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HIGHLIGHTS GRAPHICAL ABSTRACT

o Supercritical fluids research using ma-
chine learning has grown rapidly in

recent years. "‘“"
o In the past machine learning was used SouoTystone ized Syntheses
mainly for thermoedynamics, now
prominent in new areas. High Dimensionality Higher Efficiency
e Machine learning can accurately esti- =
mate thermophysical properties of su- Interdependency
percritical fluids.
* Modelling of supercritical fluids can be
accelerated using machine learning Large Datasets
models,
* Many unexplored opportunities exist for WQS:MM Faster Calculation
machine learning in supercritical fluids Simplified Neural Network
research,
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Keywords: Machine learning has seen increasing implementation as a predictive tool in the chemical and physical sciences
;‘:;h‘?e :leam‘“z in recent years, It offers a route to accelerate the process of scientific discovery through a computational data-
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driven approach. Whilst machine learning is well established in other fields, such as pharmaceutical rescarch,
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this review, we present a basic introduction to machine learning and discuss its current uses by supereritical
fluids researchers, In particular, we focus on the most common machine leamning applications; including: (1) The
estimation of the thermodynamic properties of supercritical fluids. (2) The estimation of solubilities, mis-
cibilities, and extraction yields. (3) Chemical reaction optimization. (4) Materials synthesis optimization. (5)
Supercritical power systems, (6) Fluid dynamics simulations of supercritical fluids. (7) Molecular simulation of
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Nomenclature

[x] concentration of x.

Ax change in x.

X integrated over the range between the heatsink wall and

Thuia.

A amplitude.

AARD  average absolute relative deviation.
Bo* buoyancy number,

C molar concentration.

Cp specific heat at constant pressure.
d, particle diameter (after milling).
D dipolar moment.

D diffusion coefficient.

e mass-specific energy.

Eyomo  energy of highest occupied molecular orbital.
f fanning friction factor.

g radial distribution function.

h heat transfer coefficient.

kg Boltzmann constant.

If periodicity.

L characteristic length.

m mass flow rate.

my number of segments.

M,, molecular weight.

MSE mean square error.

n particle number.

N number of data points.

N. number of double bonds.

N¢ number of carbons.

Ny number of hydrogens.

Nu Nusselt number (= hL/x).

PKa equilibrium constant.

P longitudinal pitch.

Pt transverse pitch.

P pressure.

Pc critical pressure.

Py vapor pressure.

PT pressure-temperature,

PVT pressure-volume-temperature.
Pr Prandtl number.

flow rate.

R? coefficient of determination.

Re Reynolds number.

RMSE  root mean square error.

S entropy.

ta dynamic extraction time.

te residence/reaction time.

T temperature.

Ty bubble point.

Te critical temperature.

Tn dew point,

Tm melting point.

T, reduced temperature (= T/T¢).
v volume.

Vgas gas velocity.

Ve velocity of sound.

w power output,

x* dimensionless axial co-ordinate;.
@ parameter describing repulsive part of Mie potential.
oT temperature overshoot due to heat transfer deterioration.
3 depth of energy well.

H enthalpy.

Y interfacial tension.

e activity coefficient at infinite dilution.
r ratio of specific heats.

n viscosity.

Nex efficiency of xx.

K thermal conductivity.

u dipolar moment.

P density.

Mig saturated liquid density.

Psec supercritical density.

Pvap. saturated vapor density.

Tpas fraction of gas-like molecules.
»*(T.P) molar volume.

by fraction of x.

w acentric factor.

Wy rotational velocity;.

Subscripts

a air,

atm atmospheric.

com COMPpressor,

ex exergy.

in inlet.

fl fluid.

F fuel,

G generator.

M motor.

re recuperator.

ro rotor.

sh shroud.

th thermal.

tur turbine.

w wall.

waste heat recovery unit.

1. Introduction

Data-intensive computing has been hailed as the fourth paradigm of
science, a new approach in which big data and computational ap-
proaches will revolution how scientists make discoveries [1.2]. The
preceding three paradigms; empirical observation and experimentation,
analytical and theoretical frameworks, and computational science and
simulation being the first, second, and third, respectively. In the fourth
paradigm, science advances through the collection, curation, and anal-
ysis of large data sets. Machine learning is an approach that will inevi-
tably play a significant role in the analysis of these datasets.

Machine learning is finding increasing application in the sciences

and is better established in certain fields such as organic chemistry and
pharmaceutical research [3,4]. Interest in the use of machine learning
has increased dramatically over the last twenty years as the required
computational power for its application has become progressively more
affordable. Research implementing machine learning can be found
throughout the sciences, with many review articles discussing its use in
disparate range of fields including the chemical sciences [5 101, bio-
logical sciences [11-13], condensed matter physics [14], fluid dynamics
[15,16], nanoscience [17 19, and materials science [20 27,

In this Review, we discuss the use of machine learning as a tool for
the modelling and estimation of systems and processes using supercrit-
ical fluids. In Section 1.2, we discuss what machine learning is and, in



Section 1.3, we discuss the different machine learning approaches that
have been implemented in supercritical fluids research. In Scection 2, we
review the specific applications of machine learning that have been used
in this domain. These include: (1) The estimation of solubilities, mis-
cibilities, and extraction yields. (2) The estimation of the thermody-
namic properties of supercritical fluids. (3) Chemical reaction
optimization. (4) Materials synthesis optimization (4) Supercritical
power systems. (5) Fluid dynamics simulations of supercritical fluids.
(5) Molecular simulation of supercritical fluids and (6) Geosequestration
of CO2 using supercritical fluids. Finally, in Section 3, we offer our
conclusions and perspectives on the implementation of machine
learning in the research of supercritical fluids.

1.1. Introduction to machine learning

Machine learning refers to a group of programming techniques that
allow models to be ‘learned’ from input data. It can be used for two key
tasks " classification " and " regression *. In regression, a mathematical
model which estimates outputs from a set of input data is trained using
an existing dataset. Regression models can approximate the relation-
ships between input parameters allowing prediction of outputs
throughout a studied range of inputs. In this context, "prediction” is used
according to the statistical definition, whereby the information gained
from a sample of a dataset is applied to the entire range of inputs covered
by the dataset. This makes them a powerful tool for identifying opti-
mized experimental conditions, which can be used alongside other
techniques, such as theoretical modelling, to accelerate the process of
scientific discovery. By comparison, in classification models, data is
sorted into discrete categories based on a set of properties specific to
each datapoint, the thresholding conditions for classification are learned
by the model from a dataset. The large majority of examples in this
Review are examples of regression, where a machine learning algorithm
has been used to estimate the outcome of a physical process based on a
given set of input conditions, although some examples of classifiers are
discussed.

A distinction needs to be made between " supervised " and " unsu-
pervised " learning. Tn supervised machine learning, the objective is to
estimate a specific output from input data. For classification tasks, this
means the training dataset has already been labeled. In unsupervised
learning, machine learning is used to analyze an unlabeled dataset, by
identifying clustering or relationships between variables in the dataset.
Unsupervised learning is particularly important in tasks such as identi-
fying trends in large datasets, image processing, or multivariate analysis.
The vast majority of the examples discussed in this review use super-
vised machine learning, however unsupervised machine learning will
likely find much wider use in the future applications.

In a well-designed machine learning procedure, a large dataset is
split into three subsets, the training, testing, and validation sets.
Commonly used proportions range from 60 - 20-20% to 80-10-10% for
these, respectively. The training set is used for optimizing the model
such that the difference between the model’s outputs and the training
data is minimized. The testing set is then used to evaluate the perfor-
mance of the trained model. The validation set is used for the optimi-
zation of the model hyperparameters, which are values that control
either the complexity of the model, such as the architecture of the neural
network, or the learning process, such as the learning rate of the same.

The data quality and quantity used to train a machine learning model
are imperative to the reliability of trained models. The required dataset
size is dependent on the complexity of the problem to be modelled,
accurately capturing the character of the relationships of many variables
with high levels of interdependency and complex behaviors requires
more data than simple problems. This is complicated by data avail-
ability, acquiring large datasets may be prohibitively expensive, due to
the nature of the required experiments or only limited literature data
may exist.

The quality of the dataset can be improved through data curation (or

preprocessing) strategies such as; (1) Data cleaning, the removal of
clearly erroneous datapoints which could mislead the training process.
(2) Normalization (or z-score standardization), the rescaling of data to as
a fraction of the total range (or as the number of standard deviations
from the mean), which allows more rapid convergence during the
training process. (3) Feature selection, eliminating redundant variables
in the dataset can increase the efficiency of the learning process.
Multivariate analysis techniques, such as principal component analysis
are powerful tools for this, allowing data to be represented in a more
compact fashion.

A common problem encountered when analyzing noisy datasets with
machine learning is overfitting. This is essentially fitting the noise in a
particular system over the ‘true’ underlying relationship between inputs
and outputs, An example of overfitting by a non-linear regression model
is shown in the red curve of Fig. 1b. Overfitting is most commonly
resolved through k-fold cross-validation, in which the dataset is parti-
tioned into k subsets (or “folds’). The model is initially trained on k - 1
subsets, before being validated against the remaining subset, this pro-
cess is repeated k times, such that each subset is used as the validation
set. The performance metrics are collected after each iteration and
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Fig. 1. Example implementations of support vector regression (SVR), kernel
ridge regression (KRR), and Gaussian process regression (GPR) non-linear
regression modeling to a sine featuring generate noise between 0 < x < 15.
The seed used to generate the random noise has been changed between (a) and
(b), and the same models are applied to both datasets. It can be seen that SVR
fails to estimate the function outside the training range, and KRR also fails
outside the training range in (b). GPR suffers from overfitting in (b). Data in
these figures were generated using the scikit-learn Python module [29,30].



averaged to give the performance of the model overall. This process
reduces the bias from individual subsets, and provides an estimate of
how well the model generalizes to new data. While the vast majority of
the literature reviewed here resorts to k-fold cross-validation, other
suitable approaches exist, such as the leave-p-out, leave-one-out,
holdout and Monte Carlo cross-validations methods, see Ref [28] for a
deeper discussion of cross-validation methods and the criteria for
selecting them.

A key goal of many applications of machine learning is the con-
struction of generalizable models. Specifically, this means, training
models to make accurate estimations beyond the relatively narrow range
of conditions within the training set (although still with the actual
ranges of the input parameters within the training set). This requires
large high-quality datasets, featuring parameters that allow the system
to be understood in general terms. For instance, in the case of solubility
estimation, this requires including the description of the systems in
terms of the physical properties of the solute and solvent molecules, such
as the acentric factor, dipolar moment, molar volumes, molecular
composition, etc. Allowing the estimation of the solubilities of many
solutes in many different solvents, rather than just estimations for a
narrow range of solutes and solvents. Being able to make predictions
beyond currently available knowledge makes machine learning an
extremely powerful tool for advancing the frontiers of science.

1.2, Machine learning algorithms

Several common methods exist for the implementation of machine
learning. In this Review, the vast majority of discussed examples use
regressors for their analysis, hence we only introduce regressors here.
The use of machine learning for classification is a broad topic in its own
right and is important in tasks such as image analysis, text recognition,
or data partitioning, but is largely beyond the scope of this Review.
Regressors can be broadly grouped into regression algorithms, decision
tree algorithms, nearest-neighbor methods, and artificial neural
networks.

1.2.1. Regression algorithms

These algorithms fit a mathematical function to estimate a contin-
uous output based on a set of inputs. These can be grouped into linear
and non-linear regression.

Linear regression assumes a linear relationship between independent
inputs and the output [31]. Several linear regression algorithms exist
such as ordinary least squares (OLS), least absolute shrinkage and se-
lection operator (LASSO), and multi-linear regression (MLR).

Non-linear regression conversely assumes a non-linear relationship
between inputs and outputs. A common example used in machine
learning studies is support vector regression (SVR) which uses a kernel
function to transform the data into a higher-dimensional feature space
where the data may be a linear function or hyperplane which fits the
transformed data [22,33]. A range of SVR kernels exist (such as linear,
radial basis function, polynomial, sigmoidal, Gaussian...) which
describe the expected relationship between the inputs and the output
and should be selected dependent on the particular problem. An alter-
native variant of SVR which is commonly used is the least-squares
support vector regression (LSSVR) algorithm which optimizes the
model by minimizing the sum of the squared errors between the output
and ‘true’ result (rather than maximizing the distance between the hy-
perplane and closest transformed points in SVR) [ 23,341, LSSVR is more
robust to outliers, but struggles with non-linear relationships between
inputs and outputs. Additionally, kemnel ridge regression (KRR) is
another common non-linear regression method, which is similar to SVR,
but uses linear combinations of non-linear kernel functions to transform
the data. The validity of the models produced by SVR, LSSVR, and KRR is
highly dependent on the choice of kernel functions used [33.35].
Another example, Gaussian process regression (GPR), assumes that the
input data has a Gaussian distribution about a kernel covariance

function (36, This algorithm is typically robust when used with noisy
input data, but can have a high computational load when used with large
datasets, Comparisons of SVR, KRR, and GPR applied to noisy sinusoidal
data are shown in Fig. 1.

1.2.2. Tree-based algorithms

Named after their tree-like structure, decision tree (DT) algorithms
can be used for both classification and regression [27]. In the case of
regression, the DT algorithm splits data using a series of " If {x}, Then
{y}, Else {z} " decision rules. Hence, DT outputs are a piecewise
approximation of the ‘true’ output function, rather than a continuous
function. (Fig. 2) With each section of the approximation corresponding
to the satisfaction of a criteria set. Unlike many machine-learning ap-
proaches, the decision-making rules can be observed making the inter-
pretation of the trained DT model relatively straightforward. DTs suffer
several drawbacks; they are not well suited for datasets with high
dimensionality or large numbers of features, where they can easily
overfit data. They can be highly sensitive to the training set, training
with different parts of the same dataset can result in radically different
tree structures, For noisy datasets, precautions must be taken to ensure
that a suitable minimum number of data points per node is used. Each
additional layer of if-then-else decision rules doubles the required
number of datapoints in the training set. DTs are highly sensitive to
biases within the dataset, data must be well balanced in the parameter
space being explored.

