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Abstract

This research presents a topology optimization framework to achieve volume
minimization with multi-axial high cycle fatigue criteria constraints by con-
strained natural element method. To solve the local minimization problem,
the method based on the augmented Lagrangian formula is adopted. Special
attention is given to the optimization results based on the stress-invariant
fatigue criteria and the critical plane fatigue criteria under different loading
conditions, including proportional and non-proportional loading.

Keywords: Topology optimization, High cycle fatigue, Constrained natural
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1. Introduction

Topology optimization is a sophisticated structural design methodology
that generates novel and efficient configurations. The optimized structures
are lightweight, but challenging to create through traditional ways. However,
topology optimization designs are well suited for additive manufacturing pro-
cesses that have more relaxed design rules and can easily replicate complex
shapes without additional cost. In the modern industry, the combination of
topology optimization and additive manufacturing has a wide range of ap-
plications to maximize the advantages and potential of both techniques (Liu
et al. (2018); Ibhadode et al. (2023)).

Additive manufactured materials and components for critical load-bearing
applications are usually subjected to cyclic loading during their service life.
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These loads can be out of phase and in different frequencies which will pro-
duce complex bi-axial or tri-axial stress states (Nalli et al. (2021)). Structural
fatigue under complex stress state can lead to sudden and catastrophic failure
due to its progressive and insidious nature. Therefore, it is very important
to take the multi-axial fatigue factors into account and reasonably predict
the fatigue life of the structure in the design stage.

A series of multi-axial fatigue criteria have been developed and improved
during the past decades. However, the applicability of those criteria are re-
lated to load and material characteristics. Wang and Yao (2004) found that
the prediction of most fatigue criteria had little deviation from the exper-
imental results under proportional loading, however, the errors were larger
under non-proportional loading, and the degree of which varies with mate-
rials. Similar conclusions were also reached by Papadopoulos et al. (1997)
and Matsubara et al. (2018). Therefore, the selection of HCF criteria should
be prudent when faced with complex loading conditions. Otherwise, the
prediction results are quite different from one criterion to another (Dantas
et al. (2021)). For each topology optimization problem subjected to fatigue
constraints, it is difficult to determine which class of fatigue criteria produce
better predictions. In this study, the most interesting aspect is the compar-
ison of the topology optimization results under different multi-axial fatigue
criteria constraints for different benchmark problems and loading conditions.

Several static and quasi-static fatigue models have been developed for
topology optimization of linear elastic structures to simplify the computa-
tional cost under a large number of load cycles. Holmberg et al. (2014)
imposed stress constraints instead of fatigue constraints in topology opti-
mization. Oest and Lund (2017) adopted the rainflow counting method to
handle proportional load histories. Jeong et al. (2018) developed a topol-
ogy optimization model based on equivalent static load method considering
variable amplitude load. Zhang et al. (2018) predicted the fatigue life of non-
proportional loads by using signed von Mises stresses. Suresh et al. (2020)
proposed a fatigue-constrained topology optimization formulation based on
continuous-time approach to consider general load histories including non-
proportional loads. Chen et al. (2020) considered cumulative fatigue damage
in topology optimization and discussed the effects of damage penalty parame-
ters and load parameters on the final design. Slebioda et al. (2023) proposed
a topology optimization method with infinite fatigue life constraint under
non-proportional loading based on signed von Mises stress. In the afore-
mentioned literature, the fatigue-constrained topology optimization studies



use finite element method to solve the partial differential equations and
employ aggregation techniques to approximate the maximum value of the
constraints. However, the widely used Lagrangian-type finite elements suf-
fer from mesh dependence (Sigmund and Petersson (1998); Talischi et al.
(2009)), and the aggregation technique loses control over the local behavior
(Paŕıs et al. (2009); Verbart et al. (2016); Senhora et al. (2020)). Recently,
Chen et al. (2023) presented a topology optimization framework to achieve
volume minimization with stress constraints by constrained natural element
method (CNEM) and the local optimal solution is obtained through the
augmented Lagrangian formula. Compared to previous studies, CNEM is
less affected by the discretization scheme and the augmented Lagrangian ap-
proach reduces the cost associated with a large number of constraints while
providing a more consistent model than aggregation techniques.

This study aims to investigate the performance of CNEM in solving topol-
ogy optimization problems with multi-axial high cycle fatigue (HCF) criteria
constraints. Particular attention is paid to the fatigue criteria based on the
critical plane, a class of problems that has not been widely implemented in
topology optimization so far. The reminder of this paper is organized as fol-
lows. Section 2 introduces several common multi-axial HCF criteria. Section
3 presents the topology optimization problem with fatigue constraints for
continuum structures, and several numerical examples are shown in Section
4, followed by a discussion of the predicted results of the fatigue criterion
under different loading conditions in Section 5. Finally, Section 6 gives con-
cluding remarks to complete the paper. The procedure of sensitivity analysis
is given in Appendix A.

2. Multi-axial high cycle fatigue criteria

Multi-axial fatigue is a common problem for many engineering structures
and components. Accurate fatigue life prediction is necessary to guarantee
the long-term integrity of these structures and components. A wide range of
multi-axial fatigue models have been proposed to predict fatigue life and they
can be categorized into four groups: stress-based, strain-based, energy-based
and fracture mechanics-based (Wei and Liu (2020)). The HCF is caused
by small strain (mainly elastic) under a large number of load cycles (≥ 105

cycles), as shown in Fig. 1. Therefore, the most commonly used criteria for
this kind of fatigue problem is the stress-based criteria.



