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ABSTRACT

This work deals with the topology optimisation of structures made of multiple material phases. The proposed
approach is based on non-uniform rational basis spline (NURBS) hyper-surfaces (o represent the geometric
descriptor related to each material phase composing the continuum, and an improved multiphase material
interpolation (MMI) scheme to penalise the stiffness tensor of the structure. In this context, the problem is
formulated in the most general case by considering inhomogeneous Neumann-Dirichlet boundary conditions
and by highlighting the differences between two different problem formulations. The first one uses the work
of applied forces and displacements as cost function and the resulting optimisation problem is not self-adjoint.
The second one considers the generalised compliance (related to the total potential energy), and the resulting
optimisation problem is self-adjoint. Moreover, the improved MMI scheme proposed here does not require
the introduction of artificial filtering techniques to smooth the boundary of the topological descriptors of
the material phases composing the structure. The effectiveness of the method is proven on both 2D and 3D
problems, Specifically, an extensive campaign of numerical analyses is conducted to investigate the influence
of the type of geometric descriptor, of the integer parameters involved in the definition of the NURBS entity,
of the type of cost function, of the type of lightness requirement, of the number and type of material phases,
of the applied boundary conditions on the optimised topology.

1. Introduction

The integration of multiple materials within a structure has always
been a challenge in the design of engineering systems subject to differ-
ent physical requirements. Indeed, a mechanism may be composed of
several materials, each one responding to a peculiar requirement in the
context of a multi-field analysis: stiffness, strength, thermal conductiv-
ity, electrical insulation, damping capability, etc. Nevertheless, one of
the main issues when dealing with design problems of multi-material
structures is related to conventional joining techniques, which impose
limitations on both the properties and the shape of the assembled
materials along the interface as well as on the arrangement of materials
within the structure.

The development of modern additive manufacturing (AM) processes
for multi-material products not only allows manufacturing complex ge-
ometries, but also ensures a proper fabrication of multi-material parts,
whether composed of plastic materials [1-3], of metals [4,5], or made
by a combination of metallic and plastic materials [6,7]. The potential
of manufacturing multi-material structures was anticipated since the
end of the 1980s by pioneering works in the field of topology opti-
misation (TO), like the one based on the homogenisation method [8].
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This has oriented the scientific and industrial communities towards the
development of suited multi-material interpolation laws in the frame-
work of well-established methods, like density-based TO algorithms
making use of different interpolation schemes, as the solid isotropic
material with penalisation (SIMP) approach [9-11] or the rational
approximation for material properties (RAMP) scheme [12], the level
set method (LSM) [13-17], the evolutionary structural optimisation
(ESO) [18] and the bi-directional evolutionary structural optimisation
(BESO) [19,20] approaches, etc., giving rise to the sub-field of multi-
material topology optimisation (MMTO). In this background, the goal
of MMTO methods is to simultaneously determine the existence and
the optimal distribution of V,, material phases in the design domain.
MMTO approaches provide additional freedom in generative design, in
terms of properties and arrangement of materials within the structure,
provided that the mathematical models used in MMTO algorithms are
consistent and correctly formulated.

Among the first approaches presented in the literature to deal with
MMTO problems, one can find the so-called multi-material SIMP pe-
nalisation scheme presented in [10,21,22]. Nevertheless, as extensively
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Acronyms

AM Additive manufacturing

BK1-2D First 2D benchmark structure

BK2-2D Second 2D benchmark structure

BK3D 3D benchmark structure

B-spline Basis spline

BC Boundary condition

BESO Bi-directional evolutionary structural opti-
misation

CAD Computer aided design

CNLPP Constrained non-linear programming prob-
lem

Ccp Control point

DMO Discrete material optimisation

DOF Degree of freedom

ESO evolutionary structural optimisation

FE Finite element

GCMMA Globally-convergent method of moving
asymptotes

GF Geometric field

LSM Level set method

MBB Messerschmitt Bolkow Blohm

MMTO Multi-material topology optimisation

N-MMI NURBS-based multi-material interpolation

NURBS Non-uniform rational basis spline

R-MMI Recursive multiphase material interpolation

RAMP Rational approximation for material proper-
ties

SANTO SIMP and NURBS for topology optimisation

SIMP Solid isotropic material with penalisation

TF Topological field

TO Topology optimisation

TPE Total potential energy

U-MMI Uniform multiphase material interpolation

WAFD Work of applied forces and displacements

discussed in [21,22], the material interpolation scheme of the SIMP
approach extended to the case of composite structures made of two
material phases (without the presence of the void) or three phases
(including the presence of the void) does not satisfy the Hashin-
Shtrikman bounds when the pseudo-density field associated to each
material phase takes low values or when the penalisation coefficient
takes high values. Moreover, if the material phases are characterised by
a linear elastic isotropic behaviour with the same Young’s modulus, but
different values of the Poisson’s coefficient, the interpolation scheme
based on the classic SIMP approach results in odd pseudo-optimal
topologies that cannot be manufactured [10,21,22]. This approach also
suffers from a dependency of the optimised topology on the order of
the material phases implemented in the multi-material interpolation
scheme. Despite these limitations, this method has been used to deal
with TO problems involving composite structures made of (at most)
three material phases, like those discussed in [23-26].

To overcome the limitations of the SIMP material interpolation
scheme in the context of MMTO problems, in [21,27,28] the Hashin-
Shtrikman bounds have been directly employed for structures com-
posed, at most, of three materials phases. However, the main issues
of this approach are related, on the one hand, to the complexity of the
analytical formula involved in the penalisation law and, on the other
hand, to the high number of design variables, making, thus, difficult

the generalisation of the method to the case of structures made of N,
material phases.

To go beyond the limitations related to the approach presented
in [21,27,28], Zuo and Saitou [29] introduced the ordered multi-
material SIMP approach, which allows defining multiple material
phases without introducing new design variables for each material.
Particularly, a power law and translation coefficients are introduced
in the formulation of the multi-material interpolation scheme used to
penalise (through a suitable pseudo-density field) the elastic properties
of the structure. A heuristic-based optimality criterion is used to update
the design variables. This method is applied only to standard 2D
benchmark problems dealing with structural stiffness maximisation
subject to a mass constraint under homogeneous boundary conditions
(BCs) of the Dirichlet type. Moreover, the interpolation scheme is built
in the particular case of isotropic materials having the same Poisson’s
ratio, which does not ensure the possibility of generalising the method
to a more general combination of materials,

Taking inspiration from the discrete material optimisation (DMO)
[30,31], originally developed for the optimisation of thin-walled com-
posite structures, in [32,33], a generalisation of the SIMP approach for
multi-material structures is proposed by introducing a set of optimisa-
tion constraints, which enforces the presence of only one material phase
at each point of the continuum. Nevertheless, this approach results
in a huge number of constraints, which depends upon the number
of optimisation variables describing each material phase: this aspect
constitutes the main limitation of the method.

Later, two material interpolation schemes inspired by the DMO have
been proposed in [34]: the recursive multiphase material interpolation
(R-MMI) and the uniform multiphase material interpolation (U-MMI).
These approaches have been applied to standard structural stiffness
maximisation problems (under homogeneous BCs of the Dirichlet type)
subject to constraints on volume/mass either for each material phase
or for the whole structure,

Recently, Gao et al. [35] highlighted some limitations of both R-
MMI and U-MMI approaches, i.e., numerical issues in the optimised
topologies due to the superposition of materials at the frontier between
adjacent material phases, convergence towards non-manufacturable
local optima, ete. To overcome such limitations, they proposed a new
and efficient interpolation scheme for MMTO problems in the context
of isogeometric analysis based on the mathematical formalisms of non-
uniform rational basis spline (NURBS) entities: this approach is referred
to NURBS-based multi-material interpolation (N-MMI). Particularly,
this method makes use of the basis spline (B-spline) entities coupled
with the Shepard interpolation [36] to represent the geometric de-
scriptor related to each material phase, It is noteworthy that in the
framework of the N-MMI scheme, the notion of geometric descriptor is
different from the one of topological descriptor (or topological variable)
related to each material phase. Roughly speaking, the former represents
the “geometrical support” on which relies the latter. Anyway, it must
be pointed out that, despite the use of the acronym NURBS to refer to
this interpolation scheme, in [35] only B-spline entities are employed.

It is noteworthy that further material interpolation schemes have
been developed in the literature in the framework of the LSM. For
instance, in [37], a “colour” LSM was proposed and applied to face
different problems including the design of compliant mechanisms [38],
stress-related requirements [39], etc. Another approach has been pre-
sented in [40] where M level-set functions are used to represent the
distribution of M +1 material phases into the design space. An extension
of such an approach was later proposed in [41], where a dedicated
formulation was proposed to efficiently control the length scale of each
material phase.

Regardless of the adopted interpolation scheme, the most studied
problem in the structural optimisation community, when dealing with
structures made of multiple material phases, is certainly the one focus-
ing on the maximisation of the structural stiffness subject to a lightness
requirement formulated either in terms of a constraint on the overall



mass/volume of the structure or in terms of multiple constraints on
the mass/volume fraction of each material phase. However, in almost
all the formulations available in the literature [10,21,22,27-29 32—
35] a combination of non-zero Neumann BCs and null Dirichlet BCs
is considered. In presence of this type of BCs, the work of applied
forces and displacements (WAFD) can be used to quantify the structural
stiffness.

As recently discussed in [42] for TO problems of anisotropic con-
tinua (mono-material case), the WAFD cannot be used to provide
a measure of the structural stiffness in presence of inhomogeneous
Dirichlet’s BCs. In this background, one of the goals of this work is to
clarify the role and the influence of inhomogeneous Neumann-Dirichlet
BCs on the problem of maximising the stiffness of multi-material struc-
tures subject to design requirements on the mass/volume either of the
whole structure or of each material phase. Particularly, the theoretical
findings recently presented in [42] are extended to MMTO problems in
this study.

Firstly, following the same logic steps presented in [42], the total
potential energy (TPE) is introduced as a measure of the structural stiff-
ness; subsequently, the analytical expression of the gradient of the merit
function related to the TPF in the case of MMTO problems is derived. In
this context, it is shown that, under inhomogeneous Neumann-Dirichlet
BCs, the TPE-based formulation is self-adjoint while the WAFD-based
formulation is not self-adjoint. To the best of the authors’ knowledge, it
is the first time that this theoretical result has been analytically derived
for MMTO problems.

