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Abstract 

Timber mechanical properties assessment relies on grading methods that use non-destructive measurements in 

input, among which fibre orientation gives satisfactory outcomes. Several models exist in the literature to use fibre 

orientation data, based on either classical beam theory or finite element modelling. The present paper proposes to 

compare them for axial and bending loadings. To this end, the main approach was to use several artificial beams, 

for which fibre orientation was modelled around various knot positions in the tangential plane of wood. It is shown 

that beam theory modelling, despite considering the heterogeneity of moduli of elasticity in beam longitudinal 

direction, does not truly represent the actual deformations that can be depicted with finite element modelling. It 

results in significant differences in the accuracy of the assessment of the local modulus of elasticity, the finite 

element modelling being better. This finding was supported by experimental results obtained on laminated veneer 

lumber beams with a high knottiness. Additionally, this paper provides a comparison of different methods to 

compute localized moduli of elasticity that are typically used as strength predictors. The outcomes indicate that 

their behaviour depends on the loading type (axial or bending), the knot position in the beam, and the length of the 

sliding window across which they were computed. A localized bending modulus of elasticity (MoE) computed 

from the displacements, referred to as the 'apparent MoE', was defined in the objective to improve the accuracy of 

strength predictions. 
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1. Introduction 

1.1  Modulus of elasticity and strength of timber, under axial and bending loading 

The mechanical strength and stiffness of wood material are very variable for many reasons including species, 

growth conditions, and singularities such as knots, or grain deviation. For this reason, it is important to assess the 

mechanical properties of any timber product aimed to be used as a structural element. According to European 

standards, the modulus of elasticity (MoE) and the strength of timber can be measured by either an edgewise 

bending test or an axial tensile test. Tensile strength is known to be statistically lower than bending strength for 

structural timber, i.e. timber containing knots (Steiger and Arnold 2009; Gil-Moreno et al. 2022). As a result, the 

characteristic tensile and bending strengths are clearly differentiated in EN 338 (2016) standard.  

The reference tensile and bending tests to be used in Europe are described in the EN 408 (2012) European standard. 

According to this standard, specimen’s length should exceed the test span so they can be placed such as their 

weakest area, typically where highest knotiness is located, is in the middle of the span. In either of these tests, a 

so-called “local MoE” is obtained by a device placed in the central area of the specimen, measuring the 

displacement of the specimen over a distance of five times the depth of the specimen (depth being the larger 

dimension of the rectangular cross-section). This induces that the local MoE measured according to the European 

Standards is the weakest local MoE of the specimen, as the MoE is actually variable along the length. The strength 

properties are determined from the same tests if the failure effectively occurs away from the grips in the tensile 

test and within the maximum bending moment area in the bending test.  

Timber exhibits the particular behaviour that the strength of the tested specimens is well correlated to their MoE, 

as it has been shown in large-scale studies (Hanhijärvi and Ranta-Maunus 2008; Drewett 2015; Viguier 2015; 

Olsson and Oscarsson 2017; Rais et al. 2021). As a result, when dealing with structural timber containing knots, 

both the local MoE and the strength mainly rely on the stiffness around the weakest area of the board. For this 

reason, it is crucial to assess the effect of wood heterogeneities such as knots and grain deviations on the stiffness 

located in the weakest area of the board. This strategy was followed in the modelling method proposed by various 

authors (Olsson et al. 2013, Hu et al. 2018, Viguier et al. 2018, Lukacevic et al. 2019, Briggert et al. 2020, Duriot 

et al. 2021b, Huber et al. 2022). 

 

1.2 Fibre orientation data sources 

To determine the heterogeneity of the MoE of a wooden beam, it is possible to rely on grading machines that 

measure locally a physical parameter of the wood material, like local fibre orientation or local density. Indeed, 

wood being a highly anisotropic material, strength and elastic properties are far better in the longitudinal direction 

of fibre than in the perpendicular directions, thus fibre orientation is a parameter of first importance. Fibre 

orientation can be measured by using the so-called “tracheid effect”, which is based on the anisotropic scattering 

of concentrated laser light projected to wood surface (Simonaho et al. 2003; Nyström 2003). This technology is 

implemented in current industrial scanners which use rows of laser dots to obtain a typical resolution of about a 

couple of millimeters in the direction of convey and 4 mm crosswise (Olsson et al. 2013; Longuetaud et al. 2022).  

Wood fibre orientation around knots can also be estimated from the so-called “flow-grain” analogy (Goodman and 

Bodig, 1980). This method assimilates the grain deviations in the vicinity of a knot to the streamlines of a laminar 

fluid flow around the knots which are supposed to be elliptical or cylindrical objects. Foley (2001) used the flow-

grain analogy, more precisely the Rankine oval method, to model how the fibres deviate around a knot in a given 

growth layer, i.e. in the longitudinal-tangential LT-plane of the tree, also called tangential plane. Indeed, wood is 

formed in a tree by longitudinal and radial growth, thus it can be seen as an orthotropic material in a cylindrical 

coordinate system. To model fibre orientation in the longitudinal-radial LR-plane of the knot axis, this author used 

exponential functions. Frayssinhes et al. (2020) applied the flow-grain analogy on veneer sheets obtained by rotary 

peeling. Such veneers are thin (typically 3 mm) sheets of wood, that are in the LT orthotropic plane of the tree due 
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to the processing. These authors compared the modelling by Rankine oval method of fibre deviation around the 

knots in LT-plane with laser-dot measurements on a total of 289 knots of various diameters. The modelled fibre 

deviation around knots revealed to be qualitatively in agreement with the experimental measurements. This fibre 

deviation modelling was, however, not perfect: the root mean square error topped 18° very close to the knot edge, 

decreasing to less than 10° at a distance of 3 knot radius from the knot center.  

From these different sources of fibre orientation data, different authors proposed empirical, analytical or finite 

element (FE) models to estimate timber MoE and strength.  

 

1.3 Classical composite beam theory applied to fibre orientation data 

A representative elementary volume of clear wood can be considered as an orthotropic material in a LTR-

coordinate system where 𝐿 is the longitudinal direction of the fibres, 𝑇 the tangential direction, and 𝑅 is the radial 

direction. Assuming linear elasticity, the corresponding compliance matrix is:  
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 (1) 

with 𝐸𝐿, 𝐸𝑇 and 𝐸𝑅 the MoEs in the longitudinal, tangential and radial direction of the fibre, respectively, 𝐺𝐿𝑇, 

𝐺𝐿𝑅, and 𝐺𝑅𝑇 the shear moduli in LT, LR, and RT orthogonal planes, respectively, 𝜈𝐿𝑇 , 𝜈𝑇𝐿, 𝜈𝐿𝑅, 𝜈𝑅𝐿 , 𝜈𝑅𝑇  and 𝜈𝑇𝑅 

the Poisson’s ratio according to the corresponding different directions. 

Although this is the constitutive law that is the closest to the actual material, it is inconvenient  to make a practical 

difference between T- and R-directions. As a result, practical modelling of timber usually considers a transverse 

isotropic behaviour, in which tangential and radial properties are the same. Assuming a plane stress state, Equation 

(1) can be summarized as Equation (2):  

[S] =  

[
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 (2) 

Olsson et al. (2013) proposed to use the fibre angles measured by laser dot scanning, to compute for every data 

point of sawn board surfaces 𝐸𝑥, the MoE in the main, lengthwise x-direction of the specimen, as the inverse of 

the first component of the compliance matrix [S′] obtained by transformation, more specifically a rotation of the 

coordinate system, of the compliance matrix in the material principal direction [S], which gives: 

 

[S′] =  [𝑇𝜃
−1] [𝑆] [𝑇𝜃] =  [

S′𝑥𝑥𝑥𝑥 S′𝑥𝑥𝑦𝑦 S′𝑥𝑥𝑥𝑦

S′𝑥𝑥𝑦𝑦 S′𝑦𝑦𝑦𝑦 S′𝑦𝑦𝑥𝑦

S′𝑥𝑥𝑥𝑦 S′𝑦𝑦𝑥𝑦 S′𝑥𝑦𝑥𝑦

] 
(3) 
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𝐸𝑥 =
1

𝑆′𝑥𝑥𝑥𝑥

=  
1

1
𝐸𝑇

sin4(𝜃) +
1
𝐸𝐿

𝑐𝑜𝑠4(𝜃) + (
1

𝐺𝑇𝐿
− 2

𝜈𝐿𝑇

𝐸𝐿
) sin2(𝜃) 𝑐𝑜𝑠2(𝜃)

 (4) 

where 𝜃 is the angle between the projected fibre direction in the plane of the considered surface and specimen 

main x-direction (which was measured by laser dot scanning in the present case), 𝑇𝜃  is the transfer matrix, from 

the local fibre LT coordinate system to the global specimen coordinate system, dependent on 𝜃, and 𝐸𝑥 is a MoE 

computed locally at the considered data point position, i.e. at the surface of the board since it is where the laser dot 

measurement was performed.  

Olsson et al. (2013) proposed a method to attribute MoE values within the volume of the board from the 𝐸𝑥 

computed at board surfaces, which gives 𝐸𝑥(𝑥, 𝑦, 𝑧), the lengthwise MoE for each 𝑥 (lengthwise), 𝑦 (depth-wise) 

and 𝑧 (thickness-wise) positions in a beam. These authors proposed to use this MoE in an analytical modelling, 

considering composite beam theory where the map of 𝐸𝑥(𝑥, 𝑦, 𝑧) is the MoE of a heterogeneous, but isotropic 

beam. Assuming classical Euler-Bernoulli beam theory (BT) hypothesis, i.e. displacements and strains remain 

small, plane cross-sections initially normal to the beam's axis remain plane, normal to the beam axis, and 

undistorted, 𝐸𝑥(𝑥, 𝑦, 𝑧) can be integrated over each cross-section along the beam, to compute an edgewise bending 

MoE 𝐸𝑏,𝐵𝑇(𝑥) at each 𝑥 lengthwise position:  

E𝑏,𝐵𝑇(𝑥) =  
∬𝐸𝑥(𝑥, 𝑦, 𝑧)(𝑦 − 𝑦(𝑥)̅̅ ̅̅ ̅̅ )

2
𝑑𝑦𝑑𝑧

𝐼
 

(5) 

where 𝐼 is the quadratic moment of area of a rectangular beam, equals to 𝑡ℎ3/12 with 𝑡 the thickness and ℎ the 

depth of the beam, 𝑦(𝑥)̅̅ ̅̅ ̅̅  is the 𝑦 position of the neutral fibre across the depth of the heterogeneous beam at the 

lengthwise position 𝑥. 

As reported in Briggert et al. (2020), the same analytical method can be applied to obtain 𝐸𝑎,𝐵𝑇(𝑥), the MoE under 

homogeneous tensile or compressive (i.e. axial) stresses integrated at each 𝑥 lengthwise position of the composite 

beam: 

𝐸𝑎,𝐵𝑇(𝑥) =  
∬𝐸𝑥(𝑥, 𝑦, 𝑧) 𝑑𝑦𝑑𝑧

𝑡ℎ
 (6) 

𝐸𝑎,𝐵𝑇(𝑥) or E𝑏,𝐵𝑇(𝑥) are MoE profiles with a high lengthwise resolution of 1 mm between data point or less, 

corresponding to the lengthwise scanning resolution of dot laser scanning.  

Oscarsson et al. (2014) proposed to apply a moving average to smooth these MoE profiles across a given sliding 

window length to obtain the averaged localized MoE under axial or bending loading. They showed that the 

minimum localized MoE found along each board was better correlated to the specimen’s strength if the length of 

the sliding window was 90 mm for boards with a depth of 145 mm subjected to bending loading, and 25 mm for 

boards with a depth of 56 mm subjected to tensile loading. In the following studies of the same team using the 

same method (Olsson and Oscarsson 2017; Olsson et al. 2018; Briggert et al. 2020), a constant sliding window 

length of 90 mm was applied for various species, cross-sections and loading type. 

It should be noted that Equation (4) can be very well approximated by Hankinson empirical formula (Equation 

(7), Hankinson 1921), if an adequate 𝑛 parameter is used.  

𝐸𝑥,𝐻𝑎𝑛𝑘 = 
1

1
𝐸T

sin𝑛(𝜃) +
1
𝐸L

𝑐𝑜𝑠𝑛(𝜃)
 (7)  

This well-known formula in wood science expresses the non-linear decrease of the MoE of wood material when 

being angled from fibre principal direction. It has been used instead of Equation (4) in several models (Viguier et 

al. 2017; Viguier et al. 2018; Duriot et al. 2021b; 2021a; Ehrhart et al. 2022). Viguier et al. (2018) and Duriot et 

al. (2021a, b) proposed analytical models based on BT as well as that of Olsson et al. (2013), but applied on veneer-

based products. Indeed, veneers can be glued together to make for example laminated veneer lumber (LVL). Both 

Viguier et al. (2018) and Duriot et al. (2021b) used fibre orientation measured by laser dot scanning of the veneers 

to model the MoE in bending of 41 and 10 LVL beams, respectively.  
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1.4 Finite element modelling applied to fibre orientation data 

Hu et al. (2018) proposed a method to interpolate fibre orientation measured at sawn board surfaces to use these 

angles in a 3D FE model. In this model, each element has potentially a different angle with board main direction. 

This angle is used in the FE model implying that each element gets a local material compliance matrix [S′] as in 

Equation (3), but on contrary to BT modelling, the full compliance matrix is used and thus the anisotropic 

behaviour is taken into account in the FE modelling. These authors used the obtained strain field to estimate the 

localized bending MoE according to the lengthwise position in the beam by performing a linear regression of the 

lengthwise strains 𝜀𝑥𝑥 along y-direction for each 𝑥 position. This gives 𝜀𝑥𝑥̂(𝑥, 𝑦), the linear approximated 

longitudinal strain. In BT, for a homogeneous beam, 𝜀𝑥𝑥 is perfectly linear and its slope over beam depth (y-

direction) is inversely proportional to the MoE. Hu et al. (2018) assumed that the approximated 𝜀𝑥𝑥̂(𝑥, 𝑦) is related 

to the edgewise bending MoE at each 𝑥 position, denoted in the present paper 𝐸𝑏,𝜀,𝐹𝐸 , and computed as: 

𝐸𝑏,𝜀,𝐹𝐸(𝑥) =
𝑀

𝐼
𝜕𝜀𝑥𝑥̂(𝑥)̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑦

 (8)  

where 𝑀 is the applied bending moment.  

Hu et al. (2018) compared FE model results to that of the BT model of Olsson et al. (2013) and also digital image 

correlation (DIC) observations on two boards of Norway spruce. These authors found that FE model was able to 

capture better the actual compliance of the boards.  

The criterion of Hu et al. (2018), has been used by other authors (Lukacevic et al. 2019; Huber et al. 2022) to 

estimate the MoE profiles along boards length. Lukacevic et al. (2019) also used a 3D FE model, but they used 

Foley’s method (Foley 2001) to obtain the fibre orientation in 3D from knot measurements. Huber et al. (2022) 

also proposed a 3D FE model by modelling fibre orientation around knot shapes obtained from X-Ray computer 

tomography, on 20 Norway spruce boards of 50 × 100 mm² cross-section. They observed that the mimimum 

localized MoE E𝑏,𝐵𝑇  computed with the BT analytical method as in Equation (6) and smoothed with a 60 mm 

Gaussian window, gave a better correlation with strength than 𝐸𝑏,𝜀,𝐹𝐸 computed with the method of Hu et al. (2018) 

with sliding window lengths ranging from 0 to 100 mm. On the contrary, Olsson et al. (2022) compared these 

same two methods on a dataset of 241 Douglas fir boards of 40 × 100 mm² cross-section, and consistently found 

better correlations with either bending strength or experimental local MoE by using FE method. 

Another natural way to get a strength predictor when dealing with FE results is to compute a failure criterion based 

on the stresses such as a Tsaï-Hill criterion. This approach has been studied by several authors (Baño et al. 2011; 

Grazide et al. 2018; Saad and Lengyel 2022), of which the first two proposed a very similar approach as the present 

work, studying artificial beams with different knot positions (but without comparison with classical BT modelling). 

As explained by Grazide et al. (2018), an equivalent strength according to Tsaï-Hill criterion can be obtained as 

follows for a beam modelled in two dimensions and subjected to tensile or bending stresses: 

𝑓𝑒𝑞(𝑥, 𝑦) =
𝜎

√[(
𝜎𝐿𝐿(𝑥, 𝑦)

𝑓𝑡,𝐿
)

2

  + (
𝜎𝑇𝑇(𝑥, 𝑦)

𝑓𝑡,𝑇
 )

2

+ ( 
𝜏𝐿𝑇(𝑥, 𝑦)

𝑓𝑣
)

2

]

 

(9) 

where 𝜎𝐿𝐿 is the stress in the L direction of the fibre, 𝑓𝑡,𝐿 is the corresponding tensile strength in the L direction of 

the fibre; 𝜎𝑇𝑇 is the stress in the T direction of the fibre, 𝑓𝑡,𝑇 is the corresponding tensile strength in the T direction 

of the fibre; 𝜏𝐿𝑇 is the shear stress in LT plane of the fibre, 𝑓𝑣 is the corresponding shear strength in LT plane; 𝜎 is 

the maximum normal (i.e. axial) stress due to tension or bending loading.  

 

1.5 Scope and objectives 

According to the few references of the literature which make the comparison, FE modeling derived from fibre 

orientation data generally appears to be more representative of wood mechanical behaviour than BT modeling, in 

particular in knotty areas with large fibre deviations. This seems consistent since FE modelling allows the 

complexity of the phenomena occurring in such a heterogeneous area to be taken into account. However, analytical 

models remain interesting because they can be computed in a very short amount of time, which is advantageous 

in the context of wood quality assessment by machines at industrial speeds. It is therefore useful to understand the 

reasons for the differences in modelled localized MoEs between FE and BT mechanical modelling and to quantify 

them. The available literature is very sparse about such comparisons.  
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The localization of MoE variations around knots poses challenges in accurately predicting the material's 

performance, particularly under different loading conditions. Understanding the nuanced relationship between 

knot position, localized MoE, and modeling approaches is critical in enhancing predictive accuracy for structural 

applications. To this end, the present work aims to compare the local MoE as defined in EN 408 (2012), the 

localized MoE and the strength predictors that are obtained by FE and BT mechanical modelling under axial and 

pure bending loading for several artificial beams for which fibre orientation was modelled in 2D in the 

longitudinal-tangential plane for various knot positions. To have an experimental validation of the results, it is also 

proposed to compare the local MoEs obtained by these models to that of actual LVL beams tested in edgewise 

bending. By using this material and direction of loading, the timber was indeed loaded in the longitudinal-

tangential plane as for artificial beams. 

The overall objective is to provide researchers and engineers that are interested in the mechanical behaviour of 

structural timber containing knots with a better understanding of the respective functioning and limitations of FE 

and BT modelling and the strength predictors extracted from it. In more detail, we propose in this study to: (1) 

investigate variations in localized MoE along timber beams with knots under axial tension and pure bending; (2) 

assess the influence of knot position on mechanical behaviours, emphasizing disparities between axial and bending 

loading scenarios; (3) compare and contrast different strength predictors obtained from FE and BT modelling; 

 

2. Materials and method 

2.1 Lists of main symbols used in the article 

Table 1 lists the main abbreviations and the main parameters that were used, while Table 2 lists the output 

variables that are discussed in this paper. 

Symbol / 

Abbreviation 
Description 

MoE Modulus of elasticity 

Local MoE 

Term used in EN 408 (2012) to refer to the MoE computed from the 

deformation of a specimen over a distance of five times the depth of the 

rectangular cross-section when it is subjected to tension or bending   

Localized 

MoE 

MoE computed from a mechanical model to represent the MoE over a 

short span, known as the “sliding window length”, along the entire length 

of the board, to create a MoE profile from which the minimum value is 

usually used as a strength predictor 

BT 

Analytical method to compute the displacements of a beam subjected to 

axial or bending loading, based on composite beam theory and Euler-

Bernoulli beam theory 

FE 
Numerical, finite element method to compute the displacements of a beam 

subjected to axial or bending loading 

𝐸𝐿 MoE in the longitudinal direction of fibres (GPa) 

𝐸𝑇 MoE in tangential direction of fibres (GPa) 

𝐺𝐿𝑇 Shear modulus in tangential-longitudinal plane of fibres (GPa) 

𝜈𝐿𝑇  
Poisson’s ratio characterizing tangential strains in relation to longitudinal 

strains 

𝛿 Sliding window length across which localized MoE was computed 

𝑥 Coordinate in lengthwise direction of the beam (mm) 

𝑦 Coordinate in crosswise direction (depth) of the beam (mm) 

ℎ Depth of the beam (mm) 

𝐿 Length of the beam (mm) 

𝑡 Thickness of the beam (mm) 

𝑦𝑘  Knot position in 𝑦-direction 

𝜃(𝑥, 𝑦) 
Angle between the fibre direction and specimen main direction 𝑥⃗ in the 

plane of the considered surface, at coordinates (𝑥, 𝑦) (°) (see Fig.3) 

𝐸𝑥(𝑥, 𝑦) 
Localized MoE projected to 𝑥⃗ axis at coordinates (𝑥, 𝑦) (GPa) (𝑧 

dimension not needed in the present work dealing with 2D modelling only) 
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Table 1. List of main parameters used and abbreviations 

 

 

Axial loading 

(Equation 

number) 

Bending loading 

(Equation 

number) 

Line style 

in figures 

Main 

reference in 

literature 

Beam theory 

(BT) 

modelling 

Localized 

MoEs 

Averaged 

MoE 
𝐸𝑎,𝑎𝑣𝑔,𝛿,𝐵𝑇  (15) 𝐸𝑏,𝑎𝑣𝑔,𝛿,𝐵𝑇  (21) ······ 

Olsson et al. 

(2013) 

Apparent 

MoE 
𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐵𝑇  (16) 𝐸𝑏,𝑎𝑝𝑝,𝛿,𝐵𝑇 (22) - - - - - -  Present paper 

Local MoE 𝐸𝑎,𝑙,𝐵𝑇  (18) 𝐸𝑏,𝑙,𝐵𝑇 (23 + 24) - - - - - -  
EN 408 

(2012) 

Finite 

element (FE) 

modelling 

Localized 

MoEs 

MoE from 

strains 
𝐸𝑎,𝜀,𝛿,𝐹𝐸 (28) 𝐸𝑏,𝜀,𝛿,𝐹𝐸  (32) –·–·–· 

Hu et al. 

(2018) 

Apparent 

MoE 
𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐹𝐸  (27) 𝐸𝑏,𝑎𝑝𝑝,𝛿,𝐹𝐸 (31) ------ Present paper 

Local MoE 𝐸𝑎,𝑙,𝐹𝐸 (29) 
𝐸𝑏,𝑙,𝐹𝐸 (23 + 33 

or 34) 
------ 

EN 408 

(2012) 

Tsaï-Hill criterion 𝑓𝑡,𝑒𝑞  (9) 𝑓𝑏,𝑒𝑞  (9) –··–··–··  
Grazide et al. 

(2018) 

Experimental 

LVL 
Local MoE Not tested 𝐸𝑏,𝑙,𝑒𝑥𝑝 (23) NA 

EN 408 

(2012) 

Table 2. List of main variables that are discussed in this paper along with their origin and line style in figures.  

 

2.2 Material and fibre orientation data as modelling input 

 

2.2.1 Artificial timber beams 

Artificial timber beams in LT plane were generated with different knot positions according to the method of Foley 

(2001), in a similar way to what Frayssinhes et al. (2020) did. A function drives the flow, between an inlet (source) 

and an outlet (sink), and how elliptical obstacles are bypassed. The flow lines generated are then assimilated to the 

wood fibres, whose local angle can be determined (Foley, 2001).  

Modelled knots had a circular shape. The knot diameter of 72.5 mm (half of the beams’ depth) was chosen to 

highlight knot influence. Such large knots are frequent for Douglas Fir grown in France, even if being more to the 

end of the spectrum. Flow function parameters are those determined for Douglas fir by Frayssinhes et al. (2020). 

These Douglas-fir parameters were applied by coherence with the experimental LVL material. 

Five artifical beams were modelled as shown in Fig. 1. Their dimensions were 𝐿 = 2710 mm × ℎ = 145 mm × 

𝑡 = 3 mm.  These dimensions were chosen in accordance with that of the experimental LVL beams described in 

the next section. It may be noticed that thickness had no importance for the artificial beams which were modelled 

in two dimensions. The generated angle grid had a resolution of 1 mm × 1 mm.  

The first artificial beam, shown in Fig. 1a, is a homogeneous beam with zero fibre angle at any point of the beam. 

Fig. 1e shows a beam with a circular knot of diameter 𝐷 = 72.5 mm for which the center coordinates are (𝑥𝑘 =
𝐿

2
 ; 

𝑦𝑘  = 0 ). An area of fibre orientation deviation around the knot induces variations of  𝜃(𝑥, 𝑦) values according to 

a « butterfly » shape. The beams shown in Fig. 1d, Fig. 1c, and Fig. 1b follow the same principle, with the 

exception that the centre of the knot is successively translated from the 𝑦⃗ axis by −
ℎ

4
 according to the beam of Fig. 

1e. This gives the position of the centre of the knot at the coordinates (𝑥𝑘 =
𝐿

2
 ; 𝑦𝑘  = −

ℎ

4
 ), (𝑥𝑘 =

𝐿

2
 ; 𝑦𝑘  = −

ℎ

2
 ), 

(𝑥𝑘 =
𝐿

2
 ; 𝑦𝑘  = −

3ℎ

4
 ), respectively. 

 
Local fibre orientation  

𝜃(𝑥, 𝑦) beam colormap 

Knot center 

position 

(𝑥𝑘 , 𝑦𝑘) 

Marker 

color 
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Fig. 1. Modelled artifical beams: (a) homogenous beam, (b) (c) (d) (e) beams with a single knot with indicated 

centre coordinates. Colours represent angle value, the knot being black since fiber angles in the knot are not 

modelled (considered as isotropic). 

2.2.2 Experimental LVL beams 

The experimental material comes directly from Duriot et al. (2021a,b). In Duriot et al. (2021a), Douglas-fir logs 

that were grown in Burgundy region of France were peeled in 3 mm-thick veneers. They were scanned by a laser-

dot instrument exploiting the tracheid effect at the resolution of 16 mm in the longitudinal direction and 3.5 mm 

in the tangential direction of wood fibres. A grid of the local fibre orientation 𝜃(𝑥, 𝑦) was linearly interpolated 

from the laser-dot measurements for each of the veneers.  This interpolation resulted in a fiber angle dataset with 

a resolution of 1 mm × 1 mm, which was used as input for LVL beam modelling. In Duriot at al. (2021b), batches 

of 60 veneers with equivalent density and grain angle distributions were made. Two LVL panels of 𝑛𝑝 = 15 plies 

were manufactured from it, with final dimensions of about 2800 mm × 850 mm × 45 mm. Five beams were cut in 

each panel, the nominal dimensions of each beam were 2710 mm × 145 mm × 45 mm (Fig. 2a).Veneers position 

were arranged first in a favourable configuration for bending, which consisted in placing the higher grade veneers 

(higher density, lower fibre orientation variation) at the centre of the panel in the LVL lengthwise direction and 

the lower grade veneers at the ends (an example of the resulting beam MoE map is shown in Fig. 2b). An 

unfavourable configuration was also tested, reversing the previous strategy (example Fig.2c). This strategy aims 

to exaggerate the so it could make clearer the differences between the modelling methods. The beams were tested 

in a four-point edgewise bending test configuration and the experimental local modulus of elasticity was measured, 

following EN 408 (2012) standard.  

 

2.3 Material properties 

In this study, FE and BT modelling were applied to both multi-plies LVL experimental beams and monolithic 

artificial timber beams. For LVL, beams were made of several veneers. These veneers are associated with index 𝑣 

(Fig. 2a). Several of them make up each ply of the material, associated with index 𝑝, as shown in Fig. 2a. In order 

to summarize the following explanations and equations, the artificial timber beams can be considered as a one-ply 

“LVL” composed of one veneer (𝑣 = 1, 𝑝 = 1). 
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(a) 

 

 

(b) 

 

(c) 

 

Fig. 2. (a) Schematical representation of the constitution of a LVL beam made of several plies (𝑝 index) and 

veneers (𝑣 index) (arrow represents main grain direction), (b) example of the modeled MoE repartition of a 

favourably optimized beam, borrowed from Duriot et al. (2021b), (c) example of the modeled MoE repartition of 

an unfavourably optimized beam, borrowed from Duriot et al. (2021b) 

 

2.3.1 Orthotropic elastic properties of clear wood 

“Clear wood”, or more precisely fibres material properties were defined by the compliance matrix [𝑆𝑣,𝑝] in the 

material LT-system as in Equation (2) for each veneer and ply. 𝐸𝐿, the MoE in longitudinal direction of fibres, was 

calculated as in Duriot al. (2021b) by taking into account the overall density of the veneer at 12% moisture content 

in kg.m-3, 𝜌𝑣,𝑝̅̅ ̅̅ ̅, using a linear equation from Pollet et al. (2017), or a value of 16.8 GPa for artificial beams:  

𝐸𝐿 = {
0.036605 𝜌𝑣,𝑝̅̅ ̅̅ ̅ − 4.2424

or
16.8

 (10) 

The choice of 𝐸𝐿 value for artificial beams has limited importance because relative comparisons were made, 

however, the choice of a value of 16.8 GPa was consistent with the Douglas fir LVL experimental data. 

𝐸𝐿 values also drove other material properties such as transversal and shear modulus. Indeed, 𝐸𝑇, the MoE in the 

orthogonal direction to the local direction of the fibre in LT orthotropic plane was computed from a constant 
𝐸𝑇

𝐸𝐿
 

ratio. This ratio was taken equal to 0.050, as proposed in Kretschmann (2010) for Douglas fir and confirmed by a 

reverse identification performed on the Douglas fir LVL beams (Duriot 2021). 𝐺𝐿𝑇, the shear modulus in TL 

orthotropic plane was also computed assuming a constant 
𝐺𝐿𝑇

𝐸𝐿
 ratio. The value of this ratio was set at 0.050, 

resulting from the same reverse identification (Duriot 2021). Finally, 𝜈𝐿𝑇 , the Poisson’s ratio in LT orthotropic 

plane was taken equal to 0.449, as proposed in Kretschmann (2010). 

For both BT and FE models, the beams were subdivided with a 1 mm x 1 mm grid. For each element of the grid, 

the material compliance matrix [𝑆𝑣,𝑝] was transformed by a rotation of angle θ(𝑥, 𝑦) by application of Equation 

(3) to obtain the local compliance matrix [𝑆′𝑣,𝑝] in the beam xy-system for each (𝑥, 𝑦) location of a veneer 𝑣 of a 

ply 𝑝 of the composite beam. 
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2.3.2 Isotropic elastic behaviour of knots 

In knot areas, material properties were considered to be isotropic. For artificial beams, the knot area was defined 

by knot circle diameter. For the modelling of LVL beams from experimental data, the surfaces of the knots were 

manually segmented from grayscale images of each veneer taken from the local fibre orientation measuring device 

cameras. Additional information about this step is provided in Duriot et al. (2021a). Finally, for each 1 mm x 1 

mm element considered as a knot (Fig. 3), the compliance matrix describing elastic properties in knots [𝑆𝑣,𝑝,𝑘] is 

that of Equation (11):  

[𝑆𝑣,𝑝,𝑘] =  

[
 
 
 
 
 
 

1

𝐸𝑇

−
𝜈𝑇𝑇

𝐸𝑇

0

−
𝜈𝑇𝑇

𝐸𝑇

1

𝐸𝑇

0

0 0
2(1 + 𝜈𝑇𝑇)

𝐸𝑇 ]
 
 
 
 
 
 

 

 

(11) 

𝜈𝑇𝑇  was taken equal to 𝜈𝐿𝑇  of clear wood, and 𝐸𝑇 values were set to 0.050 of 𝐸𝐿 value of clear wood.  

 

Fig. 3. Modelling principle by FE method with quadrangular plane elements in which local fibre orientation and 

associated local orthotropic system of axes varies (note that the central knot area shows T-direction to times to 

refer to isotropic material properities). 

 

2.4 Classical analytical beam theory modelling 

Depending on the number of plies in LVL modelling (𝑛𝑝 plies) or artificial beam modelling (𝑛𝑝 = 1 ply), a 

modulus in the longitudinal x-direction of the beam 𝐸𝑥,𝑝(𝑥, 𝑦) was computed, for each (𝑥, 𝑦) position according 

to the fibre angle 𝜃(𝑥, 𝑦) by means of (Equation (4)) with the previously defined material properties and a grid 

resolution of 1 mm × 1 mm. Then, an average modulus was computed as: 

𝐸𝑥(𝑥, 𝑦) =
1

𝑛𝑝

∑ 𝐸𝑥,𝑝(𝑥, 𝑦) 

𝑛𝑝

𝑝=1

 (12)  

Which is like performing an integration in z-direction. Fig. 4 illustrates the 𝐸𝑥 value obtained for an artificial beam 

in the knot area for an artificial beam with the knot centred in the beam depth.  
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Fig. 4. 𝐸𝑥 around knot area for an artificial beam with a knot centred in the beam depth 

 

2.4.1 Axial loading case 

Since experimental LVL beams were tested in bending only, axial loading was studied for artificial beams only. 

From the lengthwise modulus 𝐸𝑥(𝑥, 𝑦) of Equation (12), the localized axial MoE was computed at each 𝑥 

lengthwise position accordingly to BT as in Briggert et al. (2020) (Equation (6)), but with no longer need to 

integrate along z-direction: 

𝐸𝑎,𝐵𝑇(𝑥) =
1

ℎ
∫ 𝐸𝑥(𝑥, 𝑦)𝑑𝑦

ℎ/2

−ℎ/2

 (13)  

This computation was performed by numerical integration with 𝑑𝑦 = 1 mm. When performing this integration, the 

heterogeneity of the beam along y-direction is averaged to obtain a single MoE for each x-cross-section, which 

implies that the beam is considered isotropic and that classical BT assumptions apply.  

 

2.4.1.1 Displacements 

The longitudinal displacement obtained by BT in the local MoE area was computed as: 

𝑢𝑥,𝑙,𝐵𝑇(𝑥) = ∫
𝜎

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥

𝑥𝑙,𝑚𝑖𝑛

 (14)  

by numerical integration with 𝑑𝜉 = 1 mm, and with 𝜎 the input axial stress equal to 1 MPa. 𝜎 value was chosen in 

accordance with the FE modelling, and its sign was arbitrary chosen positive, thus inducing tension, but of course 

it does not impact axial MoE values in elasticity. 𝑥𝑙,𝑚𝑖𝑛 is the 𝑥 position of the start point of local MoE calculation 

as defined in EN 408 (2012) (𝑥𝑙,𝑚𝑖𝑛 =
𝐿

2
−  

5ℎ

2
, see Fig. 1). By doing so, 𝑢𝑥,𝑙,𝐵𝑇(𝑥𝑙,𝑚𝑖𝑛) = 0, which is made for the 

sake of simplicity because it is the central area of the beams which is of interest, where the knot is located and the 

local MoE is computed. By using the displacement at 𝑥𝑙,𝑚𝑖𝑛 as a reference, the plotted displacement curves will 

start at 0, which is convenient. 

 

2.4.1.2 Averaged MoE 

The averaged localized axial MoE 𝐸𝑎,𝑎𝑣𝑔,𝛿,𝐵𝑇(𝑥) (the term localized will be skipped in the following for the sake 

of simplicity), was computed following the method of Briggert et al. (2020), i.e. smoothing 𝐸𝑎,𝐵𝑇(𝑥) by averaging 

it over a sliding window of length 𝛿:  

𝐸𝑎,𝑎𝑣𝑔,𝛿,𝐵𝑇(𝑥) =
1

𝛿
∫ 𝐸𝑎,𝐵𝑇(𝜉)

𝑥+𝛿/2

𝑥−𝛿/2

𝑑𝜉  
(15)  

 

Equation (15) was computed by numerical integration with 𝑑𝜉 = 1 mm. Several values of 𝛿 were taken: 10, 90 and 

150 mm. The 90 mm window size was used by Olsson et al. (2018) and Hu et al. (2022) while the 150 mm window 

size was classically used for the widely known knot area ratio and used by Rais et al. (2021) for determining a 
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criterion based on fibre angle scanning. The 10 mm size has been chosen to be considerably lower than the two 

other sizes, but still containing several elements (10 of them since the element size is 1 mm). 

 

2.4.1.3 Apparent MoE 

It is proposed in the present paper to compute the localized axial MoE from the displacements, 𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐵𝑇(𝑥). This 

MoE is called in the present paper “apparent MoE”, as it can be seen as the MoE that would be observed if a 

mechanical test could be done within a short portion of the beam, of length 𝛿. Thus, this apparent axial MoE can 

be computed as: 

𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐵𝑇(𝑥) = 𝜎 
𝛿

𝑢𝑥,𝑙,𝐵𝑇 (𝑥 +
𝛿
2
) − 𝑢𝑥,𝑙,𝐵𝑇 (𝑥 −

𝛿
2
)

 
(16)  

It’s worth noting that this approach based on the displacements gives a different formula than what is done when 

simply smoothing the localized MoE by averaging it like in Equation (15). Indeed, developing Equation (16) with 

the help of Equation (14) gives: 

𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐵𝑇(𝑥) = 𝜎𝛿/(∫
𝜎

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥+
𝛿
2

𝑥𝑙,𝑚𝑖𝑛

− ∫
𝜎

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥−
𝛿
2

𝑥𝑙,𝑚𝑖𝑛

)

= 𝜎𝛿/ (∫
𝜎

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥+
𝛿
2

𝑥𝑙,𝑚𝑖𝑛

+ ∫
𝜎

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥𝑙,𝑚𝑖𝑛

𝑥−
𝛿
2

) = 𝛿/∫
1

𝐸𝑎,𝐵𝑇(𝜉)
 𝑑𝜉

𝑥+
𝛿
2

𝑥−
𝛿
2

 

(17)  

Hence, compared to the averaged axial MoE of Equation (15) which is an arithmetic average, the apparent axial 

MoE is the harmonic average of the localized MoE, i.e. the equivalent stiffness of a spring of length 𝛿 composed 

of springs in series of individual stiffnesses 𝐸𝑎,𝐵𝑇(𝑥). 

 

2.4.1.4 Local MoE 

As stated in the introduction, the local MoE as defined in EN 408 (2012) in a tensile test is supposed to be measured 

in the central area of the specimen over a distance of 5ℎ. In the present BT modelling of artificial beams, it 

corresponds to using the displacements computed at 𝑥𝑙,𝑚𝑖𝑛 and 𝑥𝑙,𝑚𝑎𝑥  positions (see Fig. 1). As a result, the local 

MoE under axial loading, 𝐸𝑎,𝑙,𝐵𝑇 , is neither but a particular case of apparent MoE, computed as: 

𝐸𝑎,𝑙,𝐵𝑇 = 𝜎 
5ℎ

𝑢𝑥,𝑙,𝐵𝑇(𝑥𝑙,𝑚𝑎𝑥) − 𝑢𝑥,𝑙,𝐵𝑇( 𝑥𝑙,𝑚𝑖𝑛)
 (18)  

 

2.4.2 Bending loading case 

The effective bending stiffness along the beam was computed as: 

𝐸𝐼𝑒𝑓𝑓(𝑥) = 𝑡 ∫ 𝐸𝑥(𝑥, 𝑦)(𝑦 − 𝑦(𝑥)̅̅ ̅̅ ̅̅ )
2
 𝑑𝑦

ℎ/2

−ℎ/2

 (19)  

by numerical integration with 𝑑𝑦 = 1 mm. 

 

2.4.2.1 Displacements 

Beam deflection in bending was computed by applying the unit-load or virtual work method (Fuchs, 2016). It 

allows to compute the deflection of a beam subjected to a bending moment 𝑀 in a specific 𝑥 location by associating 

it with a similar system in terms of boundary conditions, but subjected to a virtual unit load in the desired location, 

which induce a bending moment 𝑀𝑥. The problem is then reduced to calculating the integral along the beam of 

the product of the two bending moments divided by the effective bending stiffness. In the present case, the 
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deflection at the start point of local MoE calculation is also subtracted to the global deflection for a better 

representation, as explained in 2.4.1.1 for the axial loading case, which gives 𝑢𝑦,𝑙,𝐵𝑇(𝑥): 

 

 

𝑢𝑦,𝑙,𝐵𝑇(𝑥) = ∫
𝑀(𝜉)𝑀𝑥(𝜉) 

𝐸𝐼𝑒𝑓𝑓(𝜉)
𝑑𝜉

𝐿

0

− ∫
𝑀(𝜉)𝑀𝑥𝑙,𝑚𝑖𝑛

(𝜉) 

𝐸𝐼𝑒𝑓𝑓(𝜉)
𝑑𝜉

𝐿

0

 
(20)  

where 𝑀 is the bending moment distribution along x-direction due to the four-point bending loading corresponding 

to a theoretical maximum bending stress of 1 MPa for a homogenous beam, 𝑀𝑥 is the bending moment distribution 

induced by a unit load at the desired 𝑥 position where the displacement is computed, and 𝑀𝑥𝑙,𝑚𝑖𝑛
 is the bending 

moment distribution induced by a unit load at 𝑥𝑙,𝑚𝑖𝑛 position. 

 

2.4.2.2 Averaged MoE 

The localized MoE in bending at each 𝑥 lengthwise position, 𝐸𝑏,𝐵𝑇(𝑥) was computed following BT as in Equation 

5 from Olsson et al. (2013). Then, the averaged bending MoE 𝐸𝑏,𝑎𝑣𝑔,𝛿,𝐵𝑇(𝑥), was computed still following the 

method of Olsson et al. (2013), i.e. by averaging 𝐸𝑏,𝐵𝑇(𝑥) over a sliding window of length 𝛿: 

𝐸𝑏,𝑎𝑣𝑔,𝛿,𝐵𝑇(𝑥) =
1

𝛿
∫ 𝐸𝑏,𝐵𝑇(𝜉)

𝑥+𝛿/2

𝑥−𝛿/2

𝑑𝜉  (21)  

Equation (21) was computed by numerical integration with 𝑑𝜉 = 1 mm and with the same 𝛿 values as in the axial 

loading case. 

 

2.4.2.3 Apparent MoE 

As in the axial loading case, it is proposed to compute the localized bending MoE from the displacements, named 

apparent bending MoE, 𝐸𝑏,𝑎𝑝𝑝,𝛿,𝐵𝑇(𝑥). For this purpose, a curvature 𝜒𝛿,𝐵𝑇(𝑥) was computed by fitting a circle 

through the three points of coordinates (𝑥 −
𝛿

2
 ;  𝑢𝑦,𝑙,𝐵𝑇 (𝑥 −

𝛿

2
)), (𝑥 ; 𝑢𝑦,𝑙,𝐵𝑇(𝑥)), and (𝑥 +

𝛿

2
 ;  𝑢𝑦,𝑙,𝐵𝑇 (𝑥 +

𝛿

2
)). 

Finally, the apparent bending MoE obtained by this method is: 

𝐸𝑏,𝑎𝑝𝑝,𝛿,𝐵𝑇(𝑥) =
𝑀

𝜒𝛿,𝐵𝑇(𝑥) 𝐼
 (22) 

where 𝑀 is the applied four-point bending moment which was constant between the 𝑥𝑙,𝑚𝑖𝑛 and 𝑥𝑙,𝑚𝑎𝑥  positions 

within which the apparent MoE was computed. 

 

2.4.2.4 Local MoE 

As in the axial loading case, under bending loading, the local MoE is also a particular case of the apparent MoE. 

In this particular case, the curvature can be computed from the deflection ∆𝑢𝑦 between the 𝑥𝑙,𝑚𝑖𝑛 and 𝑥𝑙,𝑚𝑎𝑥  

positions and the middle position 𝑥𝑐 (see Fig. 1), as proposed in EN 408 (2012). Thus, the local MoE in bending 

following BT modelling, 𝐸𝑏,𝑙,𝐵𝑇 , was computed as: 

𝐸𝑏,𝑙,𝐵𝑇 =  
(5ℎ)2 𝑀

8 𝐼∆𝑢𝑦

 (23) 

with the deflection ∆𝑢𝑦 computed as:  

∆𝑢𝑦 =
 𝑢𝑦,𝑙,𝐵𝑇(𝑥𝑙,𝑚𝑎𝑥) + 𝑢𝑦,𝑙,𝐵𝑇(𝑥𝑙,𝑚𝑖𝑛)

2
− 𝑢𝑦,𝑙,𝐵𝑇(𝑥𝑐) (24) 
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2.5 Finite element modeling 

2.5.1 Model building 

The FE model developed in this study simulates the four-point bending and axial tensile test in two dimensions in 

the LT plane under plane stress conditions. This modelling choice is justified by the fact that only the in-plane 

fibre angles were taken into account. 

Cast3m (CEA 2018) FE software has been used in the present study. The chosen element type was “QUA4”, which 

are four node elements with linear interpolation. Element size was 1 mm × 1 mm (i.e. the same grid size as BT 

modelling and fibre angle data). Each element had its own elementary stiffness matrix in the xy-global system 

depending on the local fibre orientation and computed from the compliance matrix [𝑆′𝑣,𝑝], as defined before and 

as illustrated in the mesh grid of Fig. 3. Note that FE modelling took in input exactly the same material properties 

as BT modelling. 

 

2.5.2 Total global stiffness matrix construction 

For each veneer, the stiffness matrix [𝐾𝑣,𝑝] was calculated by assembling all the elementary stiffness matrices 

of each element composing the veneer. For LVL, it was considered that each ply, assembly of several veneers in 

the beam length, constituted a single mesh of finite elements, as if there was perfect continuity from one veneer to 

another. Thus, the stiffness matrices of each ply, [𝐾𝑝], were constituted from stiffness matrices of the veneers. 

Finally, the total global beam stiffness matrix [𝐾] was constituted by the sum of the 𝑛𝑝 ply stiffness matrix [𝐾𝑝] 

as in Equation (25):  

[K] =  ∑[𝐾𝑝] 

𝑛𝑝

𝑝=1

 (25) 

 

2.5.3 Axial loading case 

2.5.3.1 Loading and boundary conditions 

The boundary conditions for the axial loading case on the artificial beams are described in Fig. 5. They are 

composed of 𝑢𝑥 = 0 displacements at coordinate 𝑥 = 0 (𝑢𝑥 being the component of displacement in the x-

direction) and 𝑢𝑦 = 0 displacement at the coordinate points (𝑥 = 0;   𝑦 = 0) and (𝑥 = 𝐿;   𝑦 = 0) (𝑢𝑦 being the 

component of displacement in the y-direction). The boundary condition in y-direction aims to prevent 

displacements in this direction due to heterogeneity and orthotropic behaviour of beams with non-centred knots. 

A tensile stress of σ =  1 MPa is uniformly distributed to the 𝑥 = 𝐿 coordinate segment. 

 

Fig. 5. Boundary conditions for FE axial loading  
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2.5.3.2 Displacements 

Displacement components were calculated at each element by solving with Cast3m (CEA 2018) software the 

equilibrium equation {𝐹} =  [K]{𝑢}  with {𝐹} the generalized force vector and {𝑢} the generalized displacement 

vector. 

For each beam, 𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅  the component of displacement in the x-direction averaged in y-direction with the 

displacement at 𝑥𝑙,𝑚𝑖𝑛 as a reference was calculated from the FE output displacements 𝑢𝑥 by numerical integration 

with 𝑑𝑦 = 1 mm according to Equation (26):  

𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥) =
1

ℎ
∫ 𝑢𝑥(𝑥, 𝑦) − 𝑢𝑥(𝑥𝑙,𝑚𝑖𝑛 , 𝑦)

ℎ
2

−
ℎ
2

 𝑑𝑦 (26)  

The FE lengthwise displacement from this equation aims to be comparable to the BT lengthwise displacement. 

Moreover, the averaging in y-direction seemed necessary because if a particular 𝑦 line was chosen, the results 

would have been highly dependent on the 𝑦 position of the line relatively to knot 𝑦𝑘 position. 

 

2.5.3.3 Apparent MoE 

Two methods have been previously described in the BT modelling to compute a localized MoE: directly averaging 

the input MoE computed from fibre angle data, or computing an apparent MoE by post-processing the 

displacements obtained after the application of BT mechanics. For FE modelling, only post-processing is possible. 

It can be performed on the basis of the displacements to compute an apparent MoE, 𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐹𝐸  similarly to the BT 

case of Equation (16):  

𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐹𝐸(𝑥) = σ
𝛿

𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥 +
𝛿
2
) − 𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥 −

𝛿
2
)
 

(27) 

 

 

2.5.3.4 MoE from averaged strains 

Instead of using the displacements, another way is to use the lengthwise strains and apply BT formulae as it was 

done in several literature articles for bending (Hu et al. 2018; Lukacevic et al. 2019; Huber et al. 2022). In the 

present axial loading case, the lengthwise strains 𝜀𝑥𝑥 were averaged along 𝑦⃗ for each 𝑥 position. This gives 𝜀𝑥𝑥̅̅ ̅̅ (𝑥), 

the averaged longitudinal strain. Then, the localized axial MoE was computed as: 

𝐸𝑎,𝜀,𝛿,𝐹𝐸(𝑥) = σ
𝛿

∫ 𝜀𝑥𝑥̅̅ ̅̅ (𝜉)
𝑥+𝛿/2

𝑥−𝛿/2
𝑑𝜉 

 
(28)  

by numerical integration with 𝑑𝜉 = 1 mm.  

 

2.5.3.5 Local MoE 

The local MoE under axial loading computed from FE modelling, 𝐸𝑎,𝑙,𝐹𝐸, was computed in the same way as in the 

BT modelling (Equation (18)), but by using 𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ , the lengthwise displacement averaged along y-direction: 

𝐸𝑎,𝑙,𝐹𝐸 = 𝜎 
5ℎ

𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥𝑙,𝑚𝑎𝑥) − 𝑢𝑥,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ ( 𝑥𝑙,𝑚𝑖𝑛)
 (29)  

Here, another choice could have been made, like taking the displacement at the centre line of the beam 

(𝑢𝑥,𝑙,𝐹𝐸(𝑥, 𝑦 = 0)), which would correspond to what is advised to use in EN 408 (2012) standard.  However, it has 

been preferred to use the lengthwise displacement averaged along y-direction to be consistent with the apparent 

MoE calculation. In practice this is of little importance as the consequences in terms of local MoE value were not 

significant and not worth discussing in the present paper. 
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2.5.3.6 Tsaï-Hill equivalent strength 

The equivalent strength obtained by application of Tsaï-Hill criterion in tension, 𝑓𝑡,𝑒𝑞(𝑥, 𝑦), was computed as 

proposed by Grazide et al. (2018) (Equation (9)), with the same strength parameters, i.e. 𝑓𝑡,𝐿 = 90 MPa  the tensile 

strength in the longitudinal direction of the fibre, 𝑓𝑡,𝑇 = 4 MPa the tensile strength in the tangential direction of the 

fibre, 𝑓𝑣 = 10 MPa the shear strength in LT plane (and 𝜎 = 1 MPa the applied loading). Although being chosen 

quite arbitrarily, these strength values are of correct order of magnitude for Douglas fir.  In the knot area, the 

criterion has been discarded (𝑓𝑡,𝑒𝑞(𝑥, 𝑦) set equal to 𝑓𝑡,𝐿 for practical purpose), so the lowest equivalent strength 

was never found within the knot but around it, due to fibre deviation.  

 

2.5.4 Bending loading case 

2.5.4.1 Loading and boundary conditions 

The bending behaviour was studied for artificial and experimental LVL beams in their central area, i.e. the area 

subjected to pure bending. For LVL beams, which were optimized favourably or unfavourably, it is in this area 

that highly contrasted plies in terms of material properties values (density, local fibre orientation) were 

concentrated depending on the optimization configuration.  

To model the bending in the FE model, a load was applied to the mesh on a length of 40 mm to meet the 

experimental test conditions. Fig. 6 shows the boundary conditions applied to the beam for FE calculation. The 

loads 𝑞 have been computed so they induce a maximum longitudinal stress of 1 MPa for a homogeneous beam. 

The beam 𝑢𝑦 displacements were blocked at the coordinate points (𝑥 = 50;   𝑦 = 0) and (𝑥 = 𝐿 − 50;   𝑦 = 0) 

corresponding to contact segment centres of the beam with the lower supports. A displacement relationship was 

applied to the elements in contact with segments delineating the lower supports, with the objective to model the 

rotation allowed in the test configuration by the pivot-mounted supports. Finally, the point (𝑥 = 𝑥𝑐 =
𝐿

2
;   𝑦 = 0) 

was blocked according 𝑢𝑥 displacement so the possible longitudinal displacements were centred.  

 

Fig. 6. FE modelling boundary conditions and position of vertical displacement calculation points for four points 

bending loading case 
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2.5.4.2 Displacements 

Similarly to the axial loading case, here 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ , the component of displacement in the y-direction averaged in the 

y-direction with the displacement at 𝑥𝑙,𝑚𝑖𝑛 as a reference, was calculated from the FE output displacements 𝑢𝑦 

according to Equation (30): 

𝑢𝑦,𝑙,𝐹𝐸(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  
1

ℎ
∫ 𝑢𝑦(𝑥, 𝑦) − 𝑢𝑦(𝑥𝑙,𝑚𝑖𝑛 , 𝑦)

ℎ/2

−ℎ/2

𝑑𝑦 (30) 

by numerical integration with 𝑑𝑦 = 1 mm. 

 

2.5.4.3 Apparent MoEs 

Before being processed, 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥) needed to be slightly smoothed by splines (spaps function of MATLAB®) to 

reduce noise, giving 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̂̅ (𝑥). Then, a curvature 𝜒𝛿,𝐹𝐸(𝑥) was computed by fitting a circle through the three 

points of coordinates  (𝑥 −
𝛿

2
 ;  𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̂̅ (𝑥 −

𝛿

2
)), (𝑥 ; 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̂̅ (𝑥)), and (𝑥 +

𝛿

2
 ;  𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̂̅ (𝑥 +

𝛿

2
)). Finally, the 

apparent MoE in bending obtained by this method is: 

𝐸𝑏,𝑎𝑝𝑝,𝛿,𝐹𝐸(𝑥) =
𝑀

𝐼 𝜒𝛿,𝐹𝐸(𝑥) 
 (31) 

 

2.5.4.4 MoE from averaged strains 

Another localized bending MoE was computed from the strains according to Hu et al. (2018) method. 𝜀𝑥𝑥̂(𝑥, 𝑦), 

the linear approximated longitudinal strain was computed for each 𝑥 position by linear regression of the lengthwise 

strains 𝜀𝑥𝑥 along 𝑦⃗. Then it was used to compute the localized bending MoE obtained from strains as in Equation 

(8) but by averaging the 
𝜕𝜀𝑥𝑥̂

𝜕𝑦
 slope within the sliding-window of length 𝛿: 

𝐸𝑏,𝜀,𝛿,𝐹𝐸(𝑥) =
𝑀

𝐼 ∫
𝜕𝜀𝑥𝑥̂(𝜉)

𝜕𝑦
𝑥+𝛿/2

𝑥−𝛿/2
𝑑𝜉 

 
(32)  

 

2.5.4.5 Local MoE 

As in the axial loading case, the local MoE under bending loading computed from FE modelling, 𝐸𝑏,𝑙,𝐹𝐸 , was also 

computed in the same way as in the BT modelling (Equation (23)). However, in the case of artificial beams, the 

deflection ∆𝑢𝑦 was computed by using 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ , the 𝑦 displacement averaged along y-direction: 

∆𝑢𝑦 =
 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥𝑙,𝑚𝑎𝑥) + 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥𝑙,𝑚𝑖𝑛)

2
− 𝑢𝑦,𝑙,𝐹𝐸̅̅ ̅̅ ̅̅ ̅̅ (𝑥𝑐) (33) 

The choice to use the 𝑦 displacement averaged along y-direction instead of the 𝑦 displacement at the centre line 

of the beam (𝑢𝑦,𝑙,𝐹𝐸(𝑥, 𝑦 = 0)), was made for the same reasons as in the axial loading case and had non-significant 

consequences in the following discussions as well. 

However, in the case of the FE modelling of LVL beams that were tested experimentally, the choice was made to 

use the displacement at the same 𝑦 = ℎ/2 location as in the experimental test (see Fig. 6), which gives: 

∆𝑢𝑦 =
 𝑢𝑦 (𝑥𝑙,𝑚𝑎𝑥 ,

ℎ
2
) + 𝑢𝑦(𝑥𝑙,𝑚𝑖𝑛 , ℎ/2)

2
− 𝑢𝑦 (𝑥𝑐 ,

ℎ

2
) 

(34) 
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2.5.4.6 Tsaï-Hill equivalent strength 

The equivalent strength obtained by application of Tsaï-Hill criterion in bending, 𝑓𝑏,𝑒𝑞(𝑥, 𝑦), was computed in the 

same way as 𝑓𝑡,𝑒𝑞(𝑥, 𝑦), with the same parameters. It could be discussed that compressive and tensile strength 

should be different, but it is not studied in the present work, for which the knots were positioned in the tension part 

of the bent beam. 

 

2.6 Experimental local MoE for LVL beams 

The Douglas fir LVL beams described in section 2.2.2 were tested in the four-point bending test configuration of 

Fig. 6 which follows the recommended span and loading heads position of EN 408 (2012) standard. Their local 

MoE, 𝐸𝑏,𝑙,𝑒𝑥𝑝, was computed as in Equation (23) but by replacing the moment 𝑀 by the increment of moment 

measured during the bending test between 10 % and 40 % of the maximum load, and ∆𝑢𝑦 by the corresponding 

increment of deflection, as advised in EN 408 (2012𝑦 = ℎ/2 

 

3. Results and discussion 

3.1 Comparison of beam theory and finite element modelling methods in terms of displacements and 

apparent MoEs 

Fig. 7 shows the averaged displacements observed in axial tension and pure bending in the area of local MoE 

measurement in the sense of EN 408 (2012), which means in the central part of the specimen between 𝑥𝑙,𝑚𝑖𝑛 and 

𝑥𝑙,𝑚𝑎𝑥  positions (which corresponds to a length of 725 mm). Fig. 8 and Fig. 9 show the corresponding apparent 

MoE profiles, i.e. localized MoEs computed from the displacement across different sliding window lengths. In all 

the Figures, the FE and BT modelling are displayed with the different line styles given in Table 2, with different 

colours for the different artificial beams (i.e. different knot 𝑦𝑘  positions). The homogeneous artificial beam is 

named “no knot”. It was verified that for the homogeneous artificial beam the displacements and thus apparent 

MoEs were identical for BT and FE modelling approaches. This artificial homogeneous beam provides a visual 

reference in the different figures. 
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Fig. 7. Displacements averaged over beam depth (y-direction) obtained by FE (solid line) and BT modelling 

(dashed line) according to 𝑥 position in the “5 times depth” central area of the beam, under axial tensile loading 

of 1 MPa (a), and a bending moment corresponding to a maximum stress of 1 MPa (b). Line colours refer to knot 

𝑦𝑘  position, the central grey rectangle represents the location and width of the knot (whose diameter was 

72.5 mm). [colour version online] 

Under axial loading, it can be seen in Fig. 8 that the apparent MoE logically decreased in the vicinity of the knot 

area whatever the 𝑦𝑘 position of the knot in the depth of the beam, and whatever the modelling approach used. 

