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Abstract—This paper is a novel research endeavor focused
on addressing cybersickness in virtual reality (VR) experiences.
Traditional approaches to cybersickness prediction and detection
rely on generalized artificial intelligence models and extensive
data collection. However, there has been a lack of research
exploring user-specific intelligence. This paper introduces an
intelligent platform designed to adapt to individual users in real-
time for cybersickness detection. By dynamically adjusting its
behavior and interactions, this platform aims to mitigate cyber-
sickness and enhance the VR user experience. The platform’s
effectiveness was evaluated using physiological data, including
electrodermal activity (EDA) and eye movement signals. The
results demonstrated the efficacy of our system in reducing
cybersickness symptoms.

Index Terms—Virtual reality, artificial intelligence, automated
cybersickness detection and reduction, auto-adaptation.

I. INTRODUCTION

Virtual Reality (VR) has experienced notable advance-

ments, offering opportunities and challenges [1]. Among these

challenges, cybersickness stands out as a major obstacle in

VR technology [2]. Also known as visually induced motion

sickness (VIMS) [3] or simulation sickness, cybersickness

resembles motion sickness and can occur during VR nav-

igation. Symptoms include nausea, oculomotor discomfort,

and disorientation, negatively impacting the usability of VR

technology, especially in critical domains.

Researchers employ both subjective and objective evaluation

methods to assess cybersickness [4]. Subjective evaluation

entails participants completing surveys before and after en-

gaging in VR tasks, utilizing questionnaires such as Simulator
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Sickness Questionnaire (SSQ) [5] and Fast Motion Sickness

Scale (FMS) [6]. Objective evaluation involves monitoring

physiological and behavioral measurements, including postural

sway [7], electrodermal activity (EDA) [8], electroencephalo-

gram (EEG) [9], and electrocardiogram (ECG) [10], to analyze

the occurrence and severity of cybersickness.

The ability to predict cybersickness in VR enhances user en-

joyment and safety. Accurate prediction enables developers to

optimize VR design, creating more comfortable experiences.

This capability is crucial in preventing accidents and injuries

caused by cybersickness.

Artificial Intelligence (AI) plays a vital role in effectively

detecting cybersickness [11] [12] [13] [14] [15] [16]. With its

ability to process large amounts of data and identify patterns,

AI is well-suited for analyzing user behavior, physiological

signals, and environmental factors to detect early signs of

cybersickness. AI-powered systems can then trigger interven-

tions to mitigate its impact. Moreover, these systems can

adapt and personalize their responses based on individual

user profiles, improving the effectiveness of cybersickness

prevention and management. By leveraging its advanced data

processing capabilities and adaptive nature, AI significantly

enhances the user experience and overall safety in virtual and

augmented reality environments.

Recent research has primarily focused on offline training

of general AI models using subjective measurements for the

detection and prediction of cybersickness. Studies by Garcia-

Agundez et al. [10] and Martin et al. [15] utilized bio-signals

and game parameters to predict VR sickness levels. EEG data

has also been effectively used by researchers like Kim et al.

[9], Liao et al. [14], and Jeong et al. [17] using convolutional

and deep neural network algorithms. Most studies focus on



Fig. 1. Overview of the auto-adaptive VR for cybersickness (CS) detection
and adaptation. Integrating three separate stages into a real-time closed loop.

detection and lack interventions to enhance the user experi-

ence. Nevertheless, one closely related research endeavor was

conducted by Islam et al. [18]. They introduced CyberSense,

an automated framework designed to detect the severity of

cybersickness during immersive experiences. However, this ap-

proach requires extensive data collection and the utilization of

pre-trained models to identify cybersickness instances among

user groups and apply suitable solutions. Offline training

for cybersickness detection has limitations such as lack of

individualization, potential data bias, and difficulty in adapting

to new users or scenarios. To address these shortcomings,

real-time, personalized adaptation approaches are essential.

These approaches enhance the accuracy and effectiveness of

cybersickness detection and prediction in VR experiences.

A. Contributions

Our research focuses on the development of an auto-

adapted VR platform that seamlessly integrates AI technol-

ogy to enhance cybersickness detection as demonstrated in

Fig. 1. By analyzing real-time subjective and objective data,

the AI system continuously trains itself, allowing for the

dynamic adjustment of the VR simulation and detection of

cybersickness onset. A key advantage of our approach is that

it eliminates the need for extensive data collection from a

diverse panel of users. Instead, the AI model is individually

trained using minimal user-specific data, enabling personalized

cybersickness detection and tailored reduction methods. The

entire process, including data collection, training, cybersick-

ness detection, and adaptation, operates within a closed-loop

system, optimizing efficiency. This innovative integration of

AI technology proactively addresses cybersickness concerns,

revolutionizing the VR experience for each user.

