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ABSTRACT

Keywords: An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately
Dislocation density predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit
Kinematic hardening cells to represent the metal sheets at the macroscopic level. The macroscopic behavior of these

(;--,:r.nl:a';n‘;ll\:it'\' unit cells is determined based on that of the constituent single crystals using the periodic
Stability and bifurcation ‘

homogenization multiscale scheme. At the single crystal scale, the constitutive framework
follows a finite strain rate-independent formulation, with the flow rule governed by the
Schmid law. The evolution of the single crystal yield surface is described through a physically-
based mixed hardening model, where isotropic hardening is characterized by a dislocation
density-based formulation, while kinematic hardening is described by the nonlinear Armstrong—
Frederick model. The unit cell ductility limit strains are predicted by the Rice bifurcation
criterion. The reliability of the mixed hardening model in accurately reproducing mechanical

Forming limit diagrams

behavior is confirmed through simulations of uniaxial tension/compression loading, Then, the
developed computational strategy is used to investigate the impact of key microstructural
hardening parameters on the initiation of localized necking under linear strain paths. The
numerical predictions reveal the significant influence of these parameters on the formability
of thin metal sheets. Additionally, the analysis of ductility limits under non-linear strain paths
demonstrates a strong dependency of the numerical predictions on strain path changes. The
numerical predictions obtained by the developed CPFE multiscale strategy are compared with
experimental results from the literature, In summary, the proposed approach provides a reliable
tool for accurately predicting the ductility limits of thin metal sheets, offering valuable insights
for engineering applications.

1. Introduction

A deep understanding of the mechanical properties of metal alloys during plastic deformation, including work-hardening and
plastic anisotropy, is crucial for metallurgists and designers seeking to enhance the ductility of their products. Ductility is usually
limited by the development of plastic instability resulting in strain localization. The ductility limits are often characterized using the
concept of forming limit diagrams (FLDs), initially introduced by Keeler and Backhofen (1963) and subsequently refined by Goodwin
(1968). Traditionally, the determination of these FLDs involves numerical approaches that rely on the combination of a constitutive
framework and a strain localization criterion. The adopted constitutive frameworks are generally categorized into two families:
classical phenomenological constitutive models and multiscale schemes.
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In the context of phenomenological constitutive frameworks, isotropic hardening has been most widely used to model the
hardening behavior of metal sheets. Several contributions, such as Hutchinson and Neale (1978) and Ben Bettaieb and Abed-
Meraim (2015), have extensively analyzed the effect of isotropic hardening parameters on the shape and level of FLDs. More
recently, Bonatti and Mohr (2021) have used a neural network model to assess the impact of bi-linear strain paths on the FLDs
predicted by the M-K criterion (Marciniak and Kuczynski, 1967). In these studies, basic isotropic hardening laws have been used
to characterize work hardening. However, more advanced isotropic hardening models, such as the microstructural-based hardening
model developed by Teodosiu and Hu (1995, 1998), have gained attention for predicting ductility limits. Notably, Haddag et al.
(2009) and Butuc et al. (2011) have adopted the Teodosiu and Hu hardening model to predict the forming limit diagrams of
DP and DC steel sheets, respectively. These investigations have consistently demonstrated that ductility limits increase with the
strain hardening rate (= do/de). To provide a more accurate description of hardening phenomenon, kinematic hardening is usually
incorporated into the constitutive models. Accounting for kinematic hardening becomes essential for accurate predictions of the
mechanical behavior and, consequently, the ductility limits of various metallic materials. The consideration of kinematic hardening
is crucial for capturing important physical phenomena, such as Bauschinger and ratcheting effects, which remain unaccounted
for otherwise. In previous studies, such as Ben Bettaieb and Abed-Meraim (2017a,b), the impact of kinematic hardening on the
onset of localized necking has been thoroughly analyzed by using the Prager and Armstrong-Frederick (Armstrong and Frederick,
1966) models for the description of the backstress evolution. The results of these studies confirm that the predicted formability
limits depend on the involved kinematic hardening model, although the magnitude of changes in ductility limits (either increase
or decrease) remains relatively small. Furthermore, these findings emphasize that the effect of kinematic hardening on the ductility
limits is highly dependent on the applied strain path.

Despite their computational efficiency and ease of numerical implementation, phenomenological models often fall short in
accurately capturing essential physical and microstructural features, such as dislocation motion, plastic anisotropy induced by both
morphological and crystallographic texture, microscopic heterogeneity, and grain boundaries. To address these limitations, several
multiscale approaches have been developed to predict the deformation behavior and ductility limits of polycrystalline metals. Tn
these multiscale schemes, the mechanical behavior is typically modeled at the single crystal level, and a multiscale transition scheme
is used to predict the macroscopic mechanical behavior based on the properties of the individual single crystals. The majority of
crystal plasticity constitutive frameworks established and used in the literature only consider the isotropic hardening phenomenon
(see, for example, Ben Bettaieb et al, 2012, Akpama et al. 2016, 2017, Zhu et al. 2023a,b ...), while the link between hardening and
most relevant microscopic phenomena and parameters (such as dislocation motion and saturation) is not very clear and explicit. To
address the latter limitation, physically-based isotropic hardening models have been developed to characterize plastic deformation
at the single crystal level by considering the microstructural state of materials. These models incorporate material parameters with
a well-defined physical interpretation. For instance, Kocks (1976) has proposed a hardening model based on dislocation density,
where the evolution rule for dislocation density is described by storage and annihilation processes. Recently, Mohammadnejad
et al. (2021) have studied the influence of dislocation density on FLDs using the Taylor homogenization scheme coupled with the
M-K approach (Marciniak and Kuczynski, 1967). They found that the predicted formability limits are closer to the experimental
measurements when a dislocation density-based hardening model is considered. The Taylor model assumes that all the single crystals
composing the polycrystalline aggregate experience the same strain field as the macroscopic one. Furthermore, the interactions
between grains are not considered in the Taylor model. Consequently, the use of the Taylor model leads to some conceptual
inaccuracies in predicting the overall mechanical behavior of polycrystalline aggregates and fails to satisfy the equilibrium conditions
within the multiscale framework. To address these issues, the mean-field self-consistent scheme has been developed to provide a
more comprehensive description of the evolution of microscopic fields and to ensure the full respect of the equilibrium conditions.
Furthermore, within this multiscale scheme, each grain is assumed to be ellipsoidal, thus allowing a slightly better description of
the grain morphology compared to the Taylor model. The self-consistent approach has been coupled in Franz et al. (2013) with the
Rice bifurcation theory (Rice, 1976) to study the influence on the predicted ductility limits of various microstructural hardening
parameters, such as the initial value of the critical resolved shear stress (CRSS), the dislocation storage and annihilation parameters.
The predictions presented in Franz et al. (2013) reveal that the microstructural parameters significantly affect the ductility of single
crystals and polycrystalline aggregates.