Ensemble methods that combine several DTs have been developed
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Fig. 2. Example implementation of a decision tree (DT) on a noisy sine wave
(red dots ~ fitted data, grey dashed line ~ ‘true” sine function). A decision is
made at each fork as to whether the input is less than (left branch) or more than
(right branch) the value shown. The net result is a piecemeal estimation of the
function (blue line), Data in this figure was generated using the scikit-leamn
Python module [29].



which avoid several of these potential problems. For instance, random
forest (RF) algorithms, work through the construction of several DTs
during the training process | 38]. The output is the mean of all the values
returned by the DTs within the RF correcting for problems due to
overfitting of the training set. Alternatively, gradient-boosted (GB) al-
gorithms, train an additional DT on the erroneous outputs of the initial
DT and repeat this process until the DT which accurately represents the
content of the testing/validation sets is produced [39.40]. Also, the
AdaBoost (AB) algorithm, which follows a similar process to GB algo-
rithms, however increasing weight is given to erroneous outputs on each
iteration of the process, forcing the algorithm to focus on these instances
[41].

1.2.3. Nearest neighbor methods

These algorithms use the closest data points in the training set to
make predictions (42 44], The most commonly used example is the
k-nearest neighbors (kNN) algorithm, where the k-closest data points are
used to predict the output value for a given set of inputs, Each neighbor's
distance from the given inputs can be used as weights. kNN analysis is
simple to implement, but it requires the storage of all training data in
memory, and for large, high-dimensionality datasets, distance calcula-
tions can become prohibitively expensive.

1.2.4. Artificial neural networks

Artificial neural networks (ANNs) consist of a series of inter-
connected nodes (or ‘neurons') organized in layers (Fig. 3) [45]. These
layers are arranged into an input layer, which consists of the indepen-
dent variables in the system, the hidden layers, which process the input
data, and the output layer, which consists of the dependent variables.
Each neuron in the hidden layer(s) receives inputs and produces a single
output which can be received by multiple other neurons. Each neuron’s
output is generated by processing the inputs with a mathematical
‘activation’ function, The inputs of each neuron (or equivalently the
outputs of the previous neuron) are weighted. These weights can be
adjusted to decrease or increase the influence of the input on the acti-
vation function. The relationships between inputs and outputs is then
represented as the superposition of the respective activation functions
located at each node in the network [46]. During the training of the
neural network, it is these parameters that are modified to minimize the
error between the ANN output and the true output signal. The choice of
optimizer affects the training speed and accuracy of the ANN. Several
optimization algorithms exist such as gradient descent, Adam, or Ada-
grad, among others, and the choice of the algorithm is largely dictated
by the nature of the problem and ANN. Simple optimizers such as
gradient descent methods are effective, but can struggle with noisy
datasets or complex network architectures, where an algorithm which is
capable of varying the learning rate, such as Adam, may perform better.
Ultimately, the best strategy for identifying the best optimizer is testing

Inputs Hidden Layers Outputs
"

o

the ANN performance using different optimizers on a validation dataset.

Most neural networks propagate in the forward direction (feedfor-
ward ANNs), that is all outputs from a layer are the inputs for the neu-
rons in the next layer in the direction of the output layer. The most
common method of training feedforward ANNs is backpropagation,
where error is calculated for the output, and the weights of the inputs in
the last hidden layer are adjusted. Error is propagated backward through
the network adjusting the weights layer-by-layer in reverse order. ANNs
exist where the outputs of neurons later in the network are the inputs for
neurons earlier in the network allowing for the outputs of some nodes to
affect their own future output, such networks are called recurrent neural
networks.

A tradeoff is made through the use of ANNS, since they can be used to
create accurate models of complex relationships within datasets, but this
comes at the cost of potentially losing an understanding of the under-
lying relationships. With the trained model offering only limited inter-
pretability in the relative importance of the inputs, but without a direct
expression of this relationship to the output. It is for this reason that
ANNSs are sometimes referred to as a ‘black box’ methodology, although
the use of this term is not universally accepted as appropriate for ANNs
[47]. This could be problematic within domains such as the physical
sciences, where understanding the physical and chemical processes are
often key objectives. The development of applications of machine
learning which do not act as black boxes are thus desirable if under-
standing of the nature of trained models is to be prioritized. However, in
systems where the relationships between dependent variables are
complex and no accurate physical models exists, ANN models can be
used to allow work to advance without this physical underpinning (i.e.
by predicting previously unknown results which can be verified and
investigated further through complementary techniques). There has
been increasing amounts of work seeking to use trained machine
learning models to discover the underlying physical principles driving
modeled systems through ‘inverse design’ [19,48,49],

A wide variety of activation functions exist which can be grouped
roughly into ridge functions, radial basis functions, and “folding”
functions (the latter are primarily used in convolutional neural networks
for image recognition problems and are not discussed further here).
Ridge functions typically produce outputs that are close to zero for small
inputs, and output larger values for large inputs. However, the mathe-
matical relationship between inputs and outputs can vary greatly, with
some functions saturating with increasing input, and others growing
indefinitely. Most ridge functions produce values close to zero for
negative inputs, although a few exceptions such as the linear and tanh
ridge functions exist. Radial basis functions are symmetric about the y-
axis and typically output large values close to x = 0 and small values far
from the origin (or vice versa). Neural networks using these are known
as radial basis function neural networks [50]. Linear combinations of
radial basis functions are very efficient at approximating complex

Example Activation Functions

Ridge Functions Radlal Basis Functions
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Fig. 3. Typical representation of an artificial neural network (ANN). A given set of inputs (green circles) are fed into a network of nodes organized in layers (blue
circles) before calculating an output (orange circle). Each node within the hidden layer represents a mathematical ‘activation’ function. Typically, these are either
ridge or radial basis functions. Examples of activation functions are given to the right of the main diagram, The exact forms and weights used in the functions within

the hidden layers are determined during training.



mathematical functions making them well suited for used as activation
functions.

A common application of ANNs is in hybrid systems such as adaptive
neuro-fuzzy inference systems (ANFIS), which combine ANNs and fuzzy
logic systems [51,52], Fuzzy logic differs from DT style " If {x}, Then
{y}, Else {z}" binary logic statements, by allowing intermediate values
between extremes (i.e., partial membership in categories), allowing for
imprecision and uncertainty to be included in the logic system. In ANFIS,
the data is first transformed using fuzzy logic statements, and an ANN is
then used to learn the parameters of the model. After training on the
fuzzy logic model, the trained ANN can then be used to calculate outputs
for new input data.

The number of hidden layers in an ANN and the number of neurons
in each layer are key to determining the complexity of the relationships
that it can model. ANNs featuring few hidden layers and a small number
of neurons require less training time but may fail to accurately describe
complex relationships (i.e., data will be ‘underfitted’). Conversely,
having many hidden layers, enables complex relationships to be
modeled by the network, but can lead to overfitting without a large
enough training set. There is no universal strategy to determining the
correct number of hidden layers and neurons in an ANN, however
several common strategies exist. Firstly, there are brute-force tech-
niques, such as simple trial-and-error testing of different combinations
of layers and neurons which are evaluated using a validation set. Grid
searching, which systematically searches all possible combinations of
ANN structures from a predefined set of possible layer numbers and
neuron numbers. Randomized searching performs the same process but
with random combinations of these. Alternatively, there are techniques
which use machine learning to select the optimal number of hidden
layers and neurons and optimal hyperparameters for an ANN, such as
AutoML.

1.2.5. Deep learning

ANNG s featuring more than three hidden layers are often referred to as
‘deep’ neural networks (DNNs) [53,54]. The use of many layers allows
DNNs to approximate much more complex patterns and relationships
that smaller ANNs, how this comes at a significantly increased compu-
tational cost, typically require large datasets to the 'pre-train’ the
network. The initial layers of such networks typically capture basic
patterns in the data, with later layers capturing more subtle behaviors
with higher order dependencies, allowing a more precise approximation
of the data. Examples of DNNs include: Graph ANNs which feature
connections between the nodes of each hidden layer, allowing the
neighboring nodes in the layer to affect each other’s value through a
message-passing algorithm [55]. Or convolutional ANNs, which are
capable of processing higher dimensional data (such as images) in which
the inputs are matrices. These are significantly more complicated than
the majority of machine learning approaches used in this review, neu-
rons are organized in convolutional, activation, pooling, and fully con-
nected layers. Which combine to extract features from the input dataset
and reduce its dimensionality. Readers are referred to Refs. [54,56,57)
for a more comprehensive review of these forms of machine learning.

1.2.6. Interpretative language models

Interpretative language models are a very recent development in the
field of machine learning combing natural language processing and
machine learning techniques. These models are capable of interpreting
text and generating a natural language response. These models are
trained on very large datasets allowing them to learn language struc-
tures, typically using deep learning algorithms to build their language
models. The most obvious applications of these models are in roles
requiring natural language such as chatbots, but they have found
application in the physical sciences in roles such as chemical property
estimation, drug discovery, reaction optimization, and toxicology [58].
These models have a number of advantages over other approaches such
as DNNs, such as handling variable-length inputs and utilizing the

pre-training of such models on large text datasets. The implementation
of these models is very recent, hence there are not many examples
within the domain of supercritical fluids research, but they will likely
become much more prominent in the coming years.

1.3. Optimization from trained machine learning models

Trained machine learning models can be coupled to optimization
algorithms to allow improved conditions to be identified. The fast
computation and generalizability offered by properly trained models
allow for outputs to be used as figures of merit for optimization. This can
be true for multiple outputs simultaneously if multiparameter optimi-
zation is performed. A wide range of optimization algorithms exist
which are suitable for this, such as particle swarm optimization [59-63],
genetic algorithms [64,65], gradient descent algorithms [66], and Adam
[67,68] amongst others. The combination of generalizable machine
learning models and optimization offers a direct route toward acceler-
ating the discovery of improved conditions for a range of processes in
supercritical fluids research. These range from improved or novel syn-
theses to higher efficiency power systems, or higher yield extractions.

All of the aspects of building and training a machine learning model
discussed above are demonstrated as a workflow in Fig. 4. This applies to
all the machine learning models discussed so far.

1.4. Online machine learning

So far, our discussion of machine learning has focused entirely on
offline machine learning, where a model is trained in a single instance
from a pre-generated dataset. However, machine learning can be for
online optimization also, where data is generated sequentially (e.g.
because of experiments being performed in series) and the model trained
continuously on the incoming data. Online versions of several of the
models discussed above exist for this purpose as well as, prominent
optimization methods such as stochastic gradient descent. The outputs
of such models can be used to direct future experiments allowing sys-
tems to incrementally improve towards an optimized state.

Because online machine learning requires retraining at each data
acquisition step, these approaches can be much more resource-intensive
than offline approaches, although potentially at the benefit of finding
optimized conditions using less experimental resources. Online ap-
proaches face a number.

of challenges, in case where the identification of global minima is
non-trivial, these approaches tend toward identifying local minima.
Mitigations against this include the introduction of a level of random-
ness to condition selection (such as in stochastic gradient descent
methods) where a wider range of conditions are explored or sampling
multiple new data points at each training step. These approaches can
also be sensitive to noise or outliers during data generation, which is
commonly dealt with through the incorporation of Bayesian probability
into these models [70]. These approaches are extremely interesting for
the development of autonomous labs which can perform experiments
and develop syntheses without user input. We could find no published
examples of online machine learning for supercritical fluids research,
however such approaches have appeared in a wide range of other do-
mains, and are likely to appear in the near future [17,70,71].

2. Machine learning in supercritical fluids research

In this section, we review the various areas of supercritical fluids
research in which machine learning has been implemented including (1)
The estimation of the thermodynamic properties of supercritical fluids.
(2) The estimation of solubilities, miscibilities, and extraction yields. (3)
Chemical reaction optimization. (4) Materials synthesis optimization.
(5) Supercritical power systems. (6) Fluid dynamics simulations of su-
percritical fluids. (7) Molecular simulation of supercritical fluids and (8)
Geosequestration of CO; using supercritical fluids. The distribution of
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this studies is not homogeneous, there were far more machine learning
studies applied to estimation of solubilities and extraction yields (52
references) than any other domain. Other areas such as thermodynamic
property estimation (29 references), hydrothermal gasification (14 ref-
erences), biodiesel production (7 references) and supercritical power
systems (13 references). This distribution of is largely reflective of two
things, the availability of data to train the models and the relative
complexity of the problems being modeled in each domain.

2.1, Thermodynamic properties of supercritical fluids

Machine learning has been applied to predict the properties of su-
percritical fluids. These studies cover a wide range of fluid properties
including state variables, thermodynamic equilibria, diffusivities, and
interfacial tensions among others. Knowledge of these properties is
crucial to a wide range of applications and hence, machine learning has
great potential to accelerate and improve our current approaches to
their calculation. A summary of several examples is given in Table |
[72-94].

2.1.1. State variables

The most fundamental properties of a fluid are those of the ther-
modynamic state variables (P; molar volume, V; T, and particle number,
n), from which the equilibrium state of the system can be described.
Several authors have sought to apply machine learning to the prediction
of these for a range of supercritical fluids. For instance, Liu et al. have
used SVR to predict PVT curves from existing data for pure fluids (H,0,
COg, Ha) and their mixtures in the near- and supercritical regions of
phase space [858]. Experimental and simulation data regarding the
thermodynamic properties of H20-CO2-Hz ternary mixtures are pres-
ently scarce. The authors obtained data for the pure fluids from the
National Institute of Standards and Technology (NIST) standard refer-
ence database and produced their own data for mixtures using molecular

dynamics simulations. The SVR model used molar volume, T, and the
molar fractions of each component, ¢;, as inputs to predict the corre-
sponding value of P. When trained with NIST data, the SVR model
predicted PVT curves with extremely low error (R* > 0.999 in the testing
set). For ternary systems, the trained SVR model predicted PVT data in
the test set with an R® = 0.9999. Hence, this model could accurately
predict the molecular dynamics predicted PVT properties of ternary fluid
mixtures. This model is highly specific to the ternary system studied, but
the empirical equation-of-state model produced by this is approach is
potentially time-saving compared to experimental determination of PVT
models.

Que-Salinas et al. used multilayer ANNs to predict bulk properties of
fluids described by Lennard-Jones potentials under sub- and supercrit-
ical conditions from calculated radial distribution functions, g(r) [87].
The only input was g(r), consisting of 100 neurons, and predictions were
made for T and P independently (with P and T fixed, respectively) and
for both T and P simultaneously. After training, the P, T, and PT models
typically had relative percentage errors in the predicted variables of < |
3%, with a few conditions (low T, low P) presenting errors < |7%]|. This
model showed that machine learning based approaches can accurately
predict the macroscopic properties of fluids from a microscopic
description of their molecular distribution. The authors then used their
trained PT model to predict P at constant T as a function of fluid density,
2. The calculated P(p) curves closely agree with theoretically calculated
isothermal curves, demonstrating that this approach can be used to build
a complete thermodynamic description of a system from microscopic
descriptions.

Zhu and Miiller investigated the use of multilayer ANNs as an
alternative to equation-of-state approaches to predict multiple fluid
properties; the critical coordinates, T¢ and Pg; the subcritical vapor-
liquid equilibrium, and the supercritical density, p [94]. These prob-
lems having increasing complexity, required 2, 3, and 4 variables,
respectively. The authors used statistical associating fluid theory (SAFT)



Table 1

Properties of supercritical fluids calculated using machine learning.

Input Parameters Predicted Parameter Supercritical Fluid Machine Learning Number of Train - Test - Valid. REF
(s) Technique(s) Datapoints Split (%)
To P 0, deo, Tu To CO; mixtures ANN 316 75-0-25 [72)
P I €03 ANN 5895 not specified [73)
T, P, N nD Alkanes GPR 1200 80-0-20 [74)
T.Pp oK €0z ANN 30 70-15:15 [75]
TP nCpyvyx,n, H, S €O, DNN 32,994 80-0-20 [76]
TP o P, Cp, Fove g China RP-3 Kerosene ANN 49,086 90-0-10 [77]
T, P Cp, H H, 0, CH,, CO; ANN not specified not specified (78,
79)
TP 2 Cp, Cy, Yy x5, 1 O, ANN not specified not specified (80,
81)
T, Protes My P, 0 D €O, MLR, kNN, DT, RF, GB 4917 70-0-30 [82)
T, 00 Py My dva, My 3, s D Temary mixtures DNN 1220 80-0-20 [83)
containing scHO
Voronoi cell density and Ny Raas Lennard-Jones fluids (Ar, DNN 21,970,000 80-0-20 [84
H,0, CO3) 85]
T. P, dhn,s dhon [Na™], [K7), v €O, ANN 1716 70-15-15 (86)
[Ca*], (Mg*)
8(r) State variables (P, T) Lennard-Jones fluids ANN 10,201 80-10-10 [87)
T, dno. Poo, State variables (P, V, T Hy0-CO;-H, SVR 2490 80-0-20 [88]
T.P,p X O, ANN, LSSVR 586 70-15-15 [89])
T.P x €O, ANFIS 1042 80-0-20 [90]
T.p X CO2 ANN 5893 80-0-20 [91)
T, ¢wiv. 10 params, Vapor-Liquid €0z, CHF3 ANN 1567 92-0-8 [92)
Equilibrium, y™
T.p # CO; ANFIS, LSSVR, ANN 1124 80-0-20 [93)
m,, « T, Pe Mie fluids ANN 500 80-0-20 (94)
mg,a, T Py, pageivp. ANN/GPR 16,077
m,a, TP P ANN 27,000

Cp, specific heat at constant pressure; D, diffusion coefficient; g(r), radial distribution function; H, enthalpy; N, number of carbons; M,,, molecular weight; T, tem-
perature; Ty, bubble point; T¢, critical temperature; Ty, dew point; T,, reduced temperature (= T/T¢); P, pressure; Py, critical pressure; Pr, Prandtl number; Py, vapor
pressure; S, entropy; v, velocity of sound; V, volume; 4, viscosity; y, interfacial tension; y = , activity coefficient at infinite dilution; I, specific heat ratio; x, thermal
conductivity; tg., fraction of gas-like molecules; p, density; puy, saturated liquid density; ps., supercritical density; pyap., saturated vapor density; w, acentric factor; dhy,

fraction of component x;

ANFIS, adaptive neuro-fuzzy inference system; ANN, artificial neural network; DNN, deep neural network; DT, decision tree; GB, gradient-boosted; GPR, Gaussian
process regression; MLR, multilinear regression; LSSVR, least squares support vector regression; kNN, k-nearest neighbors; RF, random forest

with a Mie potential as an equation of state to predict sub- and super-
critical fluid properties. SAFT models molecules as assemblies of
spherical segments and consider the interactions between molecules in
terms of an interaction potential. The authors used a Mie potential to
model the interactions in their fluid. (1) For the prediction of T¢ and P¢;
an ANN with three hidden layers (15, 10, 5) was used with the number of
segments, ms, and a parameter describing the repulsive part of the Mie
potential, «, as inputs. The trained ANN was able to predict the contents
of the validation set with an R” of 0.9999. (2) For predicting the
vapor-liquid equilibrium, an ANN featuring three hidden layers (48, 24,
12) was used, with m, o, and 1/T * as inputs. The trained ANN was able
to predict the vapor pressure, In(P¥ /P¥); saturated liquid density, p¥;
and saturated vapor density p¥ in the validation set with R? values of
0.9985, 0.9995 and 0.9987 respectively (Fig. 5(a)). The prediction of In
(P¥/P¥) became increasingly inaccurate close to P§/P¥ = 1. (3) In the
case of supercritical density, an ANN with 4 hidden layers (48, 24, 12, 6)
was used, with m,, «, T, and P as inputs. The trained ANN predicted the
contents of the validation set with an R? of 0.997 (Fig. 5(b)). In all cases,
the machine learning approach was able to replicate the prediction of
the SAFT model with AARDs below 4.7%. These models offer a route for
predicting fluid properties outside of the training set without the high
computational cost associated with SAFT equation-of-state models.

2.1.2. Diffusivities

Diffusion coefficients describe the mobility of chemical species
through a different material, they are important for describing the
mixing and homogenization of mixtures. There is a wide range of su-
percritical fluid applications in which the prediction of these coefficients
is important, such as describing mixed solvent systems, extractions, and
chemical reactions. The use of machine learning in this task has the

potential to allow the description of novel mixtures and processes
without lengthy experimental characterization or simulation.

Zhao et al. used a DNN to predict diffusion coefficients for binary and
ternary supercritical HO mixtures [83). They sought to calculate
self-diffusion coefficients (relating to the displacement of individual
molecules) and Fick diffusion coefficients (relating to the transport of a
group of molecules due to a driving force) [95]. Initially, they used
molecular dynamics simulations to calculate diffusion coefficients for
binary and ternary supercritical HyO-based mixtures (Npypay = 140,
Niemary = 160). For binary and ternary mixtures of H20 with Ha, CHg,
CO, 0y, and CO; under supercritical conditions were considered (5 bi-
nary and 10 ternary mixtures). They trained their ANN (3 hidden layers)
with the simulated results using T (200 - 400 “C), p (calculated from
P = 25 MPa), and viscosity, 75, as well as the molecular weight, M, », and
fraction, ¢z (1 — 30 mol. %), of the second species as inputs to predict the
corresponding self-diffusion (Dy and D) and Fick diffusion (Dgg) co-
efficients. Their trained model was able to predict the contents of the
testing data set (20% of data) with an R? value of 0.99,

The authors then used “transfer learning’ to improve prediction ac-
curacy for the ternary mixtures. In transfer learning, a model is first
trained and optimized using large relevant dataset, such as the binary
mixture dataset in this study. The optimized ANN model is then used as
the initial conditions for training on a smaller dataset of interest, such as
the ternary mixture dataset. The likelihood of successfully training on
the second smaller dataset is increased because the optimized models
are likely to have similar hyperparameters. The ternary mixture dataset
covered the same temperature range, with 60 < ¢,0 < 90 mol. %. An
additional two inputs were included, M, 3, and ¢3. An additional self-
diffusion coefficient, D3 was added to the outputs and Dgx was
replaced by the 2 diagonal elements of the ternary Fick diffusion
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Fig. 5. (a) Comparison between SAFT and ANN predicted VLE envelopes. Red
indicates saturated vapor densities, while blue indicates saturated liquid den-
sities, with a solid line representing ANN predicted values, (b) Plot of ANN.
predicted v* (= 1/p * ) for a fluid previously unseen by the ANN (solid line)
compared with SAFT predicted values (symbols) for three isotherms.
Reprinted with permission from Ref. [94]. Copyright 2020 American Chemi-
cal Society.

coefficient matrix. The trained binary mixture ANN was used as an
initial state for the ternary mixture ANN, allowing the model to be ‘fine-
tuned’ during the training process. As a demonstration of the superior
ability of transfer learning-assisted ANNs, the authors only used 20%
(N = 32) of the ternary mixture dataset for training, reserving the other
80% (N = 128) for testing. The transfer learning-assisted ANN per-
formed significantly better than a randomly initialized ANN of the same
structure for this small training set (R? = 0.86 vs. R? = 0.63). Training
with larger fractions of the dataset resulted in improved R” values for
both ANNs, but the transfer-assisted model consistently performed
better than the randomly initialized ANN. The models presented by Zhao
et al. offer a method to rapidly and accurately predict diffusion co-
efficients for multicomponent mixtures even for systems where rela-
tively small amounts of data exist.

Aniceto et al. used five machine learning algorithms (MLR, kNN, DT,
RF, and GB) to predict the diffusivities of a large range of polar and non-
polar solute molecules in supercritical COz [32]. They used the database
of Vaz et al. (N = 4917) which includes 13 properties of 174 solutes in
supercritical COz [96]. The model was trained using T and pay., as in-
puts as well as the M,,, P¢, and @ of the solute and predicted D as its
output. After optimization and training with 70% of the dataset, the GB
model was found to perform best. It was able to predict data in the
testing set with an AARD value of 2.6%. The trained GB model was
shown to outperform several classical diffusivity equations such as
Wilke-Chang, Lai-Tan, and Dymond-Hildebrand-Batschinski (AARDs of
12%, 26%, and 4.3% respectively). This model is likely generalizable to
previously unseen solutes, although this was not demonstrated by the
authors. The authors have made they model available online [REF 254].

Freitas et al. used GPR and a multilayer ANN to predict the densities
and diffusivities of pure alkanes (n-octane, n-nonane, n-decane, n-
dodecane, and n-hexadecane) at sub- and supercritical conditions from
molecular dynamics modeled datasets (N = 1200) and the NIST stan-
dard reference database [74]. They used T (27 - 627 °C), P (3 -
150 MPa), and the number of carbons in the alkane, Nc as inputs. The
trained GPR and ANN models were able to predict the densities in the
validation set with an R” of 0.999 in both cases. The GPR model was less
accurate when trained using only a fraction (10%) of the training set,
predicting the contents of the testing set with an R? of 0.85 compared
with 0.94 for the trained ANN. Both models were consistently less ac-
curate in the trans-critical region at low pressure (i.e. close to the critical
point). When the models were applied to predict diffusivities the same
drop in accuracy close to the critical point was observed, although the
ANN performed better within this region.

2.1.3. Vapor-liquid equilibria

Some work has focused on using machine learning to predict the
vapor-liquid equilibria (VLE) of fluid mixtures where at least one
component is under supercritical conditions. For instance, Mohanty
used a single-layer ANN to predict the VLE for binary mixtures of su-
percritical CO, and three fatty acid ethyl esters (ethyl caproate, ethyl
caprylate, and ethyl caprate) using T and P as the model inputs [97].
After training their ANN was able to predict the molar fractions of CO; in
the liquid (and vapor) phases with R values of 0.998 (0.835), 0.997
(0.810), and 0.995 (0.882) for ethyl caproate, ethyl caprylate, and ethyl
caprate containing mixtures, respectively.

Alvarez and Saldana used a combination of a multilayer ANN and an
equation-of-state model to predict the vapor-liquid equilibria of binary
mixtures of ionic liquids, and supercritical CO, or supercritical CHF3
[92]. First, they used an ANN to predict the activity coefficient at infinite
dilution, y™ for a range of organic, aqueous, and ionic liquid solutions,
including 283 different solutes and 65 different solvents, totaling 1567
data points, covering. a range of temperatures between 288 and 363 “C.
The input parameters for their ANN were temperature, the residual part
of the activity coefficient (8 parameters calculated by using the
conductor-like screening model-segment activity coefficient (COSMO--
SAC) model), the combinatorial contribution to the activity coefficient
(2 parameters calculated using the Staverman-Guggenheim model), and
the solute-solvent volume ratio. The trained ANN was able to predict the
infinite dilution activity coefficients with an average MSE of 0.056 on
the test dataset (8% of the total dataset containing 126 binary systems).
The authors then used the ANN-predicted values of y* for binary mix-
tures featuring supercritical CO2 or CHF3 were then used to calculate
Henry's constant. This was then used in turn to calculate the
vapor-liquid equilibrium using the perturbed-chain statistical associ-
ating fluid theory (PC-SAFT) equation-of-state. The calculated phase
behaviors of mixtures of supercritical CO; or CHF3 with ionic liquids
matched closely at pressures closer to Pc (< 15 MPa) although diverged
increasingly above this, whilst qualitatively describing the shape of the
vapor-liquid equilibrium. The authors suggest that using modified ver-
sions of the PC-SAFT model for associating substances could correct
these deviations. Because of the wide range of binary mixtures in the
training set, this ANN model is likely generalizable to other ionic liquids
unseen by the ANN, although this was not demonstrated in the paper.