II. ARCHITECTURE

Fig. 2 provides a comprehensive overview of the system,

highlighting its components and capabilities. The system is

designed as a distributed (client-server) application, utilizing

a TCP/IP socket for development. The client component is

a Unity Package. The server component is developed in

Python. This architecture ensures efficient communication and

data exchange between the client and server. Given the real-

time nature of the auto-adaptation system, a multi-threaded

architecture has been adopted to facilitate simultaneous data

recording and processing. This architecture incorporates mul-

tiple independent processes that operate concurrently, each

functioning at pre-configured intervals (e.g., 1 minute) to serve

specific purposes. By employing this concurrent approach, the

platform can effectively handle the continuous flow of data,

enabling accurate and timely processing.

A. Client Side

On the client side, two essential components contribute to

the functionality of the system.

• VR Application: The VR Application is a driving sim-

ulation that captures eye tracker and head movement

data during the experiment, providing insights into users’

visual behavior and physical responses in the virtual

environment.

• E4 Streaming Server: The Emaptica E4 wristband uti-

lizes advanced sensors to measure diverse physiological

parameters. The E4 Streaming Server establishes a Blue-

tooth connection with the wristband, enabling seamless

communication and data streaming. By connecting to

the wristband, the server efficiently transmits real-time

physiological data for continuous monitoring and analysis

during the VR experiment. These client-side components

ensure effective operation and data collection within the

system.

B. Server Side

The server side of the system incorporates multiple essential

components that work together to ensure its functionality and

performance.

• Automatic Speech Recognition (ASR): The Automatic

Speech Recognition (ASR) component receives the user’s

voice, and converts speech into text for voice-based inter-

actions and inputs. The Google Speech Recognition API

was employed as the ASR component in our platform.

• Data TCP Client: The process receives eye tracker

data and head movement data from the VR application,

establishing a TCP connection for seamless transmission

to the Braint module for further analysis.

• E4 TCP Client: The E4 TCP Client component estab-

lishes a TCP connection with the E4 Streaming Server to

retrieve physiological data captured by the E4 wristband.

This data is efficiently retrieved and made available for

processing and integration into the system’s analysis

pipeline.

• Brain Module: The Brain Module acts as the central

component on the server side, consisting of three sub-

modules:

◦ Pre-Processing Component:This component synchro-

nizes time series data collected from various sensors in

the system. The Empatica E4 wristband incorporates

sensors with different sampling frequencies, and the

component ensures consistency by preprocessing the



Fig. 2. Architecture design and data flow diagram of the implemented platform, a distributed system implemented across Client and Server.

data to a unified frequency of 4 Hz. This allows for the

merging and analysis of data from different sources.

◦ AI Component:
1) Model: Our architecture employs a Stream learn-

ing approach, also known as Online learning or

Incremental learning [19]. Unlike batch learning,

Stream learning trains the model incrementally on a

continuous data stream, allowing the model to learn

from individual observations or small groups of

observations in a sequential manner. This approach

is advantageous for real-time applications with

rapid changes and limited computing resources. We

utilized the River Library [20] for dynamic data

streams and continual learning, defining a pipeline

that includes a scaler transformer and a logistic

regression model with stochastic gradient descent

optimization with a learning rate of 0.01. This

incremental learning update is fast and computa-

tionally efficient.

2) Classification Indicator: We utilized the self-

reported FMS scale as a classification indicator

to categorize the data into sick and non-sick ob-

servations. We adjusted the original FMS scale,

which originally ranged from 1 to 20, to a more

concise scale of 0 to 3 (scale = 0 :non-sick,

scale≥ 1 : sick). This adjustment was necessary as

the participants were unable to report their status

with high-resolution accuracy.

◦ Detection/Adaptation Component: Once the AI

model is sufficiently trained training, following the

protocol (three minutes of reporting ”sick”), and re-

ceives data from both the Data TCP client and the E4

TCP Client within a defined time interval, it identifies

records indicative of sickness. The remaining records

in that data packet are then halted for validation.

Our approach focuses on reducing cybersickness by

Fig. 3. Experimental setup for the study with Meta Quest Pro head-mounted
display (HMD) and Empatica E4 wristband attached to a participant.

mitigating linear and rotational accelerations [8]. When

a sickness-indicative record is identified, a signal is

sent to the VR program to initiate a deceleration of

the virtual car. This is achieved by reducing the engine

power, specifically the main parameter controlling the

car engine torque, by 70%.

III. VIRTUAL ENVIRONMENT AND EXPERIMENT

A virtual driving simulation was developed using Unity3D,

where participants navigated through a city scene using

Logitech-G25 driving tools. The route was standardized to

ensure consistency among participants. Cybersickness assess-

ment involved subjective questionnaires and objective mea-

sures, including head movement and eye tracker data. Phys-

iological indicators were captured using an Empatica E4

wristband. Fig. 3 depicts the experimental setup. In the pre-

study, a total of six participants, aged between 24 and 35

(Male:5, Female:1) were included in the study, and necessary

introductions and consent procedures were conducted. The

exposure time was flexible, transitioning to the adaptation

phase based on participants’ self-reporting. The experiment

aimed to capture accurate data while considering participant

well-being.