However, mean-field homogenization schemes are often limited in accurately modeling the mechanical behavior of polycrys-
talline aggregates. In fact, mean-field schemes are not fully capable of considering more complex grain morphologies as well
as the heterogeneity of the mechanical fields inside the same grain. Furthermore, the conditions applied on the boundaries of
the polycrystalline aggregates are not accurately considered within mean-field approaches. To remedy these limitations, full-field
homogenization schemes have been established in the literature. These schemes rely either on the finite element method (FEM) (Kim
et al.,, 2017; Bong et al.,, 2020; Bong and Lee, 2021; Zhu et al., 2023a), or on the fast Fourier transform (FFT) technique (Gupta
et al,, 2018; Nagra et al., 2018; Han et al., 2020). Within these frameworks, microscopic strain and stress fields arising from the
collective motions of dislocations can be accurately predicted, offering a more comprehensive understanding of the deformation
behavior of polycrystalline aggregates. The Crystal Plasticity Finite Element Method (CPFEM) has been proven to be a powerful
tool for studying plastic behavior of thin metal sheets, such as formability (Kim et al.,, 2017; Bong et al,, 2020; Bong and Lee,
2021). In Bong and Lee (2021), CPFEM has been coupled with the M-K approach to predict the formability of ultra-thin ferritic
stainless steels. In their study, the initial imperfection has been taken to be mainly due to surface roughening, and only isotropic
hardening has been considered, where a dislocation density-based law has been used to model the evolution of the single crystal
vield surface. Numerous experimental and numerical investigations have revealed that the deformation heterogeneity inside the
aggregate and the different grain crystallographic orientations may induce significant backstress, which must be accounted for in



microscopic constitutive modeling (Brahme et al,, 2011). To this end, Harder (1999) has introduced a dislocation density-based
hardening model that incorporates the backstress evolution. This model has been used to predict the influence of the Bauschinger
effect on macroscopic behavior. More recent studies have adopted kinematic hardening modeling to numerically investigate the
occurrence of fatigue (Le Pécheur et al., 2012; Lu et al., 2016; Zhou et al., 2022), ratcheting (Dong et al., 2014; Hennessey et al.,
2017; Dong et al., 2020; Farooq et al.,, 2020), and macroscopic response (Agaram et al., 2021) in polycrystalline aggregates under
strain-controlled cyclic loadings. To the best knowledge of the authors, kinematic hardening crystal plasticity models have not yet
been integrated into a CPFE strategy to predict the ductility limits of polycrystalline aggregates.

The ultimate goal of this study is to predict ductility limits using the CPFE approach, with a special emphasis on assessing the
influence of physical parameters associated with dislocation density-based isotropic and kinematic hardening models. To achieve
this goal, a unit cell, assumed to be representative of the studied material, is generated by NEPER software (Quey et al., 2011) based
on the Voronoi tessellation technique. Subsequently, the unit cell is discretized into a large number of finite elements, and each
integration point of the finite elements is treated as a single crystal. The same crystallographic orientation is assigned to all the single
crystals belonging to the same grain. The crystallographic texture is generated using ATEX software (Beausir and Fundenberger,
2017), and the periodic homogenization technique (Zhu et al., 2020b,a, 2023b) is adopted to derive the macroscopic characteristics
of the unit cell from those of the individual single crystals. The Python script HOMTOOLS, developed by Lejeunes and Bourgeois
(2011), is used to ensure the prescription of the periodic boundary conditions (PBCs) and the application of the macroscopic loading
for FLD predictions. For the latter purpose, the unit cell is subjected to biaxial loadings, spanning from uniaxial tension to equibiaxial
tension states. The single crystal constitutive equations follow a finite strain rate-independent framework with physically-based
isotropic-kinematic hardening. Isotropic hardening obeys the Kocks dislocation density law (Kocks, 1976), while kinematic hardening
is modeled by the typical nonlinear A-F law (Armstrong and Frederick, 1966). The flow behavior follows the classical Schmid
law, and the onset of macroscopic strain localization is detected by the Rice bifurcation criterion. The Rice bifurcation approach
presents some key advantageous compared to other localized necking criteria. Indeed, besides its sound mathematical foundations,
the bifurcation approach does not require any fitting parameter, such as the initial imperfection factor needed in the M-K analysis.
Furthermore, compared to the initial imperfection approach, the use of the bifurcation theory allows a considerable reduction in the
CPU time required for the determination of a complete FLD (Akpama et al., 2017). A set of Python scripts, based on the condensation
technique (Zhu et al., 2022), is used to determine the macroscopic acoustic tensor from the global stiffness matrix. This macroscopic
acoustic tensor is required to perform the bifurcation analysis. The validity of the implemented dislocation density-based isotropic-
kinematic hardening model is checked through simulations of cyclic tension/compression tests. Furthermore, the effect of different
hardening models and their respective parameters on ductility limits is thoroughly examined under linear strain paths. Ductility
limits under non-linear strain paths are also investigated using the physically-based isotropic-kinematic hardening model, where
these non-linear loading paths are composed of two sequential linear strain paths. It is worth noting that our simulation results
align with those reported in Yang et al. (2010), Butuc et al. (2011), Ma et al. (2018) and Qin et al. (2018). On the other hand, the
predicted ductility limits are compared with those obtained from the well-known full-constraint Taylor model. Moreover, the limit
strain predictions obtained by the current computational strategy are compared with the experimental results reported in Nicolett
et al. (2023). Ultimately, an actual material texture is considered to investigate the effect of the initial crystallographic texture on
the predicted ductility limits.

The structure of this paper is arranged as follows:

- Section 2 outlines the physically-based isotropic-kinematic hardening models, their integration within the rate-independent
crystal plasticity framework, and the corresponding integration algorithm. It also briefly explains the main concepts of the
periodic homogenization method and the Rice bifurcation theory.

- In Section 3, the ductility limit predictions are determined for different hardening models, and the effects of physical factors
and parameters on ductility limits are discussed.

- Section 4 summarizes the main findings of the current study.

2. Theoretical framework and numerical implementation
2.1, Single crystal plasticity constitutive equations
The single crystal mechanical behavior follows a finite strain elastoplastic framework. As a result, the total microscopic
elastoplastic deformation gradient f can be multiplicatively decomposed into its elastic f* and plastic [ parts, as shown in Fig. 1:
=11 (8]
The elastic part f* can be further decomposed into a stretching tensor v* and a rotation tensor ¥:
ff=v""-T, (2)

In most metallic materials, it is commonly assumed that the elastic deformation is considerably smaller in magnitude compared to
the plastic deformation. Therefore, tensor v is very close to the second-order identity tensor (v¢ = I,). As to the rotation tensor ¥,



it defines the single crystal orientation with respect to the deformed configuration, and is typically expressed in terms of the Euler
angles (¢, ¢, ¢,), as follows:

cosgpcosgy — sing sing,cosgh singcos@, + cos@ singycosd singysing
F=| —cos@sing, = sing,cos@ycosdp  —sing,sing, + cos@,cos@ycosd  cos@,sing |, (3)
sing, sing —cossing cosgh

For efficient numerical treatment, the single crystal constitutive equations are defined using an Eulerian formulation. Under this
formulation, the single crystal velocity gradient g = f - £~ is classically adopted as an appropriate measure of the deformation rate.
Considering the earlier assumption made on the stretching tensor v*, the velocity gradient g can be additively decomposed into its
symmetric part d and anti-symmetric part w as follows:

P MY Satie SRY LY Gl S
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=d+w, (4)
where the symmetric part d (resp. anti-symmetric part w) can be further decomposed into an elastic part d° (resp. w*) and a plastic
part d” (resp. w”):
d= %(g-i-g'r) =d"+d". w= %(g- gy = Wb wh,
with d°=v. d"=v-(F"-17"),, -7, w=r-t, w=r-("- 07", . (5)

Plastic deformation is assumed to be solely driven by crystallographic slip on the slip systems. Therefore, the plastic contribution
of the velocity gradient g can be expressed as follows:

N, N,
& b wh = ) (0 @A) = ) MY, (6)
a=| aw=l
where:

+ N, is the number of physical slip systems (equals to 12 for FCC crystal slip systems),

+ #" represents the slip rate on the slip system «,

+ m” designates the slip direction vector and n” is the vector normal to the slip plane.

