
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/24882

To cite this version :

Adil EL BAROUDI, Jean Yves LE POMMELLEC, Vincent COUANET - Love waves propagation in
layered viscoelastic waveguides characterized by a Zener model - Sensors and Actuators: A.
Physical - Vol. 369, p.8 - 2024

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/24882
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


Love waves propagation in layered viscoelastic waveguides characterized by
a Zener model
A. El Baroudi ∗, J.Y. Le Pommellec, V. Couanet
LAMPA, Arts et Metiers Institute of Technology, 2 bd du Ronceray, 49035 Angers, France

Keywords:
Love waves
Viscoelastic material
Zener model
Creep and relaxation phenomena
Analytical approach

A B S T R A C T

This paper describes a theory of surface Love waves propagating in lossy waveguides consisting of a viscoelastic
layer deposited on a semi-infinite elastic substrate. The Zener model to describe the viscoelastic behavior
of a medium is used. This simple model captures both the relaxation and retardation. A new form of the
unsteady momentum equation for viscoelastic waveguides has been established. By using appropriate boundary
conditions, an analytical expression for the complex dispersion equation of Love waves has been deduced. The
influence of the loss factor and the ratio of shear moduli of the surface layer on the dispersion curves of
Love waves velocity and attenuation is analyzed numerically. The numerical solutions show the dependence
of the velocity change and the wave attenuation in terms of the loss factor and the ratio of shear moduli.
The obtained results show that the change in the ratio of shear moduli can represent a hardening or softening
effect of the surface layer. These effects depend on the loss factor value of the surface layer. In addition,
these results are novel, fundamental and can be applied in the characterization of the viscoelastic properties
of soft biomaterials and tissues, in nondestructive testing of materials, in geophysics and seismology. Thus,
the obtained complex dispersion equation can be very useful to interpret the experimental measurements of
Love waves properties in viscoelastic waveguides.

1. Introduction

There is an increasing demand of highly sensitive analytical tech-
niques in the fields of biotechnology [1], ultrasonic coatings protec-
tion [2], medical diagnostics [3] and chemistry [4]. Optical and acous-
tic waves sensing technologies are currently used [5]. In particular, the
Love wave acoustic sensors have attracted increasing attention from the
scientific community during the last two decades, due to their reported
high sensitivity to the surrounding environment. Various scientific
and engineering domains implied Love waves, such as viscosity sen-
sors [6–17], nondestructive testing and material characterization [18–
22], geophysics and seismology [23–28], etc.

Love wave is a transverse surface wave having one component of
mechanical displacement, parallel to the surface and perpendicular to
the direction of wave propagation. The Love wave sensor is a layered
structure formed by a piezoelectric substrate and a guiding layer [8,
12,29]. In addition, the condition for the existence of Love waves is
that the bulk transverse wave velocity in the layer is lower than that
in the substrate. The difference between the mechanical properties
of the guiding layer and the substrate creates an entrapment of the
acoustic energy in the guiding layer keeping the wave energy near the
surface [30]. The confinement of the wave in the guiding layer makes
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Love wave devices very sensitive towards any changes occurring on the
sensor surface [31].

Classical Love waves were initially analyzed in lossless waveguides,
consisting of an elastic surface layer deposited on an elastic substrate.
As a result, the wave number of the Love wave was real and the wave
propagated unattenuated, i.e., its amplitude was constant as a function
of the propagation distance. Very few papers were published up to date
on Love waves propagating in lossy waveguides, i.e., in waveguides
whose surface layer and/or substrate are lossy. Among these articles we
find those of Kielczynski al. [32,33] in which the Love waves properties
(phase velocity and attenuation) have been determined analytically
where the surface layer is considered as a viscoelastic material which
follows the Kelvin-Voigt model. Qualitatively, Kelvin-Voigt model gives
retarded elastic behavior and represents a crosslinked polymer. In addi-
tion, the Maxwell model gives steady-state creep and would represent
an uncrosslinked polymer.

However, most polymers do not exhibit viscoelastic behavior de-
scribed by the simple Kelvin-Voigt and Maxwell models because the
conformational changes and the viscous flow are constrained by a
multitude of physical entanglements and chemical crosslinks which
impair viscoelastic flow in a very complicated way. The situation is
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Fig. 1. Waveguide structure geometry (3D and 2D) with a viscoelastic surface layer of thickness ℎ, deposited on an elastic half space. Love waves are polarized along the 𝑥3 axis,
they propagate in the 𝑥1 direction and their amplitude decays asymptotically along the 𝑥2 axis. 𝜌𝑣, 𝜇1, 𝜇2 and 𝜂 correspond to the density, shear modulus and viscosity of the
surface layer. 𝜌𝑒 and 𝜇𝑒 the density and shear modulus of the elastic half space.

further complicated if the polymer in question has a complex morphol-
ogy such as crystalline domains dispersed in an amorphous matrix,
microphase separated polymer domains and interpenetrated polymer
networks. For these materials, more elaborate spring dashpot models
(for example Zener model) have to be employed to effectively describe
their complicated viscoelastic behavior. Therefore, the main goal of
this article is to use a more elaborate viscoelastic model that captures
both the relaxation and retardation in order to evaluate the impact
of losses in the surface layer on the propagation characteristics of the
Love waves. For this purpose, the generalization of Newton’s second
law based on Zener’s model is necessary. This generalization leads to
an analytical model to study this propagation.

2. Description of Love wave surface waveguide

The geometry of the waveguide structure with a viscoelastic (lossy)
surface layer of thickness ℎ, deposited on an elastic (lossless) half space
is shown in Fig. 1. The mechanical displacement 𝑢3 of the Love wave
is directed along the 𝑥3 axis, which is perpendicular to the direction
of propagation 𝑥1 and perpendicular to the 𝑥2 axis pointing into the
bulk of the substrate. Love wave is a surface wave, hence its mechanical
displacement 𝑢3 should vanish in the bulk of the substrate for 𝑥2 → ∞. It
was assumed that the amplitude 𝑢3 is constant along the 𝑥3 axis and the
wavefronts are infinitely extended along the 𝑥3 direction. As a result,
all partial derivatives over the axis 𝑥3 vanish.

Continuum mechanics assumes that during deformation the mate-
rial can store elastic energy without losses (dissipation). However, all
real materials display some sort of lossy behavior, especially polymers,
with a behavior that combines energy storing properties of elastic solids
with energy dissipation properties of viscous liquids. Therefore, such
materials were named viscoelastic materials.

2.1. Viscoelastic constitutive equation

The model that captures both the relaxation and retardation is
known as the three-parameter model. This model is obtained by adding
a spring either in series to a Kelvin-Voigt model or in parallel to a
Maxwell model (see Fig. 2). This model is sometimes referred to as
the Zener Model and is employed to describe a material that will
fully recover after a load is removed because the spring connected
in parallel to the Maxwell element will continue to move the piston
of the dashpot back to its original position. Therefore, the simplest
approach to describe viscoelasticity assumes that the material consists
of a viscous element and two elastic components.

Viscoelastic properties of the surface layer are described in this
paper using Zener model. Therefore, the constitutive equation that
describes the relation between force and deformation is expressed in
the following form [34]:

𝜇1𝝉 + 𝜂 𝜕𝝉
𝜕𝑡

= 2𝜇1𝜇2𝜺 + 2
(

𝜇1 + 𝜇2
)

𝜂 𝜕𝜺
𝜕𝑡

(1)

where 𝜺 =
[

∇𝐮 + (∇𝐮)𝑇
]

∕2 stands for the strain tensor. Qualita-
tively, Zener model describes the behavior of a typical polymer. The
Kelvin-Voigt model gives retarded elastic behavior and represents a
crosslinked polymer. The Maxwell model gives steady-state creep and
would represent an uncrosslinked polymer. In addition, with an appro-
priate choice of 𝜇1 and 𝜇2, the Zener model can represent both types of
behavior. Moreover, this mathematical model is used to determine the
loss transmission coefficient of a sandwich structure with a viscoelastic
core [35–37].

3. Mathematical formulation of the problem

In this section, we establish the partial differential equations de-
scribing the Love waves propagation in a viscoelastic surface layer de-
posited on an elastic substrate in terms of the mechanical displacement.
Mathematical analysis begins with linear momentum equation written
in its generalized unsteady form for a Zener type viscoelastic constitu-
tive equation. Subsequently, the appropriate boundary conditions are
formulated for the shear stress and shear mechanical displacement of
the Love wave. The conservation of linear momentum in the absence
of the body forces implies:

𝜌 𝜕
2𝐮
𝜕𝑡2

= ∇ ⋅ 𝝈 (2)

where 𝐮 is the displacement vector, 𝜌 is the density and 𝝈 is the total
stress tensor and can be written as:

𝝈 = 𝜆 (∇ ⋅ 𝐮) 𝐈 + 𝝉 (3)

Here 𝜆 is the Lamé’s first parameter, 𝐈 is the identity tensor and 𝝉 is
the shear stress tensor given in Eq. (1). In order to obtain a generalized
form of momentum equation for a viscoelastic media, we start by
applying the divergence operator to both sides of Eq. (1) and taking
into account Eqs. (2) and (3), yields the following generalized unsteady
momentum equation:

𝜌
(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

)

𝜕2𝐮
𝜕𝑡2

= 𝜆
(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

)

∇∇ ⋅ 𝐮

+
[

𝜇2

(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

)

+ 𝜂 𝜕
𝜕𝑡

]

(

∇2𝐮 + ∇∇ ⋅ 𝐮
)

(4)

The Love wave is taken to propagate in the 𝑥1-direction, with shear
displacement in the 𝑥3-direction. A plane wave in the 𝑥1-direction is
considered, with displacement in 𝑥3-direction only, 𝐮 =

(

0, 0, 𝑢3
)

. Ow-
ing to symmetry, the mechanical displacement should be independent
of 𝑥3, 𝑢3 = 𝑢3

(

𝑥1, 𝑥2
)

.

3.1. Viscoelastic surface layer

The component of the mechanical displacement 𝑢(𝑣)3 along the 𝑥3
axis of the Love wave in the viscoelastic surface layer is governed by the
equation of motion obtained from the second Newton’s law as follow:
[

𝜇2

(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

)

+ 𝜂 𝜕
𝜕𝑡

]

∇2𝑢(𝑣)3 − 𝜌𝑣

(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

) 𝜕2𝑢(𝑣)3

𝜕𝑡2
= 0 (5)



Fig. 2. Maxwell, Kelvin-Voigt and Zener models.

where ∇2 is the Laplacian operator, 𝜌𝑣 the density and the superscript
(𝑣) is used throughout this paper for the viscoelastic surface layer.

3.2. Elastic substrate

In this work the substrate is considered to be a semi-infinite isotropic
elastic medium, and mechanical displacement 𝑢(𝑒)3 is governed, using
the elastodynamic theory by the Navier’s equation:

𝜇𝑒∇2𝑢(𝑒)3 − 𝜌𝑒
𝜕2𝑢(𝑒)3

𝜕𝑡2
= 0 (6)

where 𝜇𝑒 is the storage shear modulus and 𝜌𝑒 the density. Note that
Eq. (6) can easily be obtained when the viscosity 𝜂 is set identically
to zero in Eq. (5). The superscript (𝑒) will be employed throughout this
paper for the elastic substrate.

3.3. Analytical solutions for the equations of motion

In this paper it is assumed that the analyzed Love wave is time
harmonic, i.e., its propagation is described by an exponential propa-
gation factor exp

[

𝑗
(

𝑘𝑥1 − 𝜔𝑡
)]

, where 𝑗 =
√

−1, 𝑘 is the wave number
of the Love wave and 𝜔 its angular frequency. Since surface layer is
viscoelastic the wave number 𝑘 will be in a complex-value quantity
𝑘 = 𝑘𝑟 + 𝑗𝑘𝑖 where the real part 𝑘𝑟 determines the Love wave velocity
and the imaginary part 𝑘𝑖, is the Love wave attenuation. Moreover,
mechanical displacements 𝑢(𝑣)3 and 𝑢(𝑒)3 of a time-harmonic Love wave,
propagating along the 𝑥1 axis, and polarized along the 𝑥3 axis, are
sought in the following form:

𝑢(𝑣)3
(

𝑥1, 𝑥2, 𝑡
)

= 𝑈𝑣
(

𝑥2
)

𝑒𝑗(𝑘𝑥1−𝜔𝑡)

𝑢(𝑒)3
(

𝑥1, 𝑥2, 𝑡
)

= 𝑈𝑒
(

𝑥2
)

𝑒𝑗(𝑘𝑥1−𝜔𝑡)
(7)

where 𝑈𝑣
(

𝑥2
)

and 𝑈𝑒
(

𝑥2
)

represent the distribution with the depth of
the mechanical displacement in the viscoelastic surface layer and in
the substrate, respectively. After substitution of Eq. (7) into equations
of motion (5) and (6), one obtains the following differential equations
of the second order:
(

𝑑2

𝑑𝑥22
+ 𝛽2𝑣

)

𝑈𝑣
(

𝑥2
)

= 0 ,

(

𝑑2

𝑑𝑥22
− 𝛽2𝑒

)

𝑈𝑒
(

𝑥2
)

= 0 (8)

where 𝛽𝑣 and 𝛽𝑒 are given in the following form:

𝛽2𝑣 = 𝑘2𝑣 − 𝑘2 , 𝛽2𝑒 = 𝑘2 − 𝑘2𝑒 (9)

in which the wavenumbers 𝑘𝑣 and 𝑘𝑒 are expressed as:

𝑘𝑣 = 𝜔
𝑐𝑣 (𝜔)

, 𝑘𝑒 =
𝜔
𝑐𝑒

and 𝑐𝑣 (𝜔) =
√

𝜇 (𝜔) ∕𝜌𝑣 is the complex shear wave velocity in the
viscoelastic surface layer and 𝑐𝑒 =

√

𝜇𝑒∕𝜌𝑒 is the shear wave velocity
in the elastic substrate. Furthermore, the complex shear modulus 𝜇 (𝜔)
present in the complex shear wave velocity 𝑐𝑣 (𝜔) can be defined
according to the used viscoelastic constitutive equation as:
𝜇 (𝜔)
𝜇2

= 1 + 𝛼

1 + 𝛼2

𝜔2𝛿2

− 𝑗 𝜔𝛿

1 + 𝜔2𝛿2

𝛼2

(10)

where the Zener time 𝛿 = 𝜂∕𝜇2 characterizes the crossover from
elastic to viscous behavior, and 𝛼 = 𝜇1∕𝜇2 represents the ratio of the
shear moduli. By contrast, the shear modulus 𝜇𝑒 of the lossless elastic
substrate is a real number and does not depend on the wave frequency.
Note that the real part of the complex elastic modulus refers to the
storage modulus and its imaginary part to the loss modulus [38,39].
In addition, Eq. (10) shows that the mechanical losses in viscoelastic
surface layer, for shear vibrations, can be described by two parameters,
i.e., by the loss factor 𝛿𝜔 and the shear moduli ratio 𝛼. Moreover, since
the amplitude of Love waves must tend to zero for 𝑥2 → ∞, the solution
of Eq. (8) can be written in the form of:

𝑈𝑣
(

𝑥2
)

= 𝐴𝑣 cos
(

𝛽𝑣𝑥2
)

+ 𝐵𝑣 sin
(

𝛽𝑣𝑥2
)

, 𝑈𝑒
(

𝑥2
)

= 𝐴𝑒𝑒
−𝛽𝑒𝑥2 (11)

where 𝐴𝑣, 𝐵𝑣 and 𝐴𝑒 are unknown arbitrary amplitudes.

3.4. Boundary conditions and complex dispersion equation

The solution of the Love wave propagation must satisfy the bound-
ary conditions on the waveguide layer (𝑥2 = 0) and the continuity
conditions along the interface between the viscoelastic surface layer
and the substrate (𝑥2 = ℎ). At the interface 𝑥2 = ℎ, the mechanical
conditions are continuity of displacement and stress components, i.e. :

𝑢(𝑣)3 = 𝑢(𝑒)3 , 𝜎(𝑣)23 = 𝜎(𝑒)23 (12)

The surface of the viscoelastic surface layer is stress-free boundary
(i.e., at 𝑥2 = 0). This requires:

𝜎(𝑣)23 = 0 (13)

Thus, the stress component in terms of the displacement component
along the 𝑥3 axis that will be used in these boundary conditions are
given by:

𝜎(𝑣)23 = 𝜇 (𝜔)
𝜕𝑢(𝑣)3
𝜕𝑥2

, 𝜎(𝑒)23 = 𝜇𝑒
𝜕𝑢(𝑒)3
𝜕𝑥2

(14)

Substitution of the Eqs. (7) and (11) into the boundary conditions (12)
and (13) and taking into account the Eq. (14), yields a system of
three linear algebraic equations in three undetermined amplitudes. For



Fig. 3. Love wave velocity and attenuation as function of the surface layer thickness ℎ for three frequencies and constant surface layer viscosity 𝜂 = 0.37Pa ⋅ s. In Figure (b): solid
lines Kelvin-Voigt, dashed lines 𝛼 = 0.02 and dash-dotted line 𝛼 = 0.01.

nontrivial solutions of the undetermined amplitudes to exist, the deter-
minant of this system has to equal zero, which leads to the following
complex dispersion equation of the Love waves:
[

1 + 𝛿𝜔
(

𝜉
1 + 𝜉2

−
𝑗

1 + 𝜉2

)]

tan
(

𝛽𝑣ℎ
)

−
𝛽𝑒𝜇𝑒
𝛽𝑣𝜇2

= 0 (15)

where 𝜉 = 𝛿𝜔∕𝛼. This equation contains two real-valued unknowns,
i.e. the real part 𝑘𝑟 and the imaginary part 𝑘𝑖 of the complex wave
number of the Love wave. The material parameters of the viscoelastic
surface layer and elastic substrate, along with the operating frequency
of the Love wave and the viscoelastic surface layer thickness, are
incorporated in the dispersion equation and treated as parameters of
this equation. Otherwise, this equation represents an implicit disper-
sion equation of Love waves propagating in the waveguide structure
(see Fig. 1). This dispersion equation was solved numerically using
specialized procedures from the computer package Matlab. Once the
complex wavenumber is obtained, the phase velocity is calculated by
𝜔∕𝑘𝑟. While the imaginary part of complex wavenumber describes the
attenuation per unit length in the propagation direction. Note that
the dispersion equation of the Love wave in an elastic waveguide
is obtained by replacing 𝑘𝑣 in Eq. (9) by 𝑘𝑡 = 𝜔∕𝑐𝑡 where 𝑐𝑡 =
√

𝜇2∕𝜌𝑣 represents the shear wave velocity in the elastic surface layer.
Moreover, knowledge of the phase velocity and attenuation for Love
waves propagating in lossy waveguides is indispensable in modeling
and design of bio and chemosensors [40], whose sensing surface layer
is usually made from a lossy material.

Love waves exhibit a multimode character. In theory, they have
an infinite number of modes with different amplitude distributions,
phase velocities and cut-off frequencies. However, in many practical
applications such as non destructive testing and sensors [41], most
important is the fundamental mode with a zero cut-off frequency.
Therefore, in this work, the attention is focused on the properties of
the fundamental mode of Love waves.

4. Comparison with other studies

In this section, we check the accuracy and numerical robustness
of the dispersion equation developed in this work in a particular
case. A comparison study is performed for a viscoelastic waveguide
characterized by a Kelvin-Voigt model [32]. Thus, same dimension-
less parameters that were used by Kielczynski [32] are introduced.
Furthermore, when the viscoelastic material is modeled by a simple
constitutive equation of the Kelvin-Voigt type, the normalized fre-
quency 𝛿𝜔 represents the loss tangent tan 𝜃 of the material, where 𝜃
is the phase angle between the shear stress and shear strain in the
material [32]. The normalized frequency also represents the loss factor
which is proportional to the ratio of the energy dissipated and the

energy stored for dynamic loading [42]. It was calculated as the ratio
of the imaginary part of the complex shear elastic modulus to its real
part. The inverse of the loss tangent is equal to the mechanical quality
factor 𝑄 of the material. Typical values of the loss factor for shear-
horizontal surface waves range from 10−5 in single-crystal materials to
10−3 − 10−1 in polycrystalline solids and solid polymers [43]. On the
other hand, the mechanical quality factor 𝑄 for the shear-horizontal
surface waves propagating in the upper Earth crust [44], is of the order
of 𝑄 = 50. Thus, the corresponding loss tangent is equal to 2 ⋅ 10−3, a
value much lower than 1. For more description, there is an excellent
article dedicated to the study of the Love waves characteristics in a
viscoelastic medium using the Kelvin-Voigt model [32].

4.1. Love waves velocity and attenuation versus surface layer thickness

Fig. 3 illustrates the dispersion curves of the Love wave velocity and
attenuation as function of the surface layer thickness ℎ, for a viscosity
of 𝜂 = 0.37 Pa s and three frequencies namely 𝑓 = 1, 2 and 3MHz. As it
is seen in Fig. 3(a) the Love wave velocity begins at 𝑐𝑒 for ℎ = 0 and
decreases monotonically to the surface layer shear wave velocity 𝑐𝑡. In
other words, for thicker waveguide surface, properties of the Love wave
are more influenced by properties of the surface layer. Fig. 3(a) also
shows that the shear moduli ratio has insignificant effect on the velocity
in the case of low values of the loss factor 𝛿𝜔. For the three frequencies
𝑓 = 1, 2 and 3MHz, the values of 𝛿𝜔 are respectively 0.0016, 0.0032 and
0.0048. In contrast to the velocity, the Love wave attenuation strongly
depends on the shear moduli ratio 𝛼 of the surface layer.

Fig. 3(b) shows a non monotonic behavior of the Love wave at-
tenuation with the surface layer thickness. Indeed, the attenuation
has a pronounced maximum as a function of surface layer thickness.
For increasing frequencies of the Love wave the maximum occurs for
lower surface layer thickness, i.e., for frequencies 𝑓 = 1, 2 and 3MHz
the maximum occurs, respectively, for ℎ = 292, 146 and 97 μm. The
maximum of Love waves attenuation as a function of the surface layer
thickness was also observed in [14,16,17]. The attenuation observed
in these articles are mainly due to the liquid viscosity which loads the
surface layer. In the present paper however, attenuation is caused by
the viscosity of the viscoelastic surface layer. Fig. 3(b) reveals that the
attenuation as function of the surface layer thickness has a plateau
region, i.e., for frequencies 𝑓 = 1, 2 and 3MHz the plateau region
begins, respectively, for ℎ = 754, 490 and 350 μm. In addition, the results
in Fig. 3 agree very well with those obtained by Kielczynski [32] for
Kelvin-Voigt model.

One can observe an important difference between the Kelvin-Voigt
and Zener models regarding the maximum of Love waves attenua-
tion. Fig. 4 shows that when the Kelvin-Voigt model is assumed, the
maximum of Love waves attenuation is proportional to the square



Fig. 4. Maximum of Love waves attenuation and corresponding thickness versus square
of the frequency.

of the frequency, with a constant of proportionality equal to 8.5697.
Nevertheless, this proportion relationship is considered to fail when the
ratio of the shear moduli 𝛼 of the viscoelastic surface layer is smaller
than 0.4.

4.2. Love waves velocity and attenuation versus loss factor

Fig. 5 exhibits the impact of the loss factor of the surface layer on
the Love waves velocity and attenuation for three values of surface
layer thickness. It can be seen from this figure that the Love waves
velocity and attenuation have a same trend, namely they monotonically
increase with the increasing loss factor of the surface layer. This mono-
tonic trend reveals a creep behavior of the surface layer. As we will
see in Fig. 6, the attenuation evolution is no longer monotonic when
the loss factor of the surface layer exceeds the value of 0.8. Fig. 5 also
shows that the Love waves velocity decreases with increasing in shear
moduli ratio of the surface layer, and however, the attenuation grows
with increasing in shear moduli ratio. This increase in the value of
ratio of the shear moduli leads to a softening effect on the surface layer
stiffness. Moreover, in this range of variation of the loss factor, i.e. from
0 to 0.8, the Zener model perfectly predicts the creep behavior of the
surface layer given by the Kelvin-Voigt model for high values of the
shear moduli ratio. In addition, the results in Fig. 5 agree exceptionally
well with those obtained by Kielczynski [32] for Kelvin-Voigt model.

5. Numerical results and discussion

Having established the accuracy through the comparison study
illustrated in Figs. 3 and 5, further numerical results are given in this
section. The material properties given in Table 1 for the viscoelastic
surface layer and elastic substrate [32] are taken to carry out numerical
calculations in the present paper. In this work, numerical calculation is
performed for a surface layer thicknesses of 600 μm and a frequency
of 1MHz. The material parameters presented in Table 1 in the second
column correspond to the elastic parameters of PMMA poly(methyl
methacrylate). Subsequently, the material parameters given in Table 1
in the third column correspond to the elastic parameters of ST-cut
Quartz.

5.1. Love waves characteristics versus loss factor: Comparison of three
viscoelastic models

Fig. 6 display the dependence of the Love waves velocity and
attenuation on the loss factor of the viscoelastic surface layer for three
viscoelastic models, namely Maxwell, Kelvin-Voigt and Zener (Fig. 2).

Table 1
Material parameters used for the waveguide structure.

Surface layer Substrate

Shear waves velocity 𝑐𝑡 = 1100.85 (m∕s) 𝑐𝑒 = 5060.02 (m∕s)
Storage shear modulus 𝜇2 = 1.43 (GPa) 𝜇𝑒 = 67.85 (GPa)
Density 𝜌𝑣 = 1180

(

kg∕m3) 𝜌𝑒 = 2650
(

kg∕m3)

In this figure, Love waves velocity and attenuation have been plotted
over a wide range of variation of the loss coefficient of viscoelastic
surface layer. It can be seen from this figure that the Love waves
velocity and attenuation do not have a same trend. Velocity mono-
tonically increase with the increasing loss factor of the surface layer
and then reaches a plateau region. The increase in the loss factor
(i.e. increase in the surface layer viscosity) results in an increase of
the Love wave velocity (see Fig. 6(a)). Possible physical explanation
for this behavior may be that viscosity increasing causes an apparent
stiffening of the viscoelastic surface layer and therefore an increase in
its shear modulus. However, the attenuation exhibits a non-monotonic
behavior. First, it increases (as Kelvin-Voigt) with the loss factor of the
viscoelastic surface layer, passes through a maximum, then decreases
(as Maxwell). The increase in attenuation can be interpreted physically
by a partial stiffening of the viscoelastic surface due to the increase in
its viscosity. Otherwise, the decrease in attenuation can be attributed to
a total stiffening of the viscoelastic surface (see Fig. 6(a)). Furthermore,
for low values of shear moduli ratio, relaxation phenomenon appears
for small values of the loss coefficient of surface layer. Moreover,
for high values of the shear moduli ratio, relaxation takes place for
larger values of the loss coefficient. In other words, Zener model can
be used to simultaneously describe both behaviors namely creep and
relaxation. These behaviors are characteristic of complex polymers.
These observations which highlight the simultaneous effect of shear
moduli ratio and loss factor on Love waves characteristics are in perfect
adequacy with the analytical expression of the complex shear modulus
given in Eq. (10).

Otherwise, a very important information can be obtained from the
curves in Fig. 6. These curves show three behavior zones, namely,
creep, relaxation and a transition zone between creep and relaxation.
These zones depend on the loss factor of the surface layer, and in each
zone the Love wave velocity depends on the ratio of the shear moduli.
Firstly, in the first zone (creep) for low values of the loss factor, the
velocity decreases when the ratio of the shear moduli increases. In this
zone, the increase in the value of ratio of the shear moduli leads to a
softening effect on the stiffness of the surface layer. Secondly, in the
zone (transition) for intermediate values of the loss factor, the velocity
curves intersect. Thirdly, in the third zone (relaxation) for high values
of the loss factor, the velocity increases when the ratio of the shear
moduli increases. In this zone, the increase in the value of ratio of the
shear moduli leads to a hardening on the stiffness of the surface layer.

5.2. Love waves characteristics versus normalized loss factor 𝜉

In this paragraph, the influence of the ratio of 𝛿𝜔 (loss factor) and 𝛼
(ratio of the shear moduli) on the Love waves velocity and attenuation
is depicted in Fig. 7. This Figure highlights the combined effect of the
loss factor and the ratio of shear moduli already observed in Fig. 6. The
obtained results are consistent with those of Fig. 6.

In Fig. 7(a), the intersection points of the Love wave velocity
curves with the velocity axis (𝜉 = 0.001) correspond to the values
obtained using the Kelvin-Voigt model. In other words, in the com-
plex dispersion Eq. (15), the complex shear modulus 𝜇 (𝜔) should be
replaced by 𝜇2 (1 − 𝑗𝜔𝛿). The Love wave velocity increases with 𝜉,
passes through a maximum and rapidly decreases. This maximum value
increases with the loss factor. Thus, the increase in velocity related to
creep phenomenon of the viscoelastic surface layer and its decrease
corresponds to relaxation. Moreover, all the curves converge towards



Fig. 5. Love wave velocity and attenuation versus loss factor for three surface layer thicknesses and constant frequency 𝑓 = 1MHz. This Figure is identical to that of Ref. [32].
Solid lines Kelvin-Voigt, dashed lines 𝛼 = 5 and dash-dotted line 𝛼 = 10.

Fig. 6. Love waves velocity and attenuation versus loss factor for three viscoelastic models, a constant surface layer thicknesses 0.6mm and constant frequency 1MHz.

Fig. 7. Love waves velocity and attenuation versus normalized loss factor 𝜉 = 𝛿𝜔∕𝛼 for a constant surface layer thicknesses 0.6mm and constant frequency 1MHz.

the velocity characterizing an elastic waveguide, and in this case the
complex shear modulus becomes real, i.e. 𝜇 (𝜔) = 𝜇2. With regard
to the attenuation plotted in Fig. 7(b), its behavior is consistent with
the trend of Love wave velocity. In particular, during relaxation the
attenuation decreases and takes the value zero when the waveguide is
elastic. In summary, Love wave velocity and attenuation curves show
the transition between the phenomena of creep and relaxation. Zener’s
model highlights this transition. Also, this transition is strongly depend
to the values of the loss factor and the ratio of the shear moduli of the
viscoelastic surface layer.

6. Comparison of two standard linear solid model configurations

As mentioned previously, the model that captures both the re-
laxation and retardation is known as the three-parameter model or
standard linear solid (SLS) model. The first configuration of this model
is obtained by adding a spring in parallel to a Maxwell model (see
Fig. 2). This model is sometimes referred to as the Zener Model. The
second configuration is obtained by adding a spring in series to a
Kelvin-Voigt model (see Fig. 8). This model is sometimes referred to



Fig. 8. Standard linear solid model with Kelvin-Voigt configuration.

as the Poynting-Thomson model. A comparison between these two
configurations is made in this section.

Using equilibrium and compatibility conditions for the Poynting-
Thomson model (see Fig. 8), the viscoelastic constitutive equation (1)
becomes:
(

𝜇1 + 𝜇2
)

𝝉 + 𝜂 𝜕𝝉
𝜕𝑡

= 2𝜇1𝜇2𝜺 + 2𝜇1𝜂
𝜕𝜺
𝜕𝑡

In this case the generalized unsteady momentum equation (4) takes the
following form:

𝜌
(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

+
𝜇2
𝜇1

)

𝜕2𝐮
𝜕𝑡2

= 𝜆
(

1 +
𝜂
𝜇1

+
𝜇2
𝜇1

𝜕
𝜕𝑡

)

∇∇ ⋅ 𝐮

+
(

𝜇2 + 𝜂 𝜕
𝜕𝑡

)

(

∇2𝐮 + ∇∇ ⋅ 𝐮
)

(16)

Therefore, Eq. (16) for the Love wave can be written as:

(

𝜇2 + 𝜂 𝜕
𝜕𝑡

)

∇2𝑢(𝑣)3 − 𝜌𝑣

(

1 +
𝜂
𝜇1

𝜕
𝜕𝑡

+
𝜇2
𝜇1

) 𝜕2𝑢(𝑣)3

𝜕𝑡2
= 0

For harmonic behavior, the complex shear modulus given in Eq. (10)
can be expressed as:

𝜇 (𝜔)
𝜇2

=
1 + 1 + 𝜔2𝛿2

𝛼
(

1 + 1
𝛼

)2
+ 𝜔2𝛿2

𝛼2

− 𝑗 𝜔𝛿
(

1 + 1
𝛼

)2
+ 𝜔2𝛿2

𝛼2

(17)

To plot the Love wave properties in the case of the Poynting-Thomson
model, the complex shear modulus (Eq. (17)) is introduced into the
dispersion Eq. (15).

In this paragraph, Fig. 9 shows the influence of the model used on
the Love waves velocity and attenuation. Velocity and attenuation are
plotted against the loss factor of the viscoelastic surface layer for two
SLS models, namely Poynting-Thomson and Zener. In this Figure, ve-
locity and attenuation have been plotted over a wide range of variation
of the loss factor, and for three values of the shear moduli ratio. The
attenuation behavior in the case of Poynting-Thomson model is similar
to that of Zener model. However, the amplitude and positions of local
maxima are different. Conversely, the model impacts significantly the
Love wave velocity. Unlike the Zener model, Poynting-Thomson model
does not generate the three behavior zones discussed in section 5.1.
The velocity increases when the ratio of the shear moduli increases for
each value of the loss factor. The increase in the value of ratio of the
shear moduli leads to a hardening on the stiffness of the surface layer.

7. Conclusion

In this paper, Love wave propagation in viscoelastic waveguide
is investigated using an original analytical approach. A generalized
analytical form of the complex dispersion equation was developed for
a viscoelastic model of Zener type. Therefore, the curves highlighting
the behavior of attenuation and velocity of Love waves as operating
frequency, thickness, ratio of the shear moduli and loss factor of the
viscoelastic surface layer were obtained. The obtained results can be
very useful in the design and optimization of Love wave sensors.

Generally, the properties of the viscoelastic material can be de-
scribed by a simple standard linear model, which predicts either re-
laxation or creep behavior. An important contribution of this article
is the use of a viscoelastic model of Zener type able of predicting
creep, relaxation and the transition between these two behaviors. These
characteristics of dispersion curves are original and can be particularly
useful in the design of biosensors, viscosity sensors and chemosensors
based on the Love waves. From the performed analysis and numerical
calculations, one can conclude that:

• Dispersion curves for the Love wave attenuation reveal a max-
imum as a function of the surface layer thickness as shown in
Fig. 3(b). For a given frequency, there exists a thickness for which
the attenuation factor attains the maximum. The amplitude of
this maximum strongly depends on the value of the shear moduli
ratio.

• For low values of the loss factor in the creep zone as shown in
Fig. 5(a), the increase in the viscosity 𝜂 of the viscoelastic surface
layer (and consequently also an increase in the loss factor 𝛿𝜔 of
the viscoelastic surface layer) results in an increase of the Love
wave velocity. This is due to the viscosity of the layer, that causes
an apparent stiffening of the material in the layer and an increase
in the effective shear stiffness coefficient. Furthermore, the ve-
locity decreases when the ratio of the shear moduli 𝛼 increases.
This increase in the value of ratio of the shear moduli leads
to a softening effect on the stiffness of the surface layer. From
numerical calculations it follows that the Love wave velocity can
significantly increase, even by 39.6%, e.g., for the shear moduli
ratio 𝛼 = 5, the thickness ℎ = 0.4mm, the frequency 𝑓 = 1MHz
and 𝛿𝜔 = 0.8, the Love wave velocity increases from 1499.67m/s
to 2093.89m/s.

• The Love wave attenuation curves show three behavior zones,
namely, creep, relaxation and a transition zone between creep and
relaxation, see 6(b). These zones depend on the loss factor of the
surface layer, and in each zone the Love wave velocity depends
on the ratio of the shear moduli. Unlike the Kelvin-Voigt model,
the Love wave attenuation depends approximately linearly on the
tangent loss factor of the surface layer and saturates for growing
losses.

• The attenuation behavior in the case of Poynting-Thomson model
is similar to that of Zener model. However, the amplitude and
positions of local maxima are different. Also, Poynting-Thomson
model does not generate the three behavior zones for Love wave
velocity.

This work is original contribution to the state of the art. Since it
covers Love waves characteristics in layered viscoelastic waveguides
characterized by a Zener model, the results obtained can be used
in many fields of science and technology, such as geophysics and
non-destructive testing, and very useful to interpret the experimental
measurements of Love waves properties in viscoelastic waveguides.

CRediT authorship contribution statement

A. El Baroudi: Writing – review & editing, Writing – original draft,
Project administration, Methodology, Investigation. J.Y. Le Pommel-
lec: Writing – review & editing, Investigation, Resources. V. Couanet:
Writing – review & editing, Resources, Software.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.



Fig. 9. Love wave properties versus loss factor for a surface layer thicknesses of 0.6mm. Blue lines represent Zener model and red lines for Poynting-Thomson model. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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