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ABSTRACT

Keywords: The current contribution investigates the effect of some relevant microstructural parameters (specifically,
Ductility morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using
Microstructures

the Crystal Plasticity Finite Element Method (CPFEM). The polycrystalline aggregates are assumed to be
representative of thin metal sheets and their macroscopic behavior is determined from that of their constituent
single crystals on the basis of the periodic homogenization technique. The single crystal behavior is described
by a finite strain elastoplastic framework in which the plastic flow rule obeys the classical Schmid law
and plastic deformation is solely attributed to the slip on the crystallographic slip systems, The CPFEM is
implemented within and in connection with ABAQUS/Standard finite element code. The ductility limits are
predicted by the Rice bifurcation theory where strain localization is detected when the macroscopic acoustic
tensor becomes singular. Three grain morphologies (namely, cube, random, and elongated morphology) and
three initial crystallographic textures (namely, cube, random, and copper orientation) are considered to
investigate the effect of morphological and crystallographic textures on the onset of plastic strain localization.
The numerical results indicate that the effect of initial crystallographic texture is much more pronounced than
that of grain morphology on the predicted ductility limits. In addition, the impact of grain size and sheet
thickness are thoroughly analyzed. The research reveals that the trends of the predicted ductility limits are
strongly dependent on the size effects.

Crystal plasticity
Finite strain
Stability and bifurcation

1. Introduction Phenomenological models have been widely used to analyze the
effect of several mechanical features on the onset of localized necking.
In this field, Ben Bettaieb and Abed-Meraim (2015) have demon-

strated that the predicted formability limit strains increase with the

The ultimate goal of designers and producers of new metal alloys
is to improve the mechanical properties of industrial devices and com-

ponents (strength, ductility, creep resistance, etc.). This improvement
necessitates a thorough understanding of the physical and microstruc-
tural factors that influence these mechanical properties. In this context,
the investigation of the effect of microstructural parameters on the
mechanical behavior in general and specifically on the ductility limit
of thin metal sheets has received an increasing interest in the last few
decades. To this end, several theoretical predictive tools have been
developed in the past to numerically determine the ductility limits
following the concept of forming limit diagrams (FLDs), which has been
first introduced by Keeler and Backhofen (1963) and Goodwin (1968).
The development of such predictive tools is based on the combination
of a constitutive framework describing the evolution of mechanical
variables during plastic deformation with a localized necking crite-
rion. Constitutive frameworks are classically categorized into two main
families: phenomenological and multiscale frameworks.

isotropic hardening exponent. This result is valid for all of the strain
paths that compose the FLD (ranging from uniaxial to equibiaxial ten-
sion states). In the latter investigation, a rate-independent constitutive
framework with isotropic hardening and isotropic plasticity has been
adopted to describe the metal sheet mechanical behavior. The effect of
plastic anisotropy on the predicted ductility limit strains has been ana-
lyzed in Barlat (1987), where the author has demonstrated that plastic
anisotropy parameters impact the limit strains essentially for biaxial
strain paths (especially near equibiaxial strain state). More recently,
the effect of the sensitivity of the mechanical behavior to the strain
rate on the predicted ductility limit strains has been explored in Ben
Jettaieb and Abed-Meraim (2017D). In this reference, the authors have
demonstrated that the strain-rate sensitivity significantly delays the on-
set of localized necking for all the strain paths. The numerical approach
developed in Ben Bettaieb and Abed-Meraim (2015) has been extended
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in Ben Bettaieb and Abed-Meraim (2017a) to include kinematic hard-
ening in the constitutive modeling. On the basis of this extension, the
authors have shown that the consideration of kinematic hardening low-
ers the predicted ductility limit strains. Despite their wide use to model
the mechanical behavior in general and to predict the ductility limits
in particular, classical phenomenological frameworks are often unable
to appropriately take into account some specific mechanical and mi-
crostructural properties, such as the evolution of grain morphology and
crystallographic texture induced by plastic deformation, and grain size
effects. As a result, a new generation of phenomenological frameworks
has recently been developed to better consider these aspects. In this
context, the impact of grain size has been considered by incorporating
Hall-Petch effects into the FLD predictions (Xu et al., 2015; Butuc et al.,
2021). It has been demonstrated in the above-cited contributions that
as the grain size increases, the mean ductility decreases. In addition,
when the sheet thickness decreases, a substantial scatter of ductility
is observed. The effect of crystallographic texture evolution on the
incipience and development of localized necking has been studied by
incorporating distortional hardening into phenomenological modeling
as proposed in Manopulo et al. (2015) and Jeong et al. (2017). More
recently, Jedidi et al. (2020) have used an enhanced two-surface con-
stitutive model to describe the mechanical behavior and to investigate
the ductility limit of hexagonal closed packed (HCP) sheet metals. This
model enables to explicitly predict, in a phenomenological way, plastic
deformation due to the activation of slip and twinning deformation
modes. Such a model can be viewed as an intermediate approach
between classical phenomenological and multiscale models.
Unfortunately, despite the substantial advancements made in phe-
nomenological modeling, the resulting models most often remain un-
able to adequately capture the influence of the above-mentioned mi-
crostructural phenomena on the formability predictions. To overcome
these major limitations, several multiscale schemes have been adopted
for the prediction of the ductility limits of thin metal sheets. Within
these multiscale frameworks, the mechanical behavior is explicitly
modeled at the microscopic scale (which corresponds generally to
the single crystal scale), and some relevant scale-transition rules are
used to derive the macroscopic behavior from that of the microscopic
constituents. Multiscale schemes used to predict the macroscopic be-
havior of polycrystalline aggregates are classically categorized into
two families: mean-field and full-field schemes. The full-constraint
Taylor scheme is one of the most widely used mean-field schemes in
the literature. Due to its simplicity, this scale-transition scheme has
been frequently used for predicting FLDs within the framework of
elastoplasticity (Knockaert et al., 2002; Yoshida and Kuroda, 2012),
rigid viscoplasticity (Inal et al., 2005; Gupta et al,, 2018), and elas-
toviscoplasticity (Lévesque et al, 2010). The use of the multiscale
Taylor model in these investigations offers several practical benefits.
For instance, the strain homogeneity assumption adopted in this model
allows significantly simplifying the numerical implementation, thus
leading to considerable reduction in CPU time (compared to other
multiscale schemes). In addition, the Taylor scale-transition scheme
enables to accurately predict the evolution of crystallographic tex-
tures during plastic deformation. On the other hand, the full-constraint
Taylor model presents several conceptual drawbacks: the equilibrium
condition at the grain level is not fulfilled, the grain morphology is
not always accurately described as only the grain weight is consid-
ered in this scale-transition rule, and the interactions between each
grain and its surrounding medium are not accounted for. To overcome
some of these limitations, the self-consistent mean-field multiscale
scheme has been used in the literature to predict the ductility limits
of thin metal sheets. This multiscale scheme has been combined with
rate-dependent (Signorelli et al., 2009; Schwindt et al., 2015) and rate-
independent (Franz et al., 2013; Akpama et al., 2017) crystal plasticity
constitutive frameworks to model the polycrystalline mechanical be-
havior and then to predict the ductility limits, Unlike the Taylor model,
the self-consistent approach allows the fulfillment of the equilibrium