+ M? is the Schmid tensor equals to the tensor product m* ® n*.
For practical reasons, each slip system is decomposed into two opposite oriented slip systems, denoted as (m®.n*) for slip systems
a=1,....N, and (-m"N: 7a"¥) for slip systems a = N, +1...., 2N,. This decomposition is adopted to manage only positive values
of slip rates. To simplify the subsequent equations, we introduce the tensors R” and S” defined as:

1 = na =g Say . T l =X na na T
R"=5(m @n“+n"@m°); S=5(m @n*-n“@m’). (7)

Hence, the plastic strain rate d” and plastic spin w” can be reformulated in terms of R* and §* as follows:
2N, 2N,
d" = 2 Y"R": w' = 2 }""S". (8)
a=| a=|

The rotation tensor ¢ defined in Eq. (3) is chosen such that the counterpart my (resp. fij) of m” (resp. ii“) in the intermediate
configuration remains constant during deformation. These constant vectors m; and nj; are related to vectors m* and n“ by the
following equations:

me=Femj; R =g )

where the components of vectors m; and nj for FCC single crystals are provided in Appendix A. To ensure the objectivity of the
single crystal constitutive equations, Eqs. (4), (5) and (6) can be expressed in the crystal lattice frame (intermediate configuration)
defined by the rotation tensor ¢ with respect to the current configuration. To simplify the following presentation, tensors and vectors
evaluated in the lattice frame are marked with an overline notation (3). In this frame, the velocity gradient g is given by:
g=i -g-r=d+w
=d* +d” + W + W", (10)

where the plastic parts d° and w® of the velocity gradient g can also be expressed in the crystal lattice frame as:
2N, 2N,
@ = Eyung; W= Ey"s;;; with  #* = 0. (1
a=| a=|

In the current study, elasticity is assumed to be linear, isotropic, and can be modeled by the classical Hooke law:

G=¢d=¢: (d-d"), a2)
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Fig. 1. Sch i ion of the multiplicative decomp of the deformation gradient f into an elastic contribution {* and a plastic contribution *

(Akpama et al.,, 2017).

where & is the rate of the Cauchy stress o expressed in the lattice frame, ¢ represents the fourth-order elastic stiffness tensor, which
is determined by the material elasticity parameters E and v.

The plastic flow rule is modeled by the Schmid law, which states that slip can only occur when the difference between the
resolved shear stress «* and the backstress X on a slip system « reaches a critical threshold 7. Its mathematical expression is as
follows:

_ ) = X"<t? =2y =0
Va-l.....ZN,.{ doXemrs w30 a3)
wherein the expression of the resolved shear stress ¢ is defined as:
VYa=1,..2N, " =¢: R (14)
which can be equivalently expressed using the lattice tensors & and R as:
Ya=1,..2N,:t"=a : R]. (15)

The Schmid law defined by Eq. (13) can be reformulated as a non-linear complementarity problem (NLCP) to make it more
suitable for numerical implementation:

Va=1,. 2N, : f'=t" (" =X")20; 720, [ =0 (16)

Following Franz et al. (2013), the critical resolved shear stress r is described by an anisotropic hardening law, which is assumed
to depend on all of the dislocation densities s, where p is the dislocation density associated with the gth slip system:

«

N,
Va=1 .. N 1= r:_"N’ =1,+ Aub Zh"f’ (p% + pP*Ne ), 17)
f=1

where:

* 1, denotes the initial value of critical shear stress,
+ A is a material constant,

+ yu represents the elastic shear modulus,
+ b is the magnitude of the Burgers vector,



+ 1% is a 12 x 12 hardening interaction matrix defined as follows (Ben Bettaieb et al., 2012):

[ Ay hy hy hy hs hs hy hs hy hy hy hs
hy hy hs hy hg he hy hs hy hy hs

hy, hs hg hy hg hs hy hs hs hy

hy hy hy hy hg hg hy hs hy

hy hy hy hy hs hs hy hs

hy hs hs hy hy hs hy

hy hy hy hy hg kg

hy hy hs hy o kg

Ya.f=1,... N, : h' = (18)

sym h] hq hﬁ h]
hy hy hy

hy o hy

hy

The diagonal component k; describes the self-hardening, while the off-diagonal components (from #, to k) describe the latent
hardening on the slip systems. For simplicity, isotropic hardening is considered in this work (i.e., h) = by = hy = hy = hs = hy = 1).
The evolution of the dislocation density " is governed by the Kocks law (Kocks, 1976) expressed as:

11 \/Z;;w*a (o7 +p7Y1)
slat K

=2y (o™ 4 "N ) (77 4 V) (19)

where:

+ d denotes the average grain size,
+ K is a material parameter representing the dislocation storage,
+ vy, stands for the critical annihilation distance of dislocations.

The evolution rule of the critical resolved shear stress ¢ can be obtained by differentiating Eq. (17) and combining it with Eq. (19):
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Kinematic hardening is then introduced into the single crystal constitutive framework to describe the evolution of the backstress
X" at each individual slip system a. In this context, the backstress rate X* is modeled by the nonlinear Armstrong-Frederick
law (Armstrong and Frederick, 1966), which depends on the slip rate 7* and the current backstress X* as follows:

with H™ = =2y (o + N . (20)

Va=1,.. N, : X¥= =X = Csgn(e") (#* +7**N:) = DG + 7% NXx", (21)

where parameter C (resp. D) represents the direct hardening (resp. dynamic recovery) modulus and sgn(¢*) denotes the sign of ¢*.
2.2, Numerical implementation

This section provides a brief description of the numerical implementation of the single crystal constitutive equations within the
ABAQUS finite element code, using a User-defined MATerial subroutine (UMAT). In this implementation, an explicit integration
scheme from the family of ultimate algorithms is used. It has been demonstrated in Akpama et al. (2016) that this integration
scheme exhibits better robustness compared to the well-known return-mapping algorithm. In particular, it has been clearly shown
in the latter study that adopting the ultimate algorithm can substantially reduce the computational cost by 1.5-5 times, as compared
to the integration scheme based on the return-mapping algorithm, without compromising accuracy in numerical results. The main
idea behind the ultimate algorithm is to decompose the finite element time increment 74 = [1,,7, + 41 into several sub-increments
I% = [r,,1,,,], where the length of each sub-increment 7, = 1,,, — 1, is a priori unknown and should be computed in such a way
that the Schmid condition remains satisfied for all the slip systems over /%, Under this approach, the single crystal constitutive
equations are integrated over each sub-increment /%, and the different variables are updated from one sub-increment to the next.
To emphasize the time dependency of the different quantities in the subsequent computational developments, a variable « evaluated
at time 1, (resp. 1., ) is denoted by (1) (resp. «(1,, ).

One of the main inputs of the UMAT is the deformation gradient f(s,) at the beginning of the time increment /4, and its
counterpart f(z, + 4r) at the end of /4. The microscopic velocity gradient g = f - ! remains constant over /* and, therefore,
over each time sub-increment /% It is obtained from f(r,) and f(t, + 4r) using the following approximation:

Rty + A = f(1y) f(ry + A1) + Fl1)\ ™'
g= At 2 '

(22)




In addition to the velocity gradient g determined by Eq. (22), we assume that the microscopic variables (namely, r, o, %, 2, p%,
and X* fora=1...., 2N,) are known at the beginning of the sub-increment 7% (i.e., at 1,). These same variables should be updated
at the end of /%, and the consistent tangent modulus ¢** required for the finite element computations, as well as for the bifurcation
analysis, needs also to be determined. A careful examination of the constitutive equations reveals that the determination of the slip
rates y7(r,) is sufficient to fully compute the values of the unknown variables at 7, . ,. To compute these slip rates, we introduce the
set of potentially active slip systems P, which is defined as:

P={a=1,.., 2N, (e, = X)) — 12 (,) = 0} (23)

Once the set P is identified from Eq. (23), the Schmid law given in Eq. (13) can be restricted to systems belonging to P and
formulated in its rate form as:

Ya € P @ (1) = #,) = (#°0,) = X*(,)) 2 00 7%t ) 2 00 f*0,)7"(1,) = 0. (24)

Using Egs. (10), (11), (12), (15), (20) and (21), f*(1,) in Eq. (24) can be mathematically expressed through the following
developments:
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where 7 represents the Kronecker delta. Matrix A(z,) and vector B{z,) can easily be written in the following index forms:

_ (26)
B(t,) = Rg Lt ndir,).
Using Egs. (25) and (26), the rate form of the Schmid condition, as defined by Eq. (24), can be reformulated in the following general

matrix form:

oz RE) s 598 (o .
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It is important to note that the nonlinear complementarity problem (NLCP) defined by Eq. (16) is converted into a linear
complementarity problem (LCP) when an explicit scheme is adopted to integrate the single crystal constitutive equations. In this
explicit scheme, the components of matrix A and vector B remain constant over /% and are equal to their values at 1,. As a result,
the set of active slip systems A (A C P with y(r_) > 0 for all the slip systems a belonging to set A) can be efficiently determined
from the LCP using a combinatorial search procedure, similar to the one used in Ben Bettaieb et al, (2012). Furthermore, the slip
rate 7“(1,) of each active slip system « can be determined using the following equation:

Va€ A"t = Y AT )B ) = Y, A (R) e d(:,,)). (28)
feA fea
where matrix A(r,) is the inverse of matrix A(z,). The slip rates of the crystallographic slip systems belonging to 77\ A are obviously
set to zero.