The research group of Sun has produced several studies imple-
menting machine learning as a replacement for flash (or phase equi-
librium) calculation in the prediction of vapor-liquid equilibria for
multicomponent mixtures [98-100]. Flash calculations are important in
the calculation of equilibria in separation processes and multiphase
mixtures and are important in compositional reservoir simulations.
Equation-of-state flash calculations are extremely computationally
expensive, acting as a bottleneck to these techniques. Hence, there is
interest in the implementation of machine learning to improve the speed
of these calculations without compromising accuracy. In their most
recent study, Zhang et al. used a DNN to predict equilibrium constants in



five-, eight-, and fourteen-component reservoir fluids for which 40,401
data points had been generated by flash calculation [100]. Their DNN
used T; P; overall molar concentration, C; and T¢, 4, P, @, and ¢ of each
component as inputs and predicted the number of phases and molar
fractions in the vapor, ¢spq, (mol. %), and liquid phases, ¢nquiq (mol. %)
as outputs. After training (90% of the dataset) the DNN was able to
predict the contents of the training set (10%) with a relative MSE of
~2%. The DNN was able to correctly molar compositions of the liquid
and gas components under subcritical conditions and identify the tran-
sition to supercritical conditions for the five-component oil. This model
has the potential to be made generalizable to a greater range of oil
mixtures.

2.1.4. Interfacial tensions

Zhang et al. used a two-layer ANN to predict the interfacial tension,
7, of CO3 ~ brine mixtures in sub- and supercritical conditions [86]. The
authors gathered 1712 data points from the literature covering both
pure CO», and impure CO; containing CH4 and N3 (0 - 80 mol. %) and 5
solutes: NaCl, KCI, NazSO4, MgCly, and CaCly. Their ANN used T, P, ¢,
(mol. %), and gicyy, (mol. %), as well as [Na*], [K*], [Ca®*], and [Mg®")
as inputs. The trained ANN significantly outperformed empirical cor-
relations and provides accurate reproduction of y for pure CO;-H;0,
pure COz-brine, and impure CO; systems, with only a 3.4% error in the
testing set. Their ANN model appears to be generalizable to other
monovalent salts containing Na~ and K*, and bivalent salts containing
Cca®* and Mgz’, but this was not demonstrated.

2.1.5. Bubble and dew points

Lashkarbolooki et al. used a single-layer ANN to predict the bubble
and dew point pressures of binary CO, mixtures containing n-pentade-
cane, 2-ethyl-1-butene, decafluorobutane, 1-hexene, n-hexane, or n-
butane [72]. The authors gathered 316 data points from the literature
covering 199 bubble points and 117 dew points with T and P in the
ranges — 10 — 120 °C and 0.18 - 12.06 MPa, respectively. Their ANN
used properties of the non-CO2 compound as inputs; reduced tempera-
ture, T, (= T/T.), Pc, o, and ¢ep, (in the liquid and gas phases) as inputs.
After training (N = 237) and optimization, the ANN was able to predict
the contents of the test set (N = 79) with an R? value of 0.992. The ANN
outperformed an equation of state models in all instances. Because this
model is trained using the co-solvent's characteristics, it is likely
generalizable to other co-solvents unseen by the model, although the
authors do not demonstrate this.

2.1.6. Activity coefficients

Winter et al. have recently developed SPT-NRTL, a natural language
processing model to predict activity coefficients of binary mixtures in
the liquid phase [ 101]. Their model uses T, ¢b,_and the characters of the
SMILES codes of each molecule as inputs to predict NRTL (non-random
two liquid) model parameters which can in turn be used to predict ac-
tivity coefficients, In(y), and VLEs. The authors collected data from on
concentration-dependent activity coefficients from Brouwer et al. [102]
(20,870 data points covering 349 solvents and 373 solutes) and the
Dortmund Data Bank [103] (77,053 data points covering 506 sub-
stances). They pretrained their model using a synthetic database con-
taining 13 million data points which substantially improved
convergence time and learning rates compared to a randomly initialized
model. Their trained SPT-NTRL model was able to predict binary ac-
tivity coefficients with a mean absolute error between 0.1 and 0.2 (water
and carboxylic acids produced errors between 0.4 and 0.5). Its gener-
alizability was demonstrated by predicting previously unseen com-
pounds with mean absolute error of 0.2. The trained VLE model was
accurate to within + 1 °C. The VLE model was extrapolated to predict
liquid-liquid equilibria (LLE), without training on LLE data, the pre-
dicted LLEs were less accurate than the VLE model, but were surprisingly
accurate given the lack of directly comparable training data.

2.2. Solubilities, miscibilities, and supercritical extractions

The use of supercritical fluids as a solvent is one of their most
important applications. Supercritical fluids have a range of attractive
solvent properties, such as low viscosity, high diffusivity, and low sur-
face tensions which make them well suited for the extraction of com-
pounds. The most commonly used supercritical solvent is supercritical
CO2 which is cheap and safe to use. The low polarity of CO2 means that
co-solvents such as methanol and ethanol must be used to dissolve polar
species.

2.2.1. Solubilities in supercritical solvents

One of the most common applications of machine learning in the
domain of supercritical fluids research has been the estimation solubil-
ities of individual compounds in supercritical fluids (and the solubility
of supercritical fluids in other fluids). These studies vary greatly in
complexity, with most studies using machine learning to estimate the
solubility of individual compounds in a single supercritical solvent over
a range of pressures and temperatures. Examples of such studies are
given in Table 2 [104 130], although receive no further discussion in
the main text. A more interesting approach is the use of machine
learning to study the solubility of families of compounds in supercritical
solvents, using the physical properties of the solute as inputs for the
model. Such studies have the potential to create models with broad
generalizability applicable to a wide range of solutes, although most
examples in the literature do not demonstrate this [131,132]. Such
models have the potential to estimate molecular solubilities for a broad
range of molecules and solvents from their properties alone.

A recent demonstration of the generalizability of such approaches
was published recently by Aminian and ZareNezhad, who used an ANN
to estimate the phase behavior of supercritical CO; and fatty oils [121].
Using temperature, T; pressure, P; alongside fatty acid properties (crit-
ical temperature, T.; and critical pressure, P, and their acentric factor,
) as inputs. 678 data points were collected from the literature covering
33 different fatty acids. Their trained ANN model estimated the molar
fractions in the testing set (number of data points, N = 120) with a co-
efficient of determination, R* of 0.995, and lower average absolute
relative deviations, AARDs than equation-of-state models for all data-
sets. Importantly, they then demonstrated the generalizability of their
trained model by estimating liquid-phase CO5 fraction ¢g, (mol. %) for
four fatty acids previously unseen by the neural network with AARDs
between 5.4% and 21%. Suggesting that this approach would be well
suited to further estimations of the solubilities of many other compounds
in a wide range of supercritical fluids.

Another recent example of a demonstrably generalizable model is
that of Osada et al., who used machine learning to estimate the solubility
of organic compounds in high-temperature H,O (100-250 “C) [132].
They took experimental conditions (temperature and solvent density)
alongside 194 molecular structure descriptors as regression analysis and
estimated the solubility of organic compounds in H20. Published solu-
bility data from 1280 organic compounds at room temperature and
ambient pressure were used alongside 54 data points for 10 organic
compounds at high temperature and above saturation pressure to train
the neural network. 80% of this dataset was used to train the machine
learning model and 20% was used for testing. Regression analysis was
performed using OLS, Lasso, and SVR, as well as a model which com-
bined Lasso and SVR analysis (Lasso + SVR). Their Lasso + SVR method
performed better than other regression techniques, producing an R of
0.92 and a root mean square error, RMSE of 0.58 on the test data set. The
generalizability of the model was demonstrated on an additional 54 data
points for 7 organic compounds which had not been previously seen by
the model. The model was able to estimate the experimental values in
this verification dataset with an R? of 0.95 and an RMSE of 0.46,
demonstrating that it could be to any organic molecule to estimate its
solubility in Hy0O between 100 and 250 “C.
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Table 2

Supercritical solubility and miscibility studies.

Extracted Compound Solvent P (MPa) T(O Input P. Esti dPp. D: Train-Valid. Comment
(+ cosolvent) Min  Max Min  Max Size - Test Split
(%)
a-pinene 5cCOy 3 10 40 55 PT Solubility 65 59-16-20 Single solu
(Paotine)
Lenalidomide £cC0Oy 12 30 35 65 T, P, psccon Solubility 28 79-0-21 Single solu
(sgomune)
Salsalate, decitabine £cCO;, 12 40 35 65 TP Solubility 64 84-0-16 Individual
(Pantine)
Tamoxifen 5cCOy 12 40 35 65 TP Solubility 32 84-0-16 Single solu
(Pctue)
Busulfan 5¢CO2 12 40 35 65 e Solubility 32 100-0-0 Single solu
(Puotune)
Fenoprofen 5cCOy 15 40 35 65 TP Solubility 32 84.0-16 Single solu
(Paotine)
Chloroguine 3¢CO, 12 40 35 65 TP Solubility 32 66-0-33 Single solu
(Pantine)
Busulfan £cCO;, 12 40 35 65 TP Solubility 32 62-0-38 Single solu
(Pantine)
Salsalate 5cCOy 12 40 35 65 P Solubility 32 81-0-19 Single solu
(Pctue)
Oxaprozin 5cCOy 12 40 35 65 P Solubility 32 69-0-31 Single solu
(Puotune)
Oxaprozin 5cCO, 12 40 35 65 P Solubility 32 84.0-16 Single solu
(Paotine)
8 polymers £cC0Oy 7.4 44 177 100 TP Solubility 327 70-15-15 5c00; in se
(¢co,)
Anthracene $cCO, 10 30 35 55 P, T, co-solvent, Solubility 60 50 - 20 - 30 Single solu
(+ Ace, EtOH, Peomlvens (Paotine)
cyhex)
Disperse dyes 5cCOy 159 301 80 120 T, P, Te, P, paye, My, v Solubility 48 70-15-15 Individual
(+ EtOH) (kgm™)
Anti-cancer drugs 5c¢CO4 12 40 a5 65 T, P, Pccon My Solubility n 64-16-20 Several sol
(Puotune)
46 organic 3¢CO, 7.5 315 1 11 T, P, 200 paramelers Partition coefficients 447 90-10-0 Several sol
compounds (+ Hy0)
Polycyelic aromatic 2cC0, 8 13.3 35 60 P, T, o(T\P), Eyomo, it Solubility 89 79-21-0 Several sol
hydrocarbons N (hastine)
Solid aromatic compounds $cCO, 1.5 44.8 35 70 TP, T, P, w0 Solubility 198 95-0-5 Several sol
(Pctue)
Organic solutes 5cCOy 8 355 25 65 T, P, paccon Tew Pey w0 Solubility 439 70-15-15 Several sol!
(Puotue)
Solid organic 5cCOy 3.6 46.75 35 250 T, P, Te, Pe, v'(T.P), Solubility 795 80-0-20 Several sol
compounds (Pustine)
Acids $¢C0, 7 30 28 75 T, P, pKy My, Ne, Ny Solubility 180 86-0-14 Several sol
(kgm™)
Bloactive compounds £cCO, 239 563 0 90 T, P, puccon My, Ty Solubility 1074 100-0-0 Several sol
(Pantine)
Non-steroldal anti- £cCO, 8.9 40 30 65 T, P, puccon My, Ty Solubility 254 not specified Several sol
inflammatory drugs (Pactune)
23 aromatic and 5cCOy 7.8 200 35 95 TP Te Pe, Solubility 970 66-0-33 Several sol
aliphatic organic (Pactuse)
compounds
11 alcohols, ketones, 5cCOy 0.01 57 10 100 T,P, Te, P, Solubility 810 80-0-20 5c002 solu
and glycol ethers (dco,) properties.



Table 2 (continued )

Comment

Train - Valid,
Test Split
(%)

Dataset
Size

Input Parameters Estimated Parameter

T(O
Min

P (MPa)
Min

(+ co-solvent)

Solvent

Extracted Compound

[129]

scCO2 solubility in several solvents using

properties as inputs

70-0-30

728

Solubility

(ea)

T, P, Te, Po My, 00

25 100

100

0.01

14 ionic liquids

[130]

5cC02 solubility in several solvents using

70-15-15
properties as inputs

1386

Solubility

(o)

T, P, Te, Po, M

100

100 177

0.1

20 ionic liquids

[131)

Generalized to 3 oils not in the training set.

70-15-15

673

den, in gas and liquid

P, T,Tc, Po,w

30 33 211

0.7

5¢CO;

Fatty oils

lizable

Generalized to 7 organic compounds not in the

training set.

[132)

64 -16 - 20

1290

Solubility
(mol-kg?)

194 params.

T, pro,

100 250

H0

organic compounds

Demonstrated as generalizable

P, pressure; T, temperature; ¢,, fraction of x; »*(T, P), molar volume; w, acentric factor; M,,, molecular weight; T,,, melting point, T¢, critical temperature; P, critical pressure; pK,, equilibrium constant; V,,,, molecular

, number of double bonds; Egoma, energy of highest occupied molecular orbital;Ace, acetone; cyhex, cyclohexane; EtOH, ethanol; scCO;,

volume; g, dipolar moment; N¢, carbon number; Ny, hydrogen number; N

supercritical CO,, scH,0, supercritical H;0

2.2.2. Supercritical fluid extractions

Another closely related application of machine learning is the esti-
mation of supercritical extraction yields of natural product. The
extraction of products from natural sources using supercritical CO2 can
yield products free of organic solvents at low temperatures with low
operational costs [123,134]. Thus, there is great interest in the optimi-
zation of these processes using novel approaches such as machine
learning. Machine learning analysis of supercritical fluid extractions has
been mostly limited to extraction yield prediction of single products
under a limited range of conditions, with no generalizability to other
products. In the papers reviewed in this section, machine learning ap-
proaches are often reported to perform better than other multivariate
analysis techniques, such as response surface analysis, although a small
number of the studies conclude the opposite, For instance, recently
Pavli¢ et al. predicted optimized conditions for the extraction of rasp-
berry seed oil with higher precision than the values calculated from
response surface optimization [135]. A summary of similar recent su-
percritical extraction studies utilizing machine learning is given in
Table 3, detailing the extraction sources, extracts, solvents, and ranges
of conditions explored (135 159],

2.3. Chemical reaction optimization

Supercritical fluids have found application in a wide range of
chemical syntheses. Two particularly important applications are the
production of biodiesel by supercritical transesterification and the syn-
thesis of fuel gases by supercritical water gasification. Machine learning
has found application in the improvement of yield in both of these ap-
plications in recent years.