state at the polycrystalline scale and better accounting for the grain
morphology, as each grain is assumed to be ellipsoidal. Hence, the
grain morphology is described by the weight and the half-axes of the
corresponding ellipsoid. Despite these undeniable advances, mean-field
multiscale techniques still remain often limited when used to model the
polycrystalline behavior and to predict the onset of localized necking of
new materials with complex microstructural properties. Indeed, mean-
field schemes are for instance unable to predict local strain and stress
fields developed in a single grain. This may result in large fluctuation
of the local mechanical variables for strongly anisotropic crystals.
Furthermore, the statistical analysis of the microstructures does not
allow for the evaluation of the effect of the real grain shape as well
as the details of the grain spatial distributions. Consequently, full-field
multiscale schemes have recently been designed and used to accurately
relate the microstructural state to the macroscopic mechanical response
and then to efficiently predict the formability limits. In fact, full-field
multiscale schemes are able to accurately take into account realistic
grain morphologies using the Voronoi tessellation technique (Amelirad
and Assempour, 2019; Chaugule and le Graverend, 2022; Onimus et al.,
2022). Furthermore, full-field approaches allow taking into account the
strain heterogeneity within the grain, which arises from the collec-
tive motions of dislocations, as well as realistic boundary conditions
that accurately describe both geometrical anisotropy and deformation
induced anisotropy (such as periodic boundary conditions). These full-
field schemes are based on the Crystal Plasticity Finite Element Method
(CPFEM), such as in Kim et al. (2017), Amelirad and Assempour
(2019) and Tran et al. (2022), or on the Crystal Plasticity Fast Fourier
Transform technique (CPFFT), as in Nagra et al. (2018, 2020). In all of
the above cited references based on the CPFEM or CPFFT approaches,
only rate-dependent crystal plasticity models are used to simulate
the behavior of single crystals. Furthermore, the initial imperfection
approach (Marciniak and Kuczyiniski, 1967) is mostly used to predict the
ductility limits (with the exception of Amelirad and Assempour (2019),
who have used a stress concentration criterion to predict the onset of
localized necking). In Kim et al, (2017), the numerical approach based
on the coupling of the CPFEM to the initial imperfection approach has
been used to predict the ductility limits of a ferritic stainless steel. The
influence of slip system activity on the yield criteria and forming limits
has been discussed. In Amelirad and Assempour (2019), the effect of
the grain size on the forming limits of stainless steel 316 L sheets has
been explored. It has been illustrated through this research that the
forming limit diagrams shift down with decreasing the average grain
size, In Tran et al. (2022), the size effect on the formability of ultra-
thin metallic bipolar plate for proton exchange membrane (PEM) fuel
cell has been investigated. The results of this investigation reveal a
significant degradation of the formability of the ultra-thin FSS sheet as
the thickness-to-grain size ratio decreases. In Nagra et al. (2018), the
CPFFT method has been coupled with the initial imperfection approach
to predict the FLDs of AA5754 and AA3003 aluminum alloys. The
results obtained by the CPFFT approach have been compared with those
predicted by the well-known Taylor multiscale scheme, Furthermore,
the effects of various grain shapes as well as local grain interactions
on the FLD predictions have been studied. The study reveals that
among the various microstructural features, the grain morphology has
the strongest effect on the predicted FLDs, which can significantly be
improved if the actual grain structure of the material is properly ac-
counted for in the numerical models. The approach developed by Nagra
et al. (2018) has recently been extended by Nagra et al. (2020) to
predict dynamic recrystallization (DRX) and formability of HCP metals,
such as magnesium alloys at warm temperature. This study indicates
that DRX has a significant impact on the deformed grain structure,
grain size and texture evolution and also highlights the importance of
accounting for DRX during FLD simulations at high temperature.

In the present contribution, a polycrystalline aggregate is selected
as Representative Volume Element (RVE) of the studied thin metal
sheet. The selection of such an aggregate and its size should fulfill the



principle of separation of the length scales: the scale of the microstruc-
tural fluctuations must be smaller than the scale of the RVE, which
should be again much smaller than the macroscopic field fluctuations.
A CPFEM-based multiscale scheme is used to model the mechanical
behavior of the RVE. This scheme is based on the periodic homog-
enization technique (Ben Bettaieb et al., 2012; Zhu et al.,, 2020a,b,
2023), which allows accurately reproducing the periodic arrangement
of the crystallographic structure. Due to its small thickness, only one
representative volume element (called also unit cell in the context of
periodic homogenization approach) is considered through the sheet
thickness direction. This unit cell generates the thin metal sheet by
periodicity in the two geometric plane directions. To be consistent
with classical FLD predictions, the macroscopic plane stress assumption
is used in the direction normal to the sheet plane. Hence, periodic
boundary conditions are applied only in the two plane directions.
To automatically apply these boundary conditions and the macro-
scopic loading on the polycrystalline aggregate, we have used the set
of Python scripts HOMTOOLS developed by lLejeunes and Bourgeois
(2011). The periodic homogenization equations are solved by the finite
element method (ABAQUS, 2014) after spatial discretization of the unit
cell. A single crystal is assigned at each integration point of the finite
element mesh. Unlike previous contributions based on a rate-dependent
formulation (Kim et al., 2017; Nagra et al., 2018; Amelirad and Assem-
pour, 2019; Nagra et al, 2020; Tran et al,, 2022), the single crystal
constitutive equations follow a finite strain rate-independent constitu-
tive framework. Within this constitutive framework, the plastic flow,
which is assumed to be solely due to the shear over the slip systems, is
modeled by the classical Schmid law (Schmid and Boas, 1935). This
rate-independent formulation is more appropriate when the viscous
effects are negligible, which is typically the case in cold forming pro-
cesses. Furthermore, rate-dependent single crystal equations are highly
non-linear (due to the small values of the strain-rate sensitivity m). Con-
sequently, the CPU time needed to solve these equations is generally
very important compared to the case of a rate-independent formulation.
Plastic deformation develops mainly through three successive stages: (i)
a homogeneous deformation; (ii) a progressively concentrating strain
under a constant or smoothly decreasing load (diffuse necking), and
(iii) an abrupt strain localization (localized necking) under a rapid
load decrease. The incipience of localized necking represents the ul-
timate deformation that a stretched metal sheet can undergo, since
this phenomenon is often precursor to material failure. To predict the
onset of diffuse necking, several criteria have been developed in the
literature. In the context of diffuse necking criteria, one can quote the
maximum force criterion initially proposed by Considére (1885). This
criterion, applicable in its original form in the case of uniaxial tension
loading, assumes that diffuse necking is reached when the tension
force reaches its maximum value. This condition is equivalent to the
equality between the stress ¢ and the strain-hardening rate do/de.
Subsequently, Swift (1952) extended the Considére criterion to biaxial
loadings. In the present study, focus is restricted to the prediction of
macroscopic localized necking using the Rice bifurcation theory (Rice,
1976). This bifurcation corresponds mathematically to the singularity
of the macroscopic acoustic tensor. The macroscopic tangent modulus
is numerically evaluated using the condensation technique (Zhu et al,,
2022) in order to determine the acoustic tensor, Compared to the initial
imperfection approach (Marciniak and Kuczyriski, 1967) commonly
used in previous contributions based on multiscale schemes, the Rice
bifurcation approach presents at least two conceptual and practical
benefits. In fact, in addition to its sound theoretical foundation, the
bifurcation approach does not require any fitting parameter, such as
the initial imperfection size needed in the initial imperfection approach.
Furthermore, the CPU time required to predict an FLD by the bifurca-
tion theory is significantly lower than its counterpart in the case of the
initial imperfection analysis (Akpama et al., 2017). The application of
the Rice bifurcation approach in conjunction with the CPFEM allows
constructing realistic forming limit diagrams. The main reason of these

observations is the presence of typical destabilizing effects, as a natural
outcome of crystal plasticity, through the formation of vertices at the
current points of the Schmid yield locus. Bifurcation and thus the
corresponding ductility limits cannot be reached if a rate-dependent
formulation is used to model the single crystal constitutive framework.
It should be noted that, in the literature, several other destabilizing
mechanisms have been incorporated in various constitutive frameworks
to predict the ductility limits by the Rice bifurcation criterion. These
destabilizing phenomena are generally due to the application of the
deformation theory of plasticity, as in Ben Bettaieb and Abed-Meraim
(2015), or the use of a non-associative flow rule (Ben Bettaieb and
Abed-Meraim, 2021; Jedidi et al., 2020). Destabilizing phenomena may
also be induced by softening behavior incorporated in the constitutive
modeling through coupling with damage (see, e.g., Haddag et al
(2009), within the framework of CDM, and Mansouri et al,, 2014, for
micromechanics-based constitutive models).

Particular attention is focused on the study of the effect of both
morphological and crystallographic textures on the onset of plastic
strain localization. In this aim, the NEPER software (Quey et al., 2011),
based on the Voronoi tessellation technique, is used to generate unit
cells with three different grain morphologies (namely, cube, random
and elongated morphology). Note that the use of the Voronoi technique
offers interesting possibilities, as realistic grain morphologies can be
accurately described unlike mean-field schemes, which are very limited
in this regard. In this technique, each grain is made up of several finite
elements and each finite element contains several integration points.
Hence, the proposed numerical strategy (based on the FEM approach)
allows taking into account the effect of the heterogeneity of mechanical
fields within the grains, thus leading to a better description of exper-
imental evidences (Kanjarla et al,, 2010). To investigate the effect of
crystallographic texture, we have used the ATEX software (Beausir and
Fundenberger, 2017) to generate three crystallographic textures: ran-
dom, cube and copper texture. Numerical predictions obtained in this
work reveal that the effect of both morphological and crystallographic
textures is more noticeable for positive strain paths. This result is
consistent with several contributions in the literature (see for instance,
Barlat, 1987; Akpama et al,, 2017). Furthermore, the numerical trends
clearly show that the effect of crystallographic texture on the predicted
limit strains is more important than that of morphological texture.

The remainder of the paper is organized as follows:

- Section 2 provides some details about the design of the CPFEM-
based strategy. The main lines of the periodic homogenization
method, the crystal plasticity finite element method and the Rice
bifurcation approach are briefly reviewed.

- The numerical results obtained using the developed FEM ap-
proach are presented and extensively discussed in Section 3.

- A summary of the results and conclusions is provided in Section 4.

