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ABSTRACT
Keywords: Generating vast volumes of data by continuously moving systems in industrial environments presents a
Non destructive control significant challenge. The carbon fiber reinforced polymer (CFRP) tapes control exemplifies this issue, with
“"-‘"'"“! method a strongly increasing production these last decades, and yielding several tens of meters to inspect within a
Composke short time. It leads to a pressing need for rapid and effective quality control and decision-making systems. This
feal time study introduces an innovative method for mitigating data overload by focusing on the defective sections of
the tape by creating a corresponding virtual twin to assess fiber content variations. Data analysis techniques
are employed to differentiate flawless from faulty regions and thermal methods are applied to characterize
observed defects. This article presents a comprehensive approach for enabling the analysis of tens of meters
of tapes at 25 cm/s speed scroll within a competitive timeframe,
Introduction and processing data in real time. Such a control system relies on

Recently, Carbone Fiber Reinforced Polymer (CFRP) production has
been strongly increasing, reaching 181 kilotonnes (kt) in 2021, and
predicted to reach 285kt in 2025 [1]. Hence, the production of CFRP
tape, which is the focus of this study, has also undergone a substantial
increase [2]. This rise can be attributed to the material’'s desirable
characteristics, including its lightweight nature, excellent mechanical
properties, and cost-effective production. The control of these CFRP
tapes is a significant and extensively studied challenge in modern engi-
neering. These tapes exhibit high anisotropy and complexity, finding
widespread application in the aerospace, oil & gas, and automotive
sectors. Moreover, during the last decade, CFRP automated fiber place-
ment has steadily increased, rising from 7% in the 1990s to 35%
in 2020 [3]. Ensuring effective control of CFRP tape is essential for
achieving the high operability of the automated system and optimizing
the performance of the final composite.

One of the key parameters to control in order to obtain favorable
interfacial properties in multilayer manufacturing is the proper fiber
placement [4]. Defects arising from uneven weaving or variations
in the fiber content of the tape can significantly impact the final
laminate mechanical properties [5]. For instance, a low fiber content
affects mechanical characteristics, while an excessive content results in
reduced matrix requirements for tape bonding. Due to high demand
in various applications, CFRP tapes are typically produced in rolls
spanning several hundreds of meters.

In the context of long industrial pieces, the most common and
expedient control approach involves a system capable of acquiring
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non-destructive and contactless physical methods, with various options
available based on different physical principles, such as optics [6],
radio frequencies [7], eddy currents inspection [8] and induction [9].
Among these methods, Line Scan Thermography (LST) [10] stands out
due to its ability to detect and characterize defects and its ease of imple-
mentation on a control line [11]. This study focuses on this particular
method for CFRP tape inspection for the detection and characterization
of fiber content variations as defects.

Prior investigations have delved into the realm of defect detection
using infrared thermography. An initial study [11] demonstrated its
efficacy in this context, particularly in detecting various flaws, includ-
ing issues related to fiber/matrix distribution. This work substantiated
the potential of thermography for defect detection. To harness its
capabilities, it is often coupled with the Pseudo-Static Matrix Recon-
struction (PSMR) algorithm [12,13). This integration facilitates the
utilization of conventional techniques employed in Pulsed Thermog-
raphy (PT), such as Pulsed Phase Thermography (PPT), Pulsed Least
Squares Thermography (PLST), and Principal Components Thermogra-
phy (PCT) [14]. A comparative analysis between PT and LST systems
reveals that LST not only provides a superior Signal-to-Noise Ratio
(SNR) but also enhances image contrast [15]. In an attempt to bypass
the PSMR algorithm and work with Dynamic Thermograms, an alter-
native approach was developed [16]. A Discrete Fourier Transform is
applied on each pixel to reveal variations due to a defect. Because these
phase variations can appear at different Fourier frequencies, defect



Temperature
elevation, [°C]

— 10

IR camera

Re-rolling

Scroll speed

Halogen
lamp

Distance 1
lamp/camera

L]

Un-rolling
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and rolling up on the other side,

detection can be robustified by reducing the noise effect. However, this
methodology suffers from the drawback of being unable to generate
the cooling curve for a specific point, which is essential for accurate
quantification. Furthermore, several studies emphasize the significance
of meticulously selecting parameters to optimize defect detection, [17].
Nevertheless, the context changes when dealing with extremely thin
materials, measuring less than 300 pym in thickness. In such cases, a
reassessment of these parameters becomes imperative. Moreover, an
algorithm designed for quantifying depth (whether in the first or second
half of the tape) and determining fiber content is indispensable. Such
an algorithm should seamlessly integrate with the physical system
and the detection methods appplied. Remarkably, for composite tapes,
such a comprehensive algorithm is currently non-existent but warrants
development.

