higher-order
theories continue to match the reference solution. It is also possible to
notice a discontinuity at the interface between the two layers due to the
mechanical properties’ discontinuity. Figs. 13 show the dimensionless
transverse stress �̄�𝑥𝑧 along the thickness. In this case, only mixed
theories are able to match the reference solution. For 𝑎∕ℎ = 10 and
5, the LM2 model is sufficient to give a valid approximation, for this
reason higher-order approximations are not shown. For 𝑎∕ℎ = 100,
�̄�𝑥𝑧 is characterized by an error of 8.97% at the interface between the
layers. This error can be reduced to 6.58% and 5.78% with the LM4
and LM5* models, respectively. In this case the convergence issue due
to the Runge phenomenon of mixed high-order models is more evident.
The comparison of LM5 and LM5* solutions shows how the results
can be improved thanks to the Chebyshev-Lobatto nodes distribution.
Displacement based theories are not represented in Fig. 13a because of
their excessive distance from the reference solution. Transverse stresses
have to fulfill equilibrium between layers interfaces and satisfy the load
boundary conditions at plates top and bottom. This means that �̄�𝑥𝑧,
�̄�𝑦𝑧 and �̄�𝑧𝑧 should be continuous at the interface between layers and
should have the same value of external loads at plate top and bottom.
Since only a constant pressure load aligned with 𝑧 axis is applied, �̄�𝑥𝑧
and �̄�𝑦𝑧 have to be equal to zero at 𝑧 = ℎ∕2 and 𝑧 = −ℎ∕2. The
dimensionless transverse normal stress �̄�𝑧𝑧 for 𝑎∕ℎ = 5 is represented
in Fig. 14. This stress should be zero at 𝑧 = −ℎ∕2 and equal to the
external load at 𝑧 = ℎ∕2. Those conditions are not satisfied by LD
theories, since, in those cases, stresses are computed during the post
processing through Hooke’s law by using displacements derivatives and
their continuity is not assured at the interface between virtual layers.
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Table 5
Dimensionless in-plane normal stress −1 × �̄�𝑥𝑥 at point 𝑃 for 𝑧 = ℎ∕2, case 3.
𝑎∕ℎ 100 10 5

Abaqus 3D 621.031 4.164 0.297
LM4* 590.555 4.079 0.313
LM4 602.890 4.096 0.307
LM2* 609.466 4.652 0.828
LM2 609.121 4.655 0.830
LD4 580.100 3.814 0.218
LD2 593.907 3.872 0.378
ED4 592.177 3.898 0.255
ED2 607.555 5.426 0.990
FSDT 556.488 5.524 1.398
CLT 563.920 5.630 1.404

The ED6 model shows a good approximation of �̄�𝑧𝑧 because of the high-
order polynomial that is used to predict �̄�𝑧 along the thickness without
virtual interfaces. For RMVT theories, transverse stresses are considered
together with displacements as primary variables: this allows to fulfill
the equilibrium conditions a priori. Inter-layer equilibrium is imposed
during the assembly of the global stiffness matrix, while stress top and
bottom boundary conditions are imposed as boundary conditions of the
transverse stresses.

3.3. Multilayer plate with a central hole

In this last analysis, the plates present a central circular hole. The
material properties and the stacking sequence are the same of the
second case. The center of the cut out is placed at (𝑎∕2, 𝑏∕2) and its
radius is 𝑟 = 0.2m. In this case, the Abaqus reference solution is made
of 384000 elements for 𝑎∕ℎ = 10 and 5; 12800 elements are defined into
the plane of the plate and 30 elements are defined along the thickness.
When 𝑎∕ℎ = 100, in order to avoid stress gradient problems related
to the high elements’ aspect ratio, the number of elements into the
plane is increased to 20 000 and the number of elements along the
thickness is reduced to 18. Results are plotted along thickness at point
𝑃 , shown in Fig. 15, whose coordinates are: 𝑥𝑃 = (𝑎∕2 − 𝑟) ∕2, 𝑦𝑃 =
𝑏∕2. For CUF results, 288 plate elements have been used. Figs. 16
show the mesh used for this analysis case when 𝑎∕ℎ = 10, 5. Table 5
shows the values of �̄�𝑥𝑥 at plate top for different values of the side-
to-thickness ratio. The comparison with Table 4 shows that for 𝑎∕ℎ =
100 and 5, these values are higher for the plate with the central cut
out. Dimensionless displacements are plotted in Figs. 17 along �̄� for
𝑎∕ℎ = 10. In comparison with case 1, in this case CLT and FSDT models
are not sufficient to guarantee a correct approximation of the in-plane
components �̄�𝑥 and �̄�𝑦 because of the more complex geometry. For this
reason, in Figs. 17a and 17b, the errors of CLT at �̄� = −0.5 are 17.58%
and 43.17%, respectively. In Fig. 17c, it is possible to observe that the
LM4 model is the closest to the reference solution (maximum error
of 0.32%), followed by the ED6 one (maximum error of 0.34%). The
dimensionless in-plane stresses plots are not reported in this case since
they show the same behavior of the previous cases. Figs. 18 present
the plots of the dimensionless transverse shear stress �̄�𝑥𝑧 versus the
dimensionless thickness at point 𝑃 for 𝑎∕ℎ = 100, 10 and 5. In Fig. 18a,
the percentage error of the LM2 solution at �̄� = 0 is 4.48% and it
can be reduced to 0.53% with the 2LM4* model. For very thick plates
(𝑎∕ℎ = 5), both mixed and high-order ESL models are able to predict
the normal transverse stress as observed in Fig. 19.

4. Conclusions

A general numerical framework for deriving several plate finite
elements models for the analysis of VAT structures is presented in
this paper. The main outcome of this work is represented by the
development of RMVT CUF plate finite elements for the study of 2D

VAT plates. The possibility to choose the expansion order a priori
through CUF allows to develop a wide family of bi-dimensional models.
This is useful to predict the static response of VAT plates, which appear
to be a promising alternative to classical straight fibers composites.
Although the formulation is general, linear laws have been considered
to describe fibers path and it has been assumed that the direction along
which fibers angle can change corresponds to one of the main in-plane
directions of the global problem reference system (𝑥 or 𝑦). Three cases
have been analyzed to consider different laminations and geometries.
Abaqus 3D reference solutions have been used for the validation of the
proposed models. ESL and LW theories have been both considered for
PVD theories, while only LW approach has been developed for RMVT
models. The results lead to the following conclusions:

• All models show good displacements approximation. This is
mostly observable for transverse displacement 𝑢𝑧.

• CLT and FSDT models show a good approximation of displace-
ments and in-plane stresses for thin plates. On the other hand,
they are based on classical hypotheses which do not allow to
correctly predict transverse stresses. This represents a strong lim-
itation, especially for failure analyses, where transverse stresses
represent an important factor.

• ESL models allow to represent the displacement field through a
continuous function, with continuous derivative, along the thick-
ness. This can be a problem when zigzag displacement field
occurs, as in the case of layered plates. Despite this, ESL models
are still useful because of their reduced computational cost.

• LW models allow to describe the kinematic of each layer sepa-
rately from the others layers. Usually, this corresponds to more
accurate results but higher computational cost.

• RMVT models allow to fulfill compatibility and equilibrium con-
ditions of transverse stresses a priori. For thin plates, high-order
RMVT models show convergence problems, which can be solved
by using Lagrange polynomials with the Chebyshev-Lobatto nodes
distribution.

• Higher-order displacement based theories show good results for
displacements and in-plane stresses. Usually, those theories do not
correctly predict transverse stresses.

• Mixed theories are usually more accurate than displacements
ones, especially for transverse stresses. Conversely, they require a
higher computational cost. Hence, employing LW mixed models
proves beneficial when a more accurate depiction of through-
thickness behavior is required, particularly in cases where trans-
verse stresses play an important role and need to be predicted ac-
curately. Whereas LW and ESL displacement-based models show
a satisfying prediction of in-plane displacement and stresses. Fi-
nally, classical theories like FSDT and CLT, are more appropriate
for thin plates, since a linear behavior is considered for in-plane
displacements and stresses.

In conclusion, the application of RMVT within CUF to VAT plates for
static analyses has shown great promise in improving the accuracy and
efficiency of modeling these complex structures. However, the poten-
tial of this approach is not limited to static analyses alone. Potential
prospects foresee the use of this framework for dynamic, buckling and
failure analyses of VATs.
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Appendix. Expression of the fundamental nuclei

This appendix reports the FN of the structure stiffness matrix for the
PVD and RMVT variational statements. The components of the FN for
the PVD case can be written as follows in the case of an orthotropic
material:

𝐾𝜏𝑠𝑖𝑗
𝑥𝑥 = ∫𝛺

(

𝑍𝜏𝑠
𝑝𝑝11𝑁𝑗,𝑥𝑁𝑖,𝑥 +𝑍𝜏𝑠

𝑝𝑝16𝑁𝑗,𝑦𝑁𝑖,𝑥 +𝑍𝜏𝑠
𝑝𝑝16𝑁𝑗,𝑥𝑁𝑖,𝑦

+𝑍𝜏𝑠
𝑝𝑝66𝑁𝑗,𝑦𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠,𝑧

𝑛𝑛44 𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑥𝑦 = ∫𝛺

(

𝑍𝜏𝑠
𝑝𝑝12𝑁𝑗,𝑦𝑁𝑖,𝑥 +𝑍𝜏𝑠

𝑝𝑝16𝑁𝑗,𝑥𝑁𝑖,𝑥 +𝑍𝜏𝑠
𝑝𝑝26𝑁𝑗,𝑦𝑁𝑖,𝑦

+𝑍𝜏𝑠
𝑝𝑝66𝑁𝑗,𝑥𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠,𝑧

𝑛𝑛45 𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑥𝑧 = ∫𝛺

(

𝑍𝜏𝑠,𝑧
𝑝𝑛13𝑁𝑗𝑁𝑖,𝑥 +𝑍𝜏𝑠,𝑧

𝑝𝑛36𝑁𝑗𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠
𝑛𝑛44𝑁𝑗,𝑥𝑁𝑖 +𝑍𝜏,𝑧𝑠

𝑛𝑛45𝑁𝑗,𝑦𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑦𝑥 = ∫𝛺

(

𝑍𝜏𝑠
𝑝𝑝12𝑁𝑗,𝑥𝑁𝑖,𝑦 +𝑍𝜏𝑠

𝑝𝑝26𝑁𝑗,𝑦𝑁𝑖,𝑦 +𝑍𝜏𝑠
𝑝𝑝16𝑁𝑗,𝑥𝑁𝑖,𝑥

+𝑍𝜏𝑠
𝑝𝑝66𝑁𝑗,𝑦𝑁𝑖,𝑥 +𝑍𝜏,𝑧𝑠,𝑧

𝑛𝑛45 𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑦𝑦 = ∫𝛺

(

𝑍𝜏𝑠
𝑝𝑝22𝑁𝑗,𝑦𝑁𝑖,𝑦 +𝑍𝜏𝑠

𝑝𝑝26𝑁𝑗,𝑥𝑁𝑖,𝑦 +𝑍𝜏𝑠
𝑝𝑝26𝑁𝑗,𝑦𝑁𝑖,𝑥

+𝑍𝜏𝑠
𝑝𝑝66𝑁𝑗,𝑥𝑁𝑖,𝑥 +𝑍𝜏,𝑧𝑠,𝑧

𝑛𝑛55 𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑦𝑧 = ∫𝛺

(

𝑍𝜏𝑠,𝑧
𝑝𝑛23𝑁𝑗𝑁𝑖,𝑦 +𝑍𝜏𝑠,𝑧

𝑝𝑛36𝑁𝑗𝑁𝑖,𝑥 +𝑍𝜏,𝑧𝑠
𝑛𝑛45𝑁𝑗,𝑥𝑁𝑖 +𝑍𝜏,𝑧𝑠

𝑛𝑛55𝑁𝑗,𝑦𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑧𝑥 = ∫𝛺

(

𝑍𝜏𝑠,𝑧
𝑛𝑛44𝑁𝑗𝑁𝑖,𝑥 +𝑍𝜏𝑠,𝑧

𝑛𝑛45𝑁𝑗𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠
𝑛𝑝13𝑁𝑗,𝑥𝑁𝑖 +𝑍𝜏,𝑧𝑠

𝑛𝑝36𝑁𝑗,𝑦𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑧𝑦 = ∫𝛺

(

𝑍𝜏𝑠,𝑧
𝑛𝑛45𝑁𝑗𝑁𝑖,𝑥 +𝑍𝜏𝑠,𝑧

𝑛𝑛55𝑁𝑗𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠
𝑛𝑝23𝑁𝑗,𝑦𝑁𝑖 +𝑍𝜏,𝑧𝑠

𝑛𝑝36𝑁𝑗,𝑥𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑧𝑧 = ∫𝛺

(

𝑍𝜏𝑠
𝑛𝑛44𝑁𝑗,𝑥𝑁𝑖,𝑥 +𝑍𝜏𝑠

𝑛𝑛45𝑁𝑗,𝑦𝑁𝑖,𝑥 +𝑍𝜏𝑠
𝑛𝑛45𝑁𝑗,𝑥𝑁𝑖,𝑦

+𝑍𝜏𝑠
𝑛𝑛55𝑁𝑗,𝑦𝑁𝑖,𝑦 +𝑍𝜏,𝑧𝑠,𝑧

𝑛𝑛33 𝑁𝑗𝑁𝑖

)

𝑑𝛺.