Figure 1: General representation of the S-N diagram

In this study, HCF life is modeled and the inertial effects are neglected,
so that the stress state at each moment in the loading history is obtained by
linear elastic analysis. In principle, the stress-based criteria can be classified
into the following groups: criteria based on stress invariant, such as Sines
(Sines (1959)) and Crossland (Crossland (1956)) criteria, critical plane mod-
els proposed by Matake (Matake (1977)), Findley (Findley (1959)) and Dang
Van (Dang Van et al. (1989)), criteria based on the average stress, i.e., the
integral approaches proposed by Papadopoulos (Papadopoulos (2001)) and
Liu and Zenner (Liu and Zenner (2003)), the model based on moving durable
surface in stress space (Ottosen et al. (2008); Brighenti et al. (2012)). For
a comprehensive compilation of different HCF models, please refer to Socie
and Marquis (Socie and Marquis (1999)). Due to the calculation cost, the
average stress method is not considered in this study. The predicted fatigue
damage based on moving durable surface model corresponds well to experi-
mental results under cyclic proportional stress. However, it has limitations
in correctly predicting damage evolution in rotary stress states (Lindström
et al. (2020)), thus, nor is it considered here. Several representative criteria
from the first two categories are presented in Table 1, where

√
J2,a is the

amplitude of the second stress invariant, σH,mean and σH,max represent the
mean and maximum hydrostatic stress respectively, τa is the amplitude of
shear stress and σn,max is the maximum value of normal stress.



Table 1: Several HCF criteria based on stress

HCF criteria Model formula Parameter

Stress invariant

Sines (Sines (1959)) αs = 6t−1

f0
−
√

3

g =
√
J2,a + αsσH,mean ≤ βs βs = t−1

Crossland (Crossland (1956)) αc = 3t−1

f−1
−
√

3

g =
√
J2,a + αcσH,max ≤ βc βc = t−1

Critical plane

Findley (Findley (1959)) αf =
2− f−1

t−1

2

√
f−1
t−1

−1

g = max
θ

(τa + αfσn,max) ≤ βf βf = f−1

2

√
f−1
t−1

−1

Matake (Matake (1977)) αm = 2t−1

f−1
− 1

g = max
θ

(τa) + αmσn,max ≤ βm βm = t−1

Dang Van (Dang Van et al. (1989)) αdv = 3t−1

f−1
− 3

2

g = max
θ

(τa) + αdvσH,max ≤ βdv βdv = t−1

All of the HCF criteria in Table 1 consist of two stress components asso-
ciated with the material parameters which are related to the weight of the
damage effect. The parameters α and β can be identified by uni-axial fa-
tigue tests, where t−1 is the fully reversed torsional fatigue limit, f0 and f−1

represent the fully repeated and fully reversed bending fatigue limit respec-
tively. The stress terms J2,a and σH during the load cycle 0 ≤ t ≤ T can be
calculated as follows:





J2,a = (σa)
T Mσa

σH,mean = (σxx,mean+σyy,mean)

3

σH,max = max
t

[
σxx(t)+σyy(t)

3

] (1)

where the subscripts a and mean represent the amplitude and mean values
of Cauchy stress vector at any position x:


σa =

{
max

t
[σ(t)] − min

t
[σ(t)]

}
/2

σmean =
{

max
t

[σ(t)] + min
t

[σ(t)]
}
/2

(2)

and

M =

 1/3 −1/6 0
−1/6 1/3 0

0 0 1

 (3)

for 2D plane stress state.
The implementation of the first type of criteria based on stress invari-

ants in the calculations is very straightforward, the difference between Sines
and Crossland criteria is the use of the maximum or the mean value of the
hydrostatic stress. An important feature of these criteria is that the stress
parameters are independent of the specific plane orientation which leads to
the simplicity of the solution. However, they are unable to specify the direc-
tion of potential fatigue cracks. Hence, their applicability is limited to the
case where the principal axis of the alternating stress is fixed on the object.
The most widely used approach is based on the concept of critical plane,
where the stress state at the maximum loaded plane is assumed to be the
cause of crack initiation. The identification of such a plane mainly consists
of measuring the maximum damage plane or the plane with the maximum
shear stress range. The fatigue criteria based on critical plane follows the
same process. Firstly, the critical plane needs to be found by definition, and



second, whether the criteria is satisfied on this plane is checked. Note that
the Matake and Dang Van criteria define only the plane with the maximum
shear stress amplitude as the critical plane and denies any additional influ-
ence of other stress components. The characterization of the critical plane
only as the plane of maximum shear stress amplitude may lead to ill-posed
problems, since many different planes can experience the same value, there-
fore, it may be resonable to consider a second factor to determine the critical
plane, as proposed in the Findley criterion. By introducing the above fatigue
criteria into topology optimization, it is also possible to compare the effects
of hydrostatic stress (average of the normal stresses) and normal stress on
topology optimization results.

In order to better understand each criterion and to identify the trend
of different criteria dealing with different loading conditions, Fig. 2 demon-
strates the ability of the criteria to predict the fatigue behavior of additive
manufactured Ti-6Al-4V alloy under uni-axial tension, combined tension-
torsion and bi-axial tension loading. The latter two loading conditions are
in-phase and have a stress ratio of −1. Due to missing fully repeated bending
fatigue limit data f0, the prediction of Sines under uni-axial tension loading
is not plotted. The bi-axial ratio under bi-axial tension loading is given by
bk = σyy(t)/σxx(t), and the case of bk = 1 corresponds to equal bi-axial
tension.