Adhering to the principles of Industry 4.0 [18], this study aims
to achieve real-time processing of big data. To this end, we present
a comprehensive algorithm that employs data-derived thresholds for
defect detection, substantially reducing the volume of data required
for analysis. A stochastic method is subsequently applied to quantify
observations. Ultimately, our findings enable the creation of a virtual
twin, providing a representation of the tape's characteristics where
defects can be detected.

1. Materials and model
1.1. Materials

The setup configuration for tape analysis is depicted in Fig. 1. The
tape is initially in a rolled form and undergoes a sequence of operations
at constant speed: (1) it is unrolled from one side ; (2) it is passed in
front of the control system, which includes an halogen lamp, followed
by an infra-red (IR) camera ; (3) finally, it is re-rolled on the other side.
The IR camera utilized is a FLIR quantum camera with a frequency of
300 Hz and a spatial resolution of 160 pm. The heating system is an
halogen ramp.

The material under investigation in this study is a thin tape with a
thickness of 250 pm, consisting of longitudinal carbon fibers embedded
in a matrix of PEEK (Poly-Ether-Ether-Ketone). The pertinent properties
of both components are summarized in Table 1. Two distinct mixing
laws are utilizing to calculate the conductivity k of the tape, by em-
ploying a combination of the conductivities from the fibers and matrix:
the Voigt model for conductivity parallel to the direction of the fibers,
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Fig. 2. Variation of the diffusivities along the x and y directions according to the fiber
coatent.

and the Reuss model for the one perpendicular to the fibers [19]. Thus,
the conductivity k can be determined using Eq. (1), representing both
mixing laws with « the fiber content, The tape density p, and heat
capacity ¢, are calculated with the Voigt model. Henceforth, we also
denote the thermal diffusivity by a. The variables indexing by x, y or
z are variables for the given direction. The diffusivities variations are
plotted in Fig. 2. In this study, the controlled composite’s fiber content
is set at 0.5.
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From this mixing law, it is possible to calculate different Fourier
numbers as defined in Eq. (2).
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A first Fourier number can be defined to check the time under the lamp
is much lower than the depth diffusion time. In this case L_ is the width
of the heated area. In this case, the Fourier has to verify F, <1 [20].
This will improve the sensibility to a defect in depth after the lamp. A
second one can be calculated, to define the size of the camera window
L, required for capturing in-depth information. Here the characteristic
length is L, and is set to verify the following condition: F, = 1. With



Table 1
Material parameters of the model.

Thermal conductivity Density p (kg m™) Heat capacity «¢, Thermal diffusivity
AWm K" UK'kg") a(m’s™)
Carbon fibers 100 2 000 800 6.25¢*
PEEK 0.25 1320 1 340 1.4¢7
10", S . with the flux of power Q defined as a spatial step (equation (4)):
| Temperature .
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Fig. 3. lNlustration of the Fourier = 1 on the loglog cooling thermogram after a pulse.
The inflection point indicates the limit of 1D heat transfer due to the sample's width,

a lower Fourier number the diffusion has not reached the back of the
tape. For a higher one, the system is balancing, the maximum contrast
peak is exceeded so no more in-depth information can be obtained. In
the specific case of the material studied, the second Fourier number is
achieved at 0.04s after a static pulse (see Fig. 3).

1.2, Direct model

To model the heat diffusion through a homogeneous section of
a moving tape, the quadripoles method provides an analytical ap-
proach [21]. Considering the insights gained from the thermal study
of Section 1.1 and assuming the system is symmetrical so the diffusion
in the plane perpendicular direction can be neglected, the problem can
be simplified to a two-dimensional system, encompassing the depth
and length dimensions (see Fig. 4). In this scenario, the heat equation
includes a transport term. It corresponds to the movement of the tape.
Its speed v, is quoted v in the model to simplify the writing. We
assume a temperature of 7., well before the heat flux and a null flux
far beyond. Consequently, the system is described by the following set
of equations (see Eqs. (3)):
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It can be readily be extended to a N-multilayer material including
thermal resistances R, between the layers as (7):

o)L 21 ][5

with A, B,, C, and D, the components of the matrix of Eq. (5) for
each layer i of thickness ¢, and material parameters 4,, p,, ¢, and a,.
For a single layer, the surface temperature can be calculated with the
following expression:

coshiye)

O(p) = md’(}’) (8)
In this context, the parameters to be estimated are the diffusivities
along each direction, which are linked to the fiber content through
Eq. (1). Several examples of thermograms with varying fiber contents
are displayed in Fig. 5. In the same figure, thermograms are plotted on
two distances after the lamp: d_,, =0 cmand d_,,, = 2 cm. In Section 2
the optimized distance will be specified.

For the sake of clarity, the various model parameters and their

sensitivities are presented in the Table 2.

cam

2. Study to optimize the camera field of view

One highly sensitive parameter in the model is the camera field
of view, which can also be viewed as the lamp/camera distance. This
section is dedicated to determining the optimal choice between the
two options presented in Fig. 5 to improve sensitivity on the fiber
content. No in-depth information is needed in our study. In the figure,
it appears that a camera field of view between 0 ¢cm and 1 cm is
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ing tape. The different notations are: & the convection coefficient, ¢ the beat flux of the lamp with its width Ly, 1 the

distance to Infinity before the lamp, 4, the distance between the lamp and the camera and L, the camera field of view. In this control system, the lamp and camera remain

statlonary, while the tape moves at a speed ¢ ..
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Fig. 5. (a) Examples of different fiber content thermograms obtained. (b) A zoom is performed on the optimized camera field of view between 2 cm and 8 em after the heating

lamp (see Section 2).

Table 2
Model parameters sensitivity.
Fiber content Velocity Convec- Flux width Camera field of view Camera frequency
tion
Sensitvity High Medium Low Low High -
M Unk n Measured in hw I8W Fixed Optimized Optimized
parameter 1o real-time m= K’
estimate

the most suitable due to its heightened sensitivity to temperature
changes according to the fiber content. However, when employing the
characterization method (presented in Section 3.4), due to the absence
of a reference thermogram for the background (i.e. when the tape
is motionless and the lamp is turned off) during system operation
and to facilitate comparison with the model, a normalization becomes
imperative., The normalization method involves subtracting the last
recorded temperature value from all the thermograms followed by
division by the thermogram’s maximum value. Then, the optimization
is performed on the normalized thermograms presented in Figs. 6(a)
and 6(b). The normalized temperature is denoted as 7.

Based on the reduced sensitivity results after normalization (Figs. 6(c)
and 6(d)), it finally seems more appropriate to set the camera field of
view between 2 cm and 8 cm. This choice is informed by the fact that
the highest sensitivity to fiber content is located around the median
fiber content (0.5), and it is much lower at the extremes. Consequently,
the estimation of fiber content will be most accurate around the
mean value. Also, although the fiber content is not well estimated
at the extremes, this approach enhances the differentiation between
excessively high and excessively low fiber content. Hence, even though
the temperature sensitivity is relatively low, it remains satisfactory in
terms of Signal-to-Noise Ratio (SNR) when using a camera with 0.1K
performance,

3. Image processing method

The overall method proposed in this study consists of several dis-
tinct blocks: threshold definition, velocity measurement, defect detec-
tion, static thermogram reconstruction, quantification of defects, and
the creation of the final virtual twin representing the properties. The
algorithm’s schematic representation is illustrated in Fig. 7.

In all of the following sections, T is the temperature from the model
while DL are Digital Level returned by the IR camera and linked to the
experimental temperature,

3.1. Threshold definition

Initially, given the substantial volume of data acquired by the
control system, a rapid segmentation process is imperative to isolate

the frames containing defects. This constitutes the initial preprocessing
step depicted in the flowchart in Fig. 7. An adaptative threshold s
is determined in real time by taking into account both the intensity
and the size of the defects. Indeed, the size of the defect regions must
encompass multiple pixels to mitigate false positives resulting from
noise. The thresholds are set spatially and temporally, specifically for
each spatial increment in the rolling direction and within a shifting time
interval. This loop evolves during the scan to improve adaptability and
adjusts to exterior disturbances.

To achieve this, a statistical study is carried out on the intensities’
distribution to define two distinct defect detection criteria, for “hot”
and “cold” area (below or above the mean), assuming the proportion
and deviation of this two populations from the mean are different.
When observing the Henry curve in the case of a skewed normal dis-
tribution, we notice a well correspondence for the average population,
but not for the high extreme values (Fig. 8). This discrepancy can be
attributed to the presence of a significant number of minor hot spots.
Indeed, in the event of a defect occurring within the camera’s field of
view, whether the fiber content is low or high, the intensity surpasses
the mean, as observed in Fig. 5(b). Therefore, this lack of distribution
conformity observation is further emphasized by the presence of defects
in the analyzed images.

Considering that the distribution deviates significantly from a nor-
mal distribution, particularly in the case of hot spots, various threshold
methods are compared. We chose to investigate three methods that
appear suitable and have been used in the literature, for example in
the work of L. Smalaky et al. [22].

3.1.1. Threshold from average deviation method

Firstly, despite the non-Gaussian nature of the distribution on the
maxima, the Gaussian assumption is consistent for the remainder of the
histogram. A threshold can be simply defined as the deviation from the
mean over time and the tape width (y direction) :

$(x) = p(x) —n-a(x) 9)

with u the mean, ¢ the standard deviation and n the parameter setting
the distance from the mean. The variables x and y represent spatial
coordinates. Its computational time is about 3 s for 5,000 frames used.
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Fig. 6. Top (a and b): Examples of normalized thermograms obtained from different fiber content. The normalization methad involves subtracting the last recorded temperature

value from all the thermograms followed by division by the thermogram's maximum value, Bottom (¢ and d): Corresponding reduced sensitivity according to the fiber content.
The colorbar units represent temperature (°C), obtained with reducing sensitivity analysis based on the fiber content parameter.

3.1.2. Threshold derived from temperature extrema

The concept of this criteria involves treating defects as either hot or
cold spots, corresponding to the extrema of the distribution. By plotting
the maxima or minima over time and the tape width (y direction), the
distribution of average defect intensity is obtained. A second threshold
can thus be established to segregate anomalies among the extrema
distribution, using the same method as described in Section 3.1.1. Fig. 9
illustrates the method. This threshold is higher than the previous one
in the nearby area of the lamp as it utilizes only the extrema of the
intensity distribution. Its computational time is about 1 s for 5,000
frames used.

3.1.3. Threshold from the Yen method

This method is well-suited for subtracting objects from the back-
ground, making it applicable here to segregate defects from the average
intensity based on the temperature maxima, without the need for
any parameter adjustments. It allows the computation of the upper
threshold based on the intensity distribution of pixels belonging to a
column over time. The algorithm employed to define the threshold is
the Yen algorithm [23]. It is a slower algorithm compared to others (=
7 s to compute for 5,000 frames used), and it operates automatically
without parameters to change, which is advantageous for automation
but may be less controllable.

3.1.4. Comparison

All the different methods yield effective results in defect detection,
each exhibiting distinct tolerances and computational times. For this
study, we opted to utilize the extrema method based on extrema, as it
produces fewer artifacts compared to the “ux — ne” method and is less

noisy than the threshold derived from Yen's method, while also being
faster (see Fig. 10). The method is configured with a parameter n set
to 2.

3.2. Velocity measurement

Simultaneously with the preceding section, as illustrated in Fig. 7,
velocity measurement was conducted. This parameter holds significant
importance in defect tracking, for the model’s performance and char-
acterization. To ensure an efficient velocity measurement, we adopt a
method that entails tracking hot or cold spots, as detailed in [24]. By
plotting a row of the film in the x-direction over time, when hot spots
appear, their motion creates distinct lines with slopes that are propor-
tional to the velocity (Fig. 11(a), left side). To extract these slopes, an
edge detection algorithm is utilized. One of the most popular, the Canny
filter [25], is applied to the image. All the lines are thus detected as
edges (Fig. 11(a), right side). The output of the filter generates a matrix
with ones on the detected edges and zeros elsewhere. Subsequently,
a labeling process is applied to this output. Following segmentation
of the largest continuously labeled lines, when the linear regression
coefficient is close to 1, indicating reliable velocity estimation, the slope
and the velocity are calculated. The final velocity is the average of the
various calculated velocities across all the rows of the film. This method
enables the calculation of longitudinal velocity without any external
sensors, offering high precision (average error above 1.5% compared
to the ordered value) and stability over time, as shown in Fig. 11(b).

3.3. Defect tracking and static thermograms reconstruction

Both defect detection and tracking work jointly. This is the idea
of tracking by detection used in computer vision [26]. Utilizing the
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established threshold outlined in Section 3.1, defects are labeled within
the frames where they occur. Then, to identify corresponding defects,
a comparison is made between two consecutive labeled images, with
the first one being shifted to the right according to the velocity data
acquired in Section 3.2. The confidence of correspondance is measured
with the Jaccard metric [27] as illustrated in Fig. 12. Each defect is
assigned a unique number, enabling individual defect tracking, and
recording various properties (including location, time of appearance,
frequency of occurrence and maximum and minimum intensity).

The inversion process was deployed by constructing pseudo-static
thermograms given the scrolling speed v and using the PSMR method.
Each were based on the dynamic thermograms captured directly by the
camera (Eq. (10)).

Tty + 4t xy + i) = T(ty + A1) (10)

This implies that for each time step, the constructed temperature field is
shifted by the discretized velocity "‘—f, where v represents the velocity, f
is the frequency, and s, correspondg to the size of a pixel (as illustrated
in Fig. 11(a)). Interpolation is applied when the discretized velocity is
non-integer. It is worth noting that errors in the reconstruction can arise
when using wide-angle cameras, potentially introducing distortions at
the image edges. Therefore, a preliminary correction step is necessary
to improve the reconstruction accuracy.

3.4. Defect characterization

The final stage of the developed global algorithm, as depicted in
Fig. 7, focuses on defect characterization. Once a defect is detected
and the pseudo-matrix is reconstructed, the objective is to estimate its
diffusivity, which is closely linked to the fiber content. To accomplish
this task in real time, a stochastic algorithm is employed. This choice
is motivated by its efficiency in terms of computational speed, as it
ensures low computer processing time. Furthermore, not only does this
stochastic approach provides the optimal estimate of the fiber content
but it also offers insights into the probability distribution associated
with this parameter across the entire defined domain.

The estimation method employed in this study is based on Bayesian
inference, derived from Bayes' formula [28] (equation (11)), where 2
represents the fiber content, and 7, denotes the temperature field.

(T, | Fa(f)

11
AT an

x| T,) =

In the formula, the left term is the a posteriori probability density,
utilized to assess the parameters that best fit the observed data. On
the right-hand side, the term a(7;,) corresponds to the marginal prob-
ability of the measurement, treated as a constant to normalize the a
posteriori probability. The term () represents the probability density
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of the parameter f, providing a priori information about the distribution
of parameter probabilities, In our specific case, a uniform probability
density is assumed over the parameter domain f = [0, 1] because of the
lack of any a priori information about the expected fiber content. The
last term, #(T,,,| ), is the likelihood function, providing the probability
of the temperature field given g. In the case of an additive white
Gaussian noise with known variance y, the temperature field observed
can be expressed as Eq. (12) with ¥, B and E the random variables
associated respectively, with the temperature field, fiber content # and
noise ; and f the function describing the model.

Y=f(B)+E (12)

Hence, the random variable Y shares the same distribution as the noise,
given a fixed § [29]. Consequently, the likelihood function can be
explicitly formulated, as illustrated in Eq. (13).

#(T0, 1) ox exp (-yl:nr,,b, - T,ug) (13)

In the end, the estimator of the fiber content § is chosen as the
maximum a posteriori.

Ultimately, the overarching approach to characterization unfolds as
follows: in the initial phase, the baseline fiber content of the composite
is determined using the average thermogram of the tape over time.
Following the initial estimation, further refinement is carried out, fo-
cusing exclusively on estimating the fiber content for the pixels located
in regions of the tape where defects have been identified.

4. Experimental results

The whole methodology presented in the previous section is de-
ployed on an experimental case, It consists of a rolling tape moving
at a velocity of 15 m/min for a duration of 10 min. It corresponds to
approximately 150 meters of material to be characterized and results in
the generation of 20 GB of data with the camera parameters described
in Section 1.1.

4.1. Defect detection and tracking
After calculating the thresholds defined in Section 3.1 and the veloc-

ity described in Section 3.2, frames containing defects were identified
and each detected defect was labeled and tracked as shown in Fig. 14,
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(a) Left: The temperature distribution is depicted for each parallel line. Right: The application of a Canny filter on the constructed temperature field of the line. (b)

the defect area rela- 4.2. Average fiber content measurement

tive to its position in the camera’s field of view, and so on the distance

to the lamp. Once the defects are detected, the characterization method
is applied to the corresponding recorded frames. The characterization
is finally performed only on a few portions of the tape, reducing the
data volume from 20 GB to less than 0.5 GB, allowing a real time data

exploitation.

The average fiber content is then measured. To verify the charac-
terization method’s robustness and repeatability over the experimental
time, average portions of the tape were analyzed. A moving average
is applied to each line over 600 time steps, repeated 300 times on a
2 min interval. The Fig. 15(a) displays one of these average curves
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Fig. 12. Calculation framework for Jaccard index [27]. Following the defect labeling phase in an image, images are displaced based on the measured velocity to identify
corresponding defects in previous images. The Jaccard index serves as the recognition metric.
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and its corresponding fit determined using the maximum a posteriori
estimation (Fig. 15(b)).

A residuals analysis was conducted, revealing that the variance of
the residuals is of a similar magnitude to that of the noise (7,445 =
Se-4 and y,,,. =3e-4). The results obtained for the entire tape seg-
ment are presented in Fig. 16. This finding confirms that the method
is capable of accurately estimating the average fiber content of the
composite material, providing a reliable baseline for comparison with
other measurements. In contrast, the study conducted by K. Miyachi
et al. [30] on the measurement of CFRP diffusivity reveals a similar
level of variability.

4.3. Defect characterization

For the study of defect characterization, as many data are analyzed,
we decided to focus on one specific defect. Once a defect is identified,
the characterization process is applied as described, with the Bayesian
estimation method. This is performed for each line in the region where
the defect occurs. However, in addition to the average fiber content
estimation, an essential step of reconstruction of the static thermograms
becomes necessary. Some obtained thermograms, taken from Fig. 13,
are plotted in Fig. 17. This process enables us to acquire the fiber
content for the region surrounding and encompassing the defect, as
demonstrated in Fig. 18. As expected, the predominant area has a
normal fiber content level, containing no flaws. In the high-intensity
areas, the fiber content highly changed. Therefore, defects are charac-
terized by high fiber content. Here, it aligns closely with the findings
of K. Miyachi et al. [30], indicating low diffusivity and, consequently,
regions of both high and low temperatures where the composite is

inadequately impregnated. It can also be clarified by the findings in
the work of V.L. Louét et al. [31], indicating that the absorptivity of
the heating is greater in areas with high fiber density on the surface.

A complete portion around the defect is presented in Fig. 19. The
whole algorithm runs in less than 2 min on a computer with Intel Core
i7 and 32 GB of RAM, which is approximately 10 times faster than the
control time,

Conclusion and perspectives

This article proposes a fast algorithm for the detection and char-
acterization of defects on a composite tape. This is achieved through
the application of a stochastic method and the separation of the data
between flawless and defective portions. The methodology was devel-
oped with the objective of real-time implementation to address the
necessity for swift control of large quantities of material. This objective
is achieved through real-time defect detection and tracking using the
“tracking-by-detection” approach. The quantitative algorithm operates
concurrently, with a computation time of just a few seconds for each
detected anomaly. The results are promising in terms of accurately
estimating the average fiber content of the tape and characterizing
defects.

Perspectives

The future directions of this research encompass different aspects.
Firstly, the identical study with a fixed setup could be employed to
obtain an initial depiction of the fiber content distribution and to
compare the results from both scans (static and dynamic). Additionally,
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method of enhancement of the defects can be analyzed for a better
resolution of the defect, as in [32,33].

Therefore, a comparative study with the transmission mode (camera
and heating lamp positioned on opposite faces of the composite) could
yield additional insights, such as information on thickness variation or
the depth of the defects.

Finally, an additional avenue for future research involves investi-
gating the detection of defects deep within laminates or multilayer
materials. The sensitivity for these specific defects is weaker due to
their depth. Adaptive thresholding techniques must be employed to
enhance defect detection capabilities, with for instance a dynamically
adjustable threshold level dependent on the depth of the defects to be
detected.
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