2. Methodology and theory
2.1. Design of the CPFEM-based multiscale strategy

The main goal of this study is to use a CPFEM-based multiscale
scheme to evaluate the effect of various morphological and crystal-
lographic textures on the ductility limits of face-centered cubic (FCC)
polycrystalline aggregates. Fig. 1 summarizes the schematic represen-
tation of this multiscale strategy. Unless explicitly stated otherwise,
the aggregates used in the following simulations are represented by
a unit cell of cubic initial shape and of initial volume ¥V, equal to
I(" The morphology of the grains constituting these aggregates are
generated, on the basis of the Voronoi tessellation technique, using
the free (open-source) software package NEPER (Quey et al,, 2011).
The generated unit cells are then discretized into finite element meshes
using the Gmsh package of NEPER software, where 20-node quadratic
hexahedral finite elements with full integration (27 integration points



by element) are used (element C3D20 in ABAQUS). Hence, each grain
is composed of several finite elements. Each individual integration
point of the finite elements represents a single crystal. All the single
crystals belonging the same grain have the same initial crystallographic
orientation. The initial crystallographic textures are generated by the
ATEX software (Beausir and Fundenberger, 2017). A Python script is
developed to assign these initial orientations to the different integra-
tion points. During loading, the deformation of the different single
crystals belonging to a grain may evolve differently, thus leading to
heterogeneity of the mechanical fields inside the same grain (crystal-
lographic orientation, plastic deformation, stress...). The resulting file
obtained from the NEPER software (an ABAQUS input file) is then
transferred to ABAQUS to apply the periodic boundary conditions and
the macroscopic loading on the aggregates. To perform this task, the
set of Python scripts called HOMTOOLS and developed by Lejeunes
and Bourgeois (2011) is used. Further details about the use of the
HOMTOOLS will be given in Section 2.2. The single crystal constitutive
equations solved at each integration point follow a rate-independent
formulation, where the flow rule is modeled by the Schmid law. These
constitutive equations are implemented via a user-defined material
subroutine UMAT into ABAQUS/Standard finite element code. A brief
description of these constitutive equations and the corresponding al-
gorithm used to integrate them will be provided in Section 2.4 and
Appendix B, respectively. The ductility limits of the polycrystalline
aggregates are predicted by the Rice bifurcation theory. This theory
states that bifurcation takes place when the macroscopic acoustic tensor
becomes singular. This acoustic tensor is built from the macroscopic
elastoplastic tangent modulus which is obtained by condensation of the
global stiffness matrix. To perform the bifurcation analysis, we have
developed a set of Python codes allowing us to achieve the following
elementary tasks: assembly of the elementary stiffness matrices into the
corresponding global one, condensation of the global stiffness matrix
to compute the macroscopic tangent operator and then to check the
singularity of the acoustic tensor. The elementary stiffness matrices are
obtained from the finite element simulations using the output option
‘Element Matrix Output’, which needs to be added in the ABAQUS input
file. These elementary matrices are stored in a file having the extension
.mtx". More technical and practical details about the application of the
bifurcation analysis in connection with ABAQUS are provided in Zhu
et al. (2022). A brief presentation of the theoretical and numerical
aspects related to the Rice bifurcation theory is given in Section 2.5.

2.2, Macroscopic boundary conditions

The polycrystalline aggregates (called also unit cells using the peri-
odic homogenization terminology) are subjected to periodic boundary
conditions (PBCs) to predict ductility limits in the current investiga-
tion. The ABAQUS plug-ins HOMTOOLS developed by lLejeunes and
Bourgeois (2011) are used to automatically apply these PBCs. To be
consistent with classical F1.D predictions, a macroscopic plane stress
state in the direction normal to the sheet plane is assumed (Z direction,
as shown in Fig. 4(d)). Then, the PBCs are applied on the faces S :
Dxp = "-’ T -%:S‘;': D Xpp = % while faces
A -%:333 D Xgy = % are kept stress free (see Fig. 4(d)).
To formulate the periodic homogenization equations and then to apply
the macroscopic loading on the unit cells, the deformation gradient F
and the first Piola-Kirchhoff stress tensor P are adopted as appropriate
work-conjugate deformation and stress measures. The main lines of the
periodic homogenization equations will be given in Section 2.3, Under
the in-plane biaxial stretching conditions required in the prediction
of unit cell FLDs, the macroscopic tensors F and P should have the
following generic forms:

Fiy 0 ® = = 0
F=| 0 Fy =« P=|s « 0f, (1
. » . 0 0 0

= oo+
Xn = —?'Sﬂl

where the components denoted by ‘*” are unknown and need to be
determined by finite element computations. Furthermore, the unit cell
is subjected to proportional strain paths, defined by constant strain
ratio p:

E,,  Ln(F;,)

- = (! . 2
P ., Inhp constant (2)
where E;| and E,, are the components of the macroscopic logarithmic
strain tensor E, and p ranges between ~0.5 and | to span the complete
FLD.

2.3. Periodic homogenization method

The periodic homogenization technique is used to determine the
macroscopic mechanical behavior of the unit cell from that of the
individual grains and to apply the boundary conditions detailed in Sec-
tion 2.2. For the sake of brevity, only the main lines of this multiscale
scheme are provided in the following subsections (Section 2.3.1 for
the theoretical formulation and Section 2.3.2 for the numerical treat-
ment). The readers interested in additional details about this multiscale
scheme can refer to Ben Bettaieb et al. (2012), Zhu et al. (2020a,b) and
Zhu et al. (2022).

2.3.1. Periodic homogenization equations
The periodic homogenization technique is defined by the following
equations and properties:

» The macroscopic deformation gradient F and the first Piola-
Kirchhoff stress tensor P are connected to their microscopic coun-
terparts  and p by the following averaging relations (over the
initial volume V), of the unit cell):

F:L P:I_

Yol Sy, Vol S,

The rate form of the averaging relations Eq. (3), more suitable to
numerical formulation, can be derived as follows:

pe

Vol ¥y

fdV,: pdV,. (3

L

- fdV,;
Mol Jy, "

pdVy. (&)
+ The periodicity conditions of the microscopic variables state that
the in-plane microscopic deformation gradient '™™f and the in-
plane first Piola-Kirchhoff stress tensor ™p are periodic over the
side set S, = S; US; US, US]. The periodicity of 'f implies that
its rate ™f can be split into its macroscopic counterpart VF and a
superimposed fluctuation gradient ™Vf,_that is periodic over S;:

. fu 1o L (Fu F
et tmenta () e (B0 ).
(5)

Spatial integration of Eq. (5) enables to obtain the in-plane velocity ™a
of a material point:

Ny = N g 4 Ny (6)
where ™x,, represents the initial in-plane coordinates of the material
point, and ™, is an in-plane periodic velocity field.

» The microscopic static equilibrium equation is defined by the
following rate form (when body forces are neglected):

divy (p) = 0. 7

+ The microscopic constitutive equations are formulated at the
single crystal scale and will be summarized in Section 2.4.

2.3.2. Numerical implementation
The aforementioned periodic homogenization problem defined on
the unit cell is solved by the finite element method. As a departure
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Fig. 1. Schematic presentation of the CPFEM-based multiscale scheme used in the ductility limit predictions.

point of the numerical treatment of this problem, the virtual power
principle should be formulated for an arbitrary virtual velocity éu
(using the microscopic equilibrium Eq. (7)):

divy (p) - o0 = 0. (8)

Then, integrating Eq. (8) over the initial volume ¥, of the unit cell
yields:

/ divyg (p)-60dV, = 0. (9)
Yy

Using the chain rule and the divergence theorem, Eq. (9) can be
rewritten as:

/ "l“:p]dvo=/ S0P igd S, (10)
W L% Uy UsT,

0 (]

The plane stress assumption implies that vector p - n, vanishes over the

set of faces So—,tUS;J‘ Then, the right-hand side of Eq. (10) can be recast
as:

/ supiigds, = [ du-poiasys [ supeigasy
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=/ 50~ P - fgd S:
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- / Mg Np NG gg an
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Hence, the left-hand side of Eq. (10) can be rewritten as:
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(12)

Considering the anti-periodicity of tensor 5™u,,, ®™ i, and the peri-
odicity of ™p (as the first Piola~Kirchhoff stress tensor p is periodic),
we can easily demonstrate that:

[ (6% @) : ] as, =o. 13)

The combination of Eqs. (12) and (13), leads to the Lagrangian formu-
lation of the Hill-Mandel lemma, which remains valid under the plane
stress assumption:

/ [@ :p] vy = [Vy|s™F : NP, (14)
v, 19X

To numerically enforce Eq. (14) and hence to apply the macroscopic
loading as well as the PBCs, the macroscopic reference point technique
is used. This technique is automatically managed using the set of
Python codes HOMTOOLS developed in Lejeunes and Bourgeois (2011).
Practical details about the application of this technique to predict
localized necking under biaxial loading are provided in Zhu et al.
(2020a) and Zhu et al. (2020b).

2.4. Single crystal plasticity model

The single crystal behavior is assumed to be elasto-plastic and
follows a rate-independent theory. In this framework, the microscopic
deformation gradient f, determined at each integration point by fi-
nite element computation, can be multiplicatively decomposed into an
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elastic part ¢ and a plastic part {7, as follows:

f=f-f (15)

where the elastic part f° is obtained from a stretching tensor v* and a
rotation tensor r through the following multiplicative decomposition:

(16)

The rotation tensor ¥ defines the orientation of the crystallographic
lattice with respect to the current microscopic coordinate system. This
rotation is parameterized by the Euler angles ¢, ¢, and ¢, (based on
the Bunge convention) as shown by the matrix formulation as Eq. (17)
that is given in Box .