Figure 2: Prediction of HCF criteria with (a )uni-axial tension, (b) combined tension-
torsion and (c) bi-axial tension loading

Although the effect of mean stress on fatigue life is not the goal of this
study, all fatigue criteria predict a linear decrease in fatigue strength with



increasing mean stress under uni-axial tension loading, see Fig. 2(a). In the
absence of mean stress, Crossland and Dang Van have the same predictions
under uni-axial tension loading, while Dang Van shows a significantly faster
decrease than Crossland as the mean stress increases. The other two critical
plane based fatigue criteria, Matake and Findley, start slightly lower than
the fully reversed bending fatigue limit under uni-axial tension loading, their
slopes of decrease with increasing mean stress are slightly larger than Dang
Van criterion. Under pure torsion loading, all criteria except Findley show
the same prediction, as shown in Fig. 2(b). Since the parameter β for
the Findley criterion is not equal to the fully reversed torsional fatigue limit,
this leads to a slight deviation. However, all criteria give completely different
predictions when tension and torsion are applied simultaneously. The HCF
criteria considered in this study predict the nonlinear effect of bi-axial ratio
under bi-axial tension loading, see Fig. 2(c). For the first kind of criterion
based on the stress invariants, the fatigue strength increases at low bi-axial
ratio, and then decreases. For the bi-axial ratios of bk = 0.5 and bk = 0.4,
the beneficial effects of Sines and Crossland reach the maximum respectively.
However, for the criterion based on critical plane, fatigue strength decreases
with the increment of bi-axial ratio. In general, the fatigue criteria based
on critical plane show more conservative predictions than the fatigue criteria
based on stress invariant under simple cases.

The constant amplitude fatigue load can be divided into two types: pro-
portional loading and non-proportional loading, as shown in Fig. 3. The
proportional loading is presented by a ψ = 0◦ phase difference, meaning that
the stress at any point of the structure at any time can be represented by a
time-dependent scalar multiplied by the stress at a specified reference time
point for linear elastic problems, while a non-zero phase difference implies
non-proportionality, in which case there is no such a scalar function. There-
fore, when dealing with non-proportional loads, the superposition principle
or the so called linear combination model adopted by Zhang et al. (2018) is
used, that is, the stress state of any position x at any time t over any plane
θ can be expressed as a linear combination of the stresses generated by the
unit loads:

σ(x, t, θ) =

nf∑
l=1

clσl,ref (x, θ) (4)

where nf is the number of loads, σl,ref represents the stress vector corre-



Figure 3: Proportional loading (left) and non-proportional loading (right)

sponding to l-th unit load over the specified plane, cl is the stress ratio
vector between l-th load and l-th unit load at time t over the plane, θ can
be removed when the stress invariant method is adopted. Subsequently, the
extreme values and amplitudes of the stresses over any plane are given by:



σmax(x, θ) =
nf∑
l=1

cl,max σl,ref (x, θ)

σmin(x, θ) =
nf∑
l=1

cl,min σl,ref (x, θ)

σa(x, θ) = 1
2

nf∑
l=1

(cl,max − cl,min) σl,ref (x, θ)

(5)

where cl,max and cl,min represent the coefficient vectors of stress extremes.
When the load is proportional, nf in Eqs.4 and 5 is always equal to 1 and
σref is the reference stress vector corresponding to any loading moment.

The critical plane method assumes that the fatigue life can be calculated
from the damage in the critical plane at the critical point, and the damage
located on all other planes does not affect the initiation of microcracks. The
main computational challenge of this approach is to calculate the cumulative
damage of many candidate planes at each point to discover the direction of
the critical plane where the damage is maximized. However, this search can
be simplified in the two-dimensional state where the critical plane is always
constant.

At each point under study, a general plane ∆ can be defined by its unit



normal vector n, which can be described by the angle θ in 2D state, see Fig.
4, where θ is the inclination between n and the x-axis. Since the negative
normal vector describes the same plane, the search space is further reduced
to a semicircle. A simple procedure for discretizing this semicircle is to scan
from 0◦ to 180◦ using predetermined angular increments. For example, when
an increment of 1◦ is adopted, the stresses located in 180 planes need to be
evaluated at each point for all load steps.

Figure 4: Determination of critical plane in 2D

The stress vector S(t, θ) acting on such a plane can be decomposed into
the normal stress component σn(t, θ) and the in-plane shear stress vector
τ (t, θ). Given the plane ∆, the magnitude of σn(t, θ) changes during the
load cycles, but the direction is always consistent with the normal vector n
of ∆. Therefore, σn(t, θ) can be completely described by its algebraic value:

σn(t, θ) = S(t, θ) · n = n · σ(t, θ) · n (6)

The orthogonal projection of S(t, θ) on ∆ gives the in-plane shear stress
τ (t, θ):

τ (t, θ) = S(t, θ) − σn(t, θ)n = σ(t, θ) · n− [n · σ(t, θ) · n]n (7)

For the 2D stress state, τ also only changes in magnitude, but not in
direction. By changing the angle θ in 2D stress state, the analytical stress
transformation equations shown below can be used to calculate the normal
and shear stresses over any plane at time t:




σn(t, θ) = σxx(t)+σyy(t)

2
+ σxx(t)−σyy(t)

2
cos 2θ + τxy(t) sin 2θ

τ(t, θ) = −σxx(t)−σyy(t)

2
sin 2θ + τxy(t) cos 2θ

(8)

3. Methodology

3.1. Constrained natural element method

The natural element method (NEM) uses a cloud of nodes to divide the
bounded domain into a group of Voronoi cells (Braun and Sambridge, Braun
and Sambridge (1995)). However, the NEM is unable to achieve linear inter-
polation over the non-convex boundaries. To overcome this issue, a visibility
criterion is introduced into the Voronoi diagram by Yvonnet et al. (2004) to
give rise to the constrained natural element method (CNEM):

VC
i =

{
a ∈ ΩD : d (x,xi) ≤ d (x,xj)∀j ̸= i ∩ a is visible from i and j

}
(9)

where VC
i is the constrained Voronoi cell of node i, xi represents the coordi-

nates of node i and d (x,xj) is the Euclidean distance between node a and
node j. In the visibility criterion, node a is visible from another node b if
the line segment [a, b] connecting them neither passes through the domain
boundary Γ nor outside the domain, as shown in Fig. 5. The constrained
Voronoi diagram in a 2D non-convex domain is plotted in Fig. 6.