When the slip rates 7*(r, ) of the crystallographic systems belonging to set 77 are computed, the length of the current sub-increment
a1, (£ 4r) can be determined to fulfill the Schmid criterion for all the slip systems over I%. As clearly shown in Eq. (27), this
criterion is obviously satisfied for the potentially active slip systems (« € P). Therefore, it needs to be verified for the other slip
systems (a & P):

Va @ P 5 ety ) = X (tey) S 200000 ) (29)
where the expressions of r* and 7 at time _,, can be explicitly updated by the following relations:
Ya @ P i r'(t,y) = 1"(1,) + 60,RE ¢ 6(1,) = o() + 5t Ry 1 & ¢ (J(l,,) - E?"(r,)k{f) . (30)
per
Va @ Pt r%t) =10 Hteyy) = T0(t,) + 61,8%(1,) = £0(1,) + o1, ZH"‘(r,)f”(:,,). (31)

perP



and X“*(r,,,) is equal to X“(r,) as slip system a is inactive (7%(z,) = 0). Combination of Egs. (29), (30), and (31) yields the following
condition on the value of ér,:

w2 = (#7(1) — X (1)) (32)

O, = mingep 4 At
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pgep peEP

Once the length ér,, is computed from Eq. (32), the other mechanical variables could be updated at r,,, as follows:
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Va =1,....2N, : XM1,,,) = X"(1,) + 61, X"(t,,);
Va=1,....2N, : p®(1,,) = p"(1,) + é1,0% (1, 1.
Va =1, 2N, 1y () =y () + 6t 7 (1)
Va=1,...N, 1%, = N = To(t,) +6:,pz HP (1),
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and the consistent tangent modulus & should be determined as follows:

@ =P8 e 3 Y A (T R +8 - 3(1,) -0, - S5) @ (R : T). (34)

93¢ aEAfEA
The consistent tangent matrix defined in the current configuration ¢*” can be obtained by rotating its counterpart ¢ from the
single crystal frame to the current frame. After updating all the mechanical variables and the consistent tangent modulus, the
computation should proceed to the next new sub-increment 1%

2.3. Periodic homogenization scheme

In this study, we have chosen the periodic homogenization technique to estimate the macroscopic behavior of the unit cell
based on the behavior of the individual constituent single crystals. Additionally, the macroscopic nominal stress rate tensor N and
the macroscopic velocity gradient G are selected as appropriate work-conjugate stress and strain measures. Similar to previous
investigations, the macroscopic plane-stress assumption is considered to predict the FLDs. The in-plane part of a vector or tensor «
is denoted ™., To be concise, only the key equations and steps describing this technique are provided in what follows, while more
comprehensive information can be found in Zhu et al. (2020b).

« The macroscopic velocity gradient G and the macroscopic nominal stress rate tensor N are related to their corresponding
microscopic counterparts g and n through the following averaging relations:
1 ‘ 1 g
G=— dy and N=—/ ndVp, (35)
i/ * i/ v
where V is the current volume of the unit cell.
+ The microscopic static equilibrium equation is defined as follows:

divym’) =0, (36)

where x represents the current coordinate of the material point.
« The current in-plane velocity v is assumed to be linked to the current in-plane position x and to the in-plane macroscopic

velocity gradient NG as:

le= ING_le+IN‘, (37)

pors

where "N, is an in-plane periodic velocity fluctuation field.
+ The application of the periodic homogenization technique by imposing the PBCs on the unit cell, as will be explained in
Section 3.2.1.



2.4. Rice bifurcation criterion

The Rice bifurcation criterion (Rice, 1976) is employed to predict the incipience of macroscopic localized necking. This criterion
detects the loss of ellipticity of the macroscopic constitutive equations, which is shown to be associated with a sudden jump in
the strain rate across a localization band, as shown in Fig. 2. For brevity, only the main lines of the Rice bifurcation criterion are
presented in this section. More detailed information about this criterion can be found in Ben Bettaieb and Abed-Meraim (2015).
The occurrence of strain localization can be determined based on the following conditions: )

The first condition: Maxwell’s compatibility condition for the velocity fields, stating that there exists a jump vector € such that
the jump in NG reads:

(NG = NGO - NG = é@.ﬂ? (38)
where:

+ [I'G]] denotes the jump in the in-plane velocity gradient field "G across the localization band.
+ 'NG? and NG' are the in-plane velocity gradient outside and inside the band, respectively.
« A represents the unit vector, which is normal to the localization band and defined by (cos@, sin@) for 0 < 8 < x/2.

The second condition: the stress equilibrium condition assuming the continuity of the macroscopic in-plane nominal stress rate
tensor NN across the localization band of normal unit vector \':

('™NNT)) - N =0 (39)
The in-plane tensors ™G and ™N are related through the following generic macroscopic constitutive law:
"N =ML NG, (40)

where VL is the in-plane macroscopic tangent modulus.
By substituting Eqs. (38), (40) into (39), the stress equilibrium equation can be rewritten as:

N [ML: (cen)| =i, 1)
which is equivalent to:
(NN N) =0 (42)

The second-order tensor A" NL. A" introduced in Eq. (42) is the so-called in-plane acoustic tensor. As long as this tensor is invertible,
the components of the jump vector € are equal to zero and, consequently, the deformation remains homogeneous. However, when
the in-plane acoustic tensor becomes singular, this implies that there is an infinite number of jump vectors that satisfy Eq. (42),
thus indicating an effective bifurcation. The singularity of A" - ™NL . A signifies the initiation of plastic strain localization:

da(.&f.'Nl..if)=n. (43)

To apply the Rice bifurcation criterion, the in-plane macroscopic tangent modulus 'YL should first be computed. The condensation
technique, originally proposed by Miehe (2003), is adopted to determine this modulus from the global FE stiffness matrix. The basic
algorithmic steps of this technique are summarized as follows:

+ Add the ABAQUS keyword ‘Element Matrix Output’ in the “.inp’ file to output the elementary stiffness matrices K,, for each
FE computation time increment. These matrices are stored in a ‘. mtx’ format file.

+ Subdivide the entire node set into two subsets: one comprising nodes within the interior of the unit cell denoted as ‘o’, and
the second comprising nodes located on the boundary of the unit cell referred to as ‘b’

+ Assemble the global stiffness matrix K from the elementary matrices K, using the connectivity of the different nodes.