The microscopic velocity gradient g, more suitable as deformation
measure in the formulation of the single crystal constitutive framework,
can be determined from the total deformation gradient  as:

ff=v"-F.

g=f 0 =0t et

R ARR A R LY B LUPL R CRE B (Y (Y LSl (a18)

As is the case for most metallic materials, the elastic deformation is
often assumed to be very small compared to unity. Accordingly, the
stretching tensor v* is very close to the second-order identity tensor:

vl (19)
Combining Eqs. (18) and (19), we obtain:
g=V 4r.r ar 7 f T (20)

The velocity gradient g can be additively decomposed into its symmet-
ric and skew-symmetric parts, denoted as d and w, respectively:

g=d+w, (21)

where the symmetric (respectively skew-symmetric) part can also be
decomposed into an elastic part d* (respectively w*) and a plastic part
d° (respectively w):

d=%{g+gr)=d‘+df'; w=%(g—g’)=w‘+w4’. (22)

with

A =v; & =errh fT W= we=eedrer,
(23)

Because the plastic deformation is caused by the slip on the crystal-
lographic systems, the plastic part of the velocity gradient g can be
expressed as:

N,
@ W= Y @A),

a=|

(24)

where:

N, is the total number of slip systems, equal to 12 for FCC single
crystals.

#* is the algebraic value of the slip rate of slip system «.

m* is the slip direction vector, while n” is the vector normal to
the slip plane.

For practical reasons and to handle only positive values of slip rates,
it is more convenient to decompose each slip system into two opposite

oriented slip systems (m*,5%) and (—-m",n"). The plastic strain rate
d” and plastic spin w” can be rewritten in terms of the symmetric and
skew-symmetric parts of the Schmid tensor as follows:

N, 2N,

dP = 2 7-,olRu: wP = 2 7"5". (25)
a=1 a=1

where R” and S are defined as:

R'=(m"®@n") : S§=(m"®@n") (26)

sym "t skew—sym *

The rotation ¥ is chosen to transform the Schmid tensor m” ® n” of
each slip system « so that it remains constant when expressed in the
intermediate configuration and equal to m{ ® i (see Fig. 2):

@] =i - (M @A) F. (27)

The detailed information on the slip systems for FCC single crystals is
given in Appendix A.

To satisfy the objectivity principle, Egs. (22) and (25) can be
rewritten in the crystal lattice frame defined by rotation F. For the sake
of clarity, tensors and vectors evaluated in this frame are denoted by
an over-line notation. In this frame, the velocity gradient g is expressed
as follows:

g=rr~g-i'=¢i+ﬁ;

=d* +d" 4+ W+ W, (28)
and the plastic parts d* and w* can be expressed as:
2V, 2V,
(29)

d" =Y "R W= #°Sp with §7 20,
a=1 a=1
where R and S are expressed in the intermediate configuration as:

‘; = (ﬁ:'I ® i?l)s)m: S:’I = (ﬁ';; ® ii!)) (30)

skew—sym *

The elastic behavior is assumed to be linear isotropic and, given by
the Hooke law:

Gg=¢: (d-d"), (31)

where & is the fourth-order elastic stiffness tensor, which depends on
the Young modulus E and the Poisson ratio v,

The plastic flow rule is defined by the Schmid law, which indicates
that slip may occur only when the resolved shear stress * on a slip
system a becomes equal to a critical value ¢

P
Va=1..2N, :4 =% =7
S = 3420,

(32)

where the resolved shear stress r* is defined in term of the Cauchy
stress tensor o and the symmetric part of the Schmid tensor m* @ n*:

Ya=1,..2N, =0 :R"=a:R[. (33)

The critical shear stress ¢ is often expressed in a rate form to make it
suitable to numerical implementation as:

N,
Va=1_.N,:#"=i""= D HT (N

st E (34)
f=1

The initial value of the critical shear stress r, (the same for all the
crystallographic slip systems) is assumed to depend on the grain size
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as follows:

(35)

foo =g+ —HE_
Viers
where 7, is the initial critical shear stress, x; » is the microscopic Hall-
Petch constant and d,; . is the average of the equivalent grain diameters
(i.e., diameter of the sphere of equivalent volume). The Hall-Petch
effect will be considered in detail only in Section 3.5.1. In the other
sections, the grain size effect is not considered, allowing us to confine
attention to other effects, such as crystallographic and morphological
texture, and sheet thickness.

The adopted hardening behavior is described by an isotropic non-
linear model of power type, given by the following equation (Yoshida
and Kuroda, 2012; Signorelli et al., 2021):

«y =1
Va.ﬁ:l.....N,:H“":ho(l-l»hc'—l) . (36)
Tph
where h;, and n are hardening parameters. As to I', it represents the

accumulated slip given by:

2N,
s 2 r*. (37)
a=1

The constitutive equations are implemented within ABAQUS/
Standard finite element code via a user-defined material subroutine
UMAT. An explicit ultimate algorithm is adopted to integrate these
constitutive equations, which has been shown to be more efficient and
robust than other integration algorithms (Akpama et al., 2016). The
main steps of this integration algorithm are presented in Appendix B.

2.5. Rice bifurcation criterion

The Rice bifurcation criterion, initially proposed in Rudnicki and
Rice (1975) and Rice (1976), is used to determine the occurrence of
localized necking. This criterion is associated with a jump in the strain
rate across a localization band, as shown in Fig. 3, and it can be
mathematically interpreted by the loss of ellipticity of the governing
macroscopic equilibrium equations. This criterion can be derived from
the following two conditions:

- The first condition: the kinematic condition for the strain rate jump,
which can be described as follows:

[[NF)) = WEO - INgt = Z'@ N, (38)
where:

« [['"F]] is the jump of the velocity gradient field 'NF across the
localization band. "™F© and "™F' are the velocity gradient outside
and inside the band, respectively.

|/

.i;_-H-7'

of the deformation gradient: plastic slip and rigid rotation along with elastic distortion of the crystallographic

. ZZ_ is the jump vector,
+ A is the unit vector normal to the localization band, equal to
(cos@, sinf), where 0 < 0 < x/2.

- The second condition: the force equilibrium condition across the band
should be satisfied. This condition can be expressed in terms of the rate
of in-plane macroscopic first Piola-Kirchhoff stress tensor 'NP:

[('"P]) - N = 0. (39)

On the other hand, the constitutive law at the macroscopic scale,
which relates the in-plane macroscopic tensors '"NF and NP via the
in-plane macroscopic tangent modulus '¥B, is expressed as:

INl') - INB : INF_ (40)

Combining these two conditions (Egs. (38) and (39)) with the
constitutive law Eq. (40) yields:

[NB: (CoN)|-N =0, (41)
which is equivalent to:
(VN N)-é =0, (42)

where ™ C is the fourth-order tensor obtained from the in-plane macro-
scopic tangent modulus '™™B by permutation of the first two indices
(NC i = ™B,, for Vi, j,k0 : 1,2,3). Tensor N - NC - A" is the
so-called acoustic tensor. Strain localization occurs when the acoustic
tensor becomes singular and the corresponding determinant vanishes.

det (jr INg. if) =0, (43)

The application of the Rice bifurcation criterion requires the com-
putation of the in-plane macroscopic tangent modulus "B, For such
computation, Zhu et al. (2022) have compared three numerical tech-
niques: the perturbation technique, the condensation technique, and
the fluctuation technique, and they have concluded that the conden-
sation method is the most reliable and efficient compared to the other
ones. Hence, this technique is employed to compute the macroscopic
tangent modulus in this study. The main steps of this technique are
summarized as below:

+ Output the elementary stiffness matrices K, corresponding to all
of the finite elements for each computation time increment using
the ABAQUS keyword ‘Element Matrix Output’.

+ Assemble the global stiffness matrix K from the elementary ma-
trices K,, using the connectivity of the different nodes of the
elements.

« Partition the global stiffness matrix K into four submatrices K,
K,;, K;, and K, where a is the set of nodes in the interior and
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Fig. 3. Schematic of the Rice bifurcation criterion.

b is the set of nodes on the boundary of the unit cell:

K K
K=’ “”] : (44)
[Kbn KN;
+ Construct the projection matrices Q and H according to the
procedure developed in Zhu et al. (2022).
+ The macroscopic tangent modulus B is computed by the following

relation:
s=|7'(|‘u~-[ra-(KM—xm-x;; ‘K, -HT]” Q. (45)
{
« The index form of the in-plane macroscopic tangent modulus "B
is given by:
B B
Vi, j k= 1,2 B, = By, - - (46)
Bissa

This condensation technique is implemented in a set of Python codes.
For more details about the foundation and the numerical implemen-
tation of this technique, interested readers can refer to Zhu et al.
(2020a,b, 2022).