Figure 5: Visibility criterion (left) and constrained Voronoi cell of node a (right)

The constrained natural element method (CNEM) is based on the use of
natural neighbor-based interpolation schemes, such as Sibson interpolation
(Sibson (1981)). The Sibson interpolation function depend neither on the



Figure 6: Constrained Voronoi diagram of a cloud of N nodes in 2D

Delaunay mesh nor on the distance to its neighbors, but is determined by
the appropriate Lebesgue measure of the spatial dimensionality, as shown in
Fig. 7. First, the original Voronoi diagram is locally modified by introducing
a new Voronoi cell at point x (blue area). Then, the interpolation function
is calculated based on geometrical considerations:

ϕi(x) =
Vi(x)

V (x)
with V (x) =

n∑
i=1

Vi(x) (10)

where Vi(x) is the area of the intersection (green region) of Voronoi cell VC
i

(yellow region) and the new Voronoi cell VC
x (blue region), V (x) denotes the

area of the new Voronoi cell VC
x , and n is the number of natural neighbor-

hoods of point x.

Figure 7: Process to compute Sibson interpolant in 2D

The Sibson interpolant enjoys several properties, such as the Kronecker
delta property, partition of unity and linear consistency (Sukumar et al.
(1998)):

ϕi (xj) = δij,
n∑

i=1

ϕi(x) = 1, u(x) =
n∑

i=1

ϕi(x)ui (11)



where δij is the Kronecker delta operator.
Due to the non-polynomial nature of the Sibson interpolation, it is nec-

essary to use enough integration points to minimize the error, which makes
the computation of the stiffness matrix too expensive (Chi et al. (2016)).
To improve the efficiency and accuracy, the stabilized conforming nodal in-
tegration scheme (SCNI) proposed by Chen et al. (2001) is applied in this
study. In SCNI, the strain smoothing stabilization is performed to stabilize
the nodal integrals:

ε̄hi (x) =
1

Vi(x)

∫
Ωi

Bi(x)ui dΩ (12)

where Bi is the strain-displacement matrix of VC
i .

Based on the divergence theorem, Eq. 12 can be rewritten as:

ε̄hi (x) =
1

Vi(x)

∮
Γi

ϕi(x)ui · n dΓ = B̄i(x)ui (13)

where B̄i is the average strain-displacement matrix of VC
i .

Then the Cauchy stress tensor can be calculated through:

σh(x) =
N∑
i=1

CB̄i(x)ui (14)

where C is the material constitutive matrix.

3.2. Density based topology optimization

The topology optimization for continuum structures using the solid isotropic
material with penalization (SIMP) method is presented in this study. The
general optimization statement can be expressed as follows:

min c(ρ) =
1

|Ω|

N∑
i=1

ρiVi

s.t.

{
gi(ρ,u) ≤ 0, i = 1, . . . N

0 ≤ ρj ≤ 1, j = 1, . . . N
(15)

with: K(ρ)u = f



where c is the objective function to minimize, Vi represent the volume of
i-th element, |Ω| is the total volume of design domain, gi is i-th constraint
function, which depends not only on the design variable ρ, but also on the
displacement u, N is the number of elements, K and f represent the global
stiffness matrix and the external force vector respectively.

To avoid numerical instability, the polynomial filter proposed by Zegard
and Paulino (2016) is used, such that ρ̃ = Fρ. The (i, j)-th component of
the filter matrix F is calculated as:

Fij =
Hijρj∑N
k=1Hikρk

, with Hij = max

[
0, 1 − d (xi,xj)

R

]s
(16)

where R is the radius of the filter and exponent s ≥ 1 is the index.
To obtain a black-and-white design, the Heaviside projection function

(Guest et al. (2004); Wang et al. (2011)) is applied in this study:

ρ̄i =
tanh(βη) + tanh [β (ρ̃i − η)]

tanh(βη) + tanh[β(1 − η)]
(17)

where η is the projection threshold, β controls the slope of the function near
the threshold parameter η.

The stiffness matrix K in Eq. 15 is calculated through a typical assembly
process:

K(ρ) =
N∑
i=1

A
iKi, with Ki = [ϵ+ (1 − ϵ)ρ̄pi ]K

i
0 (18)

where A is an assembly operator, Ki is the stiffness matrix of i-th element,
ϵ is the Ersatz parameter to prevent singularity, p is the penalty factor, Ki

0

is the stiffness matrix for ρ̄i = 1.

3.3. Augmented Lagrangian Method

The Augmented Lagrangian method deals with local constraints by adding
them to the objective function in the form of a penalty term. The solution
to the constrained optimization problem is then obtained by solving a se-
ries of unconstrained ones, each of which aims to minimize the AL function



J(ρ,λ, µ). The unconstrained optimization problem at k-th iteration is rep-
resented as follows:

min J (k)(ρ,λ, µ) = c(ρ) +
1

N

N∑
j=1

[
λ
(k)
j hj(ρ,u) +

µ(k)

2
hj(ρ,u)2

]
(19)

where

hj(ρ,u) = max

[
gj(ρ,u),−

λ
(k)
j

µ(k)

]
(20)

are equality constraints, λ
(k)
j is the Lagrange multiplier estimator, µ(k) > 0

is a penalty coefficient, both λ
(k)
j and µ(k) are updated at each iteration as

follows (Senhora et al. (2020)):

µ(k+1) = min
[
αµ(k), µmax

]
λ
(k+1)
j = λ

(k)
j + µ(k)hj

(
ρ(k),u

) (21)

where α > 1 is a constant and µmax is the upper limit to prevent numerical
instabilities.