2.3.1. Biodiesel production by supercritical transesterification

Biodiesel consists of mixtures of fatty acid alkyl esters which are
prepared from biologically sourced oils [160]. Supercritical biodiesel
production is typically performed through the transesterification of
triglycerides or the esterification of fatty acids with an alcohol. In the
case of transesterification, the use of supercritical alcohols has become
an area of active research because it offers several advantages over other
approaches which often require high-energy input, expensive
short-lived catalysts, long reaction times, and pretreatment of the pre-
cursors. By comparison, supercritical transesterification of
triglyceride-containing oils in alcohols offers a rapid, catalyst-free, more
energy-efficient synthesis that is compatible with a wide range of pre-
cursors [160]. First proposed by Kusdiana and Saga in 2001 [161], in
their protocol, methanol and triglyceride-containing oils were mixed
and brought to supercritical conditions. As the methanol becomes su-
percritical, there is a rapid drop in its dielectric constant resulting in the
two phases becoming miscible forming a single phase. Methanol mole-
cules then attack the carbons located in the carbonyl groups of the tri-
glycerides, resulting in decomposition into a free fatty acid methyl ester
(‘biodiesel’) and a diglyceride (Fig. 6) [162]. This process can then be
repeated for the resulting diglyceride, and then the resulting mono-
glyceride, until only a glycerol molecule and three free fatty acid methyl
esters remain. For complete conversion of the precursor oil to free fatty
acid methyl esters, either a large molar excess of methanol or long
residence times (close to the stoichiometric ratio) are required. The use
of other solvents, co-solvents, and catalysts have been proposed as
routes to further improve these approaches [ 160]. Machine learning has
been deployed as a route toward optimizing this process further.

The first study to use a single layer ANN to predict biodiesel yield via
supercritical transesterification was by Farobie et al. [ 1621, They stud-
ied the transesterification of canola oil into biodiesel in supercritical
methanol/ethanol using a spiral flow reactor. The ANN inputs were T
(270 -400 °C), P (10 - 20 MPa), ¢ (2.4 - 4.8 vol%), and reaction time,
t; (3-30 min). The yield of free fatty acid methyl esters (in methanol)
and free fatty acid ethyl esters (in ethanol) measured using gas
chromatography-mass spectrometry were used as outputs. Their dataset
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Table 3

Extractions from natural sources.

Source Extracted Compound  Solvent P (MPa) T(C Input Estimated Dataset Train-
(+co- Parameters Parameter Size Valid.
solvent) Min - Max - Min - Max Test (%)

' Seed oil 5¢CO; 25 35 40 60 P, T, dy Qoo Yield 19 60 - 20 - 20

Rubusidaeus L.

Black pepper Essential oils 5cCO;y 15 an 30 50 P, T, ty, dg, Qeoz Yield 24 50-25-25
Piper nigrum

Aniseed Essential oils 35¢CO; 8 18 30 30 P, tg, Qco, Yield 369 60 - 20 - 20
Pimpinella anisum

Passion fruit Seed oil 35¢CO; 17 33 47 63 P T, 1y Yield 16 70-0-30
Passifiora edulis

Diplotaenia Essential olls 5¢CO; 101 304 35 75 P, T, 1y, Vageon Yield 42 62-14-24
Diplotaenia (+MeOH)
cachrydifolia

Green tea Epigallocatechin 5¢CO; 10 30 40 60 P T, ta, Quon Yield 31 67-0-33
Camellia sinensis gallate {+EtOH)

Green tea Epigallocatechin 5cCO;y 10 an 40 55 PT, 1y Yield 62 60-8-32
Camellia sinensis gallate {+EtOH)

Spearmint Spearmint oil 5cC0; B.S 12 38 50 P, T, 14, dy, Qeoz Yield 405 75-0-25
Mentha spicata

Perslan rose Quercetin 5¢CO; 10 30 35 55 P, T, Iy Qoo Yield 31 34-33-33
Rosa damascene (+EtOH)
Chavir Essential olls 5cCO; 12 20 35 55 P, T, 1 dp, Yield 31 Not
Ferulago angulata specified
Kuntze Essential oils 5¢CO; 12 24 35 55 P, T, Vaou, Qeoz Yield 30 70-15-15
Launaea acanthodes (+EtOH)

Bertoni Stevioside, 5cC0y 7.5 375 25 65 P, T, $eron Yields 16 70-15-15
Stevia rebaudi Rebaudioside-A, (+EtOH)

Other phenols

Sage Essential oils 5¢C0;, 10 30 40 &0 P, T, 1y, Qooz Apparent 17 85-0-15
Salvia officinalis solubllity

Annatto Seed oil 5¢CO; 5.7 193 25 60 P, T, $ooas Peom. Equilib. Yield 40 60 - 20 - 20
Bixa Orellana (+EtOH) Type

Mexican prickly poppy Seed oil 5¢CO2 20 35 60 100 P, T, dp Qooa dhmos Phase equilibria 46 70-15-15
Argemone Mexicana (+EtOH)

Tomato paste waste Lycopene, 5cCO;y 10 an 20 100 P, T, 14, Qooas deon Yields 81 90 -0-10
Solanum lycopersicum fcarotene {+EtOH)

Ulan Ulan Coumarin 5cCO;y 35 75 152 345 PTy Yield 20 80 -0-20
Cuscuta reflexa (+MeOH)

Myrobalan Various $¢CO, 10 175 40 60 P.T, 1y, Quo pion Yields 30 70-15-15
Terminalia chebula phytochemicals (+ELtOH-

H,0)

Pomegranate Pomegranate oll scCOy 20 40 40 60 T Yield 37 70-15-15
Punicagranatum L.

Licorice Glycyrrhizic acid 5¢CO; 10 34 45 85 P.T, Quoa ta Yield 65 81-11-8
Glycyrrhiza glabra (+H20)

Galega Galegine sc¢COy 35 55 10 30 P, T, Qeon ta Yield 31 71-16-13
Galege officinalis L.

Coriander Seed oils 56CO, 10 20 40 70 P. T, Qeoz Yield 21 70-15-15
Coriendrum sativum L.

Aniseed Seed olls 5¢CO; 8 18 30 30 P, Qcon g Yield 369 75-0-25
Plmpinella anisum

Gynura Varlous 5cCO; 18 24 60 70 P, T, $vizo Yield 20 70-15-15
Gynura procumbens phytochemicals (+EtOH-

H.0)

Sugarcane bagasse Lignin, Glycose, 5600, 7.5 30 35 100 P, T, deron Yields 12 70 -0-30

Sacchanum officinarum  Xylose (+EtOH)

EtOH, ethanol; MeOH, methanol; scCO;, supercritical CO,

P, pressure; T, temperature; 3, dynamic extraction time; Q, flow rate; d,, particle diameter (after milling); ¢, fraction of x; V,, volume of x;



(N = 42) was divided into training (N = 36), testing (N = 3), and vali-
dation (N = 3) sets. Their ANN predicted the contents of the test set with
an R? of 0.998 in both ethanol and methanol. These conditions were
observed to produce biodiesel from canola oil with ~100% yield.

The dataset generated by Farobie et al. has been revisited by the
group of Baghban [164,165], who have used alternative machine
learning models, such as the ANFIS and LSSVR approaches which pre-
dicted the yields in their test datasets with R* values of 0.998 [164] and
0.996 | 164] respectively. Farobie and Hansanah also demonstrated the
use of the same ANN in predicting yields in the transesterification of
canola oil in supercritical tert-butyl methyl ether [166]. Using T (200 -
500 °C), P (6-15 MPa), t, (3 - 15 min), and ¢, (2 - 4.8 vol%) as inputs,
their ANN predicted biodiesel yields in the testing set with an R of 0.97.

Sarve et al. used a single layer ANN to predict yields of biodiesel from
mahua (Madhuca indica) oil using supercritical ethanol with CO; as a co-
solvent [ 167]. The presence of CO; decreases T¢ and P¢ of ethanol [ 1681,
They used T (250 - 350 “C), P (10 - 50 MPa), £, (10 - 50 min), and ¢ (3
~ 6 mol. %) as input variables and the free fatty ethyl ester yield as
determined by gas chromatography-mass spectrometry as the outpul.
The ANN was able to predict yields in the unseen testing data with an R*
of 0.87. By comparison, response surface analysis produced an R? of 0.66
in the same dataset. Optimum conditions of T = 304 °C, P = 4 MPa, t,
= 36 min, and ¢i;; = 3.4% were predicted to produce a free fatty ethyl
ester yield of 95.08%. This was experimentally found to be 97.42% close
to the output value and above the minimum free fatty ethyl content for
use as biodiesel of 96.5% (EN 14214 [169]).

Srivastava et al. used a single layer ANN coupled with genetic al-
gorithm optimization to predict conditions for the transesterification of
microalgae oil to fatty acid methyl ester (biodiesel) using supercritical
methanol [ 170]. They cultivated microalgae at a large-scale (100 L) and
extracted the non-polar/lipid components. For the transesterification, a
methanol - microalgae oil (¢ = 2.2 - 6.3 vol%) mixture was brought to
supercritical conditions (T = 240 - 300 “C) with a reaction time of (f; =
15 — 60 min). The fatty acid yield was then calculated using nuclear
magnetic resonance spectroscopy and gas chromatography-mass spec-
trometry. The ANN was able to predict data in the testing set with an R
of 0.97. A globally best-optimized condition generated by a mixture of
an ANN and genetic algorithm for supercritical methanol trans-
esterification predicted that T = 285.2 °C, t; = 26.5 min, ¢ = 4 vol%
would yield a conversion efficiency of 99%, this was found experimen-
tally to be 98%. Furthermore, the synthesized biodiesel was found to
have similar properties to international standards on biodiesel, making
it suitable for commercial use (ASTM D6751 [171] and EN 14214
[169]).

Selvan et al. used a single-layer ANN coupled with a genetic algo-
rithm optimization to predict the biodiesel yield from the supercritical
methanol transesterification of Aegle marmelos oil [172]. They used T
(230 - 350 °C), ¢hoi) (2 - 4 wt.%), and ¢, (5 - 25 min) as inputs. They were
able to predict the contents of the testing set with an R” value of 0.9998.
Optimization of the ANN using a genetic algorithm predicted optimal
synthesis conditions of T = 325.47 °C, ¢ = (2.4 wt%), and ¢,
= 22,35 min, The ANN model output a yield of 1.01 for these conditions,
which experimentally produced a yield of 0.984 (with an absolute dif-
ference between the output and experimental result of 0.027) demon-
strating the accuracy of the ANN model. The synthesized biodiesel was
found to comply with the ASTM D6751 specification [171].

These studies have all shown potential in the prediction of biodiesel
vields and as platforms for the optimization of biodiesel production.
However, published results have only focused on using machine
learning to maximize yield, this is somewhat redundant given that
several studies already report 100% yields. Other forms of optimization
should be prioritized, such as making the process greener and lowering
costs, through reductions in energy consumption by using lower tem-
peratures and reaction times.

2.3.2. Supercritical enzymatic interesterification

A related process to supercritical transesterification is that of su-
percritical interesterification, where the fatty acids in a mixture of tri-
glycerides are rearranged by breaking and reforming the ester bonds
connecting the fatty acids to the glycerol moiety (Fig. 7). This has
application in domains such as food science, where there is active in-
terest in controlling the fatty acid content of food ingredients, such as
cocoa butter.

Shekarchizadeh et al. used a multilayer ANN coupled with a genetic
algorithm to predict and optimize the production of cocoa butter analog
via enzymatic interesterification of camel hump fat and tristearin in
supercritical CO, [173]. Cocoa butter increasingly faces supply limita-
tions and growing prices, leading to interest in the development of
alternative products. The fatty acids in camel hump fat are predomi-
nantly palmitic, stearic, and oleic acids. By comparison, 70% of cocoa
butter is comprised of three triacylglycerols (1,3-palmitin-2-olein (POP),
1-palmitin-2-olein-3-stearin (POS), and 1,3-stearin-2-olein (SOS)).
Camel hump fat is comparably deficient in stearin containing fatty acids,
hence to produce a product similar to cocoa butter, interesterification
much be performed with a triglyceride featuring stearin in excess.
Hence, they interesterified the camel hump fat alongside tristearin (SSS)
using thermomyces lanuginosus 1,3-specific lipase (added at 10% weight
of substrate). Their ANN used T (30 - 70 "C), P (3 - 31 MPa), ¢sss (11 -
66 Wt%), ¢h.0 (0 - 20 wt%) and ¢, (1 -7 h) as inputs to predict the yield
of POP, POS, and SOS after interesterification as determined by
high-performance liquid chromatography. After training on all data
available (N = 32), the trained model was able to predict the POP, POS,
and SOS yields of a previously untested set of experimental conditions
with errors of 0.5%, 0.8%, and 1.3% respectively. A genetic algorithm
was then used to optimize the synthesis to produce a triglyceride
composition close to that of cocoa butter. The genetic algorithm pre-
dicted that conditions of T = 40 "C, P = 10 MPa, ¢higiearin = 37.5 Wi,
.0 = 13 wth, and ¢, = 4.5 h would produce POP, POS, and SOS
fractions of 24.55%, 43.65%, and 31.80% respectively (c.f. ¢pop =
23.82 wt%, dpos = 44.81 wit, and ¢hsos = 31.37 wt% for natural cocoa
butter). Although these conditions were not tested by the authors.