3. Results and discussions
3.1. Material data

The unit cell should contain a sufficient number of grains to embody
essential microscopic features of the microstructure, and to statistically
represent the effective mechanical behavior of the studied material in
overall. It has been found in several previous contributions that 125
grains are quite sufficient to accurately represent the microstructure of
the studied materials (Lim et al., 2019; Zhou et al., 2019). As a result, in
the majority of the simulations presented in this work, polycrystalline
aggregates composed of 125 FCC grains are used. The effect of grain
morphology on the ductility limits is investigated using three different
grain shapes: cube, random and elongated, as shown in Figs. 4(a)-4(c).
Furthermore, to analyze the impact of the initial crystallographic ori-
entation on the numerical predictions, three crystallographic textures
are employed: random, cube ([001){100), ¢, = 0°, ¢ = 0°, @, = 0°),
and copper ({511;(1!1), @ = 90°, ¢ = 35°, @, = 45%), as illustrated
in Fig. 5 (using the notation convention adopted in Raabe and Roters,
2004). In the majority of the simulations performed with cube and
copper textures, the scatter width of the Gaussian distribution of the
crystallographic orientations @y, is set to 15°, which can be considered

Table 1

Elasticity and hardening parameters.
E (GPa) v 1, (MPa) hy (MPa) n Xpp (MPa(mm)'/?)
65 0.3 40 390 0.1 0

Table 2

Number of finite elements for each configuration of mesh and grain morphology.

Cube morph. Random morph. Elongated morph.

Mesh_1 1000 1728 1728
Mesh_2 3375 5832 5832
Mesh 3 8000 12167 12167
Mesh 4 15625 24389 24389

as a realistic value as reported by several Refs. (Yoshida et al., 2007,
among others). For the sake of brevity, in the subsequent investiga-
tions and figures, morphological (resp. crystallographic) texture will be
designated by the type of the texture followed by the word ‘morph.’
(resp. ‘orien.”). For instance, aggregate with random distribution of
crystallographic orientations will be denoted ‘random orien.".

Unless explicitly stated otherwise, the elastic and isotropic hard-
ening parameters used in the FLD predictions are those given in Ta-
ble 1. These parameters are taken from Yoshida and Kuroda (2012)
and Tadano et al. (2013).

3.2. Mesh sensitivity study

To determine the adequate number of finite elements required to
discretize the unit cells, a mesh sensitivity study is carried out by
simulating uniaxial tensile tests applied on several polycrystalline ag-
gregates. In this aim, each aggregate is discretized by four different FE
meshes as presented in Table 2. A random orien. (Fig. 5(a)) is used for
each numerical test. The simulations of this section are performed on a
cluster with 2.10 GHz of CPU frequency and 8 cores. Figs. 6(a) to 6(c)
plot the equivalent macroscopic stresses (von Mises yield surface) and
the relative errors versus the equivalent macroscopic strain for the dif-
ferent configurations of meshes and grain morphologies. The equivalent
macroscopic stress and strain are defined in terms of the macroscopic
principal stresses (resp. strains) X,, X,, X, (resp. E,, E,, E.) as follows:

D N T TN

(51—Ez)z'*'(E:—E_t)z‘*(EJ—El)l- (47)



() (d)

Fig. 4. Description of the polycrystalline aggregates: (a) aggregate with cube morph.; (b) aggregate with random morph.; (c) aggregate with elongated morph.; (d) finite element
mesh and the applied macroscopic loading.

(a)

Fig. 5. (111) pole figures of the Initial crystallographic textures with 125 orlentations generated and plotted by the ATEX software: (a) random orlen.; (b) cube orlen.; (¢) copper
orien.
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Fig. 6. Mesh sensitivity study: evolution of the equivalent macroscopic stress and relative error as a function of the equivalent macroscopic strain for aggregates with: (a) cube

morph.; (b) random morph.; (c) elongated morph.; (d) study of the CPU time.

The macroscopic stress relative error is defined as:

Mesh_4
o i=123.4
£;‘\:ﬂh 4

As clearly shown in Figs. 6(a) to 6(c), the stress-strain curves are almost
insensitive to the finite element number. Indeed, the relative error Err
is always lower than 6% for all the meshes, regardless of the grain mor-
phology. Furthermore, this relative error decreases with the increase of
the element number (from Mesh_1 to Mesh_3). The CPU time required
for all of these simulations is plotted in Fig. 6(d). One can observe that
with the increase of the element number, the CPU time significantly
increases. The computational effort of the CPFEM-based framework for
Mesh_1 is nearly 23 times less than for Mesh_4. To balance the require-
ments in terms of computational efficiency and simulation accuracy,
and also to avoid grain morphology distortion (particularly for grains
with small size), Mesh_2 is adopted for the different grain morphologies
in the subsequent numerical investigations.

Mesh_
z“’ry ¥

(48)

Err =

3.3. Effect of initial crystallographic texture

3.3.1. Effect of the type of initial crystallographic texture
To investigate the effect of the type of initial crystallographic tex-
ture on localized necking, as detected by the Rice bifurcation criterion,

the evolution of the cubic root of the minimum of the determinant of
the macroscopic acoustic tensor A*-™NC- A" as a function of the macro-
scopic strain component E |, is reported in Fig. 7 for polycrystalline
aggregates characterized by different grain morphologies and for strain
paths defined by p = —0.5,p = 0, and p = 1. Strain localization occurs
when the minimum of the determinant of the macroscopic acoustic
tensor reaches zero, which is marked by solid circles in Fig. 7. One
can observe that, for the case of cube morph. and uniaxial tensile state
(p = —0.5), random orien. gives the largest bifurcation limit strain,
followed by copper orien. and then cube orien. On the other hand,
for random and elongated morph. and uniaxial tensile state, cube and
copper orien. yield the same value of limit strain, which is again lower
than that obtained for random orien.. For the plane strain tensile state
(p = 0), the effects of erystallographic texture are rather small whatever
the adopted morphology. Additionally, for the equibiaxial tensile state
(p = 1), the predicted limit strains are significantly affected by the type
of initial crystallographic and morphological textures. For instance,
random orien. leads to almost the same magnitude of limit strain for
cube and elongated morph., while the predicted magnitude is lower
for random morph. Also, the limit strains corresponding to cube orien.
are largest for random and elongated morph. As to copper orien., it
provides the same level of limit strain for cube and random morph.,
while the predicted level is lower for elongated morph.
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Fig. 7. Effect of the type of Initial crystallographic texture on the evolution of the cuble root of the minimum of the determinant of the macroscopic acoustic tensor NNC. N
for p=-05, p=0, and p =1 for: (a) cube morph.; (b) random morph.; (c) elongated morph.

To investigate the effect of initial crystallographic texture on the
ductility limits for the whole range of strain paths, the forming limit
diagrams corresponding to different polycrystalline aggregates are plot-
ted in Fig. 8. As expected, the impact of crystallographic texture is
very small for negative strain paths. This observation is consistent
with classical trends obtained in the literature according to which the
ductility limit in this range of negative strain paths is only dependent
on hardening parameters (Zhu et al., 2020b). Moreover, for the plane-
strain tensile state (p = 0), the different textures provide almost the
same level of limit strain whatever the grain morphology. However, the
right-hand side of the forming limit diagrams is highly dependent on
the anisotropic behavior, which is mainly related to the initial texture
and its evolution during plastic deformation. One can observe from
Fig. 8 that the cube orien. yields globally the largest formability for
p > 0, followed by random orien., and then copper orien. Accordingly,
the cube orien. leads to significant improvement in terms of formability.
This is due to the fact that cube orien. is usually developed during the
annealing process. Nakamachi et al. (2002) have confirmed, for the
case of A5052-H34 aluminum alloy, that this process allows delaying
plastic strain localization and thus improving formability. These results
also confirm the earlier trends published in Kuroda (2005, 2007),
Yoshida et al. (2007) and Yoshida and Kuroda (2012), where the Tay-
lor multiscale model has been coupled with the Marciniak-Kuczynski
approach (Marciniak and Kuczynski, 1967) for the prediction of the
formability limits of some typical FCC polycrystalline aggregates. In ad-
dition, Fig. 8 highlight the impact of grain morphology on the predicted

limit strains. A deeper analysis of the effect of grain morphology will
be carried out in Section 3.4,

To further illustrate the localization of plastic deformation for the
different crystallographic and morphological textures, the distribution
of the accumulated dislocation density p,,; is plotted for strain-path
ratio p = —0.5 at the onset of bifurcation in Fig. 9. The accumulated

dislocation density is determined by adding the dislocation densities p*
of all the slip systems (9, = £, o). Following the work of Adam
et al. (2018) and Patil et al. (2021), the dislocation densities p® are
back-calculated from the critical resolved shear stress r using the

Taylor equation as follows':

where A is a material constant, which takes into account average
strength of the dislocation interactions, b is the Burgers vector, and y
is the shear modulus computed as u = E/2(1 + v). Material parameters
used for the dislocation density computation are provided in Table 3.
Based on the trends observed in Fig. 9, one can conclude that the rela-
tively high values of accumulated dislocation densities are distributed

a
<

Aub

Va

I.....N‘:p"=( (49)

! In fact, this method underestimates the dislocation densities. Hence, a
better alternative to predict the dislocation densities should take into account
the dislocation evelution equations and incorporated into the physical-based
hardening. In this regard, one can quote Jeong and Voyiadjis (2022), where the
statistically stored dislocations (SSDs) and geometrically necessary dislocations
(GNDs) are considered.
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Fig. 8. Effect of Initlal crystallographic texture on the FLDs for: (a) cube morph.; (b) random morph.; (c) elongated morph.
Table 3 3.3.2. Effect of the spatial distribution of crystallographic orientations
Material parameters for dislocation density computation.
A u (GPa) b (mm) In order to explore the effect of the spatial distribution of crystal-
0.5 25 286 1077 lographic orientations on the forming limit diagrams, three random

at the grain boundaries. Furthermore, it is found that these high total
dislocation densities corroborate the ductility limit predictions.