In order to achieve the minimization of the function J (k)(ρ,λ, µ), the
modified method of moving asymptotes (MMA) proposed by Giraldo-Londoño
and Paulino (2021) is applied in this study. In each iteration, a few MMA
inner loops are implemented to approximately minimize the AL function,
followed by updating λ

(k)
j and µ(k) until the convergence is reached. Par-

ticularly, the problem has converged when max
(

1
N

∣∣ρ(k+1) − ρ(k)
∣∣) ≤ δ and

max (g) ≤ δs, where δ and δs are the prescribed tolerance values for design
variables and constraints, respectively, ρ(k+1) and ρ(k) are given optimal de-
sign variable vectors of two successive iterations. For details on the solving
process of the approximate minimum value and the update of the design
variables, please refer to Giraldo-Londoño and Paulino (2021).

Since the HCF models considered in this study are stress-based, the
fatigue-driven problem shares the same difficulty as the stress-based topol-
ogy optimization problem, i.e., the singular optima due to stress singularity.



The Singular optima refers to the local optima are located in a degenerate
region of the design space that is not accessible to gradient-based optimizer
(Rozvany (1996); Verbart et al. (2017)). To circumvent this problem, sev-
eral relaxation techniques such as ϵ-relaxation (Paŕıs et al. (2009)) and qp
approach (Bruggi (2008)) were proposed to perturb the degenerate space
so that the singular optima can be reached by the optimizer. By analyz-
ing different types of constraint relaxations, Chen et al. (2023) found that
the polynomial vanishing constraint not only preserves the properties of the
original constraint, but also allows the result to converge to the global op-
timum. Therefore, the original constraint function in Eq. 15 is replaced by
the polynomial vanishing constraint:

g̃i(ρ) = [ϵ+ (1 − ϵ)ρ̄pi ] gi
(
g2i + 1

)
(22)

4. Numerical results

This section presents several numerical results to demonstrate the prop-
erties of the proposed method. Table 2 shows the parameters used in this
study, which apply to all examples if not otherwise specified. The mechani-
cal and fatigue parameters correspond to additive manufactured Ti-6Al-4V
alloy (Mower and Long (2016); Fatemi et al. (2017)). This material is con-
sidered to be homogeneous, isotropic and linearly elastic. Each individual
load applied in this paper is constant amplitude cyclic load with stress ratio
σmin/σmax = −1. According to the definition of the HCF model, the effect of
load frequency on fatigue life is negligible. Furthermore, the fatigue damage
during one cycle and multiple cycles is consistent in the calculations. There-
fore, the fatigue criteria can be evaluated for only one load cycle. In the 2D
problems given below, plane stress condition is assumed.

4.1. 2D L-bracket under single load

Firstly, the topology optimization problem of a 2D L-bracket under a
single load is considered. The design domain and boundary conditions is
shown in Fig. 8. The model is fully constrained at the upper left edge and
the distributed load f is applied along the distance d to the upper right free
end. The geometry and loading conditions are shown in Table 3. The HCF
criteria listed in Table 1 involve the calculation of stress amplitudes, mean
values, and maximum values during the load cycle. Since this study considers



Table 2: Input parameters used in this study

Parameter Description Value

ρ(0) Initial density vector 0.5
β Initial Heaviside projection penalization factor 1
βmax Maximum Heaviside projection penalty factor 10
η Heaviside projection threshold 0.5

λ(0) Initial Lagrange multiplier vector 0
µ(0) Initial penalty coefficient 10
α Penalty factor updating parameter 1.05
q Nonlinear filter index 3.5
δ Convergence tolerance of design variables for AL 0.005
δs Convergence tolerance of stress constraints for AL 0.005
m move limit 0.15
MaxIter Maximum number of external loops 150
MaxInAL Maximum number of internal loops per AL step 5
E0 Young’s modulus 108.8 GPa
ν Poisson’s ratio 0.29
σ Yield stress 972 MPa
σult Ultimate tensile stress 1034 MPa
f−1 Fully reversed bending fatigue limit 454 MPa
t−1 Fully reversed torsional fatigue limit 300 MPa
T Period of cyclic load 1 s
∆θ Increment of angle θ 1◦

the linear elasticity model, it is only necessary to focus on the stress states
under the maximum and minimum loads (red dots in Fig. 8) in the case of
single or proportional loading, thus avoiding high computational costs when
faced with a large number of loading sequences.

The design domain is discretized with 40501 uniformly distributed nodes,
and the topologies under different HCF criteria constraints are plotted in Fig.
9. It can be seen that the fatigue constraint can be satisfied anywhere accord-
ing to the normalized constraint maps, where the constraint is divided by the
parameter β. The optimization iterations are run by MATLAB R2021a on a
computer equipped with a 2.60 GHz processor and the time consumed by the



Figure 8: 2D L-bracket under single load

Table 3: Parameters for 2D L-bracket

Parameter Description Value

L Length 100 mm
t Thickness 1 mm
f Load amplitude 850 N
d Load distribution distance 6 mm

main loop is shown in Table 4. Since Matake and Findley require more itera-
tions to satisfy the convergence criteria, they consume more time. It is worth
mentioning that the topology optimization results based on different HCF
criteria result in relatively close contours under a single load, and even, they
are close to the results with von Mises stress constraints under static loading
(Giraldo-Londoño and Paulino (2021)). However, this property disappears
when the boundary conditions are changed.