« Partition the global stiffness matrix K into four sub-matrices K, K,,, K,, and K, as follows:

K= [ ::nrl :Eah ] . (44)
b bb

+ Construct the projection matrices 0 and H defined in Zhu et al. (2022).
+ Compute the macroscopic tangent modulus C, which relates the macroscopic first Piola-Kirchhoff stress rate tensor P to the
macroscopic deformation gradient rate F in their 3D forms (P = C:F), through the following relation:
€= Q- [ (Ky - Ky K Kyy) BT, @5)
0
where ¥, is the initial volume of the unit cell.
+ Determine the index form of the in-plane macroscopic tangent modulus "™¥C by the following condensation procedure:

C,:C
Vijokd=12:™NC; =Cy - —STIM (46)

C:HK;
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Fig. 2. Nlustration of the Rice bifurcation criterion: (a) presentation of the unit cell with the localization band; (b) 2D presentation,

+ Derive the in-plane macroscopic tangent modulus "L, which links the in-plane macroscopic nominal stress rate NN (=™ PT)
to the in-plane macroscopic velocity gradient ™G, from the in-plane macroscopic tangent modulus "™ C by permutation of the
first two indices as follows:

Vijokd=12:NL =™ Cy. 47)

« Compute the components of the second-order in-plane acoustic tensor N INL LA , introduced in Eq. (43), by the following
relation:

Vij k=12 (J:f N J:r) z z N L - Ny, where N = cos@ and N, = sinf, (48)

=1 =1
More practical details about these condensation techniques and their implementation in a set of Python codes can be found
in Zhu et al. (2022). Localized necking occurs when the minimum value of the in-plane acoustic tensor Min Id:t (J\' INL. V')']'
over all possible band orientations ¢ (0 < 6 < x/2) vanishes for the first time. The same procedure is repeated for each strain-pat
ratio p (-0.5 < p < 1), with 4p = 0.1, to obtain the complete FLD (Akpama et al., 2017).

3. Results and discussions
3.1. Material parameter determination and numerical implementation validation

3.1.1. Finite element model

This section aims to validate the implementation of the selected hardening model. To achieve this, a thin metal sheet with
a spatially periodic structure is chosen, and a Representative Volume Element (RVE), also known as a unit cell, is identified
to accurately represent this sheet. The unit cell should encapsulate essential microscopic features and effectively capture the
homogenized properties of the bulk medium. Previous contributions (Haouala et al. 2018, Luo et al. 2013 among others) have
shown that an RVE containing a minimum of 200 FCC grains with random shapes is suitable for this purpose. This conclusion
is confirmed by the results of the grain number sensitivity study presented in Appendix B. Therefore, a unit cell consisting of
200 grains is generated by the NEPER software, and the Voronoi tessellation technique (Quey et al., 2011) is used to define the
grain shape and arrangement (Fig. 3(a)). The initial size of the generated RVE is set to | mm x 1 mm x 1 mm. The corresponding
grain size distribution is plotted in Fig. 3(b), with an average grain size of approximately 0.173289 mm (obtained from the NEPER
software output). The unit cell generated by the NEPER software is meshed by 16 x 16 x 16 finite elements using the GMSH
software (Geuzaine and Remacle, 2009), and it is subsequently converted into an ABAQUS input file. To generate this mesh, the
finite element C3D20 (20-node quadratic hexahedral element with full integration) is used. The initial crystallographic texture is
assumed to follow a random distribution and is designed by the ATEX software (Beausir and Fundenberger, 2017). Fig. 3(c) displays
the (111) pole figure of the generated random crystallographic texture, with the rolling and transverse directions aligned with the
X and Y directions, respectively. A Python script is developed to assign the crystallographic orientations to the different integration
points of the finite element model.

3.1.2. Determination of the microscopic material parameters

In the current section, we will briefly outline the procedure for determining the microscopic material parameters for the
various hardening models, which can be grouped into three categories: elasticity, dislocation density-based isotropic hardening, and
kinematic hardening parameters, Table 1 provides a list of the identified material parameters, where most of the mixed hardening
parameters were collected from several sources, including Harder (1999), Yoshida and Kuroda (2012), Bratov and Borodin (2015),
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Fig. 3. (a) Morphological description of the unit cell containing 200 randomly shaped grains; (b) grain size distribution within the unit cell; (c) (111) pole
figure corresponding to the initial random texture.

Table 1
Summary of the material parameters for various hardening models.
Mixed hardening Source Isotropic hardening
Elasticity E=65 GPa, v=03 Yoshida and Kuroda (2012) E =65 GPa, v=03
w=25 GPa u=E/2l +v) u=25 GPa
Dislocation density-based hardening 75 = S0 MPy 1y = 50 MPa
b 286% 1077 mm Bratov and Borodin (2015) bow 286% 1077 mm
A=D35 Yoshida (2022) A=D4
pp = 1% 10" mm~= Banerjee and Bhawalkar (2008) A = 1x 10 mm—?
d =0.173289 mm NEPER d = 0173289 mm
¥, = 10b Meng (2020) ¥, = 9.85h
K=10 K=74
Kinematic hardening C =200 MPa -
D=35 Harder (1999) -

Lu et al. (2016), Meng (2020), Yoshida (2022). The macroscopic equivalent von Mises stress—strain response obtained from the
simulation of a uniaxial tension test using the identified mixed hardening parameters is shown in Fig. 4 (the black curve). To ensure
that the material parameters for the isotropic hardening model yield a mechanical response that is similar to the mixed hardening
model, we have identified and adjusted the parameters accordingly. The best-fitting and calibrated material parameters for the
isotropic hardening model are also reported in Table 1. The data provided in Fig. 4 illustrate this calibration process and show how
the isotropic hardening model can closely replicate the mechanical behavior of the mixed hardening model.



—a— Mixed hardening

Isotropic hardening

100 §
Efq
0 a 1 a 1 A 1 2 L :
0.0 0.1 0.2 0.3 0.4
Fig. 4. Identification of the isotropic hardening parameters by numerical simulati of 1 test,

3.1.3. Mechanical response under cyclic loading

The boundary conditions and loading history, as presented in Fig. 5, are applied to simulate the mechanical behavior of a unit cell
subjected to cyclic loading. The hysteresis loop, obtained through simulations of a complete cyclic loading, is depicted in Fig. 6(a). In
these simulations, both isotropic and mixed hardening models are used for comparison. Additionally, the macroscopic stress-strain
responses of the isotropic hardening model under uniaxial tension and compression are included in Fig. 6(a). It is noteworthy that
the use of isotropic hardening model results in gradual increase in yield stresses at the onset of plastic deformation across various
loading stages, as indicated by the comparison between the blue and black data points in Fig. 6(a). In contrast, the mixed hardening
model predicts an initial rise in yield stress, which subsequently stabilizes during the final loading stage spanning from 0.75s to 1.0s,
as demonstrated in Fig. 6(a). This stabilization occurs because a dynamic equilibrium is reached between dislocation generation and
annihilation, establishing a steady state that maintains stress at an approximately constant level. Moreover, the mixed hardening
model exhibits nearly identical yield stresses at the onset of plastic deformation under tension or compression, both of which are
lower than the yield stress predicted by the isotropic hardening model. As expected, the mixed hardening model demonstrates a
pronounced Bauschinger effect. To quantitatively assess this effect, we compute the Bauschinger coefficient B; as defined according
to Lin et al. (2020) and Hou et al. (2022). The computed value of B is 0.3032, confirming the presence of this effect, primarily
attributable to the backstress evolution and dislocation motion (Fig. 6(b)). The numerical predictions presented in Fig. 6 highlight
the capability of the hardening model to accurately capture the single crystal plasticity hardening behavior.

The effect of the hardening model on the evolution of crystallographic texture during cyclic loading is analyzed by comparing the
(111) pole figures presented in Fig. 7. In these figures, crystallographic textures are plotted at the end of each loading stage. A quick
comparison between the initial texture presented in Fig. 3(c) and the textures shown in Fig. 7 reveals that the deformed textures
exhibit higher magnitudes and more distinct features compared to the initial texture. This difference is particularly pronounced
after the tension loading and reverse loading stages, indicating that the grains undergo significant rotation and large deformation.
However, the texture observed after unloading deformation closely resembles the initial texture. Moreover, it is evident that the
simulated texture is very similar for the different hardening models under cyclic loading. Nevertheless, the deformed texture is
slightly more pronounced in the case of isotropic hardening. This observation aligns well with the conclusions drawn by Brahme
et al. (2011), who demonstrated that considering the backstress effect leads to a reduction in crystallographic rotation during cyclic
loading.