(36)

The subscripts ‘𝑥’ and ‘𝑦’ when preceded by a comma refer to the
derivative versus the corresponding in-plane direction. The components

of the FN for the RMVT case can be written as follows:

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑥 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑝11𝑁𝑗,𝑥𝑁𝑖,𝑥 + �̂�𝜏𝑠

𝑝𝑝31𝑁𝑗,𝑥𝑁𝑖,𝑦 + �̂�𝜏𝑠
𝑝𝑝13𝑁𝑗,𝑦𝑁𝑖,𝑥 + �̂�𝜏𝑠

𝑝𝑝33𝑁𝑗,𝑦𝑁𝑖,𝑦

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑦 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑝12𝑁𝑗,𝑦𝑁𝑖,𝑥 + �̂�𝜏𝑠

𝑝𝑝32𝑁𝑗,𝑦𝑁𝑖,𝑦 + �̂�𝜏𝑠
𝑝𝑝13𝑁𝑗,𝑥𝑁𝑖,𝑥 + �̂�𝜏𝑠

𝑝𝑝33𝑁𝑗,𝑥𝑁𝑖,𝑦

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑦𝑥 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑝21𝑁𝑗,𝑥𝑁𝑖,𝑦 + �̂�𝜏𝑠

𝑝𝑝31𝑁𝑗,𝑥𝑁𝑖,𝑥 + �̂�𝜏𝑠
𝑝𝑝23𝑁𝑗,𝑦𝑁𝑖,𝑦 + �̂�𝜏𝑠

𝑝𝑝33𝑁𝑗,𝑦𝑁𝑖,𝑥

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑦𝑦 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑝22𝑁𝑗,𝑦𝑁𝑖,𝑦 + �̂�𝜏𝑠

𝑝𝑝32𝑁𝑗,𝑦𝑁𝑖,𝑥 + �̂�𝜏𝑠
𝑝𝑝23𝑁𝑗,𝑥𝑁𝑖,𝑦 + �̂�𝜏𝑠

𝑝𝑝33𝑁𝑗,𝑥𝑁𝑖,𝑥

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑧 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝑢𝑢𝑦𝑧 = 0 , 𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑧𝑥 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝑢𝑢𝑧𝑦 = 0 , 𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑧𝑧 = 0 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑥𝑥 = ∫𝛺

(

𝐸𝜏,𝑧𝑠𝑁𝑗𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑥𝑧 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑛13𝑁𝑗𝑁𝑖,𝑥 + �̂�𝜏𝑠

𝑝𝑛33𝑁𝑗𝑁𝑖,𝑦

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑦𝑦 = ∫𝛺

(

𝐸𝜏,𝑧𝑠𝑁𝑗𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑦𝑧 = ∫𝛺

(

�̂�𝜏𝑠
𝑝𝑛23𝑁𝑗𝑁𝑖,𝑦 + �̂�𝜏𝑠

𝑝𝑛33𝑁𝑗𝑁𝑖,𝑥

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑧𝑥 = ∫𝛺

(

𝐸𝜏𝑠𝑁𝑗𝑁𝑖,𝑥

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑧𝑦 = ∫𝛺

(

𝐸𝜏𝑠𝑁𝑗𝑁𝑖,𝑦

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑧𝑧 = ∫𝛺

(

𝐸𝜏,𝑧𝑠𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝑢𝜎𝑥𝑦 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝑢𝜎𝑦𝑥 = 0 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑥𝑥 = ∫𝛺

(

𝐸𝜏𝑠,𝑧𝑁𝑗𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑥𝑧 = ∫𝛺

(

𝐸𝜏𝑠𝑁𝑗,𝑥𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑦𝑦 = ∫𝛺

(

𝐸𝜏𝑠,𝑧𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑦𝑧 = ∫𝛺

(

𝐸𝜏𝑠𝑁𝑗,𝑦𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑧𝑥 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑝31𝑁𝑗,𝑥𝑁𝑖 − �̂�𝜏𝑠

𝑛𝑝33𝑁𝑗,𝑦𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑧𝑦 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑝32𝑁𝑗,𝑦𝑁𝑖 − �̂�𝜏𝑠

𝑛𝑝33𝑁𝑗,𝑥𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑧𝑧 = ∫𝛺

(

𝐸𝜏𝑠,𝑧𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝑢𝑥𝑦 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝜎𝑢𝑦𝑥 = 0 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑥𝑥 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑛11𝑁𝑗𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑥𝑦 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑛12𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑦𝑥 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑛21𝑁𝑗𝑁𝑖

)

𝑑𝛺 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑥𝑥 = −∫𝛺

(

�̂�𝜏𝑠
𝑛𝑛22𝑁𝑗𝑁𝑖

)

𝑑𝛺 ,

𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑥𝑧 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝜎𝜎𝑦𝑧 = 0 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑧𝑥 = 0 , 𝐾𝜏𝑠𝑖𝑗

𝜎𝜎𝑧𝑦 = 0 , 𝐾𝜏𝑠𝑖𝑗
𝜎𝜎𝑧𝑧 = 0.

(37)
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