When the HCF criteria are considered in topology optimization, the von
Mises stress constraints are also satisfied and produce stress distributions that
are much lower than the yield stress of the material. Relative to the Sines
fatigue criterion, the result under the Crossland criterion is more secure and
also has lower von Mises stresses due to the consideration of the maximum
hydrostatic stress. It is worth noting that although the objective functions



Figure 9: L-bracket topologies (top), normalized fatigue constraint (middle) and von Mises
stress (bottom) maps

based on the critical plane fatigue criteria constraints are very close, the
structures subjected to Findley and Dang Van criteria produce much higher
von Mises stresses than Matake.

Table 4: Computation time of topology optimization main loop

HCF criteria Sines Crossland Matake Findley Dang Van

Time (seconds) 383 329 405 448 361

4.2. 2D L-bracket under bi-axial loading

The topology optimization problem of the previous benchmark is modified
by replacing single load with bi-axial loading which are located at the upper
and right edges, as shown in Fig. 10. The symmetric constraints are applied
at the left and lower sides. This example follows the input parameters estab-
lished for the 2D L-bracket in Table 2, except that the load is adjusted to



2550N . In addition to proportional loading, the topology optimization prob-
lem subjected to HCF criteria constraints under non-proportional loading is
also investigated.

Figure 10: 2D L-bracket under proportional (left) and non-proportional (right) bi-axial
loading

Under non-proportional loading, the time point when the stress vector
reaches its extreme value is no longer as straightforward as proportional
loading, and in order to reduce the error, it is necessary to select as many
different time points as possible to calculate the amplitude, mean and max-
imum values of the stress during the load cycle. Therefore, 17 uniformly
distributed time points are selected in this study, see Fig. 10. Hence, the
non- proportional loading leads to a significant increase in computational cost
relative to topology optimization that only considers proportional loading.

The topology optimization results under proportional bi-axial loading
subjected to the HCF criteria constraints are presented in Fig. 11, and
it can be observed that the topologies are highly dependent on the selection
of the fatigue criteria. The contours with the stress-invariant fatigue criteria
constraints exhibit similar structures. However, for the fatigue criteria con-
straints based on the critical plane, they show a big difference, not only in
the branching structure near the loading positions, but also in the supporting
structure near the concave corner. The topologies show several gray areas
near the loaded regions, which can be improved by changing the input pa-
rameters such as filter radius, maximum Heaviside projection penalty factor,



or post-processing, but this issue is not the focus of this study.

Figure 11: L-bracket topologies and normalized constraint maps under proportional bi-
axial loading

When the phase difference ψ is equal to π/4 or π/2, all the topologies
exhibit a cross-shaped structure near the concave corner, as shown in Fig.
12. The constraint values located at the center of the cross-connection has
lower values under the first kind of criteria (yellow area) and higher values
for the second kind of criteria (red area). However, when the phase difference
continues to increase up to 3π/4, only the results subjected to the Crossland
constraints retain the above properties. Furthermore, the results under Sines
and Crossland constraints do not usually differ significantly depending on
the hydrostatic stress term, and also show a completely different structure
under large phase difference. It is also observed that the objective function
increases with increasing phase difference. Finally, due to the symmetry of
the geometry and boundary conditions, all results are distributed roughly
symmetrically along the diagonal of the design domain.

In order to investigate the effect of angular increments on the critical
plane search, five different increment values of 0.1◦, 1◦, 2◦,5◦ and 10◦ are
selected for topology optimization. The corresponding results with Dang
Van criterion constraints for a non-proportional load of ψ = π/2 are plotted
in Fig. 13. Meanwhile, a density error coefficient is introduced:

e =
∥ρ− ρ(∆θ = 0.1◦)∥
∥ρ(∆θ = 0.1◦)∥

(23)



Figure 12: L-bracket topologies and normalized constraint maps under non-proportional
bi-axial loading when ψ = π/4 (top), ψ = π/2 (middle) and ψ = 3π/4 (bottom)



Figure 13: L-bracket topologies and normalized constraint maps with Dang Van criterion
constraints under different angular increments

It can be noticed from Fig. 14 that when the angular increment is less
than or equal to 2 degrees, the error is ensured to be within 10 % compared
with the result of 0.1 degrees, and the overall structure does not change
much. The above differences are also caused by the fact that the topology
optimization problem with fatigue constraints is non-convex and there are a
lot of local minima. A similar phenomenon is found under the Findley and
Matake criteria constraints.

Figure 14: The relationship between angular increment and error



Figure 15: 2D L-bracket under proportional (left) and non-proportional (right) multiple
loads

4.3. 2D L-bracket under multiple loads

The topology optimization problem of the 2D L-bracket is extended to
the multi-load condition, including proportional and non-proportional loads.
Unlike the previous cases, the amplitude varies for each load as well as the
phase difference in non-proportional loading is different, see Fig. 15. The
magnitudes of the three loads are 400N , 500N , and 600N , respectively. The
corresponding topologies are shown in Fig. 16. When dealing with non-
proportional loading, 17 uniformly distributed time points are choose to cal-
culate the stress values along the lines of Section 4.2.

Under proportional multiple loading, all structures show the diagonal
crossbar connection structure in the upper left position, whereas the opti-
mization results based on the stress-invariant fatigue criteria lose this prop-
erty when the loading becomes non-proportional, and the outputs based on
the critical plane all retain this property. Similar to the results in Section
4.1, the critical plane approaches show two branching rods in the lower right.
However, for the results based on stress-invariant criteria, only one rod sup-
port is shown under both loads.