When the apparent MoE was computed over a small sliding window of 10 mm (Fig. 8 a), there was in most cases 

a local increase of apparent MoE when being within knot borders (grey rectangle in Fig. 8 a), which is explained 

by the fact that the fibres became oriented in the x-direction of the beam when being at the middle 𝑥 position of 

the knot (see Fig. 1). This effect appeared with various intensities according to knot 𝑦𝑘 position and modelling 

approach. Increasing the length of the sliding window induced a smoothing of this behaviour which disappeared 

for 90 mm (Fig. 8 b) and 150 mm (Fig. 8 c) sliding window lengths. The other expected consequences of increasing 

sliding window length were an enlargement of the size of the area affected by the knot along 𝑥⃗, and an increase of 

the minimum apparent MoE values. However, the order of the curves remains the same, i.e. the relative differences 

in apparent MoE between the different knot 𝑦𝑘  positions and modelling approaches were not highly affected by 

sliding window length. It can be observed both in the displacements (Fig. 7 a) and the apparent MoE profiles (Fig. 

8) that FE and BT modelling were similar for knot position 𝑦𝑘 = −
3ℎ

4
, and 𝑦𝑘 = 0, but very different for knot 

positions 𝑦𝑘 = −
ℎ

4
, and 𝑦𝑘 = −

ℎ

2
, the FE model being more compliant. This will be discussed in the next section 

by the analysis of local MoE. 



   

 

20 

 

 

Fig. 8. Apparent MoE under axial loading obtained by FE (solid line) and BT modelling (dashed line) according 

to 𝑥 position in the “5 times depth” central area of the beam, computed in 10 mm (a), 90 mm (b), and 150 mm 

(c) long sliding windows. [colour version online] 

In bending, it can be seen that in terms of displacements (Fig. 7 b), the FE and BT models were close only in the 

case of the artificial beam with the knot positioned at 𝑦𝑘 = −
3ℎ

4
, i.e. the one for which the fibre deviations were 

minimum (apart, of course, from the case of the homogeneous beam, for which the results were identical). The 

displacement curves also show a much more complex behaviour in the FE model than in the BT model, with the 

curvature varying more for the FE model, and even changing of sign. For example, for the artificial beam with the 

knot centred (𝑦𝑘 = 0), it can be seen in Fig. 7 b that in the central 𝑥 position, where the center of the knot was 

located, the curvature was locally in the opposite direction to the global curvature of the beam in bending. Because 

the apparent MoE was computed from the curvature through 3 points (Equation (31)), these kind of variations of 

curvature sign induce discontinuities in the apparent MoE profiles computed from FE modelling, which is the 

reason why it can appear infinite if a short sliding window length is considered, as shown in Fig. 9 a and b for 

10 mm and 90 mm sliding window size, respectively. This behaviour makes difficult the analysis of these Figures, 

but the variations of apparent MoE were much easier to observe when the curvature was computed with a 150 mm 

long sliding window (Fig. 9 c), thanks to the higher smoothing. The computed curvature in this case still induced 

locally very high apparent MoE values for beams with knots when using FE modelling (much higher than 16.8 

GPa, which is the fibres’ MoE in their main longitudinal direction). Obtaining apparent MoE values higher than 

the material longitudinal MoE could appear surprising, but this is the direct translation of a local curvature that is 

affected around the knot by coupling phenomena due to the orthotropic nature of the material. The strain maps 

provided in supplementary materials show this complexity.  

On the opposite to FE modelling, the displacements obtained from BT modelling kept a smoother curvature (Fig. 

7 b) and the resulting apparent MoE profiles behaved more like in the axial loading case, never exceeding the 

fibres’ MoE in longitudinal direction (Fig. 9).  

 

Fig. 9. Apparent MoE in bending obtained by FE (solid line) and BT modelling (dashed line) according to 𝑥 

position in the “5 times depth” central area of the beam, computed in 10 mm (a), 90 mm (b), and 150 mm (c) 

long sliding windows. [colour version online] 
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3.2 Local MoE 

3.2.1 Artificial beams 

Fig. 10 shows the obtained local MoEs in axial and bending loadings, both obtained by FE and BT modelling 

according to the 𝑦𝑘  position of the knot in the depth of the beam. As in the other Figures, the results with no knot, 

i.e., for a homogeneous beam, are also displayed for reference, the local MoE being the input MoE of 16.8 GPa.  

 

Fig. 10. Evolution of local MoE in axial loading (filled markers) and bending loading (empty markers) according 

to knot 𝑦𝑘  position obtained by FE (solid line) and BT modelling (dashed line). The abscissa of the “no knot” 

beam has been set arbitrarily. Marker colours correspond to different knot 𝑦𝑘  positions as in other Figures. 

Apart from the case for which the knot was centred in the middle line of the board (𝑦𝑘 = 0), the local MoE was 

lower in bending than in axial loading whatever the model considered. The ratios 𝐸𝑎,𝑙/𝐸𝑏,𝑙  were equal to 1.10, 

1.30, 1.16 and 0.84 for knot positions 𝑦𝑘 = −3ℎ/4, 𝑦𝑘 = −ℎ/2, 𝑦𝑘 = −ℎ/4 and 𝑦𝑘 = 0, respectively. The 

difference between axial and bending MoE has been discussed in a few experimental studies: Burger and Glos 

(1995) found a relationship of 𝐸𝑏/𝐸𝑎 = 1.09 on 147 specimens of Norway spruce, but Steiger and Arnold (2009) 

found exactly the inverse (at most for the lowest qualities), 𝐸𝑎/𝐸𝑏 = 1.09, on a larger scale study (1492 specimens 

of various cross sections). The present modelling results show that the difference between axial and bending MoE 

is highly dependent on knot position, which may explain mixed experimental results depending on the knot 

positions distribution.  

These differences between axial and bending behaviours can be explained with a BT reasoning: when the knot is 

not centred across 𝑦⃗, its lower mechanical properties are away from the neutral fibre and closer to the edge, thus 

in the area where the influence is maximum in bending. Following this reasoning, when the knot is centred in the 

board (𝑦𝑘 = 0), straighter fibres can be located close to the edges, and thus the localized MoE in bending can be 

higher than when the knot is not centred, despite that there is a higher proportion of knot relatively to the cross-

section. Conversely, under axial loading, the local MoE can only be decreasing with the proportion of knot in the 

cross-section, because there is no effect of the distance to neutral fibre. These behaviours can be observed in Fig. 

10 in the evolution of the BT curves with knot position.  

The previous reasoning, however, does not explain how the local MoE under axial loading obtained by FE 

modelling is significantly higher if the knot is centred (𝑦𝑘 = 0) than if it is at 𝑦𝑘 = −ℎ/4. FE modelling accounts 

for the full tensor of stresses and strains according to the local fibre orientation in a way that a BT reasoning cannot. 

Thus, FE modelling is of course more representative of the actual MoE than BT modelling. In the particular 

example of the knot centred on the middle line of the beam, it should be remarked that in this configuration the 

fibres are oriented around the knot in somehow the optimal direction according to the direction of the principal 

stresses that would exist in a homogeneous beam with a hole of the diameter of the knot, which certainly explains 

the surprisingly stiff behaviour. The reader can observe the full maps of strains in the supplementary material to 

see in detail the difference between artificial beam strain maps. 
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The differences between FE and BT modelling were variable according to knot position and loading type. When 

there were relatively low deviations of fibres and the knot was not included in the board, there was a relatively 

low difference in terms of modelled local MoE between BT and FE modelling (limited to 2.3 % in bending when 

𝑦𝑘 = −
3ℎ

4
). Conversely, when the knot was included in the board and thus the mechanical behaviour was more 

complex to get with BT, the differences could be significant, in either direction: for a knot located at 𝑦𝑘 = −
ℎ

4
 

under axial loading, the local MoE obtained with BT modelling was 15.9 % higher than FE modelling, whereas 

for a knot located at 𝑦𝑘 = −
ℎ

4
 under bending loading, the local MoE obtained with BT modelling was 10.4 % 

lower than FE modelling.  

 

3.2.2 Experimental LVL beams 

For the artificial beams, only one size of knot and a few knot positions have been tested, thus it is difficult to 

evaluate how the observed difference between BT and FE modelling would be reflected in practice. This is the 

reason why these modelling methods had been applied on actual LVL beams for which the fibre angles had been 

measured by laser dot scanning. Fig. 11 compares the local MoE measured experimentally on the Y-axis to the 

local MoE obtained from BT and FE modelling. The difference in local MoE between BT and FE modelling for 

optimized beams with minimized knottiness in the central area was smaller than for beams with maximized 

knottiness in the central area (2.7 % versus 6.3 % of difference). This result is thus in accordance with what was 

found in the case of the artificial beams, with higher difference between the models when there is more fibre 

deviation. The FE modelling induced higher MoEs, which were closer to the experimental results. The RMSE 

between 𝐸𝑏,𝑙,𝐹𝐸 and  𝐸𝑏,𝑙,𝑒𝑥𝑝 was equal to 0.440 GPa while it was equal to 0.776 GPa between 𝐸𝑏,𝑙,𝐵𝑇 and  𝐸𝑏,𝑙,𝑒𝑥𝑝. 

This result highlights the better accuracy of FE modelling, even if it should be confirmed with more experimental 

data.  

Although the size and positions of the knots were much more variable in the actual beams than in the tested 

artificial cases, the higher local MoEs of LVL FE modelling seems consistent with the results of local MoEs of 

artificial beams (section 3.2.1): when there are low fibre deviations BT and FE modelling results are close, but 

when there are high fibre deviations they are different, with a tendency of the FE modelling to present higher 

stiffness in bending when the knots are embedded in the cross-section (𝑦𝑘 = −ℎ/4 and 𝑦𝑘 = 0 for artificial 

beams).     

 

 

Fig. 11. Comparison between BT and FE bending local MoE versus experimental local MoE for each LVL beam 

 

3.3 Comparison between localized MoE computation methods 

The lengthwise variations of the different kinds of localized MoE profiles summarized in Table 2 are difficult to 

compare visually altogether, thus they are compared here only for the artificial beam with the knot located at 𝑦𝑘 =

−
ℎ

2
, which allows for a good observation of the potential differences between modelling and smoothing methods.  
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3.3.1 Axial loading case 

Fig. 12 shows the lengthwise variations of the four localized axial MoEs for the artificial beam with the knot 

located at 𝑦𝑘 = −
ℎ

2
. First, the FE-based apparent MoE from displacements and localized MoE from averaged 

strains were identical, thus they cannot be distinguished in Fig. 12. This was expected because under axial loading 

and for a given sliding window length, the difference in averaged displacements that are in Equation (27) is the 

same as the cumulated strains that are in Equation (28). It will be shown later that it is not the case under bending 

loading.  