3.2, FLD predictions

3.2.1. Finite element model and macroscopic boundary conditions

The unit cell described in Section 3.1.1 is subjected to biaxial stretching along the &, and ¢, directions, as illustrated in Fig. 8.
This loading configuration is adopted for the prediction of the ductility limits and their representation in the form of FLDs. Moreover,
the out-of-plane components of the macroscopic nominal stress rate N: N3, N33, N;, N3, and N;; are held at zero. The strain-path
ratio p = G,,/G,, is maintained constant during the loading history, ranging from —0.5 (uniaxial tension state) to 1 (equibiaxial
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Fig. 6. (a) Cyclic stress-strain responses obtained with isotropic and mixed hardening models; (b) schematic definition of the Bauschinger coefficient 8.

tension state). Also, in this loading configuration, the other in-plane components of the macroscopic velocity gradient G (i.e., G
and G,;) are set to zero. The PBCs are only enforced on the faces S : x, = -L?:SO‘l D Xg = 1‘}.5‘;, xp = -L?:S(T, D Xpp =
(see Fig. 8). However, the two faces in direction ¢; are left unconstrained. The latter condition allows the macroscopic plane-stress

assumption to be ensured. For each strain path, the macroscopic tensors G and N have the following generic forms:

=ES

G,y 0 ® ® % 0
G=| 0 G, = | N=|=x % 0| (49)
* * * 0o 0 0

where ‘¥’ indicates an unknown component, which should be determined by finite element simulations. The out-of-plane components
Gy, Gy, Gy, Gy and Gy, of tensor G can be determined using the plane-stress conditions:

Nis= Ny = Nps = Ny = N3 =0, (50)

The macroscopic loading defined by Eq. (49) can be expressed in a Lagrangian formulation, which is more suitable for the
application of the HOMTOOLS:

Fy 0 ® ® % 0
F={ o (F,)" = | P=| =% % 0] (51)
* kS * 0 0 0
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Fig. 8. (a) PBCs applied on the surfaces S S' . S7 and S, of the unit cell (2D plane); (b) finite element mesh and the applied macroscopic loading to predict
the FLDs.

where F is the macroscopic deformation gradient and P represents the macroscopic first Piola-Kirchhoff stress tensor (P = N'). To
apply the in-plane periodic boundary conditions and the macroscopic loading given by Eq. (51), three reference points RP1, RP2
and RP3 are created. The following prescribed boundary conditions should be applied to these reference points:

RP1 : Uy =(F), = Uy =0:U ;3 =0,
RPY : Uy = 0:Uy = ((Fyy) = Dy Uy = 0, (52)
RP3 : RFy =(0; RF; =0, RF;; =0,

3.2.2. Bifurcation analysis

As discussed in Section 2.4, the in-plane macroscopic tangent modulus "™VL plays a crucial role in determining the ductility limits
using the Rice bifurcation criterion. Therefore, the evolution of the components 'V L,,,, and "L ,,,, is investigated and discussed in
this section. Fig. 9 provides the evolution of these components (N L,,,, and ™ L,,,,) in terms of the macroscopic strain component
E, = [U' G, dt for the following strain-path ratios: p = —0.5 (uniaxial tensile state), p = 0 (plane strain tensile state), and p = 1
(equibiaxial tensile state). Both of the mixed and isotropic hardening models are considered to achieve these predictions. The
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simulation results show that the component "V L,,,, decreases rapidly and its value becomes very low (even negative in some cases).
Similarly, the shearing component ™V L,,,, is also reduced after the elastic deformation stage. This phenomenon arises as an inherent
consequence of the multi-slip character of crystal plasticity, leading to the formation of vertices on the single crystal yield surface.
It is noteworthy that such a reduction in this shearing component presents the primary destabilizing factor leading to bifurcation
and consequently promoting plastic strain localization. It should be highlighted that when a smooth yield surface with rounded
corners is used, the component '™ ,,, remains almost unchanged from its elastic value during plastic deformation, as shown in
several studies such as Yoshida et al. (2009) and Akpama et al. (2016). In such a situation, strain localization cannot be predicted
without the introduction of an initial geometric imperfection (Marciniak and Kuczynski, 1967). Furthermore, Fig. 9 reveals that
the components "™ L,,,, and ™NL,,,, corresponding to the mixed hardening model are consistently lower than their counterparts
obtained by the isotropic hardening model for the three strain paths. Hence, the ductility limits predicted by the mixed hardening
model would also be lower than those determined by the isotropic hardening model.

To further illustrate the application of the bifurcation theory in detecting the onset of plastic strain localization, special
attention is given to the evolution of the cubic root of the minimum determinant of the macroscopic acoustic tensor NN .N'

173
denoted as Min [dc( JV' JNL LA )] , for the three specific strain-path ratios p = -0.5, p = 0, and p = 1. The evolution of

Min!dct NNLL A " is plotted in terms of the macroscopic strain component E,| in Fig. 10. It is important to note that
the different curves are plotted until the initiation of strain localization, indicated by different symbols in Fig. 10, The analysis
of the effect of the selected hardening model on these evolution curves reveals a significant reduction in ductility limits when
kinematic hardening is considered. A more comprehensive investigation of the impact of kinematic hardening will be conducted in
Section 3.2.6.

3.2.3. Effect of the initial dislocation density p,

The initial dislocation density p, is an important microstructural parameter that can exert a substantial influence on the evolution
of the CRSS as described in Eq. (17). Consequently, it affects the mechanical behavior and ductility limits. In this section, numerical
simulations using the mixed hardening model are carried out to study the effect of the initial dislocation density p,, on the ductility
limits. To this end, three different values of p, are used: 1 x10° mm™2, 2x 10 mm™2, and 4 x 10° mm™2. The results demonstrate that
the value of p, has an important effect on the predicted ductility limits. As expected, the ductility limits decrease as the value of p,
increases, as shown in Fig. 11(a). This finding is also supported by the evolution of the macroscopic equivalent von Mises stress X _,
versus the macroscopic equivalent strain E,, for the uniaxial tensile state (p = —0.5), as depicted in Fig. 11(b). This result implies
that the work-hardening behavior would decrease when the initial dislocation density increases. This observation, which is a direct
consequence of dislocation annihilation, is very consistent with that reported in Lu et al. (2022), It must be pointed out that in real
materials, the initial dislocation density can vary significantly from the different slip systems. However, for the sake of simplicity

in this study, we have assumed that p,, has the same value for all the slip systems.

3.2.4. Effect of the critical annihilation distance of dislocations y,

Dislocations can be annihilated through various processes, such as dislocation intersection, mutual annihilation with opposite
signs, or annihilation at obstacles or grain boundaries. The parameter y_ introduced in Eq. (19) controls the annihilation capability
and induces strain softening during plastic deformation. To explore the impact of this parameter on the ductility limits, FLD
simulations are performed with three different critical annihilation distances: y, = 55, y, = 105, and y, = 205 (with b the magnitude
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Fig. 11. Effect of the initial dislocation density p, on: (a) FLD predictions; (b) evolution of the macroscopic equivalent von Mises stress as a function of the
macroscopic equivalent strain for strain-path ratio p = 0.5,

of the Burgers vector, as specified in Table 1), The influence of the critical annihilation distance of dislocations on the ductility
limits is evident from Fig. 12(a). One can observe from this figure that the ductility limits significantly decrease as the critical
annihilation distance of dislocations increases. Fig. 12(b) provides the evolution of the macroscopic equivalent von Mises stress and
the hardening rate defined as d X, /d E,, with respect to the macroscopic equivalent strain E, for the strain-path ratio p = ~0.5.
The increase in the critical annihilation distance of dislocations results in a decrease in the hardening rate and the stress level and,
subsequently, the ductility limits, as indicated in Fig. 12(b). These findings are consistent with the numerical predictions presented
in Franz et al. 2013, where strain localization analysis has been performed using the self-consistent multiscale scheme.