In order to verify the applicability of the results under each of the HCF



Figure 16: L-bracket topologies and normalized constraint maps under (a) proportional
and (b) non-proportional multiple loads

criterion constraints to the other criteria, the results of the cross-checks under
non-proportional loading are plotted in Fig. 17. The normalized maximum
constraint values are displayed in Table 5. For the first category of criteria,
the result under the Sines constraints violates all other criteria. However,
the Crossland result satisfies almost all other criteria except for a slight vi-
olation of the Matake criterion, and vice versa, the topology under Matake
criterion only violates the Crossland criterion slightly. Among the results
of the second type of criteria, except for the Matake criterion, which meets



Figure 17: Cross-check of results under different fatigue criteria constraints

the Sines criterion, they all violate the first type of criteria, and in particu-
lar Findley and Dang Van severely violate the Crossland criterion. Similar
to the Sines criterion, the result of Findley does not satisfy the rest of the
criteria. Dang Van could satisfy Findley, but violates the Matake criterion.
When the proportional loading case is analyzed, similar results are obtained.



Table 5: Normalized maximum constraint values under different fatigue criteria

Computation
Test

Sines Crossland Matake Findley Dang Van

Sines —— 1.15 1.18 1.15 1.15
Crossland 0.88 —— 1.04 1.00 1.00
Matake 0.94 1.07 —— 1.00 1.00
Findley 1.01 1.26 1.08 —— 1.04

Dang Van 1.08 1.25 1.14 1.00 ——

4.4. 2D portal frame

The geometry and boundary conditions of the 2D portal frame is shown
in Fig. 18. The parameters applied for this benchmark are listed in Table 6.
When regular design domains and structured meshes are used, mesh sensi-
tivity can be suppressed with the imposition of a larger filtering domain. An
interesting aspect of this problem is that its geometry is non-convex and can
therefore be used to check mesh dependence. The domain is discretized us-
ing three different numbers of elements, which are 59454, 92809 and 133484
respectively. Furthermore, for each particular number of elements, three
different discretization schemes are used, i.e., regular, slightly irregular and
severely irregular. In order to obtain symmetric solutions, the design vari-
ables on the left and right sides of the two programs are symmetrized during
the optimization.

Table 6: Parameters for 2D portal frame

Parameter Description Value

L Length 120 mm
H Height 60 mm
h Concave height 35 mm
b Bearing length 5.5 mm
t Thickness 1 mm
f Load amplitude 1400 N
d Load distribution distance 10 mm



Figure 18: Design domain and boundary conditions of 2D portal frame problem

Since the mesh sensitivity problem does not arise in any of the arithmetic
cases, only the topologies and normalized constrained maps subject to Dang
Van fatigue criterion constraints are plotted in Fig. 19. It can be noticed that
the optimization results are not only independent of mesh encryption but also
of mesh quality, only the irregular discretization scheme leads to the thickness
of several staffs slightly increased. This is the advantage of CNEM over the
commonly used finite element method. Nevertheless, the construction of
the interpolation function in CNEM requires more neighbor nodes, resulting
in larger strain-displacement matrix and wider stiffness matrix bandwidth,
which consumes more time in equilibrium equation solving and sensitivity
analysis.

The finite element method has a great speed advantage in dealing with
regular design domains for topology optimization, but in non-regular geome-
tries, a series of iterations are required to generate a high quality mesh during
the pre-processing stage and the relationship between the number of itera-
tions and the optimization results is still not clear. Therefore, the method
proposed in this paper is expected to stableachieve stable output under var-
ious discretization schemes for topology optimization problems with HCF
criteria constraints.

5. Discussion

In topology optimization, all criteria show similar predictions under a sin-
gle load. However, in the case of complex loads and non-proportional loading,
different fatigue criteria usually lead to different predictions. For the criteria



Figure 19: Topologies and normalized Dang Van constraint maps for several discretization
schemes

based on the stress invariant, the Crossland criterion is favored over the Sines
criterion in industry since the maximum hydrostatic stress typically leads to
more conservative predictions than its mean value. Although the predictions



of Crossland under uni-axial and bi-axial stress states are not as conservative
as that critical plane based criteria, it exhibits a more conservative prediction
in multi-axial stress states, and its results satisfy almost all other fatigue cri-
teria. This phenomenon is consistent with the fatigue experimental results
obtained by Sahadi et al. (2017): the Crossland criterion conformed best
to the experimental data, while the critical plane criteria gave conservative
predictions for the uni-axial stress case and non-conservative predictions for
multi-axial conditions. The Sines criterion always seems to give the most ag-
gressive predictions, due to the fact that its second stress term σH,mean is null
when the mean stress is not considered. As a result, topology optimization
results subject to the Sines criterion usually have a small objective function
and cannot satisfy the other criteria simultaneously.

For the criteria based on critical plane, the Matake and Findley prediction
curves are almost parallel under single cases, while the predictions of Matake
are more conservative. In fact, the Matake criterion has been always the most
conservative under simple cases. Based on the topology optimization results
under multiple loads, the Matake gives the most conservative predictions, and
it seems to be able to satisfy other criteria as well. This performance is similar
to Crossland. In paticular, the topology optimization results of Matake and
Crossland only slightly violate each other, and the objective functions of
both are usually the largest. Since only the shear stress amplitude is used
to determine the critical plane, the result of Dang Van meets Findley, but
not vice versa. Therefore, it seems more reasonable to use only shear stress
to determine the critical plane. The above conclusions are also consistent
with the experimental results in the references (Papadopoulos et al. (1997);
Sahadi et al. (2017)), where the Matake is an improvement over Findley and
gives the most conservative prediction for uni-axial stress conditions.