Secondly, the BT-based localized MoE were visually indissociable when 𝛿 = 10 mm (Fig. 12a) and the difference 

slightly increased when increasing the sliding-window length to 90 mm and 150 mm (Fig. 12b and 13c, 

respectively). This effect was expected as the apparent MoE is the harmonic average of the localized MoE whereas 

the averaged MoE is the arithmetically averaged MoE. However, the difference appeared to be very small, even 

for the quite large sliding-window length of 150 mm, thus, in the frame of axial loading, the method of computation 

of BT-based localized MoE should not imply any significant difference when modelling timber mechanical 

behaviour. On the contrary, the differences between FE and BT MoEs were very large and implied totally different 

mechanical responses that have been already discussed and should be considered when modelling timber with 

knots. 

 

Fig. 12. Localized axial MoE comparisons in the case of the artificial beam with knot position 𝑦𝑘 = −
ℎ

2
, 

according to 𝑥 position in the “5 times depth” central area of the beam and sliding-window lengths 𝛿 of 10 mm 

(a), 90 mm (b), and 150 mm (c). Note that 𝐸𝑎,𝑎𝑝𝑝,𝛿,𝐹𝐸 = 𝐸𝑎,𝜀,𝛿,𝐹𝐸, therefore the curves are indissociable. 

  

3.3.2 Bending loading case 

Fig. 13 shows the lengthwise variations of the four localized bending MoEs for the artificial beam with the knot 

located at 𝑦𝑘 = −
ℎ

2
. For the shortest sliding window of 10 mm (Fig. 13a), the two localized MoE computed by BT 

modelling were almost identical so it was not possible to distinguish them. However, the difference between them 

increased when increasing the sliding-window length to 90 mm and 150 mm (Fig. 13b and Fig. 13c, respectively), 

and it increased in a much more significant way than in the previously discussed axial loading case. The reason 

for this behaviour certainly relies on the same effect of “arithmetic versus harmonic averages”, but with a greater 

impact due to the variation of longitudinal strains in the cross-section under bending loading. 

Contrary to the axial loading case, the two computation methods of localized MoE based on FE modelling showed 

very different behaviours. The localized bending MoE computed from strains by FE modelling was actually quite 

similar to the averaged MoE obtained by BT modelling. This may be explained by the fact that Equation (8) from 

which the localized bending MoE computed from strains was obtained is a BT equation: it supposes that the strains 

𝜀𝑥𝑥 vary linearly over beam depth, which is not the case in the knot area, as it was shown by Hu et al. (2018) and 

in the present supplementary materials. The linear regression results in a strong smoothing of the variation of 

strains.  

The radical differences between FE and BT apparent MoEs were already discussed before. Despite the erratic 

variations of apparent MoE obtained by FE modelling, it can be noticed that the minimum value in the central area 
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behaved similarly to the other localized MoE, which is an interesting behaviour that will be used in the next section. 

It also appeared when comparing Fig. 13a to Fig. 13c that the minimum localized MoE computed from the strains 

by FE modelling was more impacted by the sliding-window length than the apparent MoE computed from FE 

modelling. 

 

Fig. 13. Localized bending MoE comparisons in the case of the artificial beam with knot position 𝑦𝑘 = −
ℎ

2
, 

according to 𝑥 position in the “5 times depth” central area of the beam and sliding-window lengths 𝛿 of 10 mm 

(a), 90 mm (b), and 150 mm (c).  

 

3.4 Minimum localized MoE for strength prediction 

As stated in the introduction, several authors used a localized MoE or another criterion as a predictor of mechanical 

strength, looking for the minimum value (smoothed by a sliding window) along board length. The minimum 

localized MoEs have been searched for each artificial beam, each localized MoE and each sliding window length, 

and they are presented in Fig. 14 along with the equivalent strength (Tsaï–Hill criterion) as defined by Grazide et 

al. (2018). The effect of curvature inversion observed on localized MoE obtained by FE modelling (Fig. 9) has 

been discarded by searching for the lowest positive localized MoE. Moreover, it can be observed visible on Fig. 9 

and 13, where 𝑥 < 1100 mm or 𝑥 > 1600 mm that there is a local decrease of the localized MoE: this is due to the 

transversal compression induced by the loads 𝑞 which models the pressure applied by loading heads (see Fig. 6). 

This effect has also been discarded by searching the minimum value only in the central part of 3 times the depth 

of the beam (which is 𝑥 between 1137 mm and 1572 mm in this case).  

Both in axial and bending loading, the general aspect of the minimum localized MoEs presented in Fig. 14 is 

similar to that of the local MoE (Fig. 10), even for the smallest sliding window length. For most of the tested 𝑦𝑘  

knot positions, the minimum localized MoEs obtained with BT and FE modelling were significantly different, 

which would certainly induce very different strength predictions in practice, as it was the case for the local MoE.  

Under axial loading (Fig. 14 a,c,e), the main difference between the minimum localized MoEs relied on the 

difference between FE and BT modelling, but not significantly on the sliding window size.  

In bending, as expected from the variations of localized MoE of Fig. 13, the localized MoE computed from the 

strains by FE modelling followed the evolutions of the minimum averaged MoE obtained by BT. Both were similar 

to the minimum apparent MoE obtained from BT when the sliding window size was 10 mm (Fig. 14 b), but they 

were more and more different as the sliding window size increased (Fig. 14 d,f).  

Fig. 14 also shows that the Tsaï–Hill criteria had the same general aspect as the minimum localized MoEs. In 

bending in particular, Tsaï–Hill criterion variations were very similar to that of the minimum apparent MoE 

obtained from FE modelling, when the smallest sliding window length of 10 mm was used (Fig. 14 b). Under axial 

loading (Fig. 14 a), it was proportionally lower than the localized MoEs, being very low even when 𝑦𝑘 = −
ℎ

4
  

(Tsaï–Hill criterion was divided by 2.8 relatively to material strength). 

Based on the present study, it is not possible to determine which of these predictors would be better for strength 

prediction, however, it clearly shows that they behave differently in axial and bending loading, and according to 

knot position in the depth of the beam. The length of the sliding window across which these predictors were 

computed also had a significant influence, and the optimum sliding-window length should be searched, certainly 

depending on board cross-section as stated by Oscarsson et al. (2014). 
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Fig. 14. Evolution of minimum localized MoEs and Tsaï-Hill criterion for axial loading (filled markers, on the 

left) and bending loading (empty markers, on the right) according to knot 𝑦𝑘  position obtained by different 

modelling methods, with sliding windows lengths of 10 mm (a,b), 90 mm (c,d), and 150 mm (e,f). Tsaï–Hill 

criterion second axis scale has been set to be proportional to the apparent MoE for the homogeneous beam.  

 

4. Conclusion 

The models presented in this work mainly deal with artificial beams for which there is a relatively simple 

distribution of fibre orientation around knots: four different knot positions for a single diameter of knot were 

studied with in-plane fibre angle only. In reality, it is a 3D modelling problem and there is an immense diversity 
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in knot repartition and geometry. Keeping in mind these limitations, the results provided allow to draw some 

interesting conclusions, and the simplicity of the artificial beams can actually be seen as a way to highlight the 

typical behaviour of timber, modelling methods, and relative strength critera. 

• The observation of beam deformations and the newly proposed computation of apparent MoE profiles 

from it showed that classical BT modelling, although taking into account the heterogeneity of local 

modulus in beam longitudinal direction, does not truly represent the actual deformations that can be 

depicted with FE modelling.  

• In the considered tangential plane, axial and bending local MoEs, as defined in EN 408 (2012), of a given 

timber beam containing knots are generally different, and the relative difference depend on knot position. 

The axial local MoE is generally stiffer than bending local MoE (up to 30 % more), but it can be the other 

way around: it is 16 % more compliant in the case of a knot exactly centred in the middle line of the 

beam. This difference of stiffness according to loading type of timber containing knots is rarely discussed 

in the literature, whereas it may have consequences, e.g. in the strength grading of timber which can be 

performed on the basis of tensile or bending tests, and therefore lead to different results or yields. 

• For beams modeled from artificial fibre angle data, the relative difference in local bending MoE predicted 

by FE and BT modelling can exceed 10 %, FE being stiffer for a centred knot, and more compliant for a 

knot close to beam edge. This stiffening effect is explained by the fact that when the knot is positioned 

close to the center of the beam, the fibers are optimally aligned with the principal stresses expected like 

in a uniform beam containing a void equivalent in diameter to the knot. Only FE modelling can account 

for this phenomenon. 

• For modellings with fibre angle data coming from experimental LVL beams, local bending MoEs 

obtained from FE modelling were found to be more representative of the experimental data. and 6.3 % 

stiffer on average than that obtained from BT modelling. The high knottiness and possibly high proportion 

of fully embedded knots in the experimental LVL beams may justify this difference, following the 

previously mentioned stiffening effect in a beam when a knot is centred in this particular tangential plane. 

• In bending, the different methods to compute localized MoEs behave differently according to knot 

position (thus fibre deviations within the beam) and to the sliding-window length across which they are 

computed, whereas it is less the case under axial loading for which it is mostly a matter of FE versus BT 

modelling method. 

• The computation of localized bending MoE from the displacements proposed in the present paper, shortly 

called apparent MoE , exhibits a very different  behaviour than the localized bending MoEs that currently 

exist in the literature. Indeed, the minimum bending apparent MoE along a beam containing knots behaves 

more similarly to the Tsaï-Hill strength criterion than the other studied minimum localized MoEs. The 

application and comparison of these strength predictors on the same experimental data are needed to 

conclude which one is better correlated to the actual bending strength. 

Ultimately, this research highlights the intricate relationship between knot position, modeling approaches, and the 

resultant mechanical behaviours under different loading conditions. It highlights the need for refined modeling 

techniques that consider fiber deviations and emphasizes the challenges in predicting mechanical strength using 

localized MoE, particularly in bending scenarios. Further investigation is warranted to optimize sliding window 

lengths in relation with experimental results for accurate strength predictions based on localized MoE across varied 

board cross-sections. 
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