TABLE I
COMPARISON OF SLOPE COEFFICIENT OF THE EDA SIGNAL

Phase EDA Slope Coeff.
mean

Training 9.8e-3

Adaptation 6.0e-3

IV. RESULTS AND DISCUSSION

We calculated the average of the signals and performed a

pre-study analysis on EDA [21] and eye movement signals

[3]. Our objective was to compare the observed trends in these

data during the training and adaptation phases, to investigate

the impact of this platform on cybersickness control.

A. EDA Signal Analysis

Comparing the slopes of EDA signals between the training

and adaptation phases yielded valuable insights into the AI’s

impact on cybersickness control (Fig. 4). Linear regression

analyses were conducted on each signal, and the resulting

slope coefficients were compared in Table I. The findings

showed a significant 39% decrease in the mean slope coeffi-

cient of the EDA signal during the adaptation phase compared

to the training phase. Analysis of covariance (ANCOVA)

testing confirmed the hypothesis that the slope changes in the

adaptation phase were significantly different from those in the

training phase (F (1, 5) = 1.95, p = 0.044). The accumulative

effect of motion sickness typically leads to an increasing trend

in signal changes over time [22]. However, our study results

show a contrasting pattern during the adaptation phase, with a

39% decrease in the slope coefficient of EDA. This suggests

that the application of the AI model in this phase mitigates

the intensity of the EDA signal, potentially indicating lower

emotional arousal and reduced cybersickness symptoms.

B. Eye Movement Analysis

Table II summarizes the findings of our eye movement

analysis. During the adaptation phases, we observed a reduc-

tion in the variance of velocity and angular velocity for the

left and right eyes, indicating variability in three directions

(x, y, z). These findings were statistically supported by the

Levene test (velocity p = 1.3922e − 19, angular velocity

p = 5.676e−11), providing significant evidence of a variance

difference between the training and adaptation phases for both

velocity and angular velocity data.

Furthermore, the average eye movement distance was ex-

amined by calculating the Euclidean distance based on the x,

y, and z coordinates. The reduction suggests a more confined

or localized eye movement pattern. The results were further

analyzed using an independent t-test, which indicated that

there is evidence to support the claim that the mean eye

distance differs between the training phase and adaptation

phase groups, with a t − value = 2.81 and a p = 0.0049.

The reduction in average eye movement distance during the

adaptation phase indicates participants exhibited focused and

Fig. 4. Average of change trend of EDA and fitted line during the training
and adaptation phases

TABLE II
COMPARISON OF EYE MOVEMENT SIGNAL

Phase Velocity Angular Velocity Movement Distance
variance variance mean

Training 1.47e-4 8.4e-3 6.3820e-2

Adaptation 3.06e-5 2.0e-3 6.3818e-02

stabilized visual experiences, contributing to decreased cyber-

sickness symptoms. Analysis of eye angular velocity and eye

velocity further supports the improved stability and consis-

tency of eye movements in our system, enhancing interaction

with the virtual environment. These positive effects can be

attributed to the advanced technology, design, and intuitive

control mechanisms of the platform, which reduce the need

for excessive eye movements and provide a smoother visual

experience, ultimately reducing cybersickness symptoms and

enhancing user comfort.

C. Conclusion

This paper presents a novel platform, an intelligent auto-

adapted system designed to enhance immersive simulations

and reduce cybersickness. The platform utilizes data from

physiological sensors and user-reported sickness levels to

train in real-time, enabling automated cybersickness detection

and adaptation of the virtual environment. Through analyz-

ing electrodermal activity (EDA) and eye-tracking data, we



observed a decrease in the accumulative effect of EDA and

improved stability and consistency of eye movements during

the adaptation phase, which correlated with cybersickness. The

study aimed to compare objective data features between the

training and adaptation phases, providing initial insights into

the effectiveness of the proposed platform.
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postural sway signal as indicators to estimate and predict visually
induced motion sickness in virtual reality,” International Journal of
Human–Computer Interaction, vol. 33, no. 10, pp. 771–785, 2017.

[8] J. Plouzeau, J.-R. Chardonnet, and F. Merienne, “Using cybersickness
indicators to adapt navigation in virtual reality: a pre-study,” in 2018
IEEE conference on virtual reality and 3D user interfaces (VR). IEEE,
2018, pp. 661–662.

[9] J. Kim, W. Kim, H. Oh, S. Lee, and S. Lee, “A deep cybersickness
predictor based on brain signal analysis for virtual reality contents,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2019, pp. 10 580–10 589.

[10] A. Garcia-Agundez, C. Reuter, H. Becker, R. Konrad, P. Caserman,
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