The numerical framework considered in this study is the one of
density-based TO methods reformulated in the context of NURBS hyper-
surfaces [43-53]. More precisely, the N-MMI scheme presented in [35]
is here improved and integrated in the NURBS-density-based TO algo-
rithm, wherein the pseudo-density field related to each material phase,
i.e., the geometric descriptor of the material phase, is described by ex-
ploiting the general definition of the NURBS hyper-surface. This aspect
constitutes the second fundamental contribution of this paper. Indeed,
in [35], only B-spline entities were used to describe the geometric
descriptors of the materials composing the continuum and a Shepard
interpolation function was introduced to obtain smooth boundary of
each material phase as well as a clear separation between material
phases. However, the introduction of an artificial filtering technique,
like the Shepard interpolation function used in [35], reveals useless
when using NURBS hyper-surfaces to represent the geometric descrip-
tors of the material phases composing the structure because the weights
can ensure both a smooth boundary for each material phase and a
clear separation (i.e., minimisation of the regions showing intermediate
values of the pseudo-density fields) between material phases.

Unlike classical density-based MMTO approaches, the NURBS-
density-based method separates the geometric descriptor of each mate-
rial phase from the mesh of the finite element (FE) model. Particularly,
if the problem dimension is D, a NURBS hyper-surface of dimension
D+1 is used as a geometric descriptor of the generic material phase: in
this way, purely geometric entities are used to describe the distribution
of the material phases inside the design domain, which can be easily
exported (through a standard data exchange format) to any computer
aided design (CAD) software [54,55]. A further advantage of the
NURBS-density-based TO algorithm used in this work is that geomet-
ric requirements, like, minimum length-scale, maximum length-scale
constraints, overhang angle, etc., can be easily formulated and handled
because the analytical expression of the boundary of the topology is
available at each iteration of the optimisation process [46,47]. More-
over, some fundamental properties of the NURBS basis functions, like
the local support property, can be conveniently exploited to facilitate
the optimisation process. Specifically, as discussed in [43,44,46], the
local support property results in an implicit and efficient filtering
technique, which, on the one hand, reduces/avoids the dependency of
the optimised solution upon the mesh of the FE model, whilst, on the
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Fig. 1. Schematic representation of the design domain composed of N = 4 material
phases and the void.

other hand, simplifies the calculation of the gradient of the structural
responses.

Finally, an extensive campaign of sensitivity analyses is conducted
to show the effectiveness of the proposed approach. The first type of
sensitivity analysis is conducted to study the influence of the type of
entity, i.e., B-spline or NURBS, used as a geometric descriptor of each
material phase on the optimised distribution of the materials composing
the continuum. Moreover, the effect of the integer parameters of the
B-spline/NURBS entity on the optimised solution is also investigated.
The second type of sensitivity analysis aims to assess the influence of
the number of material phases on the optimised distribution of the
material phases. The third one aims to investigate the influence of the
inhomogeneous BCs of the Dirichlet type on the solution. The fourth
one aims to study the influence of the lightness requirement on the
optimised solution; to this end, three formulations are considered: the
first one is based on a constraint on the volume fraction of each material
phase, the second one is based on a constraint on the total volume
fraction of the structure, whilst the last one is based on a constraint on
the overall mass fraction of the continuum. The last sensitivity analysis
aims to investigate the influence of the problem formulation (WAFD-
based or TPE-based) on the optimised topology under inhomogeneous
Neumann-Dirichlet BCs.

The paper is structured as follows. The main features of the NURBS-
density-based method for MMTO problems are presented in Section 2.
The numerical results are provided in Section 3, whilst Section 4 is
dedicated to conclusions and prospects of this work.

Notation. Upper-case bold letters and symbols are used to indicate
tensors and matrices, while lower-case bold letters and symbols indicate
column vectors, 1S denotes the cardinality of the generic set S,

2. The NURBS-density-based topology optimisation method

An exhaustive presentation of the NURBS-density-based method is
available in [43,44] (mono-material case). The main features of the
method are briefly recalled in the following of this section with a focus
on 3D MMTO problems.

2.1. Design variables

Consider the design space D c &% (a Cartesian orthogonal frame
O(x).x5,x3) is used in the following) composed of N,, material phases
and the “void"” phase, as schematically illustrated in Fig. 1 in the case
N, =4, The set D can be formally expressed as:

D= (x" = (x.x;.x3) € R 1 x; €[0.q,). j=1,2.3). (80

where g, is the characteristic length of the domain along the x; axis.
In the framework of the N-MMI scheme [35], one must distinguish



between geometric descriptor and topological descriptor of each material
phase. As stated in the introduction, for a 3D problem a 4D NURBS
hyper-surface is needed to represent the geometric descriptor of each
material phase [44]: the first three coordinates of the NURBS entity
associated to the jth material are the Cartesian coordinates defining
the design domain, while the fourth one is the geometric field (GF) of
the jth material phase, denoted as p;({,.(;. (3), that reads:

Ll I :
SRR AEED WD WD IP S (NN AT

(=0iy=llig= o (2)

;E0L), =1 N,

In Eq. (2), p "“ is the value of the GF at the generic control point
(CP) of the b}URBS hyper-surface, {; € [0, 1] is the kth parametric
coordinate, and (n; + 1) is the number of CPs along this direction. The
overall number of CPs is nep := [[._,(n, + 1), while the quantity Rf{,'m

appearing in Eq. (2) is the generic rational basis function for the j-the
material phase that reads:

o | (&)
0 . llhl\ k=1 l‘ AL
fpiafy 7 o Ul - ' (3)
z 1=0 ZIV—O ZJ;—U [ ik nA-l o C1)
where N, ((;) are the Bernstein's polynomials of degree p, [56] and

W ,’“ are suitable weights that influence the way the NURBS entity is
attracted towards a given CP. Of course, in Eq. (2), it is tacitly assumed
that the NURBS entities describing the GFs are characterised by the
same integer parameters, i.e., number of CPs and degrees of the basis
functions, and by the same values of the components of the knot vector
along each parametric direction [56]. For more details on the meaning
of the different parameters involved in the definition of the NURBS
hyper-surface, the interested reader is addressed to [42,44,56].
The dimensionless parameters {; can be defined as:

X
5'/ :=a—.j=|.2.3. (4)
1

The topological field (TF), indicated as @ ,({).(5.85), is used to
describe the topology of the jth material phase (or, equivalently, its
distribution within the design domain) and depends upon a combina-
tion of the GFs of all the material phases. In the context of the N-MMI
scheme [35], the TF is defined as follows:

J
= nﬂk@l
k=1

@8y 6 Cs)

) l-[ [l - k(cl <,v kz)] m'

k=s+1
(5)

It is noteworthy that, thanks to the NURBS formalism, the TF of the jth
material phase is defined on the dimensionless parametric domain of
the NURBS hyper-surface and the information can be correctly passed
from this space to the physical one (i.e., the one of the FE analysis, as
discussed in the next sub-section) and vice versa. Of course, due to the
definition provided in Eq. (5), @, € [0.1], G = 1.....N ).

In this work, unlike the approach presented in [35] where only
B-spline entities are used, both the pseudo-density at CPs and the
associated weights are considered as design variables and are collected
into the vectors &, and &, of the jth material phase, which are defined
as:

. Ul i . (VR ()
{;r (p“)m p,,’l,,,,,‘). 5}) = ("’r;m""'w")u»:";)'
by ERIC, j=1.. N,

accordingly, the number of design variables is equal to n, = kncpN,,,
where k = | for B-spline entities and & = 2 for NURBS entities.
Following the approach presented in [42,44], degrees of the Bernstein's
polynomials, knot-vector components and number of CPs, are defined
by the user before starting the optimisation process.

In the framework of a deterministic optimisation process, the deriva-
tion of the analytical formula of the gradient of both GF and TF is of

(6)

paramount importance. For the sake of compactness of the notation,
consider the relationship between the linear index r and indices i,
(j=1223)
ri= 141+ i + D+ iy + 1(ny + 1) 7)
The partial derivatives of the GF of the jth material reads:

Oif k#j, i=L2 r=1,....ncp

dpCrindy | RCuenG)ifk=ji=l r=1 e

Re | R0 .
o ':— [§15¢ = &1 620 80)] - iF
2/t

k=j.i=2 t=1 .. .ncp

(8)

Accordingly, the partial derivatives of the TF of the jth material phase
can be calculated through the chain rule as follows:

ad 5 ddb; g ad, a
20 50 0n, = L% o2 k=1 Ny 7= L i
Rpe = W, WBe Oy Uy,
(9

oo)
where — reads:

dp,

]'[p, l'[u o) if k<.

w’ ﬂ-' a=j+1 a0
7 ™

—Hn., H(l—p,,) if k> .

g=1 rul

The implementation of the N-MMI scheme within the NURBS-
density-based method has several advantages when compared to R-
MMI and U-MMI approaches. Indeed, the following aspects deserve a
particular attention.

1. The influence of the design variables of Eq. (6) on the TF of
the jth material phase of Eq. (5) is implicit and passes through
the definition of the GFs of all material phases, see Eq. (2).
This approach avoids the numerical issues related to the explicit
dependence of the TF of the jth material phase upon the design
variables, as in the case of the DMO methods [34].

2. The expression of the TF of the jth material phase of Eq. (5)
avoids overlap between materials at each point of the con-
tinuum, without the need of introducing explicit optimisation
constraints into the problem formulation, as done in [34].

3. Unlike the approach presented in [35], the N-MMI scheme pre-
sented in this study makes use of general NURBS entities by
including both the pseudo-density values at each CP and the
associated weights into the vector of design variables. As dis-
cussed in [42-44], the use of NURBS entities allows obtaining
topologies with a boundary smoother than the one of B-spline
counterparts. Accordingly, there is no need of introducing a
smoothing interpolation function, like the Shepard function used
in [35].

4. The TF of the jth material phase of Eq. (5) inherits all the
advantages of the NURBS entities used to describe the GFs of
Eq. (2): (i) a continuous description of each material phase based
on a pure geometric CAD-compatible entity; (ii) the local support
property [42,44], which constitutes an implicit filtering scheme
that reduces/avoids the dependency of the solution upon the
mesh of the FE model.

5. As a consequence of the utilisation of NURBS entities to describe
the GF of the jth material phase, the number of design vari-
ables is reduced when compared to pure FE-based description
of the GFs. Nevertheless, it is still high, mainly for 3D problems
involving more than three material phases.