3.2.5. Effect of the dislocation storage parameter K

The impact of the dislocation storage parameter K, related to dislocation generation, on the ductility limits is investigated in this
section. The different numerical results are reported in Fig. 13(a). It is clearly highlighted that the predicted ductility limits decrease
with the increase in the dislocation storage parameter K for the whole range of strain-path ratios. Furthermore, the evolutions of
the macroscopic equivalent von Mises stress and the hardening rate in terms of the macroscopic equivalent strain are plotted in
Fig. 13(b). It is shown that the hardening rate and the mechanical strength decrease with an increase in the dislocation storage
parameter, Consequently, this leads to lower plastic work-hardening and reduced formability. This observation aligns well with the
results reported in Franz et al. (2013).
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3.2.6. Effect of the kinematic hardening parameter C

The impact of the kinematic hardening parameter C on the shape and level of the FLDs is thoroughly examined in Fig. 14(a)-
14(c). In these figures, three different values of C are considered: 100, 200, and 400 MPa, respectively. The numerical results reveal
a significant reduction in the predicted ductility limits when kinematic hardening is incorporated in the constitutive modeling, as
compared to isotropic hardening, for the whole range of strain-path ratios. Conversely, the disparity between FLD predictions from
isotropic and mixed hardening models intensifies as the kinematic hardening parameter C increases for positive strain paths. Brahme
et al. (2011) have confirmed that kinematic hardening tends to promote the occurrence of plastic strain localization. For a more
comprehensive understanding of the effect of kinematic hardening on the predicted formability, Fig. 14(d) illustrates the relative
deviations from the reference ductility limits (obtained from the isotropic hardening model). The calculated relative differences span
from 6.2% to 30% for different values of the hardening parameter C. Fig. 14(e) plots the evolution of the macroscopic equivalent
von Mises stress with respect to the macroscopic equivalent strain for the strain-path ratio p = —0.5. It is clearly shown that the
mechanical strength increases with the hardening parameter C. Similar conclusions have been reported and discussed in earlier
studies by Tvergaard (1978) and Lu and Lee (1987), who predicted the forming limits using both isotropic and kinematic hardening



Table 2
Definition of the different applied prestrains p,.

Pre-strain path Pre-strain level Designation
E,, =005 uT 0.05
Uniaxial tension (g, = -0.5) E, =010 uT 0.10
E,, =015 uT 015
E,, =005 PS 0.05
Plane-strain tenslon (p, =0) E,, =010 PS 0.10
E,, =015 PS 0.15
Eyy =005 BT 0.05
Equibiaxial tension (p, = 1) E, =010 BT 0.10
E,, =015 BT 0.15

models (with phenomenological constitutive frameworks). They demonstrated that the consideration of kinematic hardening leads
to a reduction in the ductility limits, particularly for positive strain-path ratios (p > 0). Furthermore, incorporating kinematic
hardening into the constitutive modeling allows for better reproduction of the experimental results, as shown in Tvergaard (1978).
Additionally, Ben Bettaieb and Abed-Meraim (2017a) have coupled the phenomenological Armstrong-Frederick (A-F) kinematic
hardening model with the M-K criterion to predict ductility limit strains for thin substrate-supported metal layers. They have also
verified that kinematic hardening clearly decreases the ductility limit strains, particularly in the range of positive strain paths.

3.2.7. Effect of strain path changes

The effect of a pre-strain, which precedes the classical linear strain paths required to determine the FLDs, on the predicted
ductility limits is thoroughly analyzed in the present section. To achieve this goal, several pre-strains (denoted as p,), and the
subsequent strain paths p, ranging from —-0.5 to I, with 4p = 0.1, are applied to investigate the effect of the pre-strain path and its
level on FLDs. It is worth noting that the transition between the pre-strain p; and the subsequent strain paths p, occurs abruptly.
The details corresponding to the different applied pre-strains p, are provided in Table 2,

The unit cell and material parameters used in the FLD predictions under non-linear strain paths (3 pre-strain levels x 3 strain
paths) are the same as the ones defined in Section 3.2, The predicted FLDs are plotted in Fig. 15. It is immediately clear that
the pre-strain levels significantly affect the predicted limit strains. The numerical simulations suggest that, as the pre-strain levels
increase for the uniaxial tension pre-strain path (p, = —0.5), the ductility limits exhibit significant increase for the subsequent strain
paths p, > 0, as seen in Fig. 15(a). On the other hand, with the increase in the level of the pre-strain path p, = 1, the ductility
limits are increased for the subsequent strain paths p, < 0 (Fig. 15(c)). As to the case of the pre-strain path p, = 0, increasing
its level leads to a slight increase in the predicted subsequent limit strains (Fig. 15(b)). Similar observations have been reported
in the literature Yang et al. (2010) and Butuc et al. (2011). Furthermore, it is evident from Fig. 15 that the strain-path transition
has a noticeable effect on the predicted ductility limits, particularly when compared to predictions under linear strain paths. These
numerical results are in accordance with the previous work of Ma et al. (2018), where the formability of a 5754-0 aluminum alloy
sheet has been determined using the M-K approach under pre-strain condition.

3.2.8. Effect of the selected multiscale scheme
In this section, the FLDs predicted by the CPFEM are compared to those determined by the well-known full-constraint Taylor
model. The latter model assumes a uniform strain distribution across the microstructure, which simplifies the computations, but
may overlook local inhomogeneities as the interactions between the different grains are not considered. By contrast, the periodic
homogenization scheme accounts for the spatial (periodic) variation of strain field within the microstructure by applying periodic
boundary conditions (PBCs) on the nodes of two opposite surfaces of the RVE (see Sections 2.3 and 3.2.1). The application of such
boundary conditions leads to potentially more accurate predictions of the macroscopic plastic behavior and, consequently, of the
onset of localized necking. The differences in boundary conditions between the two multiscale schemes result in different expressions
of the macroscopic tangent modulus C, which is required to predict strain localization by the bifurcation theory. Specifically, when
the periodic homogenization scheme is used, the macroscopic tangent modulus C is computed by Eq. (45). However, when the
Taylor model is adopted, the macroscopic tangent modulus C is obtained by the following expression:
= L . ) ’
C= IV.,IQ K-gQ'. (53)
The impact of the selected multiscale scheme on the predicted FLDs is evident, as illustrated in Fig. 16. Our findings reveal
that the limit strains predicted by both multiscale schemes exhibit nearly identical shapes and levels in the range of negative strain
paths (p < 0). However, for positive strain paths, the limit strains predicted by the Taylor model are significantly lower than those
predicted by the CPFEM. Similar conclusions have been drawn by Nagra et al. (2018), emphasizing that the Taylor model tends to
underestimate the limit strains of AA3003-0O sheets for the whole range of strain paths, as compared to the predictions of the FFT
model (similar to the CPFEM approach used in the present study). Nagra et al. (2018) also found that the limit strains of AA5754-0
sheets predicted by the Taylor model are much lower than those obtained by the FFT model for p > 0, while almost identical forming
limits are predicted by both models for p < 0. Additionally, the authors show that the limit strains predicted by the FFT model closely
align with experimental data. Furthermore, Signorelli et al. (2009) have investigated the effect of the multiscale scheme strategy
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on the predicted FLDs. Their simulation results show that the full-constraint Taylor model predicts lower limit strains than those
obtained by the viscoplastic self-consistent (VPSC) model for the whole range of strain-paths. More recently, Serenelli et al. (2011)
have also demonstrated that the full-constraint Taylor model provides significantly lower forming limits on the right-hand side of
the FLD (p > 0) for a typical FCC material, as compared to experimental data. It should be noted that the forming limits in these
contributions (Signorelli et al., 2009; Serenelli et al., 2011; Nagra et al., 2018) have been determined by the M-K approach.

