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Modal and nonmodal stability analysis of turbulent stratified channel flows

Donato Variale,1,2,* Enza Parente ,1,2 Jean Christophe Robinet ,2 and Stefania Cherubini1
1Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari,

Via Re David 200, 70125 Bari, Italy
2Laboratoire DynFluid, Arts et Métiers ParisTech, 151 Bd de l’Hopital, 75013 Paris, France

Unstable or optimally growing perturbations of turbulent flows are often representa-
tive of the energy-containing coherent structures populating the flow, as for streaks in
a turbulent channel. Within this framework, this work aims at studying the modal and
nonmodal stability of stably stratified turbulent channel flow, assessing the influence
of stratification while changing the friction Richardson number, Riτ , at fixed friction
Reynolds number, Reτ . When increasing the stratification of the flow, the energy gain
for streamwise-independent perturbations at the outer peak increases by two orders of
magnitude, and the spanwise wavenumber for which the energy gain peaks reaches values
comparable to those reported in the direct numerical simulations of Garcia-Villalba and
Del Alamo. At the same time, the value of the optimal gain for the inner peak slightly
changes, corroborating the observations made through direct numerical simulation (DNS)
about the fact that the wall cycle is not altered by the presence of stratification. Moreover,
for nonzero values of the streamwise and spanwise wavenumbers, α and β, the energy gain
curve has two peaks, one for shorter target times and α > β, leading to a center-channel
temperature peak, and another occurring for α < β at larger target times. In the former
case, energy production is mostly linked to velocity production, whereas, in the latter
case, the strongest term is that of temperature production, indicating that this mechanism is
driven by the increase of the potential energy rather than the kinetic one, and it is intimately
linked to the presence of stratification. For strong stratification, the optimal energy gain
considerably extends towards higher values of α, leading to energy amplifications reaching
three orders of magnitudes for values of α up to 2. The associated optimal perturbations
are characterized by temperature patches at the center channel, phase lagged by π/2 with
the wall-normal velocity, similarly to gravity waves recovered in the DNS for sufficiently
large stratification. However, for large values of β, we observe an increasing asymmetry in
the optimal perturbations, probably due to the shielding effect of the core of the channel,
as also observed in the DNS of Garcia-Villalba and Del Alamo.

I. INTRODUCTION

Thermally stratified shear flows are receiving increasing interest as the basis of many meteoro-
logical and geophysical applications. In the case of incompressible flows, stratification effects are
taken into account in the momentum equation through the addition of buoyancy forces. The latter
occur if the flow configuration taken into account is subjected to gravity [1]. In these conditions, a
stratified flow can be defined as a flow whose density varies only in the direction in which gravity
acts. Thermal stratification is said to be stable (unstable), when the density decreases (increases)
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upwards and, consequently, the temperature increases (decreases). The potential energy is greater
in unstable than in stable cases; therefore, in the former case, perturbations tend to bring the flow
to a (lowest-energy) stable state [2]. An example of the effect of unstable stratification that can
be observed in nature are the cloud streets in the atmospheric boundary layer, which consist in
organized roll vortices: clouds form in the ascending part of the rolls while on the descending side
cloudless areas are recovered [3,4].

A first attempt of a stability study of a thermally stratified shear flow was made by Gage and Reid
[5]. They showed that, in the unstable stratification case, there are two types of instability: a thermal
mode which leads to steady convection in the form of longitudinal rolls and an inertial mode which
is associated to the classic Tollmien-Schlichting mechanism. Then, Asai [6] proved that the switch
between these mechanism is linked to the value of the Richardson number, Ri. For Ri ≈ 10−2−10−1

the thermal mode is observed, while for lower values of Ri, the inertial one is found. In their work,
Jerome et al. [7] went further by conducting a nonmodal analysis to study the transient growth of
perturbations for unstable stratification in the case of Couette and Poiseuille flow. For small times, it
has been observed that the maximum energy gain Gmax increases slightly by increasing the Rayleigh
number Ra and reducing the Prandtl number Pr. Notably, optimal perturbations produce longitudinal
streaks and convective vortices.

On the other hand, stable stratification has been proven to have a stabilizing effect, as in the work
of Biau and Bottaro [8]. Among different works, Facchini et al. [9] performed a stability analysis
of a stably stratified plane Couette flow with a constant density gradient orthogonal to the shear.
In this configuration, unstable modes are found for a Reynolds number Re = 700 and a Froude
number Fr = 1. Furthermore, the range of unstable Fr increases with Re and instability only occurs
for three-dimensional (3D) perturbations in opposition to what Squire’s theorem assumes. Recently,
Parente et al. [10] considered the stably stratified Blasius boundary layer flow in terms of modal and
nonmodal stability. Using a modal approach, they found that increasing Ri leads to a stabilization of
the flow, whereas with the nonmodal approach they observed that increasing Ri leads to a reduction
of the optimal time and the optimal energy gain, and that the latter occurs for nonzero values of
the streamwise wavenumber. Moreover, the energy changes from a quadratic dependence on Re to
a linear one and the optimal mechanism is due to a combined effect of the Orr mechanism and the
lift-up mechanism.

All the works cited so far have one point in common; namely, they all consider the stability of
laminar stratified flows, whose instability would lead to a turbulent state [11]. However, when ex-
amining the stability of a turbulent flow, the situation becomes more complex. Two main approaches
are used in the literature.

The first, the quasilaminar approach, consists in using the Navier-Stokes equations linearized
around a turbulent velocity field while eliminating the Reynolds stress or including them in a forcing
term [12]. In this way, the linear operator remains the same as in the laminar case. An example of
this quasilaminar method may be found in the work of McKeon and Sharma [13]. Through singular
value decomposition of the resolvent operator of a turbulent pipe flow, they have discovered two
types of response modes by varying the frequency of the forcing: a wall-response mode and a
critical-response mode characterized by a streamwise wave speed similar to the local mean velocity
at the peak of streamwise energy.

The second approach is referred to as statistically linear and is based on a triple decomposition
[14,15] of the flow variables q, dividing them in a long-time-averaged part q plus a coherent phase-
averaged disturbance q′ and the incoherent fluctuation q′′ (where · is the average operator and q′′ =
0). Then, the Reynolds stress tensor is taken into account by means of models such as the eddy
viscosity νt . An example of this approach is the work of Pujals et al. [16] on the turbulent channel
flow that will be discussed later as a reference case.

In the field of unstably stratified flows, some recent works considered the stability of stratified
turbulent channel flows. Madhusudanan et al. [17] studied the response of the linear Navier-Stokes
operator to impulses located in the center of the channel and at the wall in the case of the turbulent
stratified channel flow for different values of bulk Richardson number Rib. Their reference work



FIG. 1. Scheme of the channel flow with its scales and a representation of the mean temperature T (y).

was the direct numerical simulation (DNS) performed by Pirozzoli et al. [18] from which they take
the mean velocity and temperature fields. They observed that, for a zero streamwise wavenumber,
by increasing Rib the streamwise-independent structures passed from having one peak intensity at
the center of the channel to having two peaks close to the wall. Using the same data set, Cossu [19]
investigated the linear stability of the operator, retrieving the critical friction Richardson number for
which large-scale uniform streamwise-uniform coherent rolls are formed, that is, Riτ,c ≈ 0.86 for
Reb ranging from ≈104 to ≈106.

Despite the recent body of work on these unstable cases, the stability of a stably stratified
turbulent channel flow has never been studied in detail, the only exception being a very recent
work by Ahmed et al. [20], where resolvent analysis is performed and compared to DNS. The
authors show that the resolvent is able to predict coherent structures in the flow with much lower
computational costs than a direct simulation. However, the asymptotic stability as well as the
optimal perturbations allowing the maximum possible energy gain have never been investigated
for this flow. To fill this gap, this work aims at studying the modal and nonmodal stability of stably
stratified turbulent channel flow by assessing the influence of stratification on the shear increasing
the friction Richardson number Riτ with a fixed friction Reynolds number Reτ . To do this, we will
use the data set of Garcia-Villalba and del Alamo [21] obtained by direct numerical simulation of
a stably stratified turbulent flow. In this work, they studied the influence of stratification noting that
near-wall streaks remain unaltered while buoyancy effects are visible in the center of the channel,
where for values of Riτ = 1920 laminar patches start to appear.

In the present work, we will consider the stably stratified turbulent channel flow at three different
values of Riτ , namely 60, 120, and 480. For these three cases we will examine the modal stability of
the linear operator, followed by nonmodal analysis to investigate the energy growth at short times.
In fact, perturbations of the mean turbulent flow ensuring an optimal growth of the energy may
be representative of the energy-containing coherent structures populating the turbulent flow, as for
streaks in the turbulent channel flow [22]. Towards this end, a direct-adjoint method will be used, as
by Parente et al. [10,23].

The paper is organized as follows: In Sec II the problem is described and the model and
equations used to perform the modal and the nonmodal analysis are presented, in Sec. III are
reported the results compared with the unstratified case, then in Secs. III A–III C are provided the
results for cases Riτ = 60, Riτ = 120, and Riτ = 480, respectively. Finally in Sec. IV conclusions
and perspectives are shown.

II. PROBLEM FORMULATION

The dynamics of an incompressible, turbulent, stably stratified channel flow, showed in Fig. 1,
can be described by the following set of governing equations:

∇ · u = 0, (1a)

ρ
∂u
∂t

+ ρ(u · ∇ )u = −∇p + ∇ · [μ(∇u + ∇uT )] − ρgey, (1b)

∂T

∂t
+ (u · ∇ )T = ∇ · [κ∇T ], (1c)



ρ = ρ0[1 − α(T − T0)], (1d)

where u = (u, v,w)T is the instantaneous velocity vector, p is the pressure, ρ is the density, μ is
the dynamic viscosity, g is the gravitational acceleration, and ey is the unit vector in the wall-normal
direction y. Streamwise and spanwise directions are respectively represented by x and z, T is the
temperature, κ is the thermal diffusivity, and ρ0 and T0 are respectively the density and temperature
of Ref. [24]. Equations (1) are the incompressible Navier-Stokes equations, while Eq. (1d) is the
Boussinesq relation that links temperature with density.

A. Model and equations

The instantaneous physical quantities describing the system, q(x, t ) = (u, T, p)T , can be ex-
panded as the sum of their long-time average, q(x), and an infinitesimal fluctuation q′(x, t ):

q(x, t ) = q(x) + q′(x, t ). (2)

This development is injected into Eqs. (1) and the mean is taken. Finally, the equations for the mean
flow are written:

∇ · u = 0, (3a)

ρ(u · ∇ )u = −∇p + ∇ · [μ(∇u + ∇uT ) − ρu′u′] − ρgey, (3b)

(u · ∇ )T = ∇ · [κ∇T − u′T ′]. (3c)

The system of Eqs. (3) is closed by using the Boussinesq hypothesis allowing to approximate
the tensors −ρu′u′ and −uT ′ through a turbulent eddy viscosity νt and a turbulent thermal eddy
diffusivity κt :

−u′u′ = νt (∇u + ∇uT ), −u′T ′ = κt∇T , (4)

which, for a channel flow, becomes

−u′v′ = νt
∂u

∂y
, −v′T ′ = κt

∂T

∂y
. (5)

Equations (3) are then subtracted from Eqs. (1). The resulting system is linearized and scaled with
respect to the outer scale variables, namely, the velocity at center of the channel, Uc, the half-channel
height h, and the temperature difference between the two walls, 
T , providing the following set of
equations for the perturbation:

∇ · u′ = 0, (6a)

∂u′

∂t
+ (u′ · ∇ )u + (u · ∇ )u′ = −∇p′ + 1

Re
[∇νt · (∇u′ + ∇u′T ) + νT ∇2u′] + RiT ′ey, (6b)

∂T ′

∂t
+ (u′ · ∇ )T + (u · ∇ )T ′ = 1

RePr
(∇κ t · ∇T ′ + κT ∇2T ′), (6c)

where Re = Uch/ν, Pr = ν/κ , and Ri = α
T hg/U 2
c are the Reynolds, Prandtl, and Richardson

numbers, respectively, while νT = (νt + ν)/ν, νt = νt/ν, κT = (κt + κ )/κ , and κ t = κt/κ . For
simplicity we will assume that νt and κt are not perturbed.

Since we consider a turbulent flow, there is no analytical formulations for the mean velocity
and temperature, as well as for the eddy viscosity and thermal eddy diffusivity. In nonstratified
channel flows, it has been demonstrated that, evaluating νT using the Cess [25] profile, the linearized
Navier-Stokes equations augmented with the eddy viscosity correctly predict the length scales of the
turbulent coherent structures [13,16,26,27]. Since here we deal with a stratified channel flow, the
eddy viscosity and diffusivity wall-normal profiles, as well as the mean velocity and temperature
fields, are evaluated on the basis of the data of Garcia-Villalba and Del Alamo [21]. This set of data
has been obtained through a DNS performed at fixed Reτ = 550 (Re = 11390.6) and for different



FIG. 2. Streamwise velocity u (left) and temperature T (right) for Reτ = 550 and Riτ = 60, Riτ = 120,
and Riτ = 480.

Riτ , where Reτ = uτ h/ν, Riτ = α
T hg/u2
τ , and uτ = √

τw/ρ. In this work, we have used data at
Riτ = 60, 120, and 480.

While the mean flow (see Fig. 2) has been simply extracted from the DNS data without further
treatment, for νt and κt we first tried using the model proposed by Eq. (5). However, the resulting
profiles were discontinuous and showed strongly oscillating derivatives, leading to numerical
instability. Thus, as proposed in Ref. [28], we used a modified Cess formula [25] based on several
parameters, reported in Table I, whose value is obtained by least-square fitting of the DNS data.
Improving the parameters used in Ref. [28] and adding a further one in order to have a better fitting
of the data from the DNS, we use for Riτ = 60 and Riτ = 120

νT =
[

1

2
(1 + a(by + cy2)2(d + ey + f y2)2(1 − e−gy)2)

1
2 + 1

2

]
1

h
, (7)

κT =
[

1

2
(1 + a(by + cy2)2(d + ey + f y2)2(1 − e−gy)2)

1
2 + 1

2

]
1

hPr
. (8)

The above analytical expressions for νT and κT change for Riτ = 480 since in this case the
polynomial should tend to zero at the center of the channel, leading to

νT =
[

1

2
(1 + a(by + cy2)2(d + ey + f y2)2(1 − y2)(1 − e−gy)2)

1
2 + 1

2

]
1

h
, (9)

κT =
[

1

2
(1 + a(by + cy2)2(d + ey + f y2)2(1 − y2)(1 − e−gy)2)

1
2 + 1

2

]
1

hPr
. (10)

The new parameters are reported in Table II and the resulting eddy-viscosity and eddy-diffusivity
profiles are provided in Fig. 3, showing a very good agreement with the DNS data in Ref. [21],
as shown in Appendix C. The relative discrepancy, measured by summing the squares of the
difference between the data and the fitted analytical expression, are of order 10−6−10−5, as reported
in Table III.

TABLE I. Values of parameters for νT modeling in Eqs. (7) for Riτ = 60, 120, and Eq. (9) for Riτ = 480.

Riτ Ri a b c d e f g h

60 0.139878 640 6.139 −3.089 3.651 −7.144 3.571 22.01 1.17
120 0.2797757 610 5.269 −2.644 3.335 −6.607 3.301 22.02 1.08
480 1.11910287 620 4.666 −2.342 3.284 −6.11 3.0571 32.02 0.99



TABLE II. Values of parameters for κT modeling in Eqs. (8) for Riτ = 60, 120, and Eq. (10) for Riτ = 480.