2.3.3. Supercritical water gasification

Supercritical H,O gasification is a thermochemical process that uses
supercritical HoO as a reaction medium and reactant in the processing of
organic waste to produce fuel gases [174,175]. It offers a route to pro-
cess waste from a large number of sectors (municipal, agricultural, in-
dustrial, and forestry waste, as well as wastewater) into high-quality fuel
gases at a lower temperature than traditional gasification with low tar
production [ 176-180]. The gasification of organic waste by supercritical
H,0 occurs through a complex set of concurrent reactions which include
(but are not limited to) [1811:

Hydrolysis

CyHyOy + (n = y)-H20 = n-CO + (n -y + Y2-m)-Ha

C,H,0, + 21 —y)H0 = nCO; + 20—y + Yam)H;

Methanation
CO + 3:H; «— CHy + H;0
CO; + 4-Hy «— CHy + 2-H20
Water-gas shift reaction
CO + Hy0 «— CO; + Ha

Water is an active participant in several of these reactions, as well as
being the solvent, meaning that H; is generated from the solvent
alongside the organic components. This process can be performed with
and without catalysts. The development of supercritical HO gasification



o (o]
OJL R, H__ _CH, JL
O\A/ OT Ry CH,0H

R
Y — = W
o 0 L
Triglyceride @O o
(o]
HC. @ o
%) og,

(o] ‘Bnodvesel'

is likely to prove extremely important as a green technology for the
production of fuel gases and waste management.

Several researchers have now shown that machine leamning ap-
proaches can be used to accurately predict gas yields of data collected
from the literature on supercritical H»O gasification of solid waste
validated by unseen data [182-186], simulation [187], or further
experimentation [188], These typically use reactor conditions (T, P, t,
Peolvent) and feedstock composition (i.e., elemental composition, as well
as water, ash, and volatile content) as inputs to calculate the yields of
various gases of interest (typically Ha CO, CO5, and occasionally CHy)
[189,190], These studies have shown that a wide variety of machine
learning approaches can be effectively trained on datasets concerning
supercritical H;0; these approaches include ANNs, GB, GPR, SVR, DT,
RF, and AB supervised learning models [182-186,188]. These models
can accurately fit the pre-existing datasets, but are not typically then
used to predict optimized conditions in the specific system studied or
shown to have any generalizability beyond it.

Other authors have attempted to demonstrate that this is possible.
For instance, recently Li et al. have produced multiple studies imple-
menting machine learning in the prediction and optimization of super-
critical HpO gasification of organic wastes [191-193]. They have
approached this through two machine learning approaches; multilayer
ANNs [192] and GB [191.193].

In the case of the GB approach, Li et al. studied the sub- and super-
critical Hp0 gasification of organic waste, the authors collected data
from the literature, collecting 295 data points from 29 peer-reviewed
papers [191.193]. This data was processed using the GB approach to
predict Hz, CHs, CO,, and CO yields (molkg!) during gasification.
Organic waste composition (¢ (22.1 - 65.5 wt%h), ¢y (2.1 — 7.3 wth),
dn (0 — 7.3 wt%), do (0.2 — 54.8 Wt36), dash (0 — 57.8 wt%), and deonid
(0.76 — 30 wt%)), T (200 - 850 °C), P (10.4 — 32 MPa), and t; (2 -
120 min) were used as input conditions. Their trained model was able to
predict the yields of Ha, CH4, CO2, and CO in the testing set with R*
values of 0.93, 0.92, 0.95, and 0.95 respectively, and RMSE values of
1.9, 0.51, 1.3, and 0.29 respectively, demonstrating the accuracy of their
model. The authors then used a particle swarm optimization (PSO) al-
gorithm to optimize the trained GB model and produce optimized
organic waste compositions and gasification conditions. The authors
validated the output optimum conditions using Aspen Plus simulation
software. The difference between the PSO-optimized GB outputs and the
Aspen Plus simulated results were 6% and 5% for CO; and Ha, respec-
tively. The authors then used a combination of their trained GB model
and Aspen Plus to infer a greater understanding of the role of each re-
action parameter in the system and the chemical processes which occur
during supercritical H,O gasification of solid waste,

In the implementation of their multilayer ANN approach, Li et al.
developed a generalized ANN to predict and optimize non-catalyzed,
alkali-catalyzed, transition metal-catalyzed supercritical HoO gasifica-
tion of solid waste [192]. They initially created three datasets; firstly,

o]
Diglyceride

Fig. 6. Reaction mechanism between tri-
glycerides and methanol in supereritical condi-
tions. R;, Ry, and R are alkyl chains. The
methanol attacks the carbon atom of a carbonyl
group leading to the transfer of a methoxide
and the fracturing of the triglyceride into a free
fatty acid methyl ester (‘biodiesel’) and a
diglyceride. The diglyceride can then be reacted
with another methanol molecule to form a
monoglyceride, and again reacted with another
methanol molecule to finally form a glycerol
molecule and three free fatty acid methyl esters.
Reprinted (and adapted) with permission from
Ref. [160]. Copyright 2015 Elsevier.

the 295 data points mentioned above, secondly, an additional 117 data
points covering alkali-catalyzed supercritical Hz0 gasification, and
finally, 75 data points covering transition metal-catalyzed supercritical
H,0 gasification, each of these groupings was treated separately. The
inclusion of catalysts added several inputs to the ANNs including the
catalyst ratio and catalyst descriptors (for alkali salts (equilibrium
constant, pK,; solubility; M,; and alkali metal atomic mass, radius,
valency, ionization energy, electron affinity, and conductivity), and
transition metals (catalyst size, alongside surface area, pore size, and
total pore volume (as determined by Brunauer-Emmett-Teller anal-
ysis)). The datasets for each condition (non-catalyzed, alkali-catalyzed,
and transition metal-catalyzed) were used to train three separate ANNs,
which were able to predict data in the test set with R* values of 0.96,
0.85, and 0.93, respectively. They then combined all the datasets
(N = 527) and trained a single generalized ANN model, which was able
to predict the contents of the test set with an R? value of 0.86. Using the
trained generalized ANN, the authors found that Fe and Fe-compounds
were predicted to outperform more commonly used and more expen-
sive catalysts such as Ni and Ru at catalyzing supercritical H,0 gasifi-
cation of solid waste whilst maximizing Hz yield and minimizing CO,
production. They were also able to predict optimized supercritical H20
gasification conditions for these catalysts. Li et al. have made their ANN
trained with the combined dataset available to the community in a
user-friendly format [194],

Fozer et al. have similarly applied a multilayer ANN to a combined
dataset of both non-catalyzed and NaOH-catalyzed supercritical H,0
gasification of microalgae, which can then be used as feedstock for
biomethanol production [195]. They then used their ANN model to
predict optimized conditions and then performed a life-cycle analysis to
assess the sustainability of these processes. The authors gathered 55 data
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Fig. 7. Reaction mechanism between triglycerides and tristearin during su-
percritical enzymatic interesterification. Either of the fatty acids, R, and R5, are
liberated by the thermomyces lanuginosus lipase as well as a steric acid from
tristearin and exchanged leading to the formation of different triglycerides.



points from 6 publications covering 6 different feedstocks, They used T
(380 - 700 °C), P (1 - 30 MPa), t, (2 - 60 min), ¢ngon (0 — 5 wtdd),
Phiomass (1~ 30 wt’%), and biomass composition (¢h¢; (34 ~ 50 wt%), ¢ (5
- 6.2 wtdh), ¢hy (0.1 — 7.3 wt%), ¢ (19 — 53 wit), and ¢ (0 - 3.7 wt%h))
as input variables and the various gas yields (4., dco, Poon Pcie Pciin
$eas (mol-kg™)) as outputs. After training, the ANN was able to predict
data in the test set with an R? of 0.99. The ANN model indicated that
both non-catalytic and catalytic supercritical HoO gasification were
suitable methods for producing syngas for methanol production. They
then selected two highly performing conditions for the non-catalytic and
NaOH-catalyzed supercritical H,0 gasification were produced with Hp,
COy, and CO in suitable yields for methanol production (and minimal
hydrocarbon presence), and simulated them using Aspen Plus. Life cycle
analysis of the ANN-guided simulations indicated that the process could
be used for carbon fixing and have negative greenhouse gas emissions.

2.4, Materials synthesis optimization

2.4.1. Solid lipid microparticles

Lopez-Iglesias et al. have recently used an ANN to optimize the size
and polydispersity of solid lipid microparticles synthesized by the ‘par-
ticles from gas-saturated solutions’ (PGSS) technique [196]. Solid lipid
microparticles are of interest for biomedical, food, and antimicrobial
applications [197-199]. The PGSS technique offers a solvent-free
approach to produce solid lipid microparticles, by using supercritical
CO2 to melt and solubilize phospholipids, before atomization into par-
ticles. supercritical CO; depresses the melting point of the phospholipids
in this process, lowering the melting point of glyceryl monostearate from
61 °C to 52 °C by varying the pressure between ambient and 13 MPa.
This is advantageous because it reduces energy usage during the process
and ensures the rapid solidification of the particles after atomization.

An ANN was used to predict the optimum conditions for producing
solid lipid microparticles via the PGSS technique, using atomizer nozzle
diameter, temperature, and pressure as inputs and mean particle
diameter, and fine particle fraction (%) as outputs. For each set of
conditions explored, mean particle size and fine particle fraction were
characterized. Variable modeling was carried out using an ANN and
fuzzy logic integrated into neuro-fuzzy software, the results of which
indicated that temperature was the main parameter affecting particle
diameter and that nozzle diameter were the main parameter affecting
the solid lipid microparticle size distribution. Particle diameters were
estimated with an R? of 0.92, whereas the standard deviation of the
diameters and fine particle fraction had relatively poor R values of 0.58
and 0.75 respectively, suggesting that other variables in the system
beyond temperature, pressure, and nozzle diameter should be used as
model inputs. The authors did not demonstrate the accuracy of their
model outside of the training set or use the trained ANN to predict
optimized conditions.

2.5. Supercritical power systems

Supercritical CO3 has in recent years drawn increasing attention as a
next-generation heat transfer fluid for use in power generation [200,
201). When used in a heat engine, supercritical CO; offers a high
Brayton cycle efficiency, because of its high density and specific heat
capacity (relative to gaseous CO;) and small compressibility factor
[202]. COz is inexpensive, safe, and offers increased efficiency in power
systems making it a greener working fluid than many alternatives, The
implementation of the supercritical CO; Brayton cycle power systems
has largely been limited by the high pressures and temperatures
required by the system. Supercritical CO; Brayton cycle power systems
have the potential to improve the heat exchange efficiency in a wide
range of power systems, including coal-fired, gas-turbine, concentrated
solar, and nuclear power plants [201]. Their implementation may prove
to be most important in emerging green technologies such as concen-
trated solar plants, where it could significantly improve their economic

viability [203].

A range of potential supercritical COz Brayton cycles have been
proposed, such as the supercritical recuperated, supercritical reheated,
and supercritical recompression power cycles (Fig. 8) [204]. The most
basic case of a supercritical CO, Brayton cycle is the simple closed-loop
recuperated cycle, consisting of a heat exchanger, turbine, recuperator,
compressor, and cooler. In which CO; is heated, exerts work on a tur-
bine, and waste heat is recovered by the recuperator, followed by the
CO; being cooled, recompressed, and heated by the recovered lost heat.
Reheating cycles add a heating step after the turbine before work is
performed on a second turbine. Recompression cycles have an addi-
tional compressor that recompresses a fraction of the main flow before
the cooler, and reinjects it back into the cycle before heat rejection in the
cooler, improving the efficiency of the cycle. Machine learning has been
recently been applied to the optimization of individual cycle compo-
nents and to accelerate the search for optimized cycle running
conditions.

2.5.1. Heat exchangers

Several of the machine learning implementations in this area have
looked at vertical tubular heat exchangers. These are typically relatively
simple systems that estimate either the wall temperature, T,,, the heat
transfer coefficient, h, or the Nusselt number, Nu (= hL/x) [73,
205-211]. These studies are typically not generalizable and are only
demonstrated to accurately estimate these properties for single fluids
and tube geometries limiting their potential for optimization. They are
normally demonstrated to be more accurate in estimating experimental
data than published empirical models. These studies have been sum-
marized in Table 4,

Saeed et al. have produced several recent studies looking at the use of
multilayer ANNs to optimize the design of supercritical CO, printed
circuit board heat exchangers for use in supercritical CO; power systems
[211,212]. They investigated two heat-exchanger designs, a zigzag
channel, and a C-channel. They parameterized the geometry and used
the parameters as ANN inputs (Fig. 9). This allowed the optimization of
their heat-exchanger designs through coupling with an optimization
algorithm.

In the case of the zigzag channel study, Saeed et al. used a 3D Rey-
nolds averaged Navier-Stokes model to compute the thermal and hy-
draulic properties of a zig-zag printed circuit heat exchanger containing
supercritical CO; close to the critical point in the cool side and H;0 in
the hot side (See Fig. 9 for geometry) [211]. The pre-cooler geometry
was constant throughout the simulations, and properties were calcu-
lated for a wide range of CO2 mass flow rates (Reynolds numbers, Re,
between 2500 and 70,000) and Prandtl numbers, Pr, between 0.7 and 13
(covering nearly all values of P and T used in the supercritical CO;
Brayton cycle). Their ANN used Pr, Re, p, », and thermal conductivity, x,
as inputs, and Nusselt number, Nu, and fanning friction factor, f, were
outputs. 99% of the data in the validation set could be predicted with
90% confidence. When the results of the trained ANN were used in
conjunction with a precooler design and analysis code, the computa-
tional requirements and time were reduced significantly, Requiring only
a single processor on a local machine for 2 - 10 min, compared with 10 -
26 h on a high-performance computation facility for the precooler
design and analysis coupled with a computational fluid dynamics model.
The ANN-assisted code was then used to improve the design of the
precooler by finding precooler operating conditions that avoided the
creation of ‘pinch points” which adversely affect heat exchange.

More recently, Saeed et al. applied the same approach to the opti-
mization of a C-shaped (sinusoidal fins) printed circuit heat exchanger
[212]. These heat exchangers consist of a sinusoidal channel featuring
discontinuous staggered C-shaped fins which repeat longitudinally, with
a pitch, p, and are staggered transversely with a pitch, py, (See Fig. 9 for
geometry). In this study, p;; p: and the channel periodicity, I; and
amplitude, A, were used as inputs. The outputs were Nu; and f from
which the performance of the heat exchanger could be calculated. The
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authors used a 3D Reynolds averaged Navier-Stokes model to calculate
these parameters for 81 different geometries. These were then used to
train the ANN, The trained ANN predicted the contents of the testing set
(N = 13) with an R of 0.996 and 0.994 for Nu and f respectively. The
trained ANN was then coupled to a genetic algorithm to allow optimi-
zation of the C-shaped channel geometry, producing a heat exchanger
design with a higher performance than any of the initially simulated
designs within a few minutes. The machine learning optimized C-shaped
channel heat exchanger outperformed other common printed circuit
heat-exchangers in simulations. This approach towards the optimization
of individual components with power systems offers a route to rapidly
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1¢

auiqin}

Blue lines indicate heat rejection processes, and red lines indicate heat injection

converge on highly efficient designs.

2.5.2. Turbines

Saeed et al. have also applied this approach to the design of turbines
for use in supercritical CO; power systems [ 21 23], The authors generated
600 data points using a 3D Reynolds averaged Navier-Stokes model over
a range of turbine geometries. They parameterized the design of their
turbine in terms of the shroud-to-rotor radius ratio, rg/r; the
hub-to-rotor radius ratio, ry,,,/7y,; and the inlet flow angle, a. These were
all used as inputs to their multilayer ANN alongside the blade-to-fluid
velocity ratio, a, to predict the thermal efficiency #y, and rotor radius,



Table 4
ANN estimated vertical tubular heat exchanger heat transfer characteristics.

Input Parameters Estimated Fluid ML Dataset Train-Valid. Ref,
Parameter(s) Method Size “Test Split (%)
P,QmdH h [¢(s ANN 5895 86-0-14 [73]
Te.P,QmdH T O, ANN 403 100-0-0 [205)
Ta ,Qm d H T €Oy ANN 7313 80-0-20 [206)
P,QmdH T H0 ANN 5280 73-24-3 [207)
TP, Qum d H I, Co/Cpy, Pr , Re, Pr, puipn. puin, and x,ixq ratios Nu, éTym €O, DNN 11539 64 .16 - 20 (208
I, Re, Pr, pyipg, Nu €O, ANN 2646 not specified [209)
Mg, and xixp ratios
Q, m, Re, Bo, x~ h CO, ANN 46 80-0-20 [210])

Nu, Nusselt number; Re, Reynolds number; Pr, Prandtl number; I, specific heat ratio; p;, density; p;, viscosity; x;, thermal conductivity; T, temperature; P, pressure, d,
tube diameter, Q, heat flux riz; mass flux; H, enthalpy; Cp, specific heat at constant pressure; vy, flue gas velocity; G, Cp integrated over the range between the heatsink

wall and Ty; Pr, Pr calculated using C,; Bo*, Buoyancy number; x ', dimensionless axial co-ordinate; 4Ty, T overshoot due to heat transfer deterioration. Subscripts:

in, inlet; fl, fluid; w, wall

. They were able to predict the contents of the testing and validation
datasets with R” values of 0.997 in both cases. They then performed a
multiparameter optimization using the trained ANN and a
multi-objective genetic algorithm, to maximize s while minimizing rr..
Through this approach, they identified three groups of design parame-
ters (min ry,, max ny,, and compromised efficiency) that satisfied their
multi-objective optimization (Fig. 10a). The authors conclude that
higher 7y, should be prioritized because the size of the turbine is small
compared to other components in the power cycle. Simulations of the
geometric parameters optimized for 5y, performed using the multi-
physics package ANSYS showed that the design could maintain effi-
ciencies over 90% over a wide range of turbine rotational velocities
(Fig. 10b&c). This ANN is not generalizable to expanders with different
power outputs, but the use of ANNs in this fashion offers an accelerated
route to find optimized turbine designs without performing a large
numbers of computationally expensive Multiphysics simulations.

2.5.3. Predictions of full-power cycles

Several authors have sought to use machine learning to study the
efficiency of full supercritical CO, Brayton cycles, There are a few ex-
amples demonstrating accurate prediction of experimental [214] and
theoretically modeled efficiencies [215] by machine learning models,
with no attempts at optimization. However, the more interesting
application of this approach is to use the trained machine learning
model to design optimized power systems.

For instance, Diao et al. used both a DNN and a convolutional NN to
predict the performance of supercritical Brayton power cycles under
different operating conditions, focusing on the examples of the recom-
pression and intercooling cycles [216]. They calculated theoretical
performance values for 600,000 randomly selected operating parame-
ters through the use of a thermodynamic model. Their DNN used 16
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Fig. 9. Heat sink channel geometries and geometric parameters investigated by
Saced et al. in Refs. [211,212].

inputs including; the main compressor and turbine inlet temperatures,
T;, and pressures P;: reheating and intercooling pressures, P;; pinch point
temperature differences in high and low T recuperator, AT; ambient
temperature, Tym, power output, W; and the compressor, turbine,
motor, and generator efficiencies (#com, #tury v, and 5g respectively).
The outputs were the thermal efficiency, #m, the exergy efficiency, fex,
and levelized energy cost, LEC. They found that the convolutional NN
outperformed the DNN below 20,000 data points in the training set. The
prediction accuracy of the convolutional NN was 99.6%. They then
coupled the convolutional NN to a genetic algorithm and performed a
multiparameter optimization for nqy, #eyx, and LEC. The optimized model
predicted operations close to the Pareto frontier (optimal condition of
the power cycle), at a much lower computational cost than searching
through large-scale calculations (100,000 x faster).

Mishamandani et al. used RF and SVR to predict the performance of
recuperating, precompression, and reheating supercritical power cycles
[217]. The authors calculated thermal efficiencies for each configura-
tion using thermodynamics generating 80,000 data points for each
condition. For all models they used the temperature of the air, T, (-4 to
40 °C); and the first turbine, Ty, ; (450 ~ 550 “C); the mass flux of the
air, 1, (45 - 55.8 kg-s); fuel, i (4.9 - 9.9 kg-s™'); and €Oy, mcoz (55 -
70 kg's™); and the efficiency of the compressor, 5em (0.8 — 0.89); the
isentropic turbine, #y. 1 (0.85 - 0.9); the recuperator, i (0.86 - 0.96);
and waste heat recovery unit, sy (0.9 — 1) as inputs. In the case of the
reheating model, the temperature of the second turbine, T2 (350 -
450 “C), was also used as an input. Their model predicted the total
thermal efficiency, ny,, as its output. After training, the SVR and RF
models were able to predict the contents of the testing set to within 10%
and 3% respectively, They then coupled both models and the thermo-
dynamic model to a particle swarm optimization algorithm, which
resulted in similarly optimized solutions demonstrating the accuracy of
the machine learning models in predicting the thermodynamic model.
The optimized machine learning model was between 10 and
120 x faster than the thermodynamic model.

The high number of possible configurations, components, and vari-
ables in these systems makes machine learning potentially a very
powerful tool for optimizing their power output and efficiency. As
machine-learning models and more complete data becomes available for
these systems, optimization of the entire system will be possible,
allowing these technologies to mature faster and become competitive
with other power systems than would be otherwise possible.

2.6. Computational fluid dynamics solvers with machine learning

Hydrodynamic phenomena in supercritical fluids are studied
numerically with computational fluid dynamics (CFD) solvers as it
provides easy access to local information (velocity, pressure,



(a) 200 g . (b)
RegionC ;
190 .
3 g
3 $
2w 3
o
g &
& Region B ‘;.j'g
170 Reglon A ot )
e
o
160 ¢ ,.£° - - J
0.7% 08 0.85 09 0.95
Turbine Efficency (1,,)

(€) 54 —
Design point efficiency

3
2
s
92 /
§ 73
E 91 > !/ 0‘.)
’
] ' e 1y 8 20,000RPAM
F] 90 ' - = «q @ 25,000RPM
2 4 1 @ 30,000RPM
ol | n @ 35,000RPM
@ 11 § 40,000RPM
—d— 1} §250,000RPM
88
06 07 08 09 1 1.1

Normalized Mass Flow Rate

Fig. 10. ANN modelled supercritical CO; turbine efficiencies. (a) Optimized efficiencies for a range of rotor radii calculated from a multi-objective genetic algorithm
optimization of an ANN model. (b) Multiphysics simulation of pressure distribution of the on the surface of the optimized hub/rotor geometry. (¢) Simulated off-

design performance of the optimized turbine geometry.
Adapted with permission from Ref. [213]. Copyright 2021 MDPL

concentration...) to complement experiments. For this purpose, it is
necessary to precisely estimate the thermophysical properties of super-
critical fluids. It is in this role that machine learning is primarily
employed. The computational burden of calculating fluid properties for
CFD flow solvers can be reduced through the implementation of ma-
chine learning models for this task.

An ANN was used to predict a range of properties for a single fluid
[77.81,218] or for complex mixtures [219-221]. Supercritical fluids are
known for the high non-linearity of the properties, particularly close to
the pseudo-boiling point. The study of hydrodynamical phenomena in
this region requires very high precision for property estimation. Usually,
property library such as the NIST database [222] offered very good
properties estimation but are very costly. For that, Longmire and Banuti
[81.218] proposed to use an ANN based on NIST properties, to combine
fast calculation and high precision. The ANN are trained using the
PyTorch library [223] on NIST reference data [222]. The only input for
the model was T, and the outputs were p, x, 1, Cp, and Cy. The authors
demonstrate that their ANN significantly reduced computation time and
offers parameter estimates of excellent precision comparable to those
proposed by the NIST library. This method has revealed a physical
mechanism as fine as the deterioration of heat transfer near the
pseudo-boiling line, reminiscent of the phenomenon of boiling crisis
below the critical point.

For CFD simulations involving multi component systems, Milan et al.
developed a DNN for the evaluation of thermophysical properties of the
supercritical fluid flows [219,220], They sought to reduce the compu-
tational burden of solving generalized equations of state for such
problems, which typically require large amounts of computational
power and time, or by using tabulation which requires prohibitively
large amounts of memory. The amount of memory used by the trained
DNN model was around 4-5 orders of magnitude smaller than that
required when implementing a tabulation approach. Analysis of the
computational cost showed that the trained DNN could calculate fluid
properties between 2.4 and 3.7 x faster for the swirl coaxial injector and
counterflow diffusion flame examples respectively, compared to the
baseline computational fluid dynamics case. Hence, the implementation
of machine learning to this problem has been demonstrated to signifi-
cantly reduce the computation time and resource requirements for these
simulations. The predicted fluid properties made by the trained DNNs
were then coupled to a custom computational fluid dynamics flow solver
[224]. Dependent on whether the solver required primitive or conser-
vative variables, the inputs used were P and T, or, p and mass-specific
energy, e, alongside the component mass fractions, ¢, The outputs
were also dictated by the flow solver but included a wide range of
thermodynamic variables, such as P; T; p; ; Cp; 11...etc. (up to 27 in the
most complex example shown). The authors used the calculated flows
for two model systems. Firstly, a gas-centered liquid-swirl coaxial

injector featuring the supercritical turbulent mixing of oxygen and
kerosene (Fig. 11). Secondly, a laminar counterflow diffusion flame,
consisting of a hydrogen/nitrogen mixture featuring 7 species. In both
cases, the results obtained by the CFD—DNN approach are close to
simulations that used properties calculated via computational fluid dy-
namics brute force approaches.

Machine learning has also been used for predicting spatiotemporal
fields inside a supercritical water fluidized bed reactor for coal gasifi-
cation by Xie et al. [225]. They used a recurrent neural network to
predict the complex multiphase flow fields inside the reactor. The pre-
dicted flow fields correlated strongly with those calculated by CFD
simulations. The trained recurrent neural network was hundreds of
times faster than CFD simulation. Despite the training data in this study
being simple 2D simulations, this approach is very promising and will be
arguably more powerful with training data obtained by full 3D
simulations.

Another example concerns the estimation of closure relations for
statistical turbulence model. There is a scarcity of literature concerning
turbulent flow with heat transfer under supercritical conditions. Build-
ing on the work of Ling et al. [226,227], Cao et al. trained a DNN with
direct numerical simulation data, including all necessary physics, to
improve the Reynolds-averaged Navier-Stokes turbulent model [228].
At each time iteration, the DNN model was used to estimate unclosed
turbulence quantities in function of the variable fields estimated by the
CFD solver. This work is a promising as it demonstrates that machine
learning models can satisfactorily complement physics-based turbulent
models especially in supercritical fluids.

2.7. Molecular simulation of supercritical fluids

Techniques such as density functional theory and molecular dy-
namics are highly reliant on the energy functionals and potential energy
surfaces assumed in these models, respectively [229,230]. Machine
learning has been implemented as a route to decrease simulation times
and increase accuracy by using it to model these interactions. The
implementation of machine learning to these modeling techniques has
great potential to estimate the properties of supercritical fluids with
higher accuracy and with lower computation time.

Cats et al. used a non-linear regression model to predict the free-
energy functionals of Lennard-Jones fluids at supercritical tempera-
tures (kgT = 2¢, where kg is the Boltzmann constant and ¢ is the depth of
the Lennard-Jones potential well) from which density profiles, g(r), and
bulk equations of state could be derived [231]. Lennard-Jones fluids are
a suitable model for water under supercritical conditions due to reduced
hydrogen bonding [232]. They used the van der Waals mean-field
approximation containing additional quadratic and cubic correction
terms as their model. The exact forms of the correction terms were



Fig. 11, Density field of kerosene injection into a swirl coaxial injector under
supercritical conditions as calculated using ANN-estimated thermodynamic
variables. The simulation compared favorably to brute force calculations.
Reprinted with permission from Ref, [220]. Copyright 2021 Elsevier,

determined by the optimization of a loss function. They trained their
model using Monte Carlo simulated density profiles under a variety of
chemical and external potentials in 2D. The predicted free-energy
functionals were more accurate than the standard mean-field approxi-
mation at predicting the density profiles and bulk pressure as calculated
by grand-canonical Monte Carlo simulations. g(r) was calculated by their
machine learning model with similar accuracy to the mean-field
approximation. The model trained using planar geometries could be
accurately used with the 3D fluid.

2.7.1. Li- Clion pairs in supercritical H20

Zhang et al. used a DNN to model the potential of i - Cl ion pairs in
high T aqueous solutions [233]. They used the DP-GEN software pack-
age |234] to generate ab initio molecular dynamics training data for
LiCl-H;0 ratios between 1:55 and 20:100 and T between 30 °C and
1130 “C. g(r) distributions calculated from the trained DNN potential for
Li - Cl, Li - O, CI - H, and O - O closely matched ab initio molecular
dynamics simulations and were observed to change with temperature
and density. Several metastable states were identified in the simulations
such as Hy0,, H504, and H;05. Association constants calculated from
the ANN potential were comparable with those observed experimen-
tally, suggesting that this approach could be used where no experi-
mental data exists.

2.7.2. Supercritical hydrogen

Recently, Cheng et al. predicted a previously unobserved supercrit-
ical state for Hy at extremely high pressures (T¢, Pc = 143 °C, 350 GPa)
[235]. They used machine learning to predict the potential energy sur-
faces and interatomic forces between hydrogen atoms. The potential was
output by an ANN trained using electronic structure methods. This
prediction has proved controversial | 236,237 . Karasiev et al. found that
the machine learning potential predicted supercritical state was incon-
sistent with the subcritical behavior calculated in their own large (2048
atoms), and long (10 ps) density functional theory molecular dynamics
simulations [231]. Cheng et al. have disputed this criticism [237], The
pressures and temperatures for this state are experimentally achievable
using approaches such as diamond anvil cells, hence this controversy
could be resolved experimentally [238].

2.8. Autoignition in supercritical water oxidation processes

Sharma et al. recently using several machine learning approaches to
estimate the autoignition characteristics of ethanol in the oxidative
environment of supercritical water within a microreactor [239]. The
modelled microreactors consisted of an inlet supplying oxidizer (Hz0; +
H20) and an inlet supplying fuel (H20 and ethanol). The authors used
homogeneous ignition calculations to generate 20,000 data points (15,
000 in the training set and 5000 in the validation set). This was a
two-step problem, initially a classification problem (did autoignition

occur?) and then a regression problem (estimation of ignition time). For
classification, the authors used logistic regression, DT, RF, SVM, kNN,
AB. Whereas for regression, they used KRR, DT, RF, kNN, AB, and GB.
Inputs for the machine learning models were pressure (22.5-25 MPa),
temperature (350-450 °C), fuel fraction (0.5-4.5 wt%) and oxygen
fraction (0.5-9.5 wt%). In the case of the classifiers, the output was
whether autoignition will occur expressed by a Boolean parameter
[True/False]. In the case of the regressors the output was ignition time,
for the conditions where autoignition occurred. All investigated classi-
fiers were able to predict autoignitions with an accuracy > 95%, with
the RF and SVM classifiers being the most accurate in determining if
autoignition occurred (99.3% and 98.8% accuracy respectively). For the
regression part of the problem, using only the conditions where auto-
ignition occurred, ignition time was predicted with an R* > 0.78 in all
cases, with RF and GB models performing the best (R* = 0.996 and R? -~
0.993).

2.9. Inhomogeneities in supercritical fluids

Some implementations of machine learning have allowed us to build
theoretical models of the nature of supercritical fluids. Ha et al. used a
DNN to directly classify individual molecules within supercritical fluids
as belonging to a liquid-like or gas-like state, based on local structural
changes seen in their molecular dynamics simulations (84,851, They
used machine learning to directly classify liquid-like and gas-like mol-
ecules in the simulated data, based on their local density and number of
nearest neighbors (as defined by Voronoi-segmentation) with 100%
accuracy (N = 21,970,000, Fig. 12a). From these studies, the authors
identified a region of pressures and temperatures extending from the
critical point on either side of the Widom line [240], forming the shape
of a deltoid in which the numbers of gas-like and liquid-like particles
were seen to continually transition suggesting that supercritical fluids
should be viewed as a heterogeneous mixture of liquid-like and gas-like
microstructures (Fig. 12b&c) [84]. These results are consistent with a
number of experimental studies over the last three decades looking at
the inhomogeneous nature of supercritical fluids [241-248],

Furthermore, from their classification, they extracted the fraction of
gas-like molecules, g, and demonstrated its utility as an order
parameter that can be used to derive material-independent scaling laws
for the supercritical state of simple fluids. They were able to calculate
macroscopic properties of the supercritical fluid such as T, and P, from
the results of the classifier despite it only being trained with information
on the local structure of individual particles. They used the machine
learning derived values of 7y to demonstrate that isothermal curves of
bulk density for Ar, CO;, and H;0 were found to collapse to a single
master curve when rescaled using parameters derived from mg. [85].
These results have important implications for our understanding of the
microscopic nature of supercritical fluids, suggesting that they are a
heterogeneous mixture of microstates which dictate their macroscopic
properties.

Recent work has also looked at the inhomogeneous nature of su-
percritical fluids using unsupervised machine learning. Banuti recently
published the hybrid ergodic lattice gas model which can estimate the
macroscopic fluid pressure along the critical isotherm [249]. This model
used classical equation of states to calculate the kinetic and repulsive
pressure components, whereas the attractive component was calculated
by analysis of clustering in an Ising-like 3D lattice gas approach. Clus-
tering within this system was evaluated using DBSCAN, an unsupervised
machine learing algorithm for discovering clusters in large spatial
databases with noise |250]. When the equation of state and machine
learning pressure components were combined, the model outperformed
the Peng-Robinson equation of state for liquids at high density. In
addition, Banuti identified three distinct stages of molecular behavior
along the isotherm, cluster formation, cluster consolidation, and su-
percluster growth. The supercritical state belongs to the cluster
consolidation regime, where clusters merge together to form a single
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supercluster. He also demonstrated that the results of his model could be
used as the basis for an alternative derivation of the attractive term of a
van der Waals-type equation of state.

2.10. Supercritical CO2z geosequestration and CH4 extraction

Meng et al. have used a single-layer ANN to study the absorption
behavior of supercritical CO, onto three types of coal for applications in
the geosequestration of COz and CH4 extraction from deep coal beds
[2511, Their ANN estimated the excess CO, absorption onto three types
of coal using T, P, and the physicochemical parameters of coal as inputs
and was trained using literature data. The model was limited by the
availability of data but was able to accurately estimate the absorption
behavior of supercritical CO; onto the three types of coal at a single
temperature of 53 “C.

In the context of geological CO; storage, multiphase flow simulations
are currently used to estimate the reservoir performance. Wu et al.
proposed a DNN model to estimate the CO, saturation and the fluid
pressure distribution in the reservoir [252]. They trained their DNN
using data generated from a physics-based numerical simulation
(N = 460). The DNN used capillary pressure and the relative perme-
ability as inputs. The results of the physics-based simulations and DNN
outputs correlated strongly. The trained DNN was able to generate
simulated data using 250 x less CPU time than the numerical
simulations.

3. Perspectives and conclusions

In this section, we outline our opinions on the current state of the
implementation of machine learning within the domains discussed, and
what future work we would like to see as the field develops further. The
implementation of machine learning in the domain of supercritical
fluids research is still in its infancy and there is clearly great potential for
it to advance the field. As shown in many of the examples discussed
above, machine learning models and their potential for use in optimi-
zation will allow the acceleration of supercritical fluid technologies to-
ward commercial viability in the coming years. Machine learning is a
tool, which in conjunction with other techniques available to us, can
help us more rapidly develop poorly understood systems. Much of the
true potential of machine learning is yet to be realized, the application of
machine learning techniques to high dimensionality problems in su-
percritical fluid research, could revolutionize the use of supercritical
fluids across many different applications.

3.1. Problems in the existing literature

Several common problems can be observed in the existing literature
implementing machine learning to supercritical fluid systems. Machine
learning is a good approach in contexts where the outputs are dependent
on a large number of variables with complex interdependencies between
them. However, many of the systems in the literature currently being
studied by machine learning are not like this. They are often too simple,
and the use of computationally-expensive tools such as ANNs are inap-
propriate. If varying a single input results in a change in the output
parameter that is smooth, monotonic, and can be described by an
elementary mathematical function, with no interdependency between
the inputs; more basic less computationally-expensive curve fitting
techniques probably exist.

Often the ability of machine learning models to estimate data outside
of the training set was not demonstrated. Improper segregation of the
training and testing sets is a common problem. Proper segregation is
critical to demonstrating the predictive capacities of machine learning
models. Models need to be demonstrated to be able to estimate condi-
tions that it has not previously seen. A model being able to reproduce
data with which it was trained is not noteworthy and does not demon-
strate that problems such as overfitting have been avoided. Further to
this, if a model has been used to predict an optimized set of inputs, these
need to be tested to demonstrate the accuracy of the model's outputs.
Too many of these problems seem to originate in an improper under-
standing of the implementation of either experimental approaches or the
proper implementation of machine learning. Going forward this could
be addressed through collaborative approaches combining the expertise
of experimentalists and machine learning experts to support each other.

It is also often near impossible to reproduce the implementation of
machine learning reported in the literature from the dataset and
methods reported. Only a few of the studies mentioned made a copy of
their model available after publication, or provided the coefficients
required to replicate their results (e.g. Refs. [78,82,194,253]). Ideally
authors would make both the dataset and the script used publicly
available, alongside their manuscript to allow other researchers to
probably interpret their results. The creation of a repository for machine
learning models and their associated data could a be a valuable asset to
enable this.

Another issue that is largely overlooked is the handling of experi-
mental uncertainties. In the studies which provided their datasets dis-
cussed here, the vast majority only reported the measured value without
any reference to the associated error in the measurement. One cause of
this is that experimental uncertainties are often not reported in the



source materials. But authors rarely comment upon how they dealt with
uncertainties, with the most likely assumption being that they were
neglected entirely. Methods exist for dealing with experimental un-
certainties such as Bayesian neural networks which allow for un-
certainties to be propagated through the network and provide a
probabilistic estimation of the output. Such approaches should be
strongly considered when training using data with associated
uncertainties.

In more simple problems, generalizability should be a primary goal.
For instance, in the case of solubility studies, it is more interesting and
useful to be able to estimate the solubilities of many different molecules
in many different solvents, rather than only being able to estimate the
solubility of a single molecule in a single solvent. Such generalized
models could be of great benefit in accelerating computational simula-
tions or as part of experimental workflows. By comparison, in more
complex systems, where many interdependent variables exist, the use of
machine learning as a model for multiparameter optimization offers a
route to accelerate the discovery of improved input conditions. These
models will likely be unavoidably highly specialized, but their benefit is
derived from the accelerated discovery of improved outputs.

3.2. Barriers to progression and opportunities

There are several barriers to the implementation of machine learning
being advanced in this domain, the biggest among them is data avail-
ability and quality. The datasets required to train machine learning
models are often not available, and while the recent trend toward open
data standards will address this, it will take time to accrue large enough
datasets for many applications. The quality of this data is also a concern.
In some of the fields discussed these datasets are small and heavily
biased towards a narrow ranges of conditions. These datasets typically
omit negative results entirely, partially as a result of the heavy bias
against negative results seen in academic publishing. This is problematic
as it prevents machine learning models from accurately representing the
global parameter space, making the training of reliable training of ma-
chine learning models more difficult.

Much of the published data suffers from incompatibility issues. In
some areas, there are issues with variability between reported datasets
for the same conditions. Methodological differences in the collection of
characterization data can lead to significant variation between datasets
due to differences in equipment, noise, operating protocols, and sensi-
tivity. Hence comparing and/or combining different datasets can be
extremely difficult. Strategies such as normalization can partially
compensate for these issues, but require a great deal of user input, and
have limited success.

These issues coupled with the need for large, reliable, and compat-
ible datasets have made high-throughput data generation an appealing
option. In the case of materials science, for instance, coupling automa-
tion, in situ characterization, and high-throughput synthesis would
allow the autonomous rapid generation of large volumes of data. A large
number of applications of supercritical fluids research are well-suited to
this approach because they can be performed under flow and using in
situ characterization allowing for real-time optimization of processes
and the high-throughput generation of datasets for offline optimization.
But these are opportunities that are yet to be realized.

The recent advent of new machine learning techniques such as
interpretative language models has opened up exciting new possibilities
that are yet to be explored. We hope to see these models being more
widely implemented by the community to potentially improve upon the
results presented within this review.

Several areas of active supercritical fluids research are conspicuously
absent in this review, which could benefit from the application of ma-
chine learning. Primary among them is the synthesis of materials. Many
of the materials currently synthesized under supercritical conditions
have properties that would be well suited to analysis by machine
learning algorithms. For example, quantum dots, which have been

synthesized under supercritical conditions [254,255], and possess nar-
row well-defined fluorescence peaks from which meaningful informa-
tion can be inferred on properties such as the quality, size distribution,
and colloidal stability from in situ measurements. Additionally, the
faster reaction kinetics of chemical reactions seen under supercritical
conditions allow for rapid in situ characterization and faster feedback
loops in online optimization than could be achieved in many subcritical
processes. Approaches utilizing machine learning, robotic synthesis, and
in situ characterization have already been implemented under subcrit-
ical conditions [256]. Such approaches could be applied to a wide range
of other materials that have been synthesized under supercritical con-
ditions; including semiconductor [254,255], metal oxide [257-264],
metallic [257.265-267], organic [268], and insulator nanocrystals
[269-272].

Some of the preliminary work toward the implementation of ma-
chine learning in such roles has already begun to appear in the literature.
Such as that of Klove et al., who recently demonstrated the ability of
machine learning approaches to identify crystal structures of unknown
compounds from in situ X-ray characterization data for a range of
inorganic materials in capillaries obtained with short temporal resolu-
tion at elevated T and P, including the identification of metastable
phases and stacking faults [273]. The coupling of machine learning and
in situ characterization in this manner has great potential to accelerate
the discovery of new materials and improve pre-existing syntheses.
While no examples of online machine learning for materials synthesis in
supercritical fluids are available in the literature, it is apparent that
industry is actively developing this technology [274,275]. When com-
bined with approaches such as microfluidics, which use very small
volumes of materials, online machine learning approaches potentially
offer a route to reduce the physical costs of developing syntheses. We
expect such approaches to become more prominent in the literature in
the coming years, as autonomous robotic labs become a more mature
technology.
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