Remark 2.1. Thanks to the properties of NURBS entities [56] and to
Eqs. (2) and (5), the TF of the jth material phase can be represented
through the standard formula of a NURBS entity. To understand this
aspect, consider two distinct NURBS scalar functions in the simplest
case N = I:

h(8) = 2 /"'y, with a,(0) 1= Z ‘V.,(Q')w:”. s=12.
=( =0

an

It is easy to prove (this is left as exercise to the reader) that the product
of two NURBS functions Ak, can be expressed as follows:

(n+11
hE = hhy = —— ¥ Ry (O (12)
&0 =
where the relation between index k = I.....(n + 1)* and indices i.j =
0,...,n, used for the two NURBS scalar functions reads

k=1+i+jln+1). (13)

The other quantities appearing in Eq. (12) are defined as follows:

a(¢) = ay($ay(). Ny (&) = N, (ON, (). @ = oo, § =y,
(14)

Therefore, also the TF of Eq. (5) can be represented through a com-
bination of CAD-compatible entities, wherein the geometric informa-
tion along each parametric direction must be updated according to
Eqgs. (12)-(14).

2.2, Structural responses and objective function definition

Consider the static equilibrium of the FE model in the most general
case of inhomogeneous mixed BCs:

Ki=f, o.f e RVoor, K e RVoor¥oos, (15)

where Npop, K, f and @ are the number of degrees of freedom (DOFs),
the (singular) stiffness matrix of the structure, the vector of external
nodal forces/moments and the vectors of DOFs before the application
of BCs.

Definition 2.1. Consider a rectangular matrix 9 € R™ and the
following sets of positive integers: R € {i | | <i <m}and C C {j |
1 < j < n}. The matrix 9 := 9&(1131. R.C) is obtained by suppressing
the ith row and the jth column from 91, Vi € R and V; & C. Similarly,
consider the vector v € E7; then v := M (¥, R) is the vector that can be
obtained by deleting the ith row of ¥, Vi € R.

Let Iy € [i | | € i € Npop)and T © {i | 1 £ i £ Nporl
be two generic sets of indices such that: Iy n Iz = @, 81 = Npop,
#Igc = Npc and Npog + Nge = Npop (i.e., Nge is the number of
DOFs where generalised displacements are imposed, whilst Ny, is the

number of unknown DOFs). When applying Definition 2.1 to Eq. (15),

one obtains
K Kge u _Jr

[k & e b0 1o
(F.75c)

with:

ui=R(0 Iy ), =N

Upe t= R (0 Ty), 1= m(f.zu).

K =R (KT Iye ). Kye = R (K Tye 1y ). K= % (K20, ). a7

u.f e RMooF, uge.r € RMsc,

K € R¥por*¥por | Kye € RMorxVee, K e RVscxVec,

In Eq. (16), u and ug- are the vectors of unknown and imposed
DOFs, respectively, while f and r are the vectors of external nodal
forces/moments and nodal reactions, respectively. K, K- and K are
the (non-singular) stiffness matrices after applying BCs and reordering
DOFs.

In the context of the NURBS-density-based approach, the TFs related
to the material phases composing the structure affect the element
stiffness matrix and, thus, the global stiffness matrix as:

N,

‘ E w;'tl‘:x(jltl‘( = Z ZL( e e

e=l j= e=1 =1 (18)
K K, € R‘Vr'm"”fw. L, € RVboe* Mok

where @ _is the TF of the jth material phase of Eq. (5) computed at the
centroid of the generic element ¢, whilst @ = 3 is used to penalise the
intermediate values between 0 and 1, as done in the SIMP approach. N,
is the total number of elements and N, . is the number of DOFs of the
generic element. In Eq. (18), K, and K, are the non-penalised and
the penalised stiffness matrices of element e, expressed in the global
reference frame of the FE model, whilst L, is the connectivity matrix
of element ¢ defined as:

=L, (19)

where u, € RVoor is the vector of DOFs of element e.

Remark 2.2. The N-MMI scheme of Eq. (18) satisfies the Hashin-
Shtrikman bounds [57]. This can be easily verified by considering the
case of N, = 2 materials. In this case, the number of constitutive phases
composing the structure is three, i.e., two material phases and the void.
According to Eq. (5), the expression of the two TFs is:

@ =p (1-p).

The quantities @, and @, in Eq. (20) can be interpreted, from a
mechanical standpoint, as the volume fractions of the material phases
related to the TFs. Therefore, the volume fraction of the void is @, =
| =@, —&,. When looking at Eq. (20), one can immediately understand
the difference between GFs and TFs. If, for a given element, p, — 0,
there is no material, i.e, @, — 0, j = 1.2. Accordingly, the GF p,
translates the presence (or absence) of both material phases at a given
point of the continuum. If p, — 0 and p; # 0, only the material phase
associated to TF @, affects the stiffness tensor of the element according
to Eq. (18) because @, — 0. Finally, if p, — 1 and p; # 0, only the
material phase associated to TF &, affects the stiffness tensor of the
element because @, — 0.

Consider now the following numerical example. The void is char-
acterised by the following properties: £, — (0 GPa (Young’s modulus),
Gy — 0 GPa (shear modulus), K, — 0 GPa (bulk modulus) and v, — 0
(Poisson's coefficient). The material related to TF @, is characterised

&, = pp;. (20)

by the following properties E, = 70 GPa, v; = 033, G, = rf"m =
26.32 GPa, K, = —=— = 68.63 GPa. The material related to TF @,

Y1-2v,)
is charactensed by thé following propemes E, = 210 GPa, v, = 0.33,

= 5725 = 7895 GP4, Ky = 35=%— = 205.88 GPa. The Hashin-
Shmkman bounds [57] for a three- phase continuum, where K, is the
bulk modulus of the weakest material (the void) and K, is the bulk
modulus of the stiffest material (the one related to the TF @,), read:
A,

HT HT ._ 2
Kz = 0. Kijg =K, + Traa" (21)

where A, and a, are defined as:
3 @y P,
a =-— —, Ay = — + — .
3K, +46, (Ko—K2) ' -y (Ky-Ka) ™' —ay
Moreover, it is possible to compare the elastic properties calculated
through the N-MMI scheme, for given values of p, and p,, also to Reuss—
Voigt bounds [57], which, for a continuum composed of two materials

(22)
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Fig. 2. Equivalent bulk modulus, Reuss-Voigt and Hashin-Shtrikman bounds vs. p, and p, in the case N_ =2 material phases.

and the void read:

RV RV
KR =0, K

UB = @lK, + OZK}

(23)

The trend of the equivalent bulk modulus K., which is evaluated
through Eq. (18) specialised to the bulk modulus of two isotropic
material phases, vs. p, for five different values of p,, ie, p =
0.2,0.4.0.6,0.8. 1.0, together with the variation of the Hashin-Shtrikman
and Reuss-Voigt lower and upper bounds is reported in Fig. 2. As one
can infer from the analysis of Fig. 2, for each value of the GF p,,
the equivalent bulk modulus calculated through Eq. (18) falls always
between lower and upper bounds (both Hashin-Shtrikman and Reuss-
Voigt bounds). Moreover, using a power « = 3 in Eq. (18) represents a
strong advantage, which consists in enforcing locally, i.e., at each point
of the design space, the convergence of the algorithm towards p, = 1
and to preserve just one material phase, i.e., either the material related
to TF @, (when p, — 0) or the material associated to TF &, (when
p = 1). Indeed, as one can verify from a quick glance to Fig. 2, when
gy = 1, due to the non-monotonicity of the function, the equivalent
bulk modulus is strongly penalised with respect to the value of the
bulk modulus of each constitutive phase for all p, € 10, 1], i.e., all
the “physically-meaningless™ intermediate values.

The volume of the jth material phase is penalised as follows:

Nf
Vili-doreobaw - 6an ) 1= ijcye‘ (24)
e=1

where V, is the volume of element e. The overall volume of the structure
reads

N
Vi da-8iv, Saw, ) = Z V.

(25)
J=1
while the overall mass is expressed as
Nl'
MG & Ein - Ean) 2= D0V (26)
=1

where g, is the density of the jth material phase.
Two types of merit function are considered in this study. The first
one is the WAFD which reads:

W(cn.fn.....fuvn.fz'v“) = lTu+u§cr.

The second cost function is the generalised compliance defined in [42],
which is related to the TPE IT according to the following formula:

27)

(STSTET STERIPRY SEVART STV ey L [CSPRY SYRRRRY SYVIY STV A (28)
where the TPE is defined as
11E & B, Ean,) 1= 30K = T, 29)

By combining the above formulz, the generalised compliance simplifies
to:

CEndaree by, Sav, ) = Tu—ugr. (30)



The physical meaning of the generalised compliance is clear: when only
pure forces/moments are applied the smaller the resulting displace-
ment/rotations the greater the stiffness of the structure (and thus the
smaller the generalised compliance). Conversely, when pure displace-
ments/rotations are applied the higher the reaction forces the higher
the structural stiffness and, consequently, the smaller the generalised
compliance (which can become negative).

The derivation of the formal expression of the gradient of the
structural responses with respect to the design variables is mandatory
to speed up the optimisation process when a deterministic algorithm is
employed to perform the solution search.

As far as the volume and the mass are concerned, the formal
expression of their gradient can be easily derived by differentiating
Egs. (24)-(26):

av, ad,, g,
L= K.—”#..:lz.k:l Noo t=1. nep, (31)
aglkl’ CES, dpA d’:l&r
N
s aV,
av - _ J (32)
dhkt =1 o‘nkr
oM %’i il (33)
= o
d:lkt o'er

Remark 2.3. In Eq. (31), the quantity S, is the discretised version
of the local support [42,44] of the NURBS entity describing the GF of
the kth material phase, whilst the subscript e used in the scalar fields
appearing in Eqs. (31)-(33), i.e., p;, and @, (and the associated partial
derivatives), means that they are evaluated at the element centroid.

The following propositions provide the formal expression of the
gradient of the functional involving either the WAFD or the TPE.

Proposition 2.1. Consider a multi-material structure subject to inho-
mogeneous Neumann-Dirichlet BCs, Under the hypothesis that the imposed
loads/displacements do not depend upon the TFs, the gradient of the WAFD
reads:

W 0Py

=a —= (u] -2 )K} u, (=12 k=1,...N,,
dglkl’ ¢ES;, d':lkr 4 ‘
’ (34)
r=1.., nep
Ku, = 1.
where matrix K| is defined as
N
Ny oD
K, =) o TNK;)“' (35)
1=l

while u,, can be obtained from the following formula
ug = 9 (L0 Tgc ) vy = Loug. (36)
A proof of Proposition 2.1 is provided in Appendix A,

Remark 2.4. The vector u, appearing in Eq. (34) is the solution of
Eq. (16) when ug = 0.

