." r
Avrchive Ouverte - Open Repository
I ¥ .

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of
Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/25070

@080

This document is available under CC BY-NC-ND license

To cite this version :

Marika VELLEI - Derivation and validation of a whole-body dynamic mean thermal sensation
model - Building and Environment - Vol. 256, p.111469 - 2024

Any correspondence concerning this service should be sent to the repository \ Arts
Administrator : scienceouverte@ensam.eu

et Métiers



https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/25070
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

Derivation and validation of a whole-body dynamic mean thermal

sensation model

Marika Vellei ™

* Univ. Bordeauwx, CNRS, Bardeaux INP, 12M, UMR 5295, F-33400, Talence, France
" Arts et Metiers Institute of Technology, CNRS, Bardeaux INP, Hesam Universite, I2M, UMR 5295, F-33400, Talence, France

Keywords:
Thermal sensation
Transient
Dynamic

Exercