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This paper presents an approach exploiting the sensitivity of Lamb waves for characterizing the viscoelastic
moduli and thickness of plates. The analytical sensitivity functions are first derived in the case of an isotropic
plate and are integrated into an iterative inverse problem to optimize its viscoelastic moduli and thickness
based on a zero-finding approach (Gauss-Newton algorithm for a multivariable problem). This method is
validated numerically for a viscoelastic plate and shows high accuracy and low computational cost when

compared to existing methods. Experimental validation demonstrates the ability of the algorithm to assess
simultancously the viscoclastic moduli and the thickness of isotropic plate-like structures.

1. Introduction

The characterization of the elastic properties of materials is critical
for their use in a wide range of applications. Ultrasonic inspection tech-
niques have been used over the years for non-destructive evaluation
(NDE) of the viscoelastic moduli of materials. Some of the ultrasonic
techniques require direct contact [1] with the tested sample, or im-
mersion in water [2] to ensure a good transfer of energy between the
transducer and the sample. The immersion technique usually requires
access to both faces of the material but can also be used in a unilateral
access configuration [3] which is more convenient in an industrial
context. However, the tested sample should fit into the immersion tank,
which can be a challenge for large structures.

The propagation of ultrasonic guided waves is strongly depen-
dent upon material properties such as thickness, density and elasticity
moduli, making them useful for characterization. Lamb waves can
be generated and measured with a non-contact setup in air by using
laser [4]. However, the cost and the required accuracy for laser set-up
constitute serious drawbacks for in-situ applications. Ultrasonic capaci-
tive air-coupled transducers allow generating and detecting ultrasound
in air with a fairly large frequency bandwidth [5]. This technology is
more convenient than laser because of its cost and portability, and is
easily compatible with the industrial environment.

It has been shown that by the measuring of the phase velocity of
several guided wave modes, the elastic moduli of the material can

be inferred [6,7] as well as the thickness of the tested sample [8,9].
However, to the best of our knowledge, none of the existing methods
can evaluate viscoelastic moduli and the thickness simultaneously.

A natural approach for assessing material properties is to solve
an inverse problem consisting in minimizing the difference between
numerical and experimental data (e.g., time domain signals, group or
phase velocity). A number of minimization algorithms have been de-
veloped to solve this type of inverse problem: Simplex algorithm [10],
Gauss-Newton algorithms [11,12], evolutionary algorithms [13,14],
animal flocking behavior algorithms [15,16]) or more recently the
training of a neural network [17]. The choice of the algorithm depends
on several factors such as the conditioning of the inverse problem,
the type of the measured data, etc. With most of these algorithms,
the number of iterations required to converge can be huge depending
on the initial guess and the listed factors (for example about hundred
iterations for Simplex [10] and PSO [16]) in contrast to a Gauss—
Newton scheme that converges rapidly (about ten iterations [11]),
provided that the required assumptions are met. The main drawback of
the Gauss—Newton method is that the calculation of the Jacobian matrix
can be a heavy calculation since it is usually necessary to approximate
the terms inside the matrix because there is generally no analytical
expression.

In this paper, the viscoelastic moduli and the thickness of an
isotropic plate are estimated, simultaneously, using a Gauss-Newton
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algorithm. In addition, the terms inside the Jacobian matrix, which
represents the sensitivity of Lamb modes to viscoelastic moduli and
thickness, are expressed analytically to allow a fast and accurate
estimation of the sought parameters. Section 2 is dedicated to the
calculation of the sensitivity function. Section 3 presents the develop-
ment of the mathematical formalism of the Gauss-Newton procedure
using analytical form of the sensitivity function, Section 4 presents the
experimental characterization of a reference viscoelastic isotropic plate
using the abovementioned formalism.

2. Sensitivity of lamb waves to viscoleastic moduli, thickness and
density

A sensitivity study is the first step in the process of assessing the vis-
coleastic moduli and thickness from measured or simulated data. It has
been shown that some Lamb wave modes are sensitive to specific elastic
moduli, thickness and density while others are insensitive to these
parameters in a given frequency bandwidth [18]. Within the context
of solving an inverse problem to estimate the viscoelastic moduli and
thickness from Lamb waves, it is advisable to use sensitive modes. The
sensitivity of a Lamb wave mode to a given parameter p, among a set
of parameters p is usually defined as the variation in wavenumber k{w)
produced by a perturbation ép, of this parameter [19]. This definition
can be viewed as the derivative of the wavenumber with respect to the
parameter p, as presented in Eq. (1) :

dk(p.w)

dp,

Sf'.: (w) = (1)
where @ = 2x f denotes the angular frequency. The wavenumber
kip.w) is determined from the dispersion equation whose complexity
depends on the characteristics of the medium of propagation e.g, the
material anisotropy and the stacking sequence in the case of composite
material. For isotropic plates, the Lamb modes satisfy the transcenden-
tal equation given by Eq. (2) [20] :

ot _ btan(bh + a)
4k g7 ey qtan{g h + a)

where h is the half thickness of the plate (h = ¢/2), a = x/2 if the mode
is antisymmetric and « = 0 if the mode is symmetric, b = kf, - k2,

kp = wfc; where ¢; = \/C\\/p, ¢ = \[kj =K% ky = @fc; where
oy = /Cgs/p. The elastic moduli C); and Cy correspond to the elastic
moduli Cy,,, and C,,,, respectively using Voigt notation, with 1 the axis
normal to the plate and 2 the Lamb wave propagation direction. Usually
this equation is solved numerically to find the complex (k. @) solution
pairs. Since the function k(p, ) cannot be solved analytically, the ex-
pression of its derivative is complex. Thus, Eq. (1) can be approximated
by finite differences :

(2)

‘wss N kip +idp,)
i - ! /
.S"’) (w) = E _—

=aiw

AL
) +0(dp,) (3)
where 1 denotes the order of approximation of the first order derivative;
N, and D are constants dependent on the order 1. The values of these
parameters are given in Table 1.

Because the material is isotropic, one can calculate analytically the
sensitivity function S, () for a given mode. Let us consider the calcu-
lation of the sensitivity function of Lamb waves to a given parameter
p, 2 0k/dp,. Applying the derivative with respect to p, to both sides of
the Eq. (2) and simplifying the expression leads to:

2
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with:

Table 1
Coefficlent values for the first derivative approximation at orders 1, 2 and 4.

1 bow . D N, N, N, N, N,
0 1 -1 1
2 -1 1 2 -1 0 1
4 -2 2 12 1 -8 0 8 -1
Table 2

Coefficient values for the derivative of &7, &7 and h with respect to the
parameters C,,, Cy,, ir and p.
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and the value of the derivatives dkj /dp,, k3. /dp, and ah/dp, for
parameters p; = Cy,, Cgq, h and p are given in Table 2.

The sensitivity functions are calculated for the case of an isotropic
Perspex plate using viscoelastic moduli provided in Ref. [21], the values
of which are: €}, = (8.5 + 0.36i) + (0.1 + 0.02i) GPa and C,, = (2.5
+ 0.1i)+ (0.2 + 0.1i) GPa with a thickness ¢ = 3.90 mm measured
using a caliper. In that paper, a Hysteretic model is used to model the
viscoelasticity of the material. This model assumes that the imaginary
parts of the viscoelastic moduli are not frequency-dependent [22].
To made reliable comparison and because the plate as well as the
frequency magnitude are almost the same, a Hysteretic model is used
in the following development.

The sensitivity to each parameters p; € p, with p = [e.p.C] . C/,.
C[1. G, is caleulated according to Eq. (1) for each mode propagating
in the frequency band 100-500 kHz. The sensitivity is then multiplied
by ép, / kip,w) (6p; = 0.05 x p,) to quantify the effect of 5% change in
each parameter p, on wavenumbers, as presented in [14].

The sensitivity of Lamb modes to parameters in p is represented
in Fig. 1(a-f) for a Perspex plate. The sensitivity is encoded by color
gradient overlaid on the dispersion curves of Lamb modes. This rep-
resentation allows modes to be identified (by their dispersion curve)
as well as the frequency zones for high sensitivity to material pa-
rameters p. Blue areas represent part of the dispersion curves that
undergo a decrease in their wavenumber and red areas represent an
increase in their wavenumber, The black zones represent areas where
IS, (@) X bp, [ k(p. @) > 10% and are considered as zones of high sensi-
tivity. Fig. 1(a—d) presents changes in the real part of the wavenumber,
k', caused by a change in material properties e.p. C|,.C/,, respectively
while Fig. 1(e-f) presents changes in attenuation (imaginary part of
the wavenumber, ") caused by a change in C[{, C[;, respectively. This
choice was done because k" and k" are used later on to assess the real
and imaginary parts of the sought viscoelastic moduli, respectively.

The Fig. 1(a-b) shows that all modes are sensitive to the thickness
and to the density of the plate, High-order modes are particularly
sensitive to these properties in the vicinity of their cut-off frequencies
as shown by the black zones. A small change in density or thickness
is shown to significantly shift these cut-off frequencies and to cause
large changes in wavenumbers around the cut-off frequencies. Fig. 1(c~
d) shows the sensitivity of the Lamb modes to €|, and C/,, respectively.
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Fig. 1. Sensitivity function S, (w) x ép, / k(p.w) as a function of frequency for Perspex plate of thickness 3.9 mm. (a): ¢, (bl p, (c) €], (d) €, (&) C], (f) C[;.

It is important to note that mainly S, and §, modes are sensitive
to €], which makes them essential to quantify C| . Moreover, this
sensitivity is highest close to their cut-off frequency. All modes in
the investigated frequency range are sensitive to C;, but 4, and 5,
are the most sensitive to this parameter and this is particularly true
in the vicinity of their cut-off frequency. Finally, Fig. 1(e-f) presents
the changes in attenuation caused by a 5% change in C|| and C[},
respectively. Some of the trends observed for the sensitivity of k" to €],
and C; are observable for the sensitivity of " to C}| and C},. Modes
S, and S, are still the most sensitive to || while all modes are equally

sensitive to C}}.
]

3. Inverse problem formulation for the characterization of vis-
coelastic moduli and thickness

Usually, to find the material properties p of a plate from the
wavenumber of propagating Lamb wave, an inverse problem is solved
using an optimization algorithm that minimizes a cost function D(p).
The cost function can be defined as the distance between a target
wavenumber 4%"() and a forward wavenumber k (p, @), calculated by
solving the dispersion equation with known p:

N
w

M 2
D)= Y| Y (k@) = kyipe)) )

where p denotes a vector of p, (with j € [1, ..., N,]) properties to be
obtained, m denotes the mode (with m €[1, ..., M]) and i is the index
of the measured point (with i €[1, ..., N"] and N the number of
frequencies of the mode m).

The function D(p) has N, parameters and its global minimum is
usually found by successive calculations with different values of p.
With this approach, the difference between the target wavenumber
and the forward wavenumber is contained in a unique number D(p).
Consequently, the sensitivity of each wavenumber k,_,(p. @) is not taken
into account separately. The sensitivity of the wavenumbers can be
encoded by defining a new function F(p), a vector containing the N_ =

Z,". , N scalar terms F_,(p):

Fpy(p) = k" [(@y) = ky 4 (p.oy)

Fipy=4 F,p)= k:’;(w, )=k APy

Fun, (p) = Ky v (@n ) = kpyn (Poon )

From this formalism and because N = N, one can use a Gauss—
Newton (GNA) algorithm to approximate the roots of Fip) by an
iterative process. The use of the regularized Gauss-Newton algorithm
on an over-determined system of equations has shown good perfor-
mance as well as quick convergence [11,19]. The estimation of the set
of parameters p at the iteration n + 1 is given by Eq. (6).

Pl =" = T F (") (6)

with Je(p) (V. x N,) the Jacobian matrix of the function F(p) of
expression :

aF ,(p) aF; (p)
dp, dpy
dF,;(p)
Je(p) = ap
J
dFy n,(P) Fyr v, ()
ap 9pn,

Since the Jacobian matrix is rectangular, its Moore-Penrose pseudo-
inverse can be expressed (J.(p™)* Jp(p" )~ Jp(p")*, where the super-
script + denotes transposition and complex conjugation [23,24]. With
the expression of the pseudo-inverse of the Jacobian matrix, Eq. (6)
becomes :

P =" = [(Tpp™) T T ") ("] Fp™) (7)

In addition, it can be shown that the terms inside the Jacobian
matrix relate the sensitivity of a mode m to a parameter p . This means
that if the material is isotropic, the Jacobian matrix can be calculated
analytically, as shown in Eq. (8).

6"‘,”(])) _ 6’(,”(]).&),)
dp; - dp;

= -8, (@) (8)



Table 3

Optimized parameters obtained by Gauss-Newton algorithm (GNA) and Genetic Algorithm (GA)

Initial values

Gauss-Newton Algorithm (GNA)

Genetic Algorithm
(GA)

t=1 t=2 L=4 Analytical
T, = o (GPa) 8.0740.34i + 8.4940.36i + 8.5040.36§ = 8.4940.36i + 8.5040.36i + 8.4440.36i =
1.2640.05i 0.0340.01 (4.340.9i) x 1077 (5.3241.27i) x 10! (4.63+3.351) x 1077 0.1940.01i
K + o¢ (GPa) 2.0640.09i 2.5040.10 & 2504010 = 2.50+0.11 & 2.5040.10 & 2,49+40.10 &
0.3340.01i (1.09+4.181) x 107* (1.76+0.9i) x 107" (2.9641.67i) x 10~ (1.1140.831) x 1077 (2.88+0.131) x 1077
% + o, (mm) 3.81 + 0.29 3.90 + 32 x 10! 390 +73x 10° 3.90 + 29 x 10°¢ 3.90 = 1.6 x 1077 3.89 + 0.03
D + o, (rad/mm)* 7.92 + 7.73 1.68 x 107" + 0.78 x 107 & 217 x 10°° & 0.76 x 107* = 2,06 x 100" +
4.08 x 10+ 117 x 107° 2,64 x 1075 217 x 10-* 6.48 x 10-*
N £ 0p, 41 4=1 51 41 277 = 101
T & ap (5) 8] + 18 148 + 24 223 + 41 18+ 3 7537 & 2754
4. Case studies toward the same value, even for different initial values. It should be

4.1. Simulated experimental data for an isetropic viscoelastic plate

For validation purposes, the characterization of viscoelastic moduli
and thickness is first tested using numerically simulated experimental
data for an isotropic plate. The interest is that the sought parameters,
i.e., viscoelastic moduli and plate thickness, are known (as used as
input data), thus the efficiency and robustness of the method can be
evaluated. Simulated dispersion curves are produced with the set of
parameters p obtained by a reference method and given in Section 2:
C,; = (8.5 + 0.36i) GPa, Cy = (2.5 + 0.1i) GPa, ¢ = 3.90 mm and p =
1200 kg m~*. The goal here is to evaluate the accuracy of the inversion
procedure and to show that the algorithm is able to simultaneously
assess the values of viscoelastic moduli and the thickness of a material
plate.

Since inverse problems solved with the GNA are usually dependent
on the initial guess, the algorithm is executed 20 times with random
initial values 5C,, chosen within a range of +25 % around the exact vis-
coelastic moduli. Since high order modes are considered in the dataset,
the value of their cut-off frequencies must be preserved at the first
iteration, thus the initial perturbation for the thickness is set to /3C,,.
The converging criterion is set according to Eq. (6) by using a relative
criterion of 0.05 % of the parameters. Optimization is performed for
the 20 sets of initial parameters using the proposed approach with the
analytical form of the sensitivity S,J (w) and the approximated form
S',"'(a)) for different orders t of approximation, as presented in Section 2.
Moreover, optimization is carried out using a genetic algorithm (GA)
which involves evolutionary operator to find the global minimum of
a multi-variable function. The following parameters are chosen for
GA: number of individuals in the population = 4, maximum level of
mutation = 5 %. The GA stops as soon as there is no change in the cost
function over 50 generations meaning that the algorithm "reached” the
global minimum. The cost function is defined as the sum of the squared
distances between the dispersion curves shown as in Eq. (5) and is also
calculated for the GNA to compare the performance of both algorithms.

The results are summarized in Table 3. The rows represents the
mean values of the different parameters and the standard deviation
over 20 optimizations. The first three rows represent the values of
the optimized parameters and the last three represent the value of the
cost function, the number of iterations needed for convergence and the
optimization time respectively.

As shown in Table 3, the differences in the optimized properties
between the proposed approach and the genetic algorithm are small.
For the GNA, the relative difference between the optimized properties
and the expected properties is less than 1%. The standard deviation on
the optimized parameters reflects that this type of algorithm converges

pointed out that since the generated input data are noise free, the
inverse problem is well conditioned. This contributes to making the
standard deviation of parameters and the cost function very small.
From a general point of view, the GNA is accurate for both exact
and approximated formulations of the derivative. The change in order
of approximation has an impact mainly on the number of iterations
required for convergence and also on the time required for optimiza-
tion. If the derivative cannot be estimated analytically, and depending
on the accuracy required on the optimized properties, an order of
approximation of t = 2 is the best order choice for solving this inverse
problem since the precision is comparable to that obtained using 1 = 4,
but with a lower computation time.

The use of the analytical form in the optimization procedure ensures
very good accuracy in the optimized properties since the expression
of the derivative is exact, while reducing the computation time signif-
icantly. Compared to the results obtained with the order of approx-
imation /=2, the analytical form of the derivative provides standard
deviations of the optimized parameters that are approximately 10.000,
1.000 and 100 times lower for C,,, C;, and ¢ respectively.

In Table 3 it appears that the GA gives very good results too in terms
of optimized properties, with less than 1% of relative error compared
to the expected values. The standard deviation of optimized properties
reflects that this type of algorithm does not always lead to the same
optimized solution. This observation is reinforced by the very different
cost function values obtained over 20 algorithms. In addition, it can
be noticed that the mean value of the cost function obtained with
the genetic algorithm is about twenty thousand times higher than that
obtained with the GNA, using the analytical form of the derivative.

4.2. Measured experimental data for an isotropic viscoelastic plate

4.2.1. Experimental setup

Since it is difficult to measure the attenuation of many Lamb modes
propagating simultaneously, as noted in [25], the experimental pro-
cedure is divided into two steps. The first one is an experimental
measurement of the real part of the wavenumbers to estimate the
coincidence angle of the propagating modes. To this end, a direct
contact piezoelectric(PZT) transducer of diameter 45 mm with central
frequency f, = 250 kHz (IMASONIC A101) coupled to the plate with
gel is used as an emitter and the receiver is an air-coupled capacitive
transducer of active area 3.3 x 10° mm? with a large angular aperture
(= [0;20] degrees) and large frequency bandwidth (= [100;500] kHz
down to —15 dB). As reported in [26], with this experimental setup it
is possible to simultaneously generate and detect multiple Lamb wave
modes propagating along a plate. The received signal is amplified with
a Cooknell CA7/C charge amplifier. The configuration used for this



Fig. 2. (a) : Experimental setup with PZT emitter and aircoupled capacitive receiver, (b) Experimental setup with two air coupled capacitive ultrasonic transducers.

experiment is shown in Fig. 2(a). The input signal is a ten cycle sine
burst centered at f = 350kHz to excite multiple Lamb modes in the
plate. To measure the wavenumbers of Lamb waves propagating in
the plate, temporal signals are picked up for different positions of the
receiver along the propagation path. The spatial step 4x is 1 mm and
the total displacement of the receiver is 150 mm, thus the Shannon
theorem is satisfied for all wavelengths and even the largest wavelength
is well captured. The Perspex plate considered in the experimental part
is rectangular of dimensions 390 mm x 200 mm with a thickness of
3.90 + 0.02 mm measured using a caliper.

To post-process signals measured in the space-time domain, a
Fourier transform is applied to convert the time scale into frequency
scale, The matrix pencil method is then applied to the resulting spacial-
frequency matrix and chosen for its high robustness to noisy data [27].
Each experimental spectrum u(x,, @) measured at position x = x,
(n € [1,N,] where N, is the number of spatial acquisition points) is
then approximated by the following equation [28]:

M
uix,, ) = Z (%), )¢ Anlrhiax (9)
m

Where M is the number of modes sought, a,,(x,, @) is the amplitude
of the mode m measured at the first position along the path of displace-
ment of the receiver, k,, = k! + k! the complex wavenumber of the
mode m and Ax is the spatial acquisition step. Then, two new Hankel
matrices X, and X, containing the acquired experimental signals are
built :

ulxy, w) w(xy . w)
Xw) =
uxy g, @) ulxy g m)
u(x,, @) u(xy @)
Xiylw) =
WXy g1 @) ulxy )

Where L is the pencil parameter, intrinsic to the matrix pencil
method and is generally chosen as N, /3 < L < N_/2 [29,30]. These
matrices allow to express Eq. (9) as :

Xy = X, e hndr (10)

Next, a singular value decomposition is done on matrix X, such as
X, = USV to find the M singular values that are attributed to the
Lamb modes and the other singular values are associated to noise and
are not conserved. Finally, Eq. (10) can be re-written:

Z=(’_'A""“ (11)
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Fig. 3. Measured coincidence angle (triangle) and calculated coincidence angle with
viscoelastic moduli and thickness given by reference method (solid line) as a function
of frequency.

With Z = §-'U7 V7 X, and the eigenvalues 4, of Z allows to obtain
the complex value of the wavenumber of mode m:

_ FIn(4,,))

K ) = ——— (12)
~ R(Ini4,)]
k:(mm) = A_xm (13)

Additional details on the matrix pencil method can be found in [27,28].

The first experimental step shown in Fig. 2(a) and the above-
described post-processing allow the real parts of the wavenumbers to
be determined and in turn the coincidence angles of Lamb modes as
a function of frequency. The coincidence principle occurs when the
component of the incident (or radiated) wavenumber in the direction
of propagation, k., is equal to the wavenumber of the Lamb mode m,
k.. This equality is also written:

4, = arcsin (&) (14)
k(l

Where @, is the angle of the incident (or radiated) wave and &, is the

wavenumber of the incident wave in air. From the previous equation,

it is deduced that the coincidence angle @, is the angle at which the

transducer should be inclined to generate (or detect) the mode m in

the plate.

Next, the second experimental step is achieved consisting in using

a pair of air-coupled capacitive transducers with narrow angular aper-
ture, so that they are strongly mode selective. These are circular plane



Table 4

Optimization results obtained from reference method (two first column) and obtained from proposed guided

waves method (last column).

Reference
through-transmission
method in air [21]

Reference
through-transmission
method in water [21]

Proposed gulded
waves method

C,, (GPa) 8.5+ 0361 + 89+ 021 = 891 + 0.161 =
0.1 + 0.021 0.6 + 0.11 0.16 + 0.011

G, (GPa) 25+ 01i + 2.3+0.06i1 + 2.26 + 0.05i =
0.2 +0.1i 0.02 + 0.031 0.05 + 0.0011

¢(mm) 3.90 (fixed) 3.90 (fixed) 3.93 = 0.02

elements of 52 mm in diameter, successively inclined at the above-
mentioned angles, to generate-detect pure Lamb modes, as shown
in Fig. 2(b). Angle control is provided by a numerically controlled
goniometer with 0.01 degree precision. As in the first experimental
step, the receiver is moved by 150 mm with spatial step of 1 mm to
quantify the amplitude decay of each Lamb mode along its propagation
path. The complex wavenumbers are then extracted using the matrix
pencil method as explained in the first experimental step.

4.2.2. Experimental results

The coincidence angles extracted from the post-processing of the
wavenumber measured with the experimental setup depicted in Fig. 2(a)
are represented by the triangles in Fig. 3. The solid line represents
the coincidence angle calculated using the viscoelastic moduli and
thickness given by the reference method in Section 2 and shows a
very good agreement with the measurements. The experimental setup
presented in Fig. 2(b) is then used to measure the five modes separately
in order to estimate the wavenumber &' and the attenuation k" of each
of them. The obtained dataset is then used to solve the inverse problem
to optimize, at the same time, the viscoelastic moduli C,,, Cy; and the
thickness ¢ of the material.

The initial guesses chosen for the set of parameters p = [C};, Cg,
¢] are respectively 6.38 + 0.064i GPa, 1.88 + 0.02i GPa, 3.38 mm,
corresponding to a difference of 25% with respect to the reference
viscoelastic moduli and a difference of approximately 13% compared
to the reference thickness. The initial dispersion curves calculated with
this set of parameter k(p) are represented by the dashed line in Fig. 4
as well as the experimental dataset & that represents the target to
be achieved. The algorithm converges after 6 iterations in about 125,
which enables us to find the optimized set of parameters p°”. The dis-
persion curves calculated with the optimized set of parameters k(p”™)
represent wavenumbers that best fit the experimental wavenumbers k'
and are represented by solid line in Fig. 4.

Experimental errors are taken into account by considering a non-
perfect parallelism between the line along which the receiver is moved
and the plate surface [31]. For a mode m, the ratio of the appar-
ent wavenumber measured with a mismatch angle ¢ to the “true”
wavenumber k,, can be defined as :

Ak, =cosh+ %lg;l

The uncertainties are then computed in cases where ¢ = 0.1 degrees,
thus making it possible to create two new sets of dispersion curves, k'™
+ Ak, representing data that could have been measured if an error
had been made in the parallelism. These errors are represented for each
mode by the shadow zones in Fig. 4 and the effect of these errors on the
optimized material properties is calculated using a Newton algorithm
as shown in [32]. The optimized parameters with uncertainties are pre-
sented in Table 4, Cross experiments have been performed to verify the
accuracy of the proposed method, using a robust ultrasonic immersion
technique [21]. The viscoelastic moduli thus obtained for the Perspex
plate sample are also provided in Table 4 for validation purpose.

The optimized values of the real part of the viscoelastic moduli are
very close to those obtained with the reference method applied when
the plate sample is either in air or in water. The relative difference
in €, is less than 5% compared to that obtained by the reference
method, while the relative difference in C[, is about 10% compared
to the reference method in air and less than 2% compared to the
reference in water. The imaginary parts of the viscoelastic moduli are
estimated with a larger relative differences. Compared to the reference
method in water, the relative differences are about 20% and 17% for
€} and CJ; respectively. Finally, the thickness optimized from the
guided waves dataset is very close to that measured using a caliper
(3.90 + 0.02 mm), which represents a relative error of less than 1%.
Specific measurements using non-viscoelastic plates (or with negligible
level of viscosity), e.g. made of metal or glass, have shown that the loss
in amplitude due to the angular opening of the guided ultrasonic beams
can be neglected when compared to the loss due to viscoelastic effects
in the Perspex plate. In this way, the imaginary parts of the evaluated
C), and Cy are assumed to be representative of the viscoelasticity of
the Perspex.

5. Conclusion

In this paper, the sensitivity of Lamb waves to the viscoelastic
properties and thickness of isotropic plates has been derived and used
to formulate an inverse problem. For numerically computed disper-
sion curves, it has been shown that the using of the Gauss-Newton
algorithm provides the solution much more quickly and with a better
accuracy than a genetic algorithm. In addition, the explicit formulation
of the derivative of the wavenumber with respect to a given material
parameter makes the process even faster because there is no need to
numerically estimate the derivative of the wavenumber using a con-
ventional approximated method. The algorithm was successfully tested
for experimental data and showed high robustness when measured
complex wavenumbers were used to assess complex elastic moduli of a
polymer-like material plate. The experimental process consisted in two
steps: one was multimodal generation and detection to quickly estimate
the coincidence angles of all Lamb modes in a frequency range of a few
hundred kHz, using one contact PZT transmitter coupled with gel and
one air-coupled capacitive receiver; the second step consisted in a mode
selective process (based on the use of the previously measured angles)
to accurately evaluate the wavenumber and attenuation of each mode.
The first step could potentially be removed if the material properties
were known approximately (for instance to monitor material aging). In
this way, the material characterization would be totally contact-less in
addition to being single-sided access, thus offering great convenience
for in-situ NDE applications, e.g., to monitor the thickness and vis-
coleastic moduli of mounted components made of various materials,
by simply bringing in the pair of air-coupled transducers and placing
them properly one side of the tested panel. The optimized properties
show very good agreement with reference values obtained using a well
established through-transmission method, with the plate sample being
placed in air or into water, Finally, using the proposed method, it is
possible in just a few second to simultaneously estimate the viscoelastic
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moduli and the thickness of the plate using single-sided experimental
setup in air. To go further, the analytical form of the derivative could
be calculated for more complex structures such as adhesively bonded
assemblies. This work is in progress and should make it possible to
quickly assess the viscoelastic moduli and the thickness of the adhesive
layer, which is of great interest in an industrial context.
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