Remark 2.5. The WAFD is not a self-adjoint functional because, as
discussed in Appendix A, to assess its gradient the following adjoint
vector must be introduced:

n=u-2ug (37)

which depends upon the solution u;, of the auxiliary system of Eq. (34).
All the details about the adjoint vector n are given in Appendix A,

Proposition 2.2.  Under the same hypotheses of Proposition 2.1, the
gradient of the generalised compliance reads:
ac e

F "Kju. i=12 k=1 N, t=1.. 0. (38)
Sikr

£ € ke e "
Sy, ‘k.mr

A proof of Proposition 2.2 is provided in Appendix B.

2.3. Design requirements and constraint functions definition

Two types of design requirements are considered in this study.
The first one is the lightness requirement. It can be integrated in the
problem formulation in three different ways. The first way consists of
imposing a constraint on the overall mass of the structure as follows:

M
Bu(Ginbarr o fanobon,) o= g —rm S0, (39)
ref

where M is a reference value of the mass of the structure, whilst y,,
is the imposed mass fraction.

Alternatively, the lightness requirement can be formulated either in
terms of a constraint on the volume of the jth material phase, i.e.,

V.
. i .
8y, G S S San, ) = T 20, j=L...N, (40)
rel
or in terms of a constraint on the overall volume of the structure, i.e.,

V
v dan o Siv Son) = — — v SO (41)

ref

In Eqgs. (40) and (41), V,; is a reference value of the volume, whilst
1y, and y,- represent the imposed volume fraction for the jth material
phase and for the whole structure, respectively.

The second requirement is of technological nature. It deals with
the minimum dimension that can be fabricated through the selected
manufacturing process and is formulated as minimum length scale
requirement for each material phase as:

jomin

d
EIRTNCITEE STRRRRRY-FOVARY STV Il - <0, j=1,....N,. (42)

In Eq. (42), d,,, is the minimum member size of the TF of the jth
material phase, whilst ¢y, is the minimum manufacturable dimension.

It is noteworthy that one of the main advantages of the NURBS-
density-based method is in the handling of the geometric constraints
imposed to each TF. Particularly, since the TF associated to the generic
material phase is described as a combination of NURBS hyper-surfaces,
it is possible to set the integer parameters (i.e., ncp and p;) to au-
tomatically satisfy the minimum length scale requirement, without
introducing an explicit optimisation constraint in the problem formu-
lation [46]. Moreover, unlike classical density-based TO methods, the
minimum length scale requirement is not related to the size of the
elements composing the mesh, but it depends only on the value of
the integer parameters involved in the definition of the NURBS entities
describing the GFs [46]. Accordingly, an eventual mesh refinement has
no impact on the minimum member size of each material phase, but
only on the value of the structural responses.

2.4. Problem formulation

Four different problem formulations are considered in this work.
Each optimisation problem is stated as a constrained non-linear pro-
gramming problem (CNLPP). The four CNLPPs read:

C({n.{z[.....§,N".§2~")
min n .
ke Ling £2n, [Creel

subject to :
Ki =, (43)
gy, & i, San, ) £ 0,

Sije € [Pruns Puax s $2j¢ € [@puins gl

J=L Ny =1, Hep.



Cn&ape b, Som,)

min -
Sidae Eing Sang IC x|

subject to :
Ko =", (44)
gvl&indan v, San, ) S0,

gl/r € lpmln*pm.ul‘ gZ)r € lwmln'wm.ul‘

ji=lL. . Ny t=1.. .ncp.
) C&yare- S, - Saw,)
min -
Endare vy Sy [Crer]
subject to :
Ki = f. (45)

emlén-Gare e S, Ean, ) £ 0.

gl/r € [pmm‘pmu]‘ gl)r € [wmm'wm‘]‘

=l Ny r=1_..ng.
) Wiy 8210 Ein, - San,)
min - ,
Sndare i Savy Wit
subject to :

LA CITRE STRRERRY SPVIRY STV L)

gl/r € [pmm‘pmu]‘ gl)r € [wmm'wm‘]‘

ji=lL. . Ny t=1.. .ncp.

In Eqgs. (43)-(46), C,,; and W, are the reference values of the
generalised compliance and of the WAFD, respectively. It is noteworthy
that, since the generalised compliance can take negative values, the
absolute value of the reference compliance is considered to get a
dimensionless merit function in Eqs. (43)-(45). In Egs. (43)-(46), ppia
and p,,, are lower and upper bounds of the pseudo-density at each
CP, and m,,, and w,,, are the bounds on the weights (for each GF).
Of course, p,., > 0 to avoid the occurrence of singularity during the
resolution of the equilibrium problem.

3. Numerical results

The effectiveness of the approach presented in this work is illus-
trated on 2D and 3D benchmark structures. For each case, both the GF
and the TF related to each material phase are shown.

Remark 3.1. All the analyses presented in this study have been
performed by considering, at most, N,, = 3 material phases. When
illustrating the optimised distribution of each material phase, the TFs
related to the first, second and third material, ie., &, &,, &, are
represented in red, green and blue colours, respectively.

The code SANTO (SIMP and NURBS for topology optimisation)
developed at the 12M laboratory in Bordeaux [42-44] is used to carry
out all the analyses presented in this section. SANTO is coded in
Python®™ environment and can be interfaced with any FE code. In this
study, the software ANSYS™ is used to build the FE model of each
benchmark structure and to evaluate the structural responses.

The globally-convergent method of moving asymptotes (GCMMA)
algorithm [58] is employed as optimisation solver for the resolution of
the CNLPPs of Eqgs. (43)-(46), The parameters governing the behaviour
of the GCMMA algorithm are reported in Table 1.

Table 1
GCMMA algorithm parameters,

Parameter Value
move 0.1
albefa 0.1
Stop criterion Value
Maximum n. of function evaluations 100,
Maximum n. of iterations’ N
Tolerance on objective function e
Tolerance on constraints 0-e
Tolerance on input variables change 0-e
Tolerance on Karush-Kuhn-Tucker norm 1076

*The value of N%* depends upon the considered problem.

Table 2
Young's modulus, Poisson's coefficient and density of the isotropic
materials used in this study.

n E [MPa] v o [kgf/mm*]
M1 210000 0.33 T8 x10*
M2 70000 0.33 27 x10%
M3 135000 0.33 45x10*
M4 1 03 1.0

M5 0.5 03 03

Table 3
Elastic properties and density of the transversely isotropic material used in this study.
ID  Young's modull [GPa] Shear moduli [GPa] Polsson’s ratios Density [kg/m*]

M6 E, = 181 Gy =378
Ey = E; = 1030 Gy =G w717

Vyy = 0,42

Vg = vy, =027

o= 1760

Regarding numerical tests, the sensitivity of the optimised distribu-
tion of the N_ , materials within the design domain to the following
aspects is investigated:

1. The type of geometric entity, i.e., B-spline or NURBS, used to
describe the GF of each material phase (only for 2D problems);

2. The number of CPs and the degrees of Bernstein’s polynomials
governing the shape of the B-spline/NURBS entity (only for 2D
problems);

3. The type of BC applied to the continuum (only for 2D problems);

4. The number of material phases and the type of the elastic
symmetry of each material (for both 2D and 3D problems);

5. The type of optimisation constraint translating the lightness
requirement (only for 2D problems for the sake of brevity).

The material properties of the different materials used in the bench-
mark structures (both 2D and 3D cases) are listed in Tables 2 (isotropic
materials) and 3 (transversely isotropic material).

Remark 3.2. Depending on the problem formulation the mass and
the WAFD or the generalised compliance of the starting guess are used
as a reference values, i.e., M., W, and C,, to obtain dimensionless
quantities. Conversely, for each analysis the reference volume V, is
always the volume of the design space of dimension D = 2.3,

Remark 3.3. For each CNLPP, lower and upper bounds of design
variables are set as: p,, = 107, p,. = 1; @, = 0.5, @, = 10. The
non-trivial components of the knot-vectors are uniformly distributed in
the interval [0, 1) [42,44].

Remark 3.4. All the calculations are performed on a work-station with
an Intel Xeon E5-2697v2 processor (2.70-3.50 GHz) and four cores
dedicated to the FE analyses. Of course, the 3D TO problems needed
the highest amount of computational resources for an overall time of
about 1 h to find a local feasible minimiser.
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Fig. 3. Geometry and BCs of benchmark structures (a) RK1-2D and (b) BK2-2D,

3.1. 2D benchmark structures

The first 2D benchmark structure (BK1-2D), taken from [59], is
a 2D rectangular plate submitted to null BCs of the Dirichlet type,
as illustrated in Fig. 3(a). The dimensions of the rectangular domain
are: a; = 1000 mm and @, = 200 mm. The number of PLANE182
elements (i.e., plane elements, with four nodes and two DOFs per node,
plane stress hypothesis with unit thickness) composing the FE model is
N, = 200 x 40. The BCs applied to the structure are:

* u, = 0 for nodes B and C located at (x,,x,) = (0,0) and (x,,x,) =
{ay,0), respectively;

*uy =0and F, = 1000 N (along the x, axis) are applied on node
A located at (x;,x;) = (3.a,).

The second 2D benchmark structure (BK2-2D), taken from [42],
is the well-known Messerschmitt Bolkow Blohm (MBB) 2D beam sub-
mitted to inhomogeneous Neumann-Dirichlet BCs, as illustrated in
Fig. 3(b). The dimension of the rectangular design space are: a; =
300 mm and @, = 100 mm. The mesh of the FE model is made of
N, = 120 x 40 PLANE182 elements (same hypotheses as in the case
of BK1-2D). The applied BCs are:

* u; = uy = 0 for node H located at (x,,x;) = (0,0);

*u; = ug, u; = 0 for node K located at (x;.x;) = (a,.0); uy €
[=30, 30] mm with a step of 10 mm;

* F = =1 N (along the x, axis) is applied on node D located at
(x1. %) = (3. 0).