In addition, the crystallographic texture evolution is investigated
in this section. In order to address this point, the crystallographic
orientations are obtained as outputs from the UMAT and plotted in
the form of (111) pole figures by ATEX software. For the sake of
brevity, only the simulation results for the random crystallographic
texture (for aggregate with random morph.) are presented in Fig. 10
for strain-path ratios p -0.5 and p = |, where the evolution of
texture with the increase of the macroscopic strain E|, is plotted until
the detection of bifurcation. Comparing Fig. 10 with Fig. 5(a) (initial
random texture), one can see that pronounced intensity is observed in
the X direction for uniaxial tensile state (p = —0.5) with the increase
of the macroscopic strain component E,,. Also, one can see that the
random texture evolves into the X-Y plane for the equibiaxial tensile
state (p = 1) with the increase of the macroscopic strain component E, .
Moreover, the intensity of the pole figures for each strain path becomes
more pronounced after plastic strain localization, as compared to the
initial one.

textures are considered: random orien. presented in Fig. 5(a), ran-
dom orien. 2, and random orien. 3. Random orien. 2 and random
orien, 3 are generated from random orien., where the Euler angles
are kept the same, while the overall texture is randomly shuffled
and assigned otherwise to different constituent grains. This change
in the assignment of crystallographic orientations leads to a modi-
fication of the interactions between the neighboring grains (as the
grains will have different neighbors) and then to a modification of
the overall macroscopic behavior. It should be noted that the effect
of the spatial distribution of crystallographic orientations cannot be
detected if a mean-field multiscale scheme (such as the Taylor or
the self-consistent model) is used to determine the overall mechanical
behavior of the polycrystalline aggregate, as the interactions between
grains are ignored. This aspect represents a major advantageous of
the adopted CPFEM-based multiscale scheme as compared to more
classical mean-field approaches. The effect of the spatial distribution
of random textures on the forming limit diagrams for the different
grain morphologies is analyzed through the FLDs of Fig. 11. It can
be seen that no appreciable effects are noticed on the predicted limit
strains from uniaxial tensile state (p = —0.5) to biaxial tensile state
(p 0.5). However, near the equibiaxial tensile state, the spatial
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Fig. 10. Evolution of the random crystallographic texture (random morph.) with the macroscopic strain component E,, until the detection of bifurcation for strain-path raties: (a)

p=-05(b) p=1L

distribution of random orien. shows a significant impact on the limit
strain predictions. As aforementioned in Section 3.2.1, the left-hand
side of the FLDs is mainly dependent on hardening parameters, which
remain unchanged when the arrangement of crystallographic texture
is modified. These results are quite expectable, as the redistribution of
crystallographic orientations leads to a change in the plastic anisotropy
of the polycrystalline aggregate, which affects the ductility limits near

the equibiaxial tensile state. Similar conclusions have been obtained
by Wu et al. (2007).

3.3.3. Effect of the scatter width w,, of the initial crystallographic texture
To further investigate the effect of initial crystallographic texture

on the forming limit diagrams, two copper crystallographic textures

defined by two scatter widths (@, = 15° and 25°) are designed using
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the ATEX software. The ¢, constant sections of the orientation dis-
tribution function (ODF) (with 0° < @, < 85° and step 4¢, set to
5°) corresponding to these orientations are shown in Fig. 10. More
details about the procedure used to generate these ODFs are provided
in Helming et al. (1994), Raabe and Roters (2004) and Chandola et al.
(2018). 1t is clearly shown in Fig. 12 that, with the decrease of the
scatter width ey, the copper crystallographic texture becomes stronger,
as the distribution of grain orientation becomes more concentrated. As
indicated in Fig. 12, the evolution of the copper orien. is expanded
with the increase of the scatter width ;. Accordingly, the resulting
texture becomes closer to random orien. when it is defined by a large
value of w, (Chandola et al., 2018), For the sake of brevity, we have
only checked the case of cube morph. It is observed from Fig. 13
that with the increase of @), no significant differences are noticed on
the left-hand side of the FLD. However, a low value of e, leads to
a decrease in the forming limit strains in the range of positive strain
paths, thus indicating an earlier onset of strain localization during
plastic deformation. As expected, the FLD corresponding to random
orien. sets an upper bound to those obtained for lower values of ay,. This
result is in very good agreement with those reported in Yoshida et al.
(2007) and confirms once again the major role played by the initial
crystallographic texture in the ductility limit prediction.

3.4. Effect of grain morphology

The effect of grain morphology on the mechanical response is firstly
studied in this section. For this purpose, polycrystalline aggregates with

the three grain morphologies are submitted to uniaxial tension along
the X direction. The random crystallographic texture (Fig. 5(a)) is em-
ployed for these aggregates. Fig. 14 shows the effect of grain morphol-
ogy on the equivalent macroscopic stress-strain response. As can be
seen from this figure, the equivalent macroscopic stress-strain response
is almost insensitive to the grain morphology. This conclusion is consis-
tent with the trends obtained in Nagra et al. (2018). Nevertheless, we
believe that strong plastic anisotropy should be observed for polycrys-
talline aggregates with elongated morphology, and their mechanical
response would be dependent on the direction of the applied loading.

In what follows, attention is focused on the effect of grain morphol-
ogy on the predicted ductility limits. By analyzing the results of Fig. 15,
the following comments can be drawn:

« Overall, the effect of grain morphology on the ductility limit pre-
dictions is almost negligible for negative strain paths. However,
remarkable differences are observed in the range of positive strain
paths due to the use of different grain shapes. This result can be
traced back to fluctuations in micromechanical fields caused by
grain interactions and grain morphology. These fluctuations have
a significant impact on plastic anisotropy and texture evolution,
which in turn play an important role in the prediction of localized
necking, thus leading to different ductility levels for positive
strain paths.

By comparison with Fig. 8, it is clearly revealed that the effect of
crystallographic texture on the ductility limit is more important
than that of grain morphology.

.
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+ For random orien., Fig. 15(a) suggests that elongated morph.
leads to an improvement in terms of formability, in comparison
to cube morph. and random morph.

For cube orien, the predicted limit strains are nearly identical for
cube and random morph., while elongated morph. yields higher
limit strains in the range of positive strain paths (p > 0), as shown
in Fig. 15(b).

For copper orien., on the whole, the effect of grain morphology on
the limit strains is almost indistinguishable (Fig. 15(c)). In other
words, the copper orien. leads to practically the same FLD for
cube, random, and elongated morph.

3.5. Effect of grain size and sheet thickness

In order to characterize the size effects, the concept of thickness-to-
grain size ratio (r/d) is commonly adopted in the literature Amelirad
and Assempour (2019). In this section, we investigate two main size
effects on the predicted ductility limits: by varying the grain size d for
constant thickness, and by varying the unit cell thickness for a fixed
grain number. For the sake of brevity, we have only considered unit
cells with random morph. and random orien.

3.5.1. Effect of grain size

To investigate the effect of the grain size on the ductility limits,
the microscopic Hall-Petch constant xyp is set to 6.325 MPa(mm)'/?
(Farhat et al., 1996), while the other parameters are kept to their values
specified in Table 1. To capture the grain size dependence, unit cells

with grain size respectively equal to 0.4095 mm, 0.2401 mm, 0.1518 mm
and 0.1211 mm are considered, as shown in Fig. 16(a). Fig. 16(b)
presents the evolution of the equivalent macroscopic stress as a function
of the equivalent macroscopic strain under uniaxial tension loading for
different grain sizes. The results reveal that the mechanical strength is
strongly related to the grain size (i.e., the mechanical strength increases
when the grain size decreases), showing a well-known phenomenon of
‘the smaller the stronger’ (Zhang el al., 2023, among others). Fig. 16(c)
displays the equivalent macroscopic yield stress in terms of 1//d,, at
equivalent macroscopic strain offsets of 2%, 5% and 10% with different
grain sizes. As can be observed, a slight increase was found in the slopes
of the linear fit: 27.525, 32.61, and 35.682 MPa(mm)'/? for each strain
offset. The predicted forming limit diagrams are plotted in Fig. 16(d). It
is clearly revealed from this figure that the grain size effect on ductility
becomes significant only for large values of strain-path ratio (i.e., for
p > 0.5). By contrast, no significant differences in the predicted limit
strains are observed for lower values of strain-path ratio (i.e., p < 0.5).
Furthermore, the formability limits for large strain-path ratios (i.e., p >
0.5) increase with decreasing the grain size (i.e., increase in ratio
1/d). This expected result confirms several experimental observations
published in the literature (Xu et al., 2014, 2015).