3.2.9. Comparison with experimental data of Nicoletti et al. (2023)

To emphasize the predictive capability of the proposed computational strategy, the numerical results are compared to the
experimental data provided in Nicoletti et al. (2023). For this purpose, the material parameters, used as inputs for the numerical
predictions, are identified on the basis of the experimental uniaxial tension response corresponding to the AA6061-T4 aluminum
alloy sheet presented in Nicoletti et al. (2023). Fig. 17(a) highlights the accuracy of the identification procedure. The identified
material parameters are listed in Table 3, and the other parameters are kept the same as those provided in Table 1. The FLD
predicted by the proposed computational strategy is depicted in Fig. 17(b) along with the experimental data published in Nicoletti
et al. (2023). As clearly shown in this figure, the predicted limit strains are slightly higher than their experimental counterparts.
This outcome is expected, as it is well known that the FLDs predicted by the Rice bifurcation theory represent an upper bound
to the experimentally measured necking strains. This result reaffirms a similar conclusion reported in the literature (Chalal and
Abed-Meraim, 2017, among others). It is important to note that the experimental data is determined using the Marciniak test based
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Table 3

The identified material parameters used for the numerical simulations.
E (GPa) u (GPa) r, (MPa) & (mm) ¥, C (MPa)
70 26,923 58 3.26 x 107 126 400

100 = Nicoletti et al. (2023) Exp. ® Nicoletti et al. (2023) Exp.
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Fig. 17. Comparison of the numerical predictions with the experimental data provided in Nicoletti et al. (2023): (a) experimental and fitted macroscopic
equivalent von Mises stress-strain responses under uniaxial tension loading; (b) experimental and predicted ductility limit strains.

on the ISO 12004-2:2008 norm, and these experimental points correspond to ‘safe limit strains’ as explained in Nicoletti et al.
(2023). Also, the FLD predicted by the full-constraint Taylor model is included to Fig. 17(b). Although the limit strains predicted by
the Taylor model align more closely with the experimental data in the range of biaxial strain paths, some important factors (such
as the grain boundary effect, the initial geometric imperfections unavoidably present in real sheets, or the specific sheet forming
experimental conditions) cannot be accounted for in the current predictions. In view of the discussions above, it comes that overall,
our numerical prediction strategy does not significantly overestimate the forming limit strains.

3.2.10. Effect of the initial crystallographic texture

To investigate the effect of the initial crystallographic texture on the predicted ductility limits, we have selected an actual material
texture corresponding to the AA6061-T4 aluminum alloy sheet, as detailed in Nicoletti et al. (2023). This actual texture comprises
3000 crystallographic orientations. From this set of 3000 orientations, we have carefully selected the 200 most representative
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Fig. 18. (111) and (100) pole figures of the initial crystallographic textures: (a) 3000 experimental crystallographic orientations provided by Nicoletti et al
(2023); (b) 200 discrete orientations used as input of the numerical predictions,

orientations. This selection ensures that the two crystallographic textures, the one with 3000 experimental orientations and the
other with 200 orientations, exhibit very similar (111) and (100) pole figures. Fig. 18 visually demonstrates the close similarity
between the (111) and (100) pole figures corresponding to the 3000 orientations discretized from the experimental data of Nicoletti
et al. (2023) and to the 200 discrete orientations, which will be used as input for our numerical predictions.

Fig. 19 compares the limit strains predicted using the random texture presented in Fig. 3(c) with those obtained using the actual
texture defined by the 200 discrete orientations as depicted in Fig. 18(b). As expected, the initial crystallographic texture has an
appreciable effect on the predicted forming limits. It is clear from Fig. 19 that the forming limit strains predicted by the actual
texture are slightly higher than those obtained using the random texture for p < 0. On the other hand, the difference between the
limit strains predicted by the actual texture and those given by the random texture is more significant for p > 0. This discrepancy
can be attributed to the inclusion of 7% cube and 4.7% rotated cube textures in the actual texture. Indeed, several studies (Yoshida
et al,, 2007; Zhu et al., 2023b, among others) have demonstrated that cube texture yields forming limits that are much higher than
those obtained by random textures in the biaxial stretching range (p > 0). Consequently, our predictions are not overly conservative
in the biaxial tension range, when compared to those obtained using the actual texture.

4. Summary and concluding remarks

In this work, we have incorporated a physically-based isotropic-kinematic hardening model into a finite strain crystal plasticity
framework with the aim of predicting the ductility limits of thin metal sheets. To achieve this goal, we have used unit cells
representing the studied thin metal sheets and applied the periodic homogenization scheme to derive the unit cell mechanical
behavior from that of the constituent single crystals. The mechanical behavior of each single crystal is assumed to be elastoplastic
with physically-based isotropic-kinematic hardening, and with a plastic flow rule modeled by the classical Schmid law. The
dislocation density evolution law, initially formulated by Kocks (Kocks, 1976), is introduced to describe isotropic hardening, whereas
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kinematic hardening is modeled using the typical nonlinear Armstrong-Frederick (A-F) law. The constitutive equations at the single
crystal scale are implemented within the ABAQUS/Standard finite element code using a User-defined MATerial subroutine (UMAT).
The Rice bifurcation criterion is adopted to detect the initiation of localized necking. Several simulations have been carried out to
evaluate the reliability of the selected hardening models. The major findings and conclusions drawn from this work are summarized
as follows:

+ Based on several sensitivity studies, we have demonstrated that the initial dislocation density, the critical annihilation distance
of dislocations, and the dislocation storage parameter have remarkable impacts on the predicted forming limit diagrams (FLDs)
(Figs. 11-13). The outcomes of these sensitivity analyses suggest that controlling these physical factors at lower levels through
microstructural adjustments may enhance ductility.
The introduction of kinematic hardening into the single crystal constitutive modeling leads to a notable reduction in the
predicted ductility limits compared to isotropic hardening, as depicted in Fig. 14. Furthermore, the comparison of the forming
limits predicted by the present model with experimental data shows that the consideration of kinematic hardening allows more
accurate predictions of the ductility limits,
The ductility limits obtained under non-linear strain paths are deeply investigated, where the non-linear strain paths are
composed of two sequential linear strain paths, and the first linear loading stage is either the uniaxial tensile state (UT), plane-
strain tensile state (PS), or equibiaxial tensile state (BT). Our findings show that the predicted limit strains are significantly
influenced by the strain-path changes, as illustrated in Fig. 15. Furthermore, our predictions are found to be similar to the
experimental and numerical results obtained by the classical phenomenological constitutive model and reported in Ma et al.
(2018).
The application of the full-constraint Taylor model to predict material ductility yields forming limit strains that are much
lower than those obtained by the present CPFEM-based multiscale scheme, especially in the range of positive strain-path
ratios (Fig. 16).
+ The comparative analyses of forming limit predictions based on actual textures and those obtained with random textures reveal
the important role played by the initial crystallographic texture in the prediction of ductility limits (Fig. 19).
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Appendix A. Crystallographic slip systems for FCC single crystals

The 12 slip systems of FCC single crystals are provided in Table A.1. Each slip system is described by orthonormal vectors
(mj,n) and both vectors are measured in the intermediate configuration.

Appendix B. Grain number sensitivity study

A sensitivity study on grain number has been conducted to determine an adequate number of grains for statistically representing
the studied materials. Fig. B.1(a) depicts the macroscopic equivalent von Mises stress—strain response, under uniaxial tension test,
for unit cells containing 50, 100, 200 and 300 grains. The predicted FLDs corresponding to different grain numbers are provided
in Fig. B.1(b). The results from this study indicate that the tensile responses for unit cells containing 100, 200, and 300 grains are
almost indistinguishable, and the difference between the FLDs predicted by unit cells containing 200 and 300 grains is very small.
Therefore, we can consider that unit cells comprising at least 200 grains may be sufficient to adequately represent the polycrystalline
materials in the current study. It is also well acknowledged that the determination of a sufficient number of grains is intricately
linked to factors, such as the adopted hardening model, homogenization method, among others.
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