3.1.1. BK1-2D: sensitivity of the optimised topology to the integer parame-
ters of the geometric field descriptor for a bi-material structure

The goal of the numerical analyses conducted on BK1-2D is to
investigate both the influence of the type of entity used to represent the
GF of each material phase, i.e., B-spline or NURBS, and the effect of the
integer parameters (i.e., number of CPs and degrees of the Bernstein's
polynomials) involved in its definition on the optimised distribution
of the material phases within the design domain. These analyses are
carried out only for the CNLPP of Eq. (43), by considering a structure
composed of materials M1 and M2 listed in Table 2. The volume
fraction of materials M1 and M2 is set to 7, = 03 and y, = 0.15,
respectively.

The following combinations of values of number of CPs and degrees
of Bernstein’s polynomials have been selected: ngp = 100 x 20, 140 x
28,176 x 34, py = p, = 2, 3, 4. Inasmuch as uye = 0 for BK1-2D,
the generalised compliance and the WAFD are equal. An initial guess
characterised by a uniform GF for both material phases, i.e., p ({,{,) =
Ay J = 1.... N, has been considered for each analysis. The value of
#; for the jth material phase is the result of an iterative procedure
conducted before the optimisation process: it is calculated to meet the
requirement on the volume fraction of the jth TF, i.e., @ ({).8) = 1y,
(j = 1.2). The reference value of the generalised compliance and of the
volume are C,., = 76847 Nmm and V,; = a,a,, whilst the maximum
number of iterations is NI™* = 100.

Results are provided in terms of dimensionless generalised compli-
ance L‘— for the different optimised topologies composed of materials
M1 (red) and M2 (green) in Figs. 4 and 5, for B-spline and NURBS
solutions, respectively. For all these solutions the GCMMA algorithm
stopped when the criterion on the maximum number of iterations is
met. Specifically, the optimised multi-material topologies illustrated
in these figures are the ones obtained after the threshold operation
executed on the TF of each material phase to satisfy the optimisation
constraints of the problem at hand. Moreover, the TF related to material
M1 is illustrated in Figs. 6 and 7, for B-spline and NURBS solutions,
respectively, whilst the one related to M2 is shown in Figs. 8 and 9, for
B-spline and NURBS solutions, respectively.

From the analysis of the results illustrated in Figs. 4-9 the following
remarks can be drawn.

1. In agreement with the results presented in [43,44] for mono-
material TO problems, regardless of the type of entity used to
describe the GF of the jth material phase, the greater the number
of CPs or the smaller the degrees the lower the objective function
value.

2. As discussed in [43,44], the optimised topology does not depend
upon the mesh quality, but depends on the integer parameters
involved in the definition of the GF of each material phase,
i.e., B-spline or NURBS entity. Specifically, the number of CPs
and the basis functions degrees affect the size of the local sup-
port [42,44]. As explained in [46], the local support constitutes a
sort of implicit filter, which enforces a minimum length scale in
the GFs, which is, thus, transferred to the TF of each material
phase. Particularly, the higher the degree or the smaller the
number of CPs the larger the local support, thus each CP affects
a higher number of elements of the mesh during optimisation. As
a consequence, the higher the degree the smoother the boundary
of the material phases after CAD reconstruction.

3. Optimised configurations obtained using NURBS surfaces to de-
scribe the GFs are characterised by values of the objective func-
tion lower than or equal to those related to optimised topologies
obtained when B-spline surfaces are used to describe the GFs.
Furthermore, from the analysis of Figs. 4 and 5, one can notice
that NURBS topologies have a boundary smoother than the one
of B-spline solutions.

4. Consider the optimised solutions illustrated in Figs. 4(c) and
5(a) that have been obtained by employing B-spline and NURBS
entities, respectively, with the same degree of the Bernstein’s
polynomials. Particularly, for the solution illustrated in Fig. 4(c)
(B-spline case), the number of design variables is n,,, = N X
nep = 2% 176 x 34 = 11968, whilst for the solution illustrated
in Fig. 5(a) (NURBS case), the number of design variables is
Ny = Ny X 2nep = 2x2x100x 20 = 8000. The value
of the cost function is 0.0586 and 0.0576 for Figs. 4(c) and
5(a), respectively. Therefore, although the B-spline solution is
characterised by a number of design variables greater than that
of the NURBS solution, the cost function of the latter is lower



(a) p =2, nop = 100 x 20, (b) p; =2, ncp = 140 x 28, (c) pj =2, ncp = 176 x 34,

2 [Crer = 0.0676 C/Cres = 0.0612 C/Cier = 0.05686
(d) p; =3, ncp = 100 x 20, (e) pj =3, necp = 140 x 28, (f) pj =3, nep = 176 x 34,
C/Crer = 0.0710 C/Cre = 0.0636 C/Crer = 0.0608
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(g) p; =4, ncp =100 x 20, (h) p; =4, ncp = 140 x 28, (i) p; =4, nep = 176 x 34,
C/Cpor = 0.0754 C/Cror = 0.0660 C/Crer = 0.0621

Fig. 4. BK1-2D: optimised solution vs. number of CPs and basis functions degrees, B-spline solutions of problem (43) when considering v, = 2 material phases,
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(a) p; = 2, ncp = 100 x 20, (b) py =2, ngp = 140 x 28, (c) p; =2, nep = 176 x 34,

C/C.or = 0.0576 C/Cres = 0.0557 C/C.op = 0.0555
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(g) pj =4, ncp = 100 x 20, (h) p; =4, nop = 140 x 28, (i) p; =4, nep = 176 x 34,
C/Crer = 0.0619 C/Cres = 0.0580 C/Crer = 0.0565

Fig. 5. BK1-2D: optimised solution vs. number of CPs and basis functions degrees, NURBS solutions of problem (42) when considering N, = 2 material phases.

(a) py =2, ngp = 100 x 20 (b) p; =2, ncp = 140 x 28 (c) =2, nep = 176 x 34
(d) p; =3, ncp = 100 x 20 (e) =3, ncp = 140 x 28 (f) py =3, nep = 176 x 34
(g) p; =4, ngp = 100 x 20 (h) p; =4, ngp = 140 x 28 (1) p;j =4. nep = 176 x 34
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Fig. 6. BK1-2D: sensitivity of the TF @, to the number of CPs and basis functions degrees, B-spline solutions of problem (43) when considering N, = 2 material phases

than that of the former. Of course, this remark holds also for B- entity). Accordingly, for single-scale multi-material TO problems
spline and NURBS solutions characterised by the same number involving stiffness-related and lightness-related requirements the
of design variables (which can be obtained by selecting the following guideline can be drawn: among B-spline-based so-
number of CPs of the B-spline entity in such a way to obtain lutions and NURBS-based solutions characterised by the same

the same number of design variables associated to the NURBS degrees of the Bernstein's polynomials and the same number



(a) p; =2, ncp = 100 x 20 (b) pj =2, ncp = 140 x 28 (c) p; =2.ncp =176 x 34
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Fig. 7. BK1-2D: sensitvity of the TF @, to the number of CPs and basis functions degrees, NURBS solutions of problem (43) when considering N, = 2 materlal phases.

(a) p; =2, neop = 100 x 20, (b) p; =2, ncp = 140 x 28, (c) pj =2, ncp = 176 x 34,
C/Cror = D.06T6 C/Cros = 0.0612 C/Cror = 0.0586

(d) p; = 3. ncp = 100 x 20, (e) p; =3, nop = 140 x 28, (f) p; = 3. ngp = 176 x 34,
C/Cror = 0.0T10 C/Cres = 0.0636 C/Cor = 0.0608

(g) pi =4. ncp = 100 x 20, (h) p; =4, ncp = 140 x 28, (i) p; =4, ngp = 176 x 34,
C/C,op = 0.0754 C/Cret = 0.06G60 C/Cop = 0.0621
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(j) Colour-scale: ®4

Fig. 8. BK1-2D: sensitivity of the TF @, to the number of CPs and basis functions degrees, B-spline solutions of problem (43) when considering N, = 2 material phases.
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(a) pj = 2, ncp = 100 x 20, (b) p; =2, nop = 140 x 28, (c) pj =2, nep = 176 x 34,
C/Crer = 00576 C/Cros = 0.0557 C/Crer = 0.0555

(d) p; =3, ncp = 100 x 20, (e) p; =3, ncp = 140 x 28, (f) p; = 3, ncp = 176 x 34,
C/Cror = 0.0603 C/Crer = 0.0563 C/Cror = 0.0560

(g) py =4, ncp = 100 x 20, (h) p; =4, nop = 140 x 28, (i) p; =4, nep = 176 x 34,
C/Crer = 0.0619 C/Cres = 0.0580 C/C.or = 0.0565
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Fig. 9. BK1-2D: sensitivity of the I¥ @, to the number of CPs and basis functions degrees, NURBS solutions of problem (43) when considering N = 2 material phases,



of design variables, the user should always privilege the use of
NURBS entities.

5. Regardless of the type of entity used to describe each GF, one can
notice that the frontier between the TFs describing the material
phases M1 and M2 are clearly defined and no overlap among
them occurs. Particularly, it is noteworthy that after N2* =100
iterations the topological descriptor of the first material phase,
i.e., @, presents a clear point-wise convergence either towards
1 or towards pl  (see Figs. 6 and 7), unlike the topological

descriptor of the second material phase, i.e., @,, which is char-
acterised by intermediate values circumseribed to very limited
zones at the frontier with @, (as shown in Figs. 8 and 9, the
phenomenon is more pronounced for B-spline solutions and it is
negligible for NURBS solutions). Of course, as shown in the next
subsection, when increasing the maximum number of iterations
all the TFs converge towards a clear “black and white™ design.

3.1.2. BK1-2D: application to a structure composed of three material phases

The CNLPP of Eq. (43) has been solved for BK1-2D by considering a
structure composed of N = 3 material phases. The material properties
used in this case are those of materials M1, M2 and M3 listed in Table 2.
Specifically, the TFs @,, &, and @, are associated to materials M1, M2,
and M3, respectively. The volume fraction of materials M1, M2 and M3
is set to yy, =02, v, = 0.15 and yy, = 0.1, respectively.

The minimum dimension characterising the considered manufactur-
ing process, appearing in Eq. (42), is set to dyp = 7 mm. Following
the approach based on design abaci presented in [46], this requirement
can be fulfilled by selecting a pertinent number of CPs and degrees of
the Bernstein's polynomials. To this end, two cases are considered. In
the first one, a B-spline entity characterised by the following values
of number of CPs and degrees of Bernstein's polynomials is used to
describe the GFs: np = 176 X 34, p; = p, = 2. In the second case, a
NURBS entity with nep = 176x34 and p, = p, = 4 is used to describe the
GFs. Both choices satisfy the constraint on the minimum length scale
of Eq. (42).

Since uy- = 0, the generalised compliance and the WAFD coincide
(thus the generalised compliance is a non-negative functional in this
case), An initial guess characterised by a uniform GF for each material
phase, i.e., p({}.5) = 4, j = 1..... N, has been considered for each
analysis. The value of 5, for the jth material phase is the result of
an iterative procedure conducted before the optimisation process: it is
calculated to meet the requirement on the volume fraction of the jth
TF, ie, (6. &) =1y, G=1.2). The reference value of the generalised
compliance and of the volume are C,., = 21932.4 Nmm and ¥, = a,a3,
whilst the maximum number of iterations is N">* = 500.

Results are provided in Fig. 10 in terms of the colour map of the
TF @, (j = 1,....N,,) related to each material phase, of the optimised
topology, of the related dimensionless generalised compliance “—d and
of the number of iterations N, when the convergence is achieved for
both B-spline and NURBS solutions. It is noteworthy that, for each case,
the GCMMA algorithm stopped when the criterion on the difference
between the objective function values of two consecutive iterations
is met. Moreover, the optimised multi-material topologies illustrated
in Figs. 10(j) and 10(k) are obtained by performing the threshold
operation on the TF of each material phase (the threshold value is
calculated to satisfy the optimisation constraints of the problem at
hand): M1, M2 and M3 are indicated in red, green and blue colours,
respectively.

The following remarks can be drawn from the analysis of these
results.

1. In agreement with the results presented in the case of N, =
2 material phases, when NURBS entities are used to describe
the GFs, the resulting optimised topology is characterised by a
merit function lower than the one of the B-spline counterpart.
Moreover, as one can notice from a quick glance to Figs. 10(j)

Table 4
BK2-2D: reference value of the generalised compliance for different values of w,.

uy [mm] =30 =20 -10 [ 10 20 30
C,, [Nmm] 418316 427.378 436,256 444951 453.462 461.789 469.932

and 10(k), the boundary of NURBS solution is smoother than the
one of B-spline solution.

2. Thanks to the local support property [42,44] and according
to the strategy presented in [46], the choice of the integer
parameters involved in the definition of the GF of each material
phase results in a minimum length scale equal to or greater
than 10 mm. The manufacturing constraint of Eq. (42) is, thus,
satisfied without introducing an explicit optimisation constraint
in the problem formulation.

3. When either a B-spline entity or a NURBS entity is used to
describe each GF, the boundary between the TFs describing the
material phases M1, M2 and M3 are clearly defined and no over-
lap occurs. Particularly, it is noteworthy that the topological de-
scriptor of each material phase, i.e., @, (j = 1...., N,), presents
a clear point-wise convergence either towards 1 or towards ;r.‘m“.

as shown in Fig. 10. The convergence is achieved after 281

iterations for the B-spline solution and after 229 iterations for

the NURBS solution.

3.1.3. BK2-2D: compliance minimisation under inhomogeneous Neumann-
Dirichlet boundary conditions for bi-material structures

The first goal of the numerical analyses conducted on the bench-
mark structure BK2-2D is to study the influence of the inhomogeneous
Neumann-Dirichlet BCs on the optimised distribution of the material
phases for a continuum composed of two materials when the gener-
alised compliance is considered as a merit function. Particularly, the
material properties of materials M4 and M5 from Table 2 are used in
all the analyses described in the followings.

The second goal of this campaign of numerical analyses is to in-
vestigate the influence of the problem formulation on the optimised
distribution of materials M4 and M5 within the design domain. To this
purpose, problems (43), (44) and (45) are solved here by considering a
technological constraint related to the minimum fabricable dimension
equal to dyp = 7 mm (see Eq. (42)). According to the methodology
presented in [46], this requirement can be satisfied by choosing a
NURBS entity with the following integer parameters: p, = p, = 4 and
nep = 106 x 34. Moreover, for problem (43), the volume fraction of
materials M4 and MS is set to yy, = 0.25 and 7y, = 0.15, respectively;
for problem (44), the overall volume fraction is set to y, = 0.4; for
problem (45), the mass fraction of the structure is set to y,, = 0.4,

Since ug- # 0 for BK2-2D, the generalised compliance can take
negative values. For each problem formulation, an initial guess char-
acterised by a uniform GF for both material phases, i.e., p;({;.5) = 3,
J = L., N, has been considered for each analysis. Nevertheless,
the value of 5, for the jth material phase is the result of an iterative
procedure conducted before the optimisation process that depends
upon the problem formulation. Specifically, the value of 5, is calculated
to meet: (a) the requirement on the volume fraction of the jth TF,
e, &,((,.5) = v, (j = 1.2) for problem (43); (b) the requirement
on the total volume fraction for problem (44); (c) the requirement on
the total mass fraction for problem (45).

Of course, the reference value of the generalised compliance C,
depends upon the set of applied BCs and is reported in Table 4 for the
different values of the applied displacement uy. The reference volume
appearing in the CNLPP of Egs. (43) and (44) is ¥, = a,a,, whilst the
reference mass used in the CNLPP of Eq. (45) is M, ; = o,V, . For each
analysis the maximum number of iterations is N'* = 500.

The optimised distribution of materials M4 (red colour) and M5
(green colour) solutions of problems (43), (44) and (45) are illustrated
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Fig. 10. BK1-2D: Optimised distribution of @, (M1) (a) and (b), @, (M2) (d) and (e), @, (M3) (g) and (h) and optimised topologies (j) and (k) for B-spline and NURBS solutions

of problem (43) when considering N = 3 material phases.

(a) ug = —30 mm, (b) ug = —20 mm, (¢) ug = —10 mm,
C = —35.851 Nmm, Njir = 195  C = —9.678 Nmm, Nj., = 426 C = 8.107 Nmm, Nj., = 204

(d) ug =0 mm, (e) ug = 10 mm, (f) ug = 20 mm,

C = 20.857 Nmm, Nty = 162 C = 30,025 Nmm, Ni¢er = 199 C = 35.926 Nmm, Njte, = 500

(g) ug = 30 mm,
C = 39.583 Nmm, Nj¢er = 257

Fig. 11. BK2.2D: Optimised topologies solutions of problem (42) for different values of the applied displacement in the case of a bi-material structure,

in Figs. 11, 12 and 13, respectively. In each figure, results are pro- 1. Regardless of the problem formulation, depending on the value
vided in terms of the value of the generalised compliance C for the of uy, the generalised compliance can become negative, confirm-
optimised solutions, of the number of iterations N, to achieve conver- ing, thus, the non-positive-definiteness of this functional under
gence and of the value of the applied displacement uy. The optimised inhomogeneous Neumann-Dirichlet BCs.

multi-material topologies illustrated in these figures are obtained by 2. For the three problem formulations, the value of uy strongly
performing the threshold operation on the TF of each material phase influences the optimised distribution of materials M4 and M5.
at the end of the optimisation process: the threshold value of each Specifically, when uy > 0, the topology is strongly influenced
material phase is calculated to satisfy the optimisation constraints of by the applied force F;, and the TFs related to materials M4
the considered problem formulation. and M5 evolve towards a truss-like configuration (at least for

problems (43) and (44)) to minimise the displacement at point

From the analysis of these results, one can infer the following ) o '
D (where the force Fy, is applied). Conversely, when uy <0, the

remarks.
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Fig. 12. BK2-2D: Optimised topologies solutions of problem (44) for different values of the applied displacement in the case of a bi-material structure,
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Fig. 13. BK2.2D: Optimised topologies solutions of problem (45) for different values of the applied displacement in the case of a bi-material structure,

topological descriptors of both material phases evolve towards a
configuration tending to maximise the reaction at point K (where
the displacement uy, is applied).

. When the CNLPP of Eq. (44) is considered, since the lightness
requirement is imposed in terms of a constraint on the overall
volume fraction of the structure, as expected, only the stiffest
material phase, i.e.,, material M4, is kept within the design
domain and its distribution is optimised in order to minimise
the generalised compliance, as shown in Fig. 12.

. When comparing the optimised distribution of materials M4
and M5 solution of problem (43), shown in Fig. 11, to those
solutions of problem (44), illustrated in Fig. 12, one can in-
fer that, although the overall volume fraction occupied by the
material phases in both solutions is the same, i.e., 40% of the
volume of the design domain, the solutions shown in Fig. 12
are characterised by a value of the generalised compliance lower
than the counterparts illustrated in Fig. 11 (for the same value

. As shown in Fig

of uy). This is an expected result because 15% of the volume of
the design space is filled with material M5, which has a Young'’s
modulus lower than the one of material M4. Indeed, as clearly
shown in Fig. 11, material M5 is distributed over the regions of
the structure characterised by lower values of the components
of the stress tensor.

13, the optimised solutions of problem (45),
wherein the lightness requirement is formulated in terms of a
constraint on the overall mass fraction instead of a constraint
on the overall volume fraction, are considerably different from
those illustrated in Figs. 11 and 12. Particularly, since M , =
04V, and yp = 7y = 0.4 the optimised topologies illustrated
in Figs. 12 and 13 are characterised by the same total mass,
but not by the same overall volume because the density of
material M5 is lower than the one of material M4 (i.e., ‘-’Il =
13, although

Cs

= (.5, this is

0.3). Moreover, in the optimised solutions of ¥
material M5 is less stiff than material M4, i.e.,

Ey



Table 5
BK2-2D: reference value of the WAFD for different values of ug and 7, (G =1.2).

Yy, =025, r, = 0.15 vy, = 0I5, py, = 025

wy [mm] -30 0 30 -30 0 30
W, [Nmm] 68681 68627 68681  1080.35  1080.01  1080.35

balanced by a higher volume of the material M5, which is used
to considerably reduce the generalised compliance. Indeed, the
optimised solutions illustrated in Fig. 13 are stiffer than those
illustrated in Fig. 12 (for the same value of applied displacement
uy, except in the case uy = —30 mm).

3.1.4. BK2-2D: work of applied forces and displacements minimisation un-
der inhomogeneous Neumann-Dirichlet boundary conditions for bi-material
Structures

In this subsection, the CNLPP of Eq. (46) is solved for benchmark
structure BK2-2D. The aim of this campaign of analyses is twofold.
On the one hand, the influence of the inhomogeneous Neumann-
Dirichlet BCs on the optimised distribution of the material phases for
a continuum composed of two materials (i.e., materials M4 and M5
from Table 2), when the WAFD is considered as a cost function, is
investigated. Particularly, problem (46) is solved for three values of
the applied displacement, i.e., vz € {=30, 0, 30) mm. On the other
hand, the effect of the constraint on the volume fraction of each
material phase on the optimised solution is studied. Specifically, two
combinations of volume fractions of material phases M4 and M5 are
considered (for each value of the imposed displacement uy ): in the first
case they are set as 7, = 0.25 (for M4) and y, = 0.15 (for M5), whilst
in the second one they are chosen as vy, =015 (for M4) and v, = 0.25
(for M5).

In each case, the CNLPP of Eq. (46) is solved by considering a
technological constraint related to the minimum fabricable dimension
equal to dyp = 7 mm (see Eq. (42)). According to the methodology
presented in [46], this requirement can be satisfied by choosing a
NURBS entity with the following integer parameters: p, = p, = 4 and
nep = 106 % 34,

An initial guess characterised by a uniform GF for both material
phases, i.e., p,({,.{3) = 5, (j = 1.2), has been considered for each anal-
ysis. Particularly, the value of j, is calculated to satisfy the requirement
on the volume fraction of the jth TF, i.e., &,({). () = 1y,

Of course, the reference value of the WAFD W,., depends upon
the set of applied BCs and is reported in Table 5 for the different
values of the applied displacement wg and material volume fractions
combination v, (/ = 1,2). The reference volume appearing in the
CNLPP of Eq. (46) is Vr = a,a;. For each analysis the maximum
number of iterations is NI'** = 500.

The optimised dlsmbunon of materials M4 (red colour) and M5
(green colour) solutions of problem (46) is illustrated in Fig. 14. In
this figure, results are provided in terms of the value of the WAFD
W for the optimised solutions, of the number of iterations N, t
achieve convergence and of the value of the applied displacement uy.
Specifically, Fig. 14(a) illustrates the trend of W vs. uy in the case ry, =
0.25, yy, = 0.15, whilst Fig. 14(b) shows the same curve in the case 7y, =
0.15, yy, = 0.25. The optimised multi-material topologies illustrated in
these figures are obtained by performing the threshold operation on
the TF of each material phase at the end of the optimisation process:
the threshold value of each material phase is calculated to satisfy the
optimisation constraints of the considered problem formulation.

The following remarks can be drawn from the analysis of these
results,

Consider the case wherein 7, = 025, y,, = 0.15. By comparing
the optimised solutions of problem (46), shown in Fig. 14(a), to the
optimised solutions of problem (43), illustrated in Figs. 11(a), 11(d)
and 11(g), one can notice that the optimised distribution of materials

M4 and M5 is the same only in the case ugz = 0 mm, whilst they
are considerably different when uy = —30 mm and wg = 30 mm.
This is, indeed, an expected result: when uy = 0 mm the generalised
compliance and the WAFD coincide according to Egs. (27) and (30).
Conversely, when uy # 0 mm, the optimised solution of problem (46)
evolves towards a configuration minimising both the displacement at
point D (where the force is applied) and the reaction at point K (where
the displacement is applied). Indeed, regardless of the value of the
imposed displacement u, the optimised solutions of problem (46) are
characterised by an almost null reaction at point K, thus the value
of the WAFD is practically constant and, accordingly, the optimised
distribution of materials M4 and M5 is almost identical. The same
remarks can be repeated for the case wherein v, = 015, yy, = 0.25.
Of course, the optimised distribution of materials M4 and M5 is not
the same of the case wherein v, = 0. 25, ry, = 0I5 Moreover, in
this case the distribution is weakly influenced by the value of imposed
displacement: the optimised distribution of the stiffer material phase
(M4) in the case ug = 0 mm is not the same of the case uy # 0 mm.

Finally, the trend of the WAFD vs. the iterations and the one of
the maximum constraint vs. the iterations are reported in Fig. 15 for
both combinations of W and w, in the case ug = =30 mm. As one
can infer from these results for both combinations of volume fractions,
the optimised solution converges relatively fast, i.e., after less than 50
iterations when both optimisation constraints of Eq. (40) are active
(almost equal to zero). However, the GCMMA algorithm does not stop
the process because the stop criteria listed in Table 1 are not satisfied.
Indeed, both calculations stop when the criterion on the difference
between two consecutive values of the dimensionless cost function is
satisfied: this occurs at iteration 496 in the case yy, = 0.25, 7y, = 0.15,
while it occurs at iteration 152 in the case 1y, =015, yy, = 0.25.

3.2. 3D benchmark structure

The geometry and the BCs of the 3D benchmark structure (BK3D)
(taken from [59]) are shown in Fig. 16, The design domain is a
parallelepiped with a; = a, = 100 mm and a; = 60 mm. The FE model is
composed of N, = 40 x 40 x 24 SOLID185 elements (i.e., solid elements
with eight nodes and three DOFs per node, full integration scheme)
submitted to the following BCs: (a) the nodes located at x, = 0 are
clamped; (b) a point load Fp = 1000 N (along the x, axis) is applied on
node P located at (x,.x;, x3) = (a), %, 3).

3.2.1. BK3D: application to a bi-material structure

The aim of the numerical analyses conducted on BK3D, in the case
of bi-material solutions, is to investigate the influence of the problem
formulation on the optimised distribution of materials within the design
domain. Particularly, the materials M1 and M6 from Tables 2 and 3
are used in these analyses, To this purpose, problems (43) and (44)
are solved by considering a technological constraint related to the
minimum fabricable dimension equal to dy, = 7 mm (see Eq. (42)).
According to the methodology presented in [46], this requirement can
be meet by choosing a NURBS entity with p; = p, = p; = 4 and
nep =24 %24 % 16.

For each problem formulation, an initial guess characterised by a
uniform GF for both material phases, i.e., P =40 =1,..., N s
has been considered for each analysis. Of course, the value of 4, for
the jth material phase is the result of an iterative procedure conducted
before the optimisation process that depends upon the problem for-
mulation. Specifically, the value of j, is calculated to meet: (a) the
requirement on the volume fraction of the jth TF, ie, @ (). ) = ty,
(j = 1,2) for problem (43); (b) the requirement on the total volume
fraction for problem (44). For each analysis, the maximum number of
iterations is N = 500,

Regarding problem (43), the volume fraction of materials M1 and
M6 is set to v, = 0.1 and y,, = 0.2, respectively, while, regarding
problem (44), the overall volume fraction is set to yp = 03. It is
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Fig. 14. BK2-2D: Optimised topologies solutions of problem (46) for different values of the applied displacement in the case of a bi-material structure.

noteworthy that the reference values of the generalised compliance
(which coincides with the WAFD because ug- = 0) and of the volume
for both problems (43) and (44) are the same, i.e., V,,; = ¢,a,0; and
Crer = 2799.61 Nmm.

The optimised distribution of material M1 (red colour) and M6
(green colour) solutions of problems (43) and (44) is illustrated in
Fig. 17. In this figure, the performances of the optimised solutions are
provided in terms of the value of the generalised compliance C, of the
overall volume and mass of the structure, i.e., V and M, respectively,
as well as in terms of iterations N ., to achieve convergence. The opti-
mised multi-material topologies illustrated in Fig. 17 are obtained after
the threshold operation on the TF of each material phase at the end of
the optimisation process: the threshold value of each material phase
is calculated to satisfy the optimisation constraints of the considered
problem formulation.

The same remarks already done for the results discussed in Sec-
tion 3.1.3 for 2D problems can be repeated here. It is noteworthy that,
although the solutions of problems (43) and (44) are characterised by
the same overall volume, the optimised topology solution of problem
(43) is lighter than the one solution of problem (44) because the density
of material M6 is lower than the one of material M1, i.e., ‘-:’- = 0.23.
As expected, when the CNLPP of Eq. (44) is considcred,'s'ince the
lightness requirement is imposed in terms of a constraint on the overall
volume fraction of the structure, only the material M1 is kept within
the design domain and its distribution is optimised in order to minimise
the generalised compliance, as shown in Fig. 17(b).

3.2.2. BK3D: application to a structure composed of three material phases
The CNLPP of Eq. (43) has been solved for BK3D by considering a
structure composed of V,, = 3 material phases. The material properties
used in this case are those of materials M1, M2 listed in Table 2 and
material M6 from Table 3, Particularly, the TFs @, &, and @ are
associated to materials M1, M6, and M2, respectively. The volume
fraction of materials M1, M2 and M6 is set to yy, = ry, =y, = 0.1,

The minimum allowable dimension in Eq. (42) has been chosen
equal to dy,p = 7 mm, To satisfy this requirement without introducing
explicit optimisation constraints [46], two cases are considered. In the
first one, a B-spline entity characterised by ngp = 24 x 24 x 16 and
py = py = py = 2 is used to describe the GFs. In the second case,
a NURBS entity with np = 24 x2dx 16 and p, = p, = p; = 4 is
employed. Both choices satisfy the constraint on the minimum length
scale of Eq. (42).

Since uge = 0, the generalised compliance and the WAFD coincide.
An initial guess characterised by a uniform GF for each material phase,
ie, p(&.5) = p, § = 1....N,, has been considered for each
analysis. The value of 5, for the jth material phase is the result of
an iterative procedure conducted before the optimisation process: it
is calculated to meet the requirement on the volume fraction of the
jth TF, ie., @,({.5) = vy, (j = 1,2). The reference value of the
generalised compliance and of the volume are €, ; = 4061.65 Nmm and
Vief = ayayay, whilst the maximum number of iterations is N " = 500.

Results are shown in Figs. 18 and 19, for B-spline and NURBS
solutions, respectively, in terms of the TF @, (j = 1,.... NV, ) related to
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Fig. 15. BK2-2D: Trend of the cost function and of the maximum optimisation
constraint vs. number of iterations of problem (46) for w,, = —30 mm In the case
of a bi-material structure.

each material phase, of the optimised topology, of the related dimen-
sionless generalised compliance (L and of the number of iterations
Ny to achieve convergence. It i noteworthy that, for each case,
the GCMMA algorithm stopped when the criterion on the difference
between the objective function values of two consecutive iterations is
met. Moreover, the optimised multi-material topologies illustrated in
Figs. 18 and 19 are obtained after the (automatic) threshold operation
on the TF of each material phase: M1, M2 and M6 are indicated in red,
blue and green colours, respectively.