3.5.2. Effect of sheet thickness

The effect of sheet thickness on the ductility limits is investigated in
the current subsection. For that purpose, three unit cells, noted AGS1,
AGS2 and AGS3, are considered (Fig. 17(a)). For all of these unit cells,
the total grain number N, is set to 125 and the lengths along the X
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Fig. 16. Investigation of grain size effect on the FLD predictions: (a) unit cell models

associated with different grain sizes; (b) evolution of the equivalent macroscopic stress as a

function of the equivalent macroscopic strain curve for different grain sizes: (¢) equivalent macroscopic yield stress at equivalent macroscopic strain offsets of 2%, 5% and 10%

in terms of 1/4/d,, for different grain sizes; (d) corresponding predicted FLDs.

and Y directions are kept equal to /;,, while the thickness /,,. is varied
from one unit cell to another as follows:

+ AGS1: lgz{N; =1 pm.
* AGS2: I, /N, =4 pm.
* AGS3: Jy, /N, =8 pm,

It is noted that the number of finite elements and the crystallographic
texture are taken to be the same for these three unit cells. Fig. 17(b)
plots the predicted forming limit diagrams for the three different unit
cells. One can observe that with the increase in sheet thickness, the
predicted limit strains increase for the whole range of strain-path
ratios. This reveals that as the thickness-to-grain size ratio decreases, an
individual grain plays an important role in the FLD prediction. Zhang
et al. (2018) also reported that the fracture failure is little sensitive

to thickness for configurations with a large ratio (t/d = 6), while
significantly affected by thickness when 7/d < 3. Tran et al. (2022) used
the CPFEM approach in conjunction with the M-K model (Marciniak
and Kuczynski, 1967) to investigate the size effect on the formability of
ultra-thin ferritic stainless steel sheets. They found that the formability
of ultra-thin steel sheets decreases with the increase in grain size
(i.e., decrease in ratio r/d). Similar trends have been reported in the

literature (Gau et al., 2007; Xu et al., 2014; Ma et al., 2016),

3.6. Comparison with the considére criterion

To illustrate the difference between diffuse and localized necking
phenomena, the Considére criterion (Considere, 1885) is used to de-
termine the occurrence of diffuse necking. It must be recalled that
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Fig. 18. Evolution of the macroscopic equivalent stress X, and the hardening rate d X, /dE,, as functions of the macroscopic strain component £, for uniaxial tension state with

random orien. and morph.

this criterion is only applicable to uniaxial tension state and cannot
provide a complete FLD; thereby, the result corresponding to the Rice
bifurcation approach is only shown for strain path p = —0.5. For the
sake of brevity, the random morph. with random orien. is considered in
this section. Fig. 18 depicts the evolution of the macroscopic equivalent
stress X, and the hardening rate d X, /d E,, as functions of the macro-
scopic strain component E,, for uniaxial tension state. The predicted
major limit strain £,; is equal to 0.1 and 0.3 for Considére criterion and
Rice bifurcation criterion, respectively (marked by blue points). This
result confirms that diffuse necking occurs prior to localized necking.

4. Summary and concluding remarks

In this paper, a crystal plasticity finite element method has been
developed to numerically predict the ductility limits of polycrystalline
aggregates with FCC structure. For that task, the unit cell macro-
scopic behavior has been derived from that of the constituent single
crystals on the basis of the periodic homogenization technique. The
single crystal behavior follows a finite strain elastoplastic framework,
where the plastic flow rule obeys the classical Schmid law. The crys-
tal plasticity constitutive equations have been implemented within
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ABAQUS/Standard finite element code via a user-defined material sub-
routine UMAT. Various morphological and crystallographic textures
for thin metal sheets have been assessed to investigate their effects
on ductility, with the ductility limits being determined by the Rice
bifurcation criterion. The proposed CPFEM-based framework is partic-
ularly suitable to accurately study these aspects. Hereafter, some main
conclusions are drawn and summarized as follows:

+ The initial crystallographic texture (e.g., random, cube, or copper
orien.) can significantly influence the ductility limits, especially in
the range of positive strain-path ratios (p > 0).

The grain morphology (e.g., cube, random, or elongated morph.)
can greatly influence the predicted ductility limits. According to
the results of this study, this behavior is mainly linked to the type
of initial crystallographic texture.

The effect of initial crystallographic texture on the ductility limit
predictions is significantly more important than that of grain
morphology.

The numerical results reveal that the grain size has a remark-
able effect on the formability of very thin metal sheets, Similar
conclusions have been reported by other researchers in their
experimental and numerical investigations.
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Appendix A. Crystallographic slip systems for FCC single crystals

Table A.1 gives the numbering of the crystallographic slip systems
for FCC single crystals. Each slip system is described by orthonormal
vectors (mj.n[ ).

Appendix B. Integration algorithm

The constitutive equations at the single crystal scale are imple-
mented within ABAQUS/Standard FE code through a user-defined ma-
terial subroutine UMAT. In this implementation, the constitutive equa-
tions are integrated over the time interval of interest 14 = (1.1, + 41]
using an ultimate integration scheme. The family of ultimate algo-
rithms has been initially introduced by Borja and Wren (1993) to
integrate linear single crystal constitutive equations (linear hardening
and small strain). More recently, this algorithm has been extended

by Ben Bettaieb et al. (2012) to take into account more general non-
linear behavior (non-linear hardening, finite strain, and finite rotation).
The high performance and the robustness of the ultimate algorithm,
compared to the well-known return-mapping one (Anand and Kothari,
1996) for the integration of rate-independent single crystal constitutive
equations, has been emphasized by Akpama et al. (2016) through an
extensive comparative study. Moreover, it has been proven in Akpama
et al. (2016) that the explicit version of the ultimate algorithm is more
efficient than the implicit one, since it yields quite accurate predictions
with a reduced computation cost. Consequently, the explicit ultimate
algorithm is adopted in the present study to integrate the single crystal
constitutive equations. The concept of ultimate algorithm relies on the
idea of partition of the time increment /¢ into several sub-increments
I% = lt,, 1.1 (where t,., = 1,). The size or, = 1., —t, of sub-
increment /% is a priori unknown. It should be determined in such a
way that the Schmid criterion remains fulfilled over 1. By adopting
this partition, the constitutive equations at the single crystal scale
must be integrated over each time sub-increment 7%, and the different
mechanical variables updated from one sub-increment to another.
The principal input of the UMAT is the velocity gradient g, which
is assumed to be constant over I* (hence, over I°"), and is computed
from f(z,) and f(7, + 4r) by the following midpoint approximation:

£ty + Ar) — £(1,) £ty + A+ 1)\~
g= At ) 2 ’

(B.1)

To be consistent with the concept of implementation of constitutive
equations in ABAQUS/Standard, let us introduce the co-rotational
frame described by the rotation F (#F) with respect to the fixed frame.
The evolution of this rotation is defined by the following evolution law:

il =w, (B.2)

where w is the skew-symmetric part of the velocity gradient g, as
determined by Eq. (B.1). Vector and tensor quantities expressed in the
co-rotational frame defined by rotation r will be highlighted by a wavy
line.

The other inputs of the UMAT are:

+ The elasticity and hardening parameters,
+ The rotation of the co-rotational frame ¥ and rotation of the
crystallographic lattice related to the intermediate configuration

rats,.

» The Cauchy stress tensor expressed in the co-rotational frame &
ati,.

* The slips y* and the critical shear stresses r* (for « = 1,... .2N,)
ati,.

As outputs, the following unknowns need to be determined:

« The rotations ¥ and ¥ atr_,.

+ The Cauchy stress tensor expressed in the co-rotational frame &
ati,.,.

« The slips y* and the critical shear stresses " (for « = 1,...,2N,)
att,..

* The consistent tangent modulus expressed in the co-rotational
frame ¢ (i.e., DDSDDE matrix, using the ABAQUS terminology)



defined by the following expression:
a5

OSE

where 44 is the variation of & over the time sub-increment 1%,
and ¢ is the integral of d over the same sub-increment.