In this study, only a few very classical and common multi-axial HCF
criteria are considered. However, these classical fatigue criteria may be inef-
ficient in accurately describing the fatigue behavior under non-proportional
loading (Papadopoulos et al. (1997); Pejkowski (2017)). The fatigue behavior
of many materials under non-proportional loading conditions is significantly
different from that under proportional loading conditions (Skibicki and Pe-
jkowski (2019)). Therefore, a large number of multi-axial fatigue models have
been developed for non-proportional loading, in which more material param-
eters are added to account for material sensitivity to non-proportionality of
fatigue loading. For the description and discussion of these fatigue criteria,
please refer to Pejkowski (2017). Note that additional fatigue experiments



are required to implement these fatigue criteria for non-proportional loading,
and their applicability is still not widely proven.

Topology optimization aims at obtaining a reasonable initial design, and
the optimized structure needs to be geometrically reshaped by post-processing
software before manufacturing (Zegard and Paulino (2016)). Subedi et al.
(2020) gave an overview of geometric post-processing methods for topology
optimization models, e.g., skeleton extraction, surface fitting, volume de-
composition and so on. For some details, such as the surfaces with small
curvature radius will be smoother and easier to manufacture after recon-
struction. Subsequently, the reshaped model needs to be further validated
by fatigue tests.

6. Conclusion and perspective

This study uses CNEM to solve equilibrium equations and AL approach
to solve local minima problems. Due to the properties of CNEM, it be-
comes possible to obtain stable outputs under different discretization schemes
and rapid discretization of complex design domain is realistic. Furthermore,
since the AL formulation requires only one adjoint vector for each load under
non-proportional loading (simplified to one adjoint vector under proportional
loading), yielding an effective sensitivity analysis. As a result, it can signif-
icantly reduce the costs associated with a large number of constraints while
providing a more consistent model than the aggregation technique, i.e. the
constraints are locally satisfied.

The rational choice of HCF model under complex loading should be pru-
dent, which may depends on the material and load characteristics. Espe-
cially under non-proportional loading, when the phase difference is large,
the topology optimization results predicted by different criteria can be very
different. Metal additive manufacturing parts usually undergo a complex
cyclic thermal history including directional heat extraction, repetitive melt-
ing, and rapid solidification, which produces anisotropic and heterogeneous
micro-structures that are fundamentally different from those of metal parts
fabricated via conventional methods. The presence of defects such as poros-
ity, surface roughness and unfusion also induce anisotropy and heterogeneity
in metal additive manufacturing parts. Therefore, the future work includes
considering the additive manufacturing constraints in topology optimization,
since the fatigue behavior can be affected by the rough build surfaces and
defects introduced in the manufacturing process. Then the topology opti-



mization problem under the constraint of HCF criteria can be extended to
3D applications, and the accuracy of each criterion in predicting fatigue life
can be validated through fatigue tests. In addition, the fatigue criteria that
take into account stress gradients and stress concentration effects should be
attempted.

7. Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no
conflict of interest.

8. Acknowledgments

The authors acknowledge the financial support from ”China Scholarship
Council (CSC)” under the project titled “Topology optimization of additive
manufactured parts including fatigue behavior”, Grant No. 202008310112.

Appendix A. Sensitivity analysis

In order to apply the gradient-based optimizer, the sensitivity of the AL
function in Eq. 19 need to be calculated:
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is the penalization term.
The derivative of the objective function c to the i-th design variable is

calculated as follows:
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The derivative of the penalization term P to the i-th design variable is
expressed as:
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In order to avoid calculating the derivatives of the displacements with
respect to the design variables, the adjoint method is used here to simplify
the calculation:

P̂ (k) = P (k) +
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l=1

[
ηT
l

(
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)]
(A.5)

Then Eq. A.4 can be replaced by:
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with the adjoint equation:
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The first item ∂P̂ (k)/∂ρ̃j in Eq. A.6 is determined as:
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and the item ∂hj/∂ul,ref for different HCF criteria can be calculated as:
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Crossland:
∂hj

∂ul,ref

=
∂hj

∂
√
J j
2,a

∂
√
J j
2,a

∂σa

∂σa

∂σl,ref

∂σl,ref

∂ul,ref

+
∂hj

∂σj
H,max

∂σj
H,max

∂σj
Hl,ref

∂σj
Hl,ref

∂σl,ref

∂σl,ref

∂ul,ref

(A.10)

Matake/Findley:
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Dang Van:
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The non-zero sensitivities of the h function to the stress invariant of j-th
node are:


∂hj

∂
√

Jj
2,a

=
∂hj

∂τ ja
=

p(1−ϵ)ρ̄
(p−1)
j (3g2j+1)

β

∂hj

∂σj
H,max

=
∂hj

∂σj
n,max

=
αp(1−ϵ)ρ̄

(p−1)
j (3g2j+1)
β

(A.13)

when g̃i(ρ) ≥ −λ(k)i /µ(k), otherwise ∂hj/∂ul,ref = 0.
The calculation based on the Sines criteria can be simplified under cyclic

loading with a stress ratio of −1 due to σH,mean ≡ 0 and ∂hj/∂σ
j
mean ≡ 0.
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Based on Eq. 5, the derivatives of the shear stress amplitude and max-
imum normal stress with respect to the stress vector over the critical plane
under the l-th unit load are:
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As in Eq. 5, the maximum hydrostatic stress and normal stress under
non-proportional loading can also be calculated through:

σH,max(x, t) =
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For 2D plane stress state, ∂σj
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Based on the stress transformation equations in Eq. 8, the terms ∂τ l,ref (θ)/∂σl,ref
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The derivative of the stress to the displacement can be deduced through
Eq. 7:
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Finally, the following equation can be obtained:
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where F i is the i-th row of the filter matrix.
The Eq. A.19 under proportional loading can be simplified as follows:
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