Riτ Ri a b c d e f g h

60 0.139878 670 4.84 −2.436 3.219 −6.33 3.152 22 1.0
120 0.2797757 392.5 5.176 −2.601 3.382 −6.706 3.361 22 1.08
480 1.11910287 670 3.755 −1.886 2.986 −5.539 2.776 31.99 1.01

B. Modal stability analysis

For this flow configuration, the assumption of parallel flow can be assumed valid; i.e., the flow
has two homogeneous directions x and z. This means that νt = νt (y), κt = κt (y), and that

u = (u(y), 0, 0), T = T (y).

The solution for the local stability problem is found in this form:

q′(x, t ) = q̂(y)ei(αx+βz−ωt ) + c.c., (11)

where α and β are the wavenumbers in the x and z directions, respectively. Using the hypothesis
mentioned above and replacing Eq. (11) in Eqs. (6a)–(6c), the following system of equations is
obtained,

iαû + d v̂

dy
+ iβŵ = 0, (12)

i(αu − ω)û + du

dy
v̂ = −iα p̂ + 1

Re

[
dνt

dy

dû

dy
+ iα

dνt

dy
v̂ + νT

(
d2

dy2
− (α2 + β2)

)
û

]
, (13)

i(αu − ω)v̂ = −iα
d p̂

dy
+ 1

Re

[
2

dνt

dy

d v̂

dy
+ νT

(
d2

dy2
− (α2 + β2)

)
v̂

]
+ RiT̂ , (14)

i(αu − ω)ŵ = −iβ p̂ + 1

Re

[
dνt

dy

dŵ

dy
+ iβ

dνt

dy
v̂ + νT

(
d2

dy2
− (α2 + β2)

)
ŵ

]
, (15)

i(αu − ω)T̂ + dT

dy
v̂ = 1

RePr

[
dκ t

dy

dT̂

dy
+ κT

(
d2

dy2
− (α2 + β2)

)
T̂

]
, (16)

FIG. 3. Eddy viscosity νt (left) and thermal eddy diffusivity κt (right) for Reτ = 550 and Riτ = 60, Riτ =
120, and Riτ = 480.



TABLE III. Values of SSE computed for νt and κt for Riτ = 60, Riτ = 120,
and Riτ = 480.

Riτ SSEνt
a SSEκt

b

60 2.55 × 10−5 1.34 × 10−5

120 1.77 × 10−5 2.71 × 10−6

480 3.19 × 10−5 1.06 × 10−6

aSum of square errors SSE = ∑
(DNS data - analytical expression )2 for νt .

bSSE for κt .

to which the conditions below are added on both walls:

û = v̂ = ŵ = T̂ = 0.

These equations represent the primitive form of the stability problem which can be compactly
written as

L(α, β, ω, u)q̂(y, α, β, ω) = 0, (17)

where L is the linear operator of the eigenvalue problem and q̂ = (û, v̂, ŵ, T̂ , p̂)T .
There are two possible approaches to solve the eigenvalue problem: a temporal one and a spatial

one [29]. In this study we have used a temporal approach where the wavenumbers are real and fixed
while ω is complex:

[A − ωB]q̂(y, α, β, ω) = 0. (18)

The asymptotic evolution of a perturbation of the mean state is thus dictated by the sign of I (ω),
with I (ω) < 0 corresponding to an exponentially decaying perturbation [30].

The eigenvalue problem is solved numerically with a MATLAB code using a Chebyshev spatial
discretization in y, with Dirichlet boundary conditions at both walls [31]. After a grid convergence
study, we have chosen a grid consisting of Ny = 500 points.

C. Nonmodal stability analysis

In many flow cases, modal stability analysis is not sufficient to describe the full behavior of the
fluid system, being limited to its asymptotic dynamics. In fact, an asymptotically stable flow can
experience a transient growth of the initial perturbations if their eigenvectors are nonorthogonal.
These highly amplified perturbations are dynamically relevant since they often become the most
prominent coherent structures populating the flow [22]. Therefore, it is worth to investigate the
amplification of the initial perturbation energy over a prescribed time interval.

Since the thermal stratification is stable, the energy is defined as the sum of the L2 norm of
kinetic energy and potential energy. The nondimensional kinetic energy is simply given by the
scalar product of the velocity vector with itself while for the nondimensional potential energy we
used the relation proposed by Biau and Bottaro [8]:

E (t ) =
∫

V
(Ek + Ep)dV =

∫
V

1

2

⎛
⎝|u′(t )|2 + Ri∣∣ dT

dy

∣∣ |T ′(t )|2
⎞
⎠dV. (19)

This formulation of the norm is not trivial, but it arises from physical considerations. In fact, using
the Boussinesq hypothesis, the potential energy can be written as

Ep = −ρ ′gdy = ρ0αT ′gdy.



Now considering the dimensionless variables

T̂ = T ′


T
, d̂y = dy

h
,

it is possible to obtain a dimensionless formulation for the potential energy by exploiting the
Richardson number, as

Êp = Ep

ρ0U 2
0

= ρ0αT̂ 
T d̂yhRiU 2
0

ρ0U 2
0 α
T h

= RiT̂ d̂y.

If we consider dT0
dy ≈ T̂

d̂y
and we multiply and divide Êp for T̂ 2 in order to obtain a quadratic

formulation for the potential energy, we obtain the expression used in Eq. (19).
A priori, it is not possible to define which method is the best for optimizing this objective

function. The singular value decomposition (SVD), which has been widely used in the literature
[16,26], has the advantage to allow for computing both optimal and suboptimal singular values.
However, as discussed in Ref. [32], if the objective function of the optimization is defined by
a seminorm or a norm for which not all terms have the same weight, the optimization of gain
defined by such a nontrivial seminorm would require a special treatment of further constraints
that cannot be imposed by the SVD. However, this can easily be done using variational methods
such as constrained optimization with Lagrangian multipliers [33]. These methods are flexible and
powerful, since one can optimize for an infinite number of constraints or cost functions, despite
an increased complexity and effort in computation and implementation. Thus, in this work we use
a Lagrange multiplier framework along with a direct-adjoint method in order to find the optimal
initial condition that maximizes the growth of energy at a fixed target time Topt [22,34,35]. The
Lagrange functional is defined as the energy at target time, subject to the following constraints:
the optimal initial perturbation u′(0) must (i) be divergence free, (ii) be a solution of the linearized
Navier-Stokes equation, and (iii) have the energy density norm equal to unity (only for numerical
purposes, since we tackle a linear problem). Once these constraints have been set, it is possible to
define the Lagrange functional as

L(u′, T ′, p′, u†, T †, p†, u′(0), u′(Topt ), T ′(0), T ′(Topt ))

= E (Topt ) −
∫

V

∫ Topt

0
u† ·

(
∂u′

∂t
+ (u · ∇ )u + (u · ∇ )u′ + ∇p′

− 1

Re
[∇νt · (∇u′ + ∇u′T ) + νT ∇2u′] + RiT ′ey

)
dt dV

−
∫

V

∫ Topt

0
T †

(
∂T ′

∂t
+ (u′ · ∇ )T + (u · ∇ )T ′ − 1

RePr
(∇κ t · ∇T ′ + κT ∇2T ′)

)
dt dV

−
∫

V

∫ Topt

0
p†(∇ · u′)dV − E†(E (0) − E0),

where E (Topt ) is the objective function and the following terms are the momentum equation, the
temperature equation, the continuity equation, and the unit norm constraint, respectively, multiplied
by the Lagrange multipliers (or adjoint variables) u†, T †, p†, and E†. To obtain the optimal solution
is it necessary to nullify the variations of the Lagrange functional, with respect to each variable, as



follows:

∂L
∂u†

= 0 → ∂u′

∂t
+ (u · ∇ )u + (u · ∇ )u′

= ∇p′ + 1

Re
[∇νt · (∇u′ + ∇u′T ) + νT ∇2u′] + RiT ′ey = 0, (20)

∂L
∂ p†

= 0 → ∇ · u′ = 0, (21)

∂L
∂T †

= 0 → ∂T ′

∂t
+ (u′ · ∇ )T + (u · ∇ )T ′ = 1

RePr
(∇κ t · ∇T ′ + κT ∇2T ′) = 0, (22)

∂L
∂u′ = 0 → ∂u†

∂t
+ u

∂u†

∂x
+ 1

Re

[
dνt

dy

∂u†

∂y
+ νT

(
∂2u†

∂x2
+ ∂2u†

∂y2
+ ∂2u†

∂z2

)]
+ ∂ p†

∂x
= 0, (23)

∂L
∂v′ = 0 → ∂v†

∂t
− u† du

dy
+ u

∂v†

∂x
+ 1

Re

[
2

dνt

dy

∂v†

∂y
+ νT

(
∂2v†

∂x2
+ ∂2v†

∂y2
+ ∂2v†

∂z2

)]

− T † dT

dy
+ ∂ p†

∂y
= 0, (24)

∂L
∂w′ = 0 → ∂w†

∂t
+ u

∂w†

∂x
+ 1

Re

[
dνt

dy

∂w†

∂y
+ νT

(
∂2w†

∂x2
+ ∂2w†

∂y2
+ ∂2w†

∂z2

)]
+ ∂ p†

∂z
= 0, (25)

∂L
∂ p′ = 0 → ∇ · u† = 0, (26)

∂L
∂T ′ = 0 → ∂T †

∂t
+ (u · ∇ )T ′ + 1

RePr
(∇T † · ∇κ t + κT ∇2T †) + Riv† = 0, (27)

∂L
∂E†

= 0 → E (0) = E0, (28)

∂L
∂u′(0)

= 0 → u†(0) − λu′(0) = 0, (29)

∂L
∂T ′(0)

= 0 → T †(0) − λ
Ri∣∣ dT
dy

∣∣T ′(0) = 0, (30)

∂L
∂u′(Topt )

= 0 → u′(Topt ) − u†(Topt ) = 0, (31)

∂L
∂T ′(Topt )

= 0 → Ri∣∣ dT
dy

∣∣T ′(Topt ) − T †(Topt ) = 0. (32)

Equations (20)–(22) are the direct Navier-Stokes equations, while Eqs. (23)–(27) are the adjoint
Navier-Stokes equations. Equation (28) imposes the unit-norm constraint for the initial condition,
while Eqs. (31) and (32) represent the compatibility condition and Eqs. (29) and (30) are the
gradient, needed for the optimization loop.

During the optimization cycle, the direct equations are integrated in time using a given initial
condition. At time t = Topt, the final condition for the direct problem is converted into an initial
condition for the adjoint problem through the compatibility condition. Then, the adjoint equa-
tions are integrated backward in time. At time T = 0 the adjoint variables are used to compute the
gradient and update the initial condition in the direction of the gradient by means of a gradient-based
approach. This direct-adjoint loop is repeated until it converges to the optimal initial condition.

This direct-adjoint cycle is solved numerically. For time integration a fully implicit fourth-order
backward Euler scheme is used. The spatial discretization is the same used for the modal analysis,
with Ny = 130 collocation points. To solve the optimization problem, both the power iteration
method and the gradient rotation method [36] with an update angle α = π/12 are used. Figure 4



FIG. 4. Convergence study for optimal cases at Riτ = 60, (α, β ) = (0, 2.2) (left) and Riτ = 480, (α, β ) =
(0, 6) (right).

shows the convergence of the optimization method. Two cases were considered: the first at Riτ = 60,
α = 0, β = 2.2, and Topt = 34.5 and the second at Riτ = 480, α = 0, β = 6, and Topt = 9.9. It can
be observed that when the effect of stratification increases, the convergence becomes slower.

III. RESULTS

For validating the code, we first considered the stratified and unstratified Poiseuille flow. On
this type of configuration, we performed both modal and nonmodal analysis, finding a very good
agreement with respect to those of Parente et al. [10].

Then, for further validation, we considered the case of turbulent, unstratified channel flow. The
reference study in this case was that of Pujals et al. [16]. In agreement with Pujals et al.’s results,
it was found that the flow is asymptotically stable for every Reτ , and that the energy gain has two
peaks, a first one at low β values related to the lift-up mechanism acting at the outer scale, and a
second one at higher β values related to the same mechanism at the inner scale (more details in
Appendix A). Table IV compares the values we obtained with those of Pujals et al. [16].

Once the code was validated, we considered the turbulent stratified channel flow at Riτ = 60,
120, and 480. Modal analysis has been first performed by varying the value of the two wavenumbers.
The flow always remains asymptotically stable for all β and α. Three spectra are reported in Fig. 5,
for the three considered values of Riτ and α = 2, β = 2.

The shape of the spectra is very similar to that of the unstratified turbulent case with a main
branch that diverges to the right as α increases. However, it can be observed that when Riτ increases,
the main branch moves to lower growth rates, while the amplification rate ωi of the less stable
isolated modes reaches higher values than in the previous cases, moving from ωi = −0.0228 for
Riτ = 60 to ωi = −0.0139 for Riτ = 480. This is in agreement with the work of Garcia-Villalba
and Del Alamo [21], which reports the flow becoming linearly unstable for values of Riτ ≈ 2 × 104,
leading to relaminarization of the flow.

TABLE IV. Values of the spanwise wavenumber related to the outer peak and inner peak optimal
perturbations.

Pujals et al. [16] (unstratified) Riτ = 0 Riτ = 60 Riτ = 120 Riτ = 480

Outer peak β 1.5707 1.5989 1.699 2.597 6
Inner peak β (β+) 34.17(0.0683) 32.5(0.065) 30.25(0.055) 26.75(0.0486)



FIG. 5. Eigenspectra for Riτ = 60 (Ri = 0.139878) (left), Riτ = 120 (Ri = 0.2797757) (middle), and
Riτ = 480 (Ri = 1.11910287) (right) for Reτ = 550 (Re = 11390.6), α = 2, and β = 2.

Due to the fact that the considered flow configurations are asymptotically stable, we now tackle
nonmodal analysis. Since for the laminar stratified channel and boundary layer flows [10,28] the
optimal perturbation occurs for nonzero values of the streamwise wavenumber, we have computed
the maximum energy gain for α ∈ [0, 4] and β ∈ [0, 4] in the cases Riτ = 60 and 120 and for
α ∈ [0, 4] and β ∈ [0, 6] in the case Riτ = 480.

The optimal energy gain maps in Fig. 6 show that, for all the three considered values of Riτ , the
maximum energy value occurs at α = 0, similarly to the unstratified turbulent channel flow [16], but
differently from the laminar stably stratified channel flow [10,28]. Thus, for assessing the effects of
stratification on the transient energy growth in a turbulent channel, we first consider the optimal
case with α = 0. We investigate the optimal energy growth by setting α = 0 and different values of
the spanwise wavenumber β varying from 0 to 500. The optimal energy gain for each β and Riτ
value is shown in the left frame of Fig. 7. It can be observed that by increasing the stratification
of the flow, the energy gain at the outer peak increases by two orders of magnitude. In particular,
the peak values of the optimal energy gain increase with Riτ as shown in the right frame of Fig. 7,
following a power law of the type Gmax = aRibτ + c with a = 0.03285, b = 1.967, and c = 9.81.
This indicates that a strong stable stratification considerably increases the strength of large-scale
coherent structures within the turbulent flow. Notice that this simply means that the operator in
the stratified case is more non-normal, and therefore exhibits more energy growth during transients.
However, nothing can be said about the role of stratification in the persistence of large-scale coherent
structures at longer times, a nonlinear analysis being beyond the interest of this paper.

Nonetheless, in the left frame of Fig. 7 one can notice that the spanwise wavenumber for which
the energy gain peaks (i.e., the outer optimal value of β) increases with Riτ , reaching four times its
unstratified value at the highest Riτ considered. The optimal values of β in the three considered cases
are reported in Table IV. It is also noteworthy to observe that for the larger value of Riτ , the range

FIG. 6. Contours of Gmax in function of α and β for Riτ = 60 (left), Riτ = 120 (middle), and Riτ = 480
(right), where Gmax refers to the max value of the gain in time. The values of β used are [1, 1.25, 1.5, 1.75, 2,
2.5, 3, 3.5, 4, 5, 7.5, 10, 12.5, 15, 20, 25, 28, 30, 32, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150,
160, 170, 180, 190, 200, 210, 250, 300, 350, 400, 450, 500].



FIG. 7. Gmax versus β for different values of Riτ (left) and versus Riτ for the optimal value of β (right) with
α = 0 and Reτ = 550 (Re = 11390.6). The black and red boxes represent the zoomed-in areas of the plot.

of (small) spanwise wavenumbers allowing a strong energy growth is very large, going from β ≈ 1
to β ≈ 6. It is important to verify whether this optimal spanwise wavenumber range corresponds to
that reported in the DNS of stably stratified turbulent channels. In particular, Fig. 18 of Ref. [21]
provides two-dimensional spectral densities for different Riτ in the “outer” regions, that are found
to lie in the range β ∈ [1, 6], closely corresponding to the optimal values of β found in the present
analysis. Moreover, they report a peak value of λz = 2π/β ≈ 1, which corresponds to a value of
β ≈ 6 as that obtained through our nonmodal analysis for the considered Riτ . The present results
thus suggest that the strong alterations observed by DNS in the energy-carrying large-scale coherent
structures at high Riτ may be due to the changes in the transient energy-growth mechanisms induced
by the presence of a stable thermal stratification.

At the same time, the value of the optimal gain for the inner peak slightly increases at moderate
Riτ . One can notice that the inner optimal value of β decreases slightly with Riτ and for the
case at Riτ = 480 the scale separation is no longer visible; therefore, one can suppose that strong
thermal stratification may lead to the disappearance of the scale separation between the inner and
the outer amplification dynamics, leading towards an intermediate-scale amplification mechanism,
similarly to what is observed in the streamwise spectral energy extracted by the DNS (see Fig. 18a of
Ref. [21]). Moreover, inspecting the optimal perturbation profiles at Riτ = 0 and Riτ = 60 provided
in Fig. 8 (for t = 0) and Fig. 9 (at Topt), it appears that the inner-scale energy-growth mechanism is
not affected at all by the presence of stratification, except for the presence of a weak temperature
streak. The same conclusion can be drawn when the Richardson number is further increased. This
corroborates the observation made through DNS in Ref. [21] that the coherent structures at the wall
are not altered by the presence of stable stratification. Since the inner dynamics is not affected by
the presence of stratification, in the following we will focus on the effect of the increase of Riτ on
the large-scale transient growth mechanisms (β � 6).

A. Case with Riτ = 60

1. Streamwise-independent perturbations (α = 0)

At Riτ = 60, the global optimum is observed at α = 0 and β = 1.699, generating at optimal time
velocity streaks. For these wavenumbers the maximum value of the gain achieved is Gmax = 61.95
at time Tmax = 34.5, and the energy gain curve presents one single peak, as shown in Fig. 10 (left
frame). This maximum energy value is larger than that reported in the turbulent unstratified case, due
to the growth of potential energy. Analyzing the real and imaginary parts of the initial perturbation
that leads to the above-mentioned energy gain Gmax in Fig. 11, one can notice that at initial time the
perturbation consists of positive and negative temperature fluctuations and spanwise rolls, which



FIG. 8. Module of the optimal perturbation at time t = 0 for the inner peak at Riτ = 0 and Riτ = 60 (see
Table IV).

FIG. 9. Module of the optimal perturbation at time t = Topt for the inner peak at Riτ = 0 and Riτ = 60 (see
Table IV).

FIG. 10. Optimal energy gain versus target time at Riτ = 60 for α = 0, β = 1.699 (left), α = 0.5, β = 1
(middle), and α = 0.75, β = 1 (right).



FIG. 11. Real part (upper frames) and imaginary part (lower frames) of the optimal perturbation at time
t = 0 (left) and at time t = Topt = Tmax (right) for α = 0, β = 1.699, and Riτ = 60.

become velocity streaks at target time. Thus, a double transfer of energy occurs, at first due to
the coupling of temperature and velocity terms in the equations and then to the classical lift-up
mechanism. Thus, due to the temperature-velocity coupling, the energy-production mechanism on
which the self-sustaining cycle of turbulence is grounded appears to be overall enhanced by the
presence of stable stratification, at least in the range of Richardson numbers considered in this
study.

2. Streamwise-dependent perturbations (α �= 0)

In order to gain an insight on other possible energy-growth mechanisms within the considered
flow, we extend our analysis of the transient energy growth at nonzero values of the streamwise
wavenumbers. When analyzing the optimal energy gain versus the target time in Fig. 10 (middle
and right frames) for two different nonzero values of α and Riτ = 60, one can observe that the
energy gain curve has two peaks, probably related to switch between two singular values.

In order to investigate this point, we analyze in Fig. 12 the wall-normal profiles of the velocity
and temperature components for the optimal perturbation at target time for the two cases shown
in Fig. 10. In the first case (α = 0.5, β = 1) the global optimum is that at larger target times (see
the middle frame of Fig. 10). As shown in the left frames of Fig. 12, this transient energy growth
leads at the optimal time to streamwise-velocity streaks characterized by a wall-normal symmetry,
recalling the classical lift-up mechanism present in unstratified channel flow [37,38]. Compared
to the optimal mechanism found for α = 0, the temperature streaks appear stronger. Figure 13
shows the optimal perturbation at initial (left) and target (right) time in a cross-stream plane. The
vectors show the presence of typical alternated cross-flow rolls that transport the base flow shear
to create streamwise velocity and temperature fluctuations. While at initial time the temperature
perturbation is spread in the whole domain, at target time it localized in the vicinity of the core
of the channel. Notably, the temperature perturbation is antisymmetric with respect to the center
channel, whereas the streamwise velocity perturbations, which are shown in the x-y plane in Fig. 14
(left for initial time, right for target time), are characterized by wall-normal symmetry. Moreover,



FIG. 12. Real part (upper frames) and imaginary part (lower frames) of the optimal perturbation at Riτ =
60 for cases α = 0.5, β = 1, t = Topt = 25 (left) and α = 0.75, β = 1, t = Topt = 12 (right).

the velocity disturbances are not localized in the wall-normal direction, but their orientation changes
from upwards to downwards in time, suggesting that the Orr mechanism is acting as well [10,39].

However, in the second case (α = 0.75, β = 1), whose energy growth is shown in the right
frame of Fig. 10, the global optimum occurs at shorter target times and leads at the optimal time
to a center-channel temperature peak accompanied by weaker antisymmetric velocity streaks (see
right frames of Fig. 12). Figures 15 and 16 show the optimal perturbation at initial (left) and
target (right) time in two cross sections. Again, some cross-flow rolls that transport the base flow
shear to create temperature fluctuations can be seen. However, the temperature perturbations are
now symmetric with respect to the center channel, while they appeared to be antisymmetric in

FIG. 13. Real part of the optimal perturbation at time t = 0 (left) and t = Topt (right) for α = 0.5, β = 1,
and Riτ = 60 in the plane z-y. Shaded contours of temperature and vectors of w′ − v′.



FIG. 14. Real part of the optimal perturbation at time t = 0 (left) and t = Topt (right) for α = 0.5, β = 1,
and Riτ = 60 in the plane x-y. Shaded contours of u′ and vectors of u′ − v′.

the previous case. At target time, the temperature fluctuations are localized exactly in the center
channel.

As one can observe from Fig. 10, the gain associated to these two mechanisms is comparable,
and changing the streamwise and spanwise wavenumbers the global optimum switches from one
mechanism to the other. A map showing the α and β values for which the global optimum changes
between these two mechanisms is shown in Fig. 17. For each value at the left of the continuous line,
the stronger amplification mechanism leads to wall velocity streaks, while on the right-most side of
the curve the main transient growth mechanism is related to the generation of a central temperature
streak.

In general, it can be observed that for α < β the lift-up mechanism prevails whereas for β >

α the centerline-temperature mechanism dominates the growth, while for α � 1.5 only the latter
mechanism is observed.

In order to gain an insight on the mechanisms ensuring the energy growth in these two distinct
cases, we evaluate the energy exchange by using a generalized version of the Reynolds-Orr equation,
which is currently used in the literature for evaluating the contributions of dissipation and kinetic
energy production in the unstratified laminar case. Thus, we scalarly multiply Eq. (6b) by u′ and
Eq. (6c) by T ′. The resulting equations are then integrated over the entire volume, resulting in the

FIG. 15. Real part of the optimal perturbation at time t = 0 (left) and t = Topt (right) for α = 0.75, β = 1,
and Riτ = 60 in the plane z-y. Shaded contours of temperature and vectors of w′ − v′.



FIG. 16. Real part of the optimal perturbation at time t = 0 (left) and t = Topt (right) for α = 0.75, β = 1,
and Riτ = 60 in the plane x-y. Shaded contours of temperature and vectors of u′ − v′.

modified Reynolds-Orr equations composed of the different terms:
dEk

dt
= −

∫
V

(u′ · (u′ · ∇ )u)dV︸ ︷︷ ︸
Pu

−
∫

V

1

Re
νT (∇u′ : ∇u′)dV︸ ︷︷ ︸

Du+Dv+Dw

+
∫

V

1

Re
(∇νt · (u′ · ∇ )u′)dV︸ ︷︷ ︸

Tur

+ Ri
∫

V
(T ′u′ · ey)dV︸ ︷︷ ︸

Put

, (33)

dEp

dt
= −

∫
V

(T ′(u′ · ∇ )T )dV︸ ︷︷ ︸
PT

−
∫

V

1

RePr
κT (∇T ′ · ∇T ′)dV︸ ︷︷ ︸

DT

. (34)

0 1 2 3 4
0

1

2

3

4

FIG. 17. Values of the spatial wavenumbers for which the optimal energy gain mechanism changes for
Riτ = 60. The map is obtained by representing the isovalues of the difference of the two energy peaks: 
G =
G1st−mech − G2nd−mech. When 
G > 0 the first mechanism prevails; when 
G < 0 the second one dominates.
The boundary represents the isovalue at 
G = 0. The colored dots represent the two flow cases for which the
optimal perturbations are discussed in detail.
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FIG. 18. Energy budget contributions for the optimal mechanism at α = 0.5, β = 1 (left) and for that at
α = 0.75, β = 1 (right) for Riτ = 60.

In Eq. (33), which evaluates the variation of the kinetic energy Ek , one can find the classical
production term Pu, the dissipation terms Du + Dv + Dw, considering the presence of turbulent
viscosity, along with a term taking into account the variation of turbulent viscosity with respect
to the wall-normal direction (Tur) and the temperature-velocity coupling term Put which is the
buoyancy flux production. However, the variation of the potential energy is governed only by the
temperature production PT and thermal dissipation DT [see Eq. (34)].

The time variation of the previously introduced terms is provided in Fig. 18. In the case at smaller
α (left frame), the strongest term is that of velocity production, followed by that of temperature
production, while the other terms are negative almost during the whole time evolution. The only
exception is the temperature-velocity coupling term PuT , which is positive at very short times,
indicating that in this early phase the wall-normal velocity fluctuations and the temperature ones
have the same sign. Nevertheless, this term decreases when the production terms increase, indicating
that the temperature and velocity streaks have opposed sign. However, while the coupling term
extracts kinetic energy from the flow, the very large production of kinetic energy and the temperature
production term PT compensate for this effect. This confirms that in this case the amplification
mechanism may be linked to a velocity-based mechanism such as the lift-up mechanism, which
created high-amplitude velocity and temperature streaky structures (see Ref. [10]).

However, for the larger value of α (right frame), the strongest term is that of temperature
production, followed by that of velocity production, indicating that this mechanism is driven by
the increase of the potential energy rather than the kinetic one, and it is intimately linked to the
presence of stratification. To further corroborate this conjecture, we have performed an optimization
removing the term v′ ∂T

∂y , which is the only energy source of the production term PT , from the

direct temperature equation and its adjoint counterpart T † ∂T
∂y from the adjoint wall-normal velocity

momentum equation. As expected, removing this production term leads to the disappearance of
the second energy peak, the only mechanism leading to a possible increase of the energy gain
being the classic lift-up mechanism. The results can be observed in Fig. 19. Artificially zeroing
the coupling term between velocity and temperature, the energy gain curve presents a single peak
related to the lift-up, while the second mechanism disappears. This corroborates the hypothesis that
this amplification mechanism is intimately linked to the presence of stratification.

Another noticeable feature of this case is the oscillating trend of the different energy contribu-
tions. This behavior is probably related to a beating between the two most important eigenmodes
represented in red in Fig. 20, ωr1 and ωr2. An interaction between these two modes would lead
in this case to an oscillation period T− = 2π/(ωr1 − ωr2) ≈ 13.48 which corresponds well to the
period of the observed oscillations of term PT in the right frame of Fig. 18.
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FIG. 19. Optimal energy gain versus target time (left frame) and module of optimal perturbation (right
frame) obtained by setting the term v′∂T /∂y to zero in the temperature equations, as well as its adjoint
counterpart in the adjoint wall-normal momentum equation, for the case at Riτ = 60, α = 0.75, and β = 1.

B. Case at Riτ = 120

1. Streamwise-independent perturbations (α = 0)

Increasing the value of Riτ up to 120, we notice in Fig. 6 that the maximum gain Gmax occurs
again for α = 0. The map is very similar to the low-Riτ case although it is slightly shifted to higher
values of β and the magnitude of energy is increased by an order of magnitude with respect to the
previous case.

However, as shown in Fig. 21, in this case three local maxima are present in the energy gain
curves, even for α = 0. The first one, which is very weak and associated with very small target
times (Topt = 6.5 in Fig. 21), corresponds to the short-time mechanism discussed before, leading
to a central temperature streak and two antisymmetric velocity streaks, as shown in the left frame
of Figs. 22 and 23 at initial and target time, respectively. The second energy-growth mechanism
peaking at intermediate target times (Topt = 19.5 in Fig. 21) corresponds to the lift-up effect, as
shown in the middle frame of Figs. 22 and 23 at initial and target time, respectively. The last
one, which is the global optimum (Gmax = 405.46, Topt = 23.75) is due to both kinetic energy
and thermal effects and is the first mechanism that returns dominant at long timescales. In fact,
at the optimal time (right frame of Fig. 23), it presents two wall velocity streaks which are highly
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FIG. 20. Eigenspectra for Riτ = 60, α = 0.75, β = 1 (left) and for Riτ = 120, α = 0, β = 2.597 (right).



FIG. 21. Optimal energy gain versus Topt for α = 0, β = 2.597 and Riτ = 120 (left) and close-up of the
first peak (right).

asymmetrical and have opposite sign in the upper and lower parts of the channel, due to a greater
influence of the temperature field which is not symmetrical with respect to the center channel. This
asymmetry, already observed for the first peak, is enhanced by a further increase of Riτ (see the
next section). Similar antisymmetric streaky perturbations have been observed also in the DNS
[21], where for a sufficiently high stratification the core of the channel has been found to act as
a barrier to turbulent momentum and buoyancy transport, dividing the channel into two virtually
separate regions. Furthermore, the initial optimal perturbation related to the third peak presents a
small central temperature streak, which for very large times becomes the perturbation term with the
largest amplitude as a result of a continuous energy exchange between v′ and T ′ (see Fig. 22).

The contributions of the different production and dissipation terms to the energy growth are
thus evaluated for the case leading to the maximum gain. Looking at the left frames of Fig. 24,
one can observe that the largest term is that of velocity production. The term of temperature
production has also a rather large value, although it strongly oscillates in time, similarly to Pu.
This behavior is probably related to a beating of the two less stable eigenmodes (see red symbols in
the right frame of Fig. 20), that would lead in the case under consideration to oscillations of period

FIG. 22. Real part (upper frames) and imaginary part (lower frames) of the initial optimal perturbations at
t = 0 for α = 0, β = 2.597, and Riτ = 120 related to the first (left), second (middle), and third (right) energy
peaks shown in Fig. 21.



FIG. 23. Real part (upper frames) and imaginary part (lower frames) of the optimal perturbations at t = Topt

for α = 0, β = 2.597, and Riτ = 120 related to the first (left, Topt = 6.5), second (middle, Topt = 19.5), and
third (right, Topt = 23.75) energy peaks shown in Fig. 21.

T− = 2π/(ωr1 − ωr2) ≈ 29, T+ = 2π/(ωr1 + ωr2) ≈ 11, roughly corresponding to those observed
in the energy gain curve.

In order to better understand how the energy is exchanged between the different energy pro-
duction terms during these oscillations, we compute the energy flux in the wall-normal direction,
using the approach proposed by Farano et al. [40] and Jiménez [41] generalized to the stratified (but
linear) case.

Using the Reynolds-Orr equations without integration by parts, we found that the energy flux in
the wall-normal direction is (more details in Appendix B)

 = v′ p′.

The latter is integrated with respect to the spanwise and streamwise directions and compared with
the main energy terms, i.e., the velocity and temperature production terms

P′
U =

∫
x

∫
z
(u′ · (u′ · ∇ )u)dzdx, (35)

P′
T =

∫
x

∫
z
(T ′(u′ · ∇ )T )dzdx, (36)

for some time instants of interest, in the right frame of Fig. 24. It can be observed that, in the first
energy-growth phase, the temperature production term always peaks at the center of the channel,
despite having alternating positive and negative values, while the velocity term peaks in a region
closer to the walls and is always positive, confirming that the optimal energy-growth mechanism
is more driven by convection than by buoyancy. The energy flux is essentially directed towards the
center of the channel, being mostly positive (negative) in the lower (upper) part of the channel.
Thus, there appears to be a continuous transfer of energy between the velocity and temperature
terms, where the energy production is essentially driven by the lift-up mechanism closer to the wall
(see the term PU in the left frame of Fig. 24).

To help the reader understand how the energy transfer occurs, we have solved the system of
linearized Navier-Stokes equations imposing as an initial condition the optimal initial perturbations
of the case at Riτ = 120 (those in the right-hand frame of Fig. 22). The velocity u′ and temperature
T ′ at different times have been represented in Fig. 25. From these temporal snapshots, one can easily
observe that a transfer of energy occurs from the temperature at the center of the channel towards
the velocity at the wall and vice versa.



FIG. 24. Energy budget (left) and flux and production (right) for Riτ = 120, α = 0, β = 2.597, and Topt =
23.75. The right plots refer to the time instants identified by the black symbols in the left frames and reported
in the legend.

2. Streamwise-dependent perturbations (α �= 0)

As for the case at Riτ = 60, the different energy-growth mechanisms observed at α = 0 exist
also for nonzero values of α, and become the primary energy-growth mechanisms for given values



FIG. 25. Time evolution of the optimal streamwise velocity u′ and temperature T ′ perturbations for α = 0
and β = 2.597, at Riτ = 120 at times T = 5.8 (left), T = 11.6 (left middle), T = 17.4 (right middle), and
T = 23.2 (right).

of the spanwise wavenumber. Inspecting the map in Fig. 26, it appears that for α > β the optimal
mechanism is the first one generating a temperature streak at the center of the channel, while for
β > α we rather observe a lift-up-based mechanism inducing velocity streaks at the wall. For values
of β � 1.5 the first mechanism returns dominant but at a longer time. In order to verify that there
is no new mechanism in play, an SVD study for a slightly different norm has been performed
which reported the presence of only two singular values that switch over time (more details in
Appendix D).

C. Case at Riτ = 480

1. Streamwise-independent perturbations (α = 0)

Let us now focus on the largest Richardson number case. Again, the global maximum is obtained
for α = 0, as shown in the right frame of Fig. 6. Despite that the global optimum is related to the
lift-up mechanism, different energy gain mechanisms exist for different values of the target time
(as well as for different spatial wavenumbers, as will be shown in the next paragraph). For the case

FIG. 26. Values of the spatial wavenumbers for which the optimal energy gain mechanism changes for
Riτ = 120. This map is obtained by assigning each combination of α and β a value denoting the dominant
mechanism: 10 for the first (short timescale), 0 for the second, and −10 to the first (long timescale).



FIG. 27. Optimal energy gain versus Topt for Riτ = 480, α = 0, and β = 2.2 (left), β = 6 (right).

α = 0, this can be observed in Fig. 27, showing the energy gain curves for two values of β in the
range ∈ [1, 6], for which a strong energy growth is found (see left frame of Fig. 7). The shape of
the energy curve for β = 2.2 closely resembles that observed in the optimal case at Riτ = 120,
showing the presence of three distinct peaks, followed by further energy oscillations due to the
beating phenomenon. However, for larger values of β, only one peak is recovered, at rather slow
time, as shown in the right frame of Fig. 27. Despite these differences in the energy gain curves, for
α = 0 the optimal mechanism leading to these large-scale energy gain peaks appears to be similar
to the previous cases, i.e., a generalization of the lift-up mechanism. However, for larger values of
β we observe an increasing asymmetry in the optimal perturbations, clearly shown by the optimal
profiles in the right frame of Fig. 28, probably due to the shielding effect of the core of the channel,

FIG. 28. Real part (upper frames) and imaginary part (lower frames) of the optimal perturbation at Riτ =
480 for (α, β ) = (0, 2.2) and Topt = 12.3 (left), (α, β ) = (0, 6) and Topt = 9.9 (right).



FIG. 29. Optimal energy gain versus Topt for Riτ = 480, α = 2.5, and β = 0.5 (left) and real (top right)
and imaginary (bottom right) part of the optimal perturbation at Riτ = 480 for (α, β ) = (2.5, 0.5).

as observed in the DNS. This behavior is linked to the increase of the effect of buoyancy over
convection, as the temperature field is asymmetrical, unlike the velocity one.

2. Streamwise-dependent perturbations (α �= 0)

For strong stratification, as shown in Fig. 6, the contours of Gmax considerably extend towards
higher values of α, leading to energy amplification of three orders of magnitude for values of α up
to 2. For increasing values of α > β, the main amplification mechanism is that generating a central
temperature streak at optimal time, shown in Fig. 29 for a case with α = 2.5 and β = 0.5. The two-
dimensional view in Fig. 30 shows the alternating temperature patches created at target time at the
center of the channel, corresponding with small vortices in the x-y plane. Coherent flow structures

FIG. 30. Optimal perturbation at time t = 0 (left) and t = Topt (right) for α = 2.5, β = 0.5, and Riτ = 480
in the plane x-y. Shaded contours of temperature and vectors of u′ − v′.



FIG. 31. Temperature T ′ and wall-normal velocity v′ perturbations for the optimal disturbance at Riτ =
480, α = 2.5, and β = 0.5.

with short streamwise and long spanwise wavelength placed towards the center of the channel are
typically observed in numerical simulations of the same flow case [21,42] and linked to internal
gravity waves. It is known that in the linear gravity waves, the phase difference between vertical
motions and temperature will be ±π/2 [1,43]. Figure 31 clearly shows that the optimal v′ and T ′
perturbations inducing a central temperature peak at the center of the channel are characterized by a
phase lag of π/2 rad, being thus consistent with the development of internal gravity waves reported
in the DNS [21].

IV. CONCLUSIONS

In turbulent flows, the energy-containing coherent structures populating the flow are often linked
to unstable or optimally growing perturbations of the mean flow. A notable example are the wall-
and large-scale streaks in a turbulent channel [44] and the rolls in unstable stratified channel flows
[19]. In order to get insights on the origin of coherent structures in the less investigated case of
the stably stratified turbulent channel flow, in this work modal and nonmodal stability of the mean
turbulent flow has been performed for three different values of the friction Richardson number,
namely, Riτ = 60, 120, and 480. The aim is to assess the influence of stable stratification on the
main features of the most unstable and/or optimally growing structures.

Modal stability analysis has shown that the eigenvalue spectrum is influenced by the value of
Riτ , although for the values of Riτ considered, the flow remains always asymptotically stable.
Notably, for sufficiently high Riτ , an interaction between stable modes having similar growth rate
has been found to induce a low-frequency beating phenomenon. Concerning the nonmodal stability
analysis, we have observed that the optimally growing structures are found for zero streamwise
wavenumber, as in the unstratified turbulent case, but differently from the stratified laminar case.
However, an increase of the friction Richardson number, Riτ , at fixed friction Reynolds number,
Reτ , translates into a magnification of the energy gain at the outer peak of two orders of magnitude.
At the same time, the spanwise wavenumber for which the energy gain peaks has been found to
increase with Riτ , reaching up to four times its value for the unstratified case. For the highest
Riτ considered, the values of β for which a very high energy gain is observed are comparable to
those corresponding to the “outer” regions of high spectral densities reported in the DNS of stably



stratified turbulent channels [21], namely, β ∈ [1, 6]. The present results thus suggest that the strong
alterations observed in the energy-carrying large-scale coherent structures at high Riτ may be due
to changes in the transient energy-growth mechanisms induced by the presence of a stable thermal
stratification.

At the same time, the peak value of the optimal gain for the inner peak slightly increases at
moderate Riτ . However, an inner peak is no longer observed for Riτ = 480. For this value of Riτ ,
the range of spanwise wavenumbers allowing a strong energy growth is very large, leading to the
presence of different peaks for low values of β, but totally hiding the energy gain peak associated
to the inner-scale dynamics. This corroborates the observation made through DNS [21], that the
coherent structures at the wall are not altered by the presence of stable stratification.

For nonzero values of the streamwise, α, and spanwise, β, wavenumbers, the energy gain curve
shows two or even three different peaks, related to different mechanisms. The optimum occurring
at shorter target times leads at the optimal time to a center-channel temperature peak, whereas a
modified lift-up mechanism is observed at slightly larger target times. In general, it has been found
that for α < β the lift-up mechanism prevails whereas for β > α the centerline-temperature mecha-
nism dominates the growth. In the former case the strongest term in the perturbation energy budget
is that of velocity production, followed by that of temperature production, while the other terms are
negative almost during the whole time evolution. This confirms that in this case the amplification
mechanism may be linked to a velocity-based mechanism such as the lift-up mechanism, which
created high-amplitude velocity and temperature streaky structures. However, for larger values of
α, the strongest energy-budget term is that of temperature production, followed by that of velocity
production, indicating that this mechanism is mostly driven by the increase of the potential energy
rather than the kinetic one, and it is intimately linked to the presence of stratification. Increasing the
Riτ to the largest considered value, we observe an increasing asymmetry in the optimal perturbations
for larger values of β, which is similar to the behavior observed in the DNS by Garcia-Villalba and
Del Alamo [21], which has been ascribed by these authors to the shielding effect of the core of
the channel. This behavior is linked to the increase of the effect of buoyancy over convection, as
observed in previous DNS [21]. Moreover, for the stronger stratification considered here, a large
amplification is found also for optimal perturbations with streamwise wavenumber much larger
than the spanwise one. This perturbation inducing temperature patches at the center channel phase
lagged of π/2 with the wall-normal velocity, similarly to gravity waves recovered in the DNS for
sufficiently large stratification.

The present work has thus identified several optimally growing structures having features resem-
bling those of previous DNS observations. However, a one-to-one comparison of the rms velocity
profiles, wavenumber spectra, and other flow statistics has not been possible, due to the very limited
availability of literature data on stably stratified turbulent channel flows. Future works will aim
at carrying out DNSs of the considered flow cases to be directly compared to the stability results
discussed here. The availability of these new DNS data would provide us an opportunity to extend
the analysis to higher Reynolds and Richardson numbers. Moreover, we will aim at extending the
present analysis to different flow cases, such as the turbulent stably stratified atmospheric boundary
layer flow, whose coherent structures are highly relevant for the field of wind turbine flows.

APPENDIX A: TURBULENT UNSTRATIFIED CASE RESULTS

For the unstratified turbulent case, we used the same equations proposed in Sec. II, but the
approach to eddy viscosity was different. In fact, for the range of Reτ considered, the analytical
relation of Cess [25] turns out to be an excellent solution, while for the mean velocity profile, the
differential relation proposed by Reynolds and Tiederman was used [14]:

ν+
T (η) = 1

2

(
1 + k2Re2

τ

9
(1 − η2)2(1 + 2η2)2[1 − e(|η|−1)Reτ /A]2

)1/2

+ 1

2
, (A1)
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FIG. 32. Gmax versus β with α = 0 for different values of Reτ in outer scale (left) and inner scale (right).

dU +

dη
= Reτ η

ν+
T (η)

, (A2)

where Reτ = uτ h/ν, U + = U/uτ , η = y/h, ν+
τ = νT /ν, and k and A are two constants A = 25.4,

k = 0.426.
Following what has been done by Pujals et al., we started by considering uniform structures in

the streamwise direction, i.e., we fixed α = 0, but while they worked on the inner scale starting
from the turbulent Orr-Sommerfeld-Squire equations we worked on the primitive formulation. We
considered four cases, namely, Reτ = 500, 1000, 2000, and 5000. In Fig. 32 it is possible to observe
how the outer and inner peaks coincide for the different Reτ considered. The outer peak corresponds
to a wavelength λz ≈ 4 which is the same found by Pujals et al. but is different from the one found
by Del Alamo and Jiménez [26]; moreover the value of the Gmax slightly increases with Reτ .

APPENDIX B: WALL-NORMAL ENERGY FLUX

We start by considering Eq. (6b) written in Cartesian tensor notation:
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By performing the scalar product with u′
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FIG. 33. Comparison for νt at Riτ = 60 (left), Riτ = 120 (middle), and Riτ = 480 (right).

We can replace these three terms and rearrange Eq. (B2) as follows:(
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The equation is similar to that presented by Farano et al. [40] with the difference that here the
nonlinear terms are missing, but in addition we have the turbulent terms described by eddy viscosity.
When Eq. (B3) is integrated in the x direction and z direction, it describes the wall-normal transport
of energy and the flux in the y direction can be simply identified as φ = p′v′.

APPENDIX C: VALIDATION OF THE MODIFIED CESS MODEL

Due to the oscillations present in the profiles of the eddy viscosity νt and the eddy diffusivity κt

we have used the modified Cess formulation as done by Vico [28] after adjusting some parameters
to have a better overlap with DNS.

Figures 33 and 34 provide a comparison between the curves obtained directly with the relations
(5) and those obtained with the analytical formulation in Eqs. (7)–(10). The comparison has been
made in the area close to the wall, y/h < 0.5, where the oscillations are lower for the DNS model.

A good agreement can be observed for the two profiles, thus justifying the use of this analytical
formulation.

APPENDIX D: SINGULAR VALUE DECOMPOSITION FOR THE OPTIMAL CASE AT Riτ = 120

In Sec. III B we have shown that in the optimal case at Riτ = 120, α = 0, and β = 2.597 the
gain curve has three distinct peaks. One might think at first that the three peaks are related to three

FIG. 34. Comparison for κt at Riτ = 60 (left), Riτ = 120 (middle), and Riτ = 480 (right).



FIG. 35. Singular value decomposition for the case at Riτ = 120, α = 0, and β = 2.597 with a constant
prefactor for the potential energy.

different mechanisms by observing the behavior of the optimal perturbations, but only an SVD
analysis can actually prove this.

We thus performed the optimization using the SVD, despite that for the potential energy a
constant prefactor (1 in our case) must be used to avoid the optimization of a seminorm. Despite the
use of a different prefactor than in the direct-adjoint method, it can be seen in Fig. 35 that the shape
of the gain curve is quite similar and that the three peaks present are due to the switching of only
two singular values.
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