& =

(B.3)

To clearly highlight the dependence with respect to time of the
different quantities in the following algorithmic developments, a vari-
able « evaluated at 7, (resp. 1,,,) is denoted by «(z,) (resp. (z,,,)).
The rotation of the co-rotational frame F(r,,,) can be determined from
its counterpart at the beginning of the sub-increment 7(7,) and w by
integrating the differential Eq. (B.2) over [%:

Pty 0) = ™ - F(1,). (B.4)

A quick analysis of the single crystal constitutive equations reveals
that the computation of the slip rates y”(r,) for the different slip systems
is sufficient to determine the evolution of the other single crystal
mechanical variables over the current time sub-increment /%, and
especially their values at 7, ., (namely, ¥t ), (), ¥ (), 7500400,
and ¢7).

To compute p*(r,) for all slip systems, let us introduce the set of
potentially active slip systems P at 1, defined as:

P={a=1..2N, :"(,)-(,) =&, : Rj(,) - 170, =0}.
(B.5)

Considering the definition Eq. (B.5), the Schmid law defined by
Eq. (32) may be reduced to the set of potentially active slip systems P
(as the slip rates of the non-potentially active slip systems are obviously
equal to zero):

Ya € P po(t,) = tM1,) = #%(1,) 2 0; ¥"(1,) = 0y g"(1,)7"%(t,) = 0. (B.6)

Making use of Egs. (28), (29), (31), (33) and (34), #“(r,) can be
expressed as:

Va€ P z(1,) =100, - "0, = Y H¥'(1,) - 8(,) : Rf;:

pEP
= Y HY )~ di,) s € RE:
jer
= Y H ) - ((i(r,,)- ZW’(:,,)R,’;) D¢ DR
gepr per
= X A ) - B, (B.7)
pep

where matrix A(r,) and vector B(s,) are given by the following index
forms:

Vaf € P : A1) = H(r,) +RY : & : R, B (1) =R? : & : dr,).
(B.8)

Using Eqs. (B.7) and (B.8), the Schmid law given by Eq. (B.6) can be
expressed in a matrix form more suitable to numerical implementation:

2= Y AT 0,0 - BT a,) 200 ) =0
pger
YaeP (B.9)

(aZ,,"“”u., 1) - B‘“n’) Fo(t,) = 0.
€

As the components of A(r,) and B(r,) are determined at the be-
ginning of the sub-increment I (hence constant over I%), the NLCP
problem is transformed into a linear complementarity problem (LCP),
as formulated by Eq. (B.9). This LCP can be easily solved by a combina-
torial search procedure, identical to the one presented in Akpama et al.
(2016), to compute the slip rates of the potentially active slip systems,

and thus to distinguish the set of active slip systems .4 from the set of
potentially active, but inactive slip systems A" A:

AUNA=Pand ANNA=03,

Ya e A p%(1,) >0 Va € N A 2 j%1,) = 0. (8.10)

Once the slip rates of the potentially active slip systems computed,
the size of the current sub-increment 7% can be determined by satisfy-
ing the following conditions: §t, should be inferior or equal to 4r and
the Schmid criterion should be fulfilled for all slip systems over I%.
In view of Eq. (B.9), it is evident that the Schmid criterion is fulfilled
for the potentially active slip systems. For the other systems (¢ P), the
following condition must be verified:

VagP "1, < rf(r",). (B.11)
By using the definitions of r™ and ¢, the following relations can be

readily obtained:

alt,);

S (J(r,,)— ¥ yﬂ(r,)ng);

per
TH(fgy) = T + 81, T0(0) = THE,) + .s:"pz"u"ﬂi"u,,).
€

(1) = e7(0,) + 61, RE

Vdﬁ” : =f“(fn)+6fnk:;

(B.12)

The combination of Egs. (B.11) and (B.12) provides the following
minimization condition for 41 :

(1) — (1)

Sty = minggp § Al

RY: & (J(:,,)- ¥ m:,,)kﬁ) — ¥ HuFpi(,)
fer fer

(B.13)

Once the length 41, of the current sub-increment 1% determined, the
other mechanical variables could be updated at s, as:

dte [ Wi - ¥ e, 8" | )

si(r..)=e( ( « 1))

F(f, )= B(1,) - 6F(1,);

&1, =¢ (J(r,,)— ¥ i"(t,,)llg):
acEA

alr,, )=o)+ 51,‘6’()‘");
Ollyay) = Bty G0 ) FT (0,00

(B.14)

¥ (tyay) = r(1,) + 61,7°(1,);

1, ) = tf )+ 61, ¥ HYP P,
feA

Yael,...,2N, :

The Cauchy stress tensor a(1,,, ) is computed by Eq. (B.14). It should
be rotated in the co-rotational frame defined by rotation ¥(z,, ), which
is updated by Eq. (B.4), to obtain &(r, )

G(tys)) = l-'T(tn-ﬂ) colt, ) l-'('n-{»l ). (B.15)

Now, the consistent tangent modulus ¢ should be determined.
As the integration scheme is explicit, ¢” can be obtained from the
following relation between 46 and é8z:

b6 =&V bt (B.16)
The stress sub-increment 4& can be expressed as:

86 = 6(1,,1) = (1) = (1,00 0(t,e))  Blt,ey) = 6(1,):
= F () Gl y) Bl ) = &1, (B.17)

where f is the rotation of the intermediate configuration with respect
to the co-rotational frame. This rotation is defined by the following
evolution rule:

o -1, ¥ 70,8701,
f(tn+l) - e—ol,,vr’tl.,l . i'('n) =¢ waA . f('" ). (B.18)



Using Eq. (B.14), ¢ can be rewritten as:
86 = (1)) — 6(t,) =F(t ) - (8(,) +61,5(1,))  #T(t,0)) — &l1,):
= [Ftper) 7 00)] - 800D - [Fitpe) - 8700,)] "

A Bt B llay) (0, BT ) = 6(1,). (B.19)

The expressions of [F(r,,,)-#7(s,)| and [i'(lm)-i'T(!,,)]T can be
obtained from Eq. (B.18):

~bt, ¥ i 8%,

. Hy ¥ P8 )
Blt,e) BT (1) =¢ o=

N lﬂl,ﬂ,]) . PT(IR)IT =g vEA
(B.20)

. =1, X 0,87 () ay ¥ P8 )
The Taylor expansion of tensors ¢~ o=+ ande ot

at the first order yields:

—it, T 1o, 8711,
wed

e =l =5t 3 7"(1,)8"(1,);
aEA

Sty 3,870,
wed

(B.21)

e =146, Y i"(1,)8°(1,).
aeA

Considering the approximations Eq. (B.21), Eq. (B.19) can be recast
to the following form:

86 = 6(t,,1) = 6(1,) =f(t,,) - (8(,) +8,8(1,) 8 (1,,,) = &(1,):

= [12 ) ;a(:,m,)] - a(t,)

aEA
. [lz +ét,, Z r"(:,,)S"(:,,)]
aEA

01, F (g ) - B0, - F (1,40 = 6(1,). (B.22)

Neglecting the second-order terms in ér,, Eq. (B.22) can be reduced
to the following form:

86 = 6(t,,1) = 6(1,) =F(t,,) - (8(t,) +8,8(,) ¥ (1,,,) = &1,):

== bty 3 ¥"(t,)8"(1,) - 5(1,)
wEA

+o1,6(1,) - Y 7" (1,)8°(1,)

aeAd

BBy ) - ) T () (B.23)

Tensor ©{1,,,)-a(t,)-t7(1,,,) can be expressed using Eq. (B.14) as:

aeP

Ftp) 6(1,) - BT (1) =€ (J(:,)— Zy'(r,)k;(r,,)). (B.24)
The analytical expression of the slip rates can be easily obtained

from the combination of Egs. (B.8) and (B.9):

Vae A= 3 AYRY,) : & :dar,),
peA

(B.25)

where the square matrix A(r,) is the inverse of A(r,), defined by index
form in Eq. (B.8).

Taking into account expression Eq. (B.25) for 7(r,), Eq. (B.24) can
be rewritten as:

Flt) - 80, #0100
= [e' =Y Y A%, (€ R0 @ (RO :e')] cdit,).  (B.26)
acAfEA

By inserting Eq. (B.26) into Eq. (B.23), and using expression
Eq. (B.25), one obtains:

so =, |& = 3 Y A%, (& : R, +8(,) - 801,)
a€APEA

—a(1,)-8(1,)) ® (R%(r,) é‘)] sdir,):

=& - 3 ¥ A%, (& R, + 86, - 81,
acAfEA

—a(1,)-8%(1,)) ® (R¥(r,) @ &) | : 62 (B.27)

The consistent tangent modulus ¢ can be thereby identified by
comparing Eqs. (B.16) and (B.27):

@ ==Y Y AT (& R+ 800, - 81,
ceAfeA

—a(1,)-8°1,)) @ (R%(r,) : &). (B.28)

Once all the mechanical variables updated at ¢, , ,, and the consistent
tangent modulus &# computed, the size of the time increment 4 and
the initial time ¢, should be also updated:

At — At =61, 1, — 1+ 01, (B.29)

After this update procedure, the computation should be restarted
with a new sub-increment I+, until reaching the following condition:

A=t (B.30)
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