The remarks done for the results presented in Section 3.1.2 for 2D
problems hold also in this case.

4. Conclusions

In this work, different aspects related to TO problems dealing
with stiffness maximisation of multi-material structures under mixed
inhomogeneous Neumann-Dirichlet BCs have been investigated.

Firstly, two different merit functions have been considered: the
generalised compliance (which is related to the TPE of the struc-
ture) and the WAFD. Particularly, under inhomogeneous Neumann-
Dirichlet BCs, the former provides a proper measure of the stiffness
of the structure (and the related optimisation problem is self-adjoint),
whilst the latter does not allow to quantify the structural stiffness and
the associated optimisation problem is not self-adjoint. To the best
of the authors' knowledge, the formal expression of the gradient of
these response functions for MMTO problems under inhomogeneous
Neumann-Dirichlet BCs have been derived for the first time and the
main differences existing between the two formulations have been
highlighted.

Secondly, the N-MMI scheme for MMTO problems has been cor-
rectly implemented without introducing further artificial filtering tech-
niques and by taking advantage from the properties of general NURBS

hyper-surfaces. Due to the introduction of the weights among the
design variables of the problem, at the end of the optimisation process
the boundary of the material phases is smooth and clear (absence of
superposition between materials and of intermediate values of the TF
related to each material phase).

Thirdly, several numerical analyses have been performed to study
the influence of the type of cost function, of the integer parameters
involved in the definition of NURBS entity, of the number of material
phases, of the elastic symmetry group of the generic material phase,
of the applied BCs and of the type of lightness requirement on the
optimised distribution of the materials within the structure.

Some features of the proposed method need to be highlighted.

1. As in the case of mono-material TO problems, the following
advantages can be identified: (a) the optimised distribution of
the material phases does not depend upon the mesh quality of
the FE model because the GF of the generic material phase is
described through a NURBS entity; however, the optimised so-
lution is strongly influenced by integer parameters governing the
shape of the NURBS entity; (b) no definition of artificial filters is
required thanks to the local support property of NURBS entities;
(c) the number of design variables is lower than classical density-
based approaches wherein the pseudo-density field is defined
element-wise; (d) the integration of geometrical constraints, like
minimum and maximum length scale requirements, local cur-
vature handling, overhang-angle requirement, into the problem
formulation become a relatively easy task because, due to the
utilisation of the NURBS entities, the boundary of the generic
material phase is available at each iteration of the optimisation
process.

2. As expected, the optimised distribution of the material phases
solution of the problem involving the generalised compliance as
a merit function is different from the optimised solution of the
problem involving the WAFD as a merit function. Particularly,
in the latter case, the optimised distribution of the material
phases always converges towards a configuration minimising
both the displacement of the nodes where external forces are
applied and the reaction force of the nodes where non-zero
displacement is imposed: this results in an optimised distribution
of the material phases which is practically the same, regardless
of the value of the imposed displacement. Conversely, when the
generalised compliance is considered as objective function, the
optimised solution is strongly influenced by the value of the
applied displacement and converges always towards a configu-
ration minimising the displacement of the nodes where external
forces are applied and maximising the reaction force of the nodes
where non-zero displacement is imposed.

3. The formulation of the lightness requirement has a strong in-
fluence on the optimised topology. Specifically, three different
formulations have been considered: in the first case the lightness
requirement is formulated as a constraint on the volume fraction
of each material phase; in the second case it is formulated as a
constraint on the overall volume fraction; in the third case it is
formulated as a constraint on the overall mass. Depending on the
adopted formulation, the optimised distribution of the material
phases show significant variations and it is possible to access to
local feasible minima characterised by outstanding properties in
terms of structural stiffness and lightness.

4. The minimum member size requirement is handled implicitly
by setting, before the optimisation process, the degrees of the
Bernstein's polynomials and the number of CPs of the NURBS
entity describing the GF of the generic material phase.

Regarding the prospects of this study, three potential research direc-
tions can be identified. Firstly, the formulation proposed here should
be extended to the problem of the concurrent optimisation of the
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Fig. 16. (a) Geometry and (b) BCs of benchmark structure BK3D,

(a) C = 9647 Nmm, M = 0.679 kg, (b) C = 6.440 Nmm, M = 1,402 kg,
V = 180000 mm?, Nj., = 135 V = 180000 mm?, Nj., = 115

Fig. 17. BK3D: Optimised topologies solutions of problems (a) (43) and (b) (44) in the case of a bi-material structure.
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Fig. 18. BK3D: Optimised topology solution of problem (43) in the case of a structure composed of materials M1 (red), M2 (blue), and M6 (green), when using a B-spline entity
with ne, =24x24x16and p, =p, =p, = 2.
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Fig. 19. BK3D: Optimised topology solution of problem (43) in the case of a structure composed of materials M1 (red), M2 (blue), and M6 (green), when using a NURBS entity

with mep =24x24x 16 and p, =p, = p, =4,

elastic symmetry group (in terms of shape and direction) and of the
distribution within the design domain of the material phases under
inhomogeneous Neumann-Dirichlet BCs.

Secondly, the theoretical/numerical framework should be extended
to multi-physics analyses involving design requirements of different
nature (e.g., structural, thermal, electromagnetic, etc.) to obtain multi-
functional multi-material structures.

Finally, the approach should be generalised by integrating, on the
one hand, the non-linear behaviour of the material (for each material
phase) and, on the other hand, the behaviour of the interface together
with suitable failure/delamination criteria.
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Appendix A. Gradient of the work of applied forces and displace-
ments under mixed boundary conditions for multi-material struc-
tures

The proof of Proposition 2.1, provided here below, makes use of the
adjoint method [60].

Proof. Under inhomogeneous Neumann-Dirichlet BCs, and by consid-
ering Eq. (16), the WAFD of Eq. (27) can be written as follows:

W= fTutul r+n" (Ku+ Kgeuge = £)+ 47 (KJ u+ Kuge —r). (A1)

where 5 € EVvor and 4 € BNic are two arbitrary vectors. Under the
hypothesis that vectors f and uge do not depend on the TF of each
material phase, i.e.,

of duge

":lkr ke

=0, (A.2)

the derivative of Eq. (A.1) reads:

dw T du T dr

= — +
":lkr ”:lkr BC (’e‘“
1/ JK du IKye )

+n ( u+ K— + —u +
devkt d:,Ag d:,Ag BC (A.3)
Ky d JK d

+ 4" B+ K2 4 U — —X_ ),

( d@.xr BC d:lkr dem BC d:le

In Eq. (A.3), vectors n and 4 can be chosen such that the terms

multiplying —— and ¢:r vanish, i.e.,
ik e

A= Uge.
(A.4)
Kn=—f—-Kyed=-f-Kyeuge =Ku-2f,= n=u-2u,

where u;, is the solution of Eq. (16) when BCs of Dirichlet's type are
null, i.e., uge = 0. By injecting Eq. (A.4) in Eq. (A.3) one obtains:

aw T dK 9K r oK
— =u ——u+2u' ——uy + U, ——Uy
d::kr d's‘lkr d;Mz BE d::k
K dKpe )
- 2u’ (—u - Uy A5
0 d':ltr d;lkr e ( )
. dK . JK | dKge
=qu£ u—2u; (d‘ u 3% Uge
Sikr Sikr Skr

By considering the expression of the non-reduced stiffness matrix of
Eq. (18) and by exploiting the local support property [42,44], the first
term on the right-hand side of Eq. (A.5) can be simplified as:

N N
' 3 ad,. g
.1 0K . _ 1970 OPke o Ts Tl § &
u x’hu—a E E ¢7c WF’:"U LtK“i..tll. (A6)

CES )=1

Considering Eq. (35), the above formula reads:

(A7)

where u, € RNbor is the vector of generalised nodal displacements of
element e according to Eq. (19).



The expressions of 2K and i‘m can be derived by applying
Definition 2.1 to the dcrlvative of l-‘.q (18) as follows:

N,

% =a-€§ g,,":";r :;2: LKL, = a ezbk ::_::i,fx;(i.,.
st = (s et
=a.€2ﬂ ""7::9‘(LI.IBC.a)x;,m(i.,.a.z,,c).
K
‘;ﬁ =m(o:f, I“C'I”)

> "”"‘m(i.' Iye. ) Kp 9 (L. 0.7y ).

eESy, kT

(A.8)

By taking into account for Egs. (36) and (A.8), it is easy to check that
the following equality holds:

K K
“;)r (deukx ur ofu!:f “BC)

dp .
=a ¥ o it (L] g0, 0) K,
c€s, ik (A.9)
X [91 L‘.“'Igc)u'fm(Lpﬂ.lu)llnc]
a
=a Yy = a”*‘ TLTK‘ Li=a P K,
¢ES;, Pe CES,, ke

Finally, by injecting Eqs. (A.7) and (A.9) into Eq. (A.5), one can easily
retrieve Eq. (34) and this last passage concludes the proof. W

Appendix B. Gradient of the generalised compliance under mixed
boundary conditions for multi-material structures

The proof of Proposition 2.2 is provided here below. Conceptually,
it follows the same rationale used for the proof of Proposition 2.1.

Proof. Considering Eq. (16), the generalised compliance of Eq. (30)
can be written as follows:

C=fTu-uf r+n" (Ku+ Kyeuge = )+ 47 (Kf u+ Kuge —r). (B.10)

where n € EMor and 2 € EVec are two arbitrary vectors. Under
the hypothesis that vectors [ and ug do not depend on the TFs, the
derivative of Eq. (B.10) reads:

dC _gT_u_ du uT dr

—__
dg:kr dg,,“ d:,k,
K Ky )
+ T(—ll K + u +
"\ 0¢u, 0%, ¢ (B.11)

oK oK ar
vy u+ K — + —
(oglkr Bcd'::kr oglkr e = @lkr
In Eq. (B. ll)b vectors 3rand A can be chosen such that the terms
multiplying ——— and —Z— vanish, i.e.
. dglkr dEIkI

A= U,

(B.12)
K" =—f - Kncl =—-f+ xncllnc =—-Ku,= n=-u
By injecting Eq. (B.12) in Eq. (B.11) and by considering Eq. (A.7) one
obtains:

dC T dK T Kl!C T dk
—=-u'—u-2u —u
e 9, e ¢ BT, 0. t (B.13)
= —aT IK i=-a ¥ 9pie WK u '
d:»k 1 CES d:»k 1

which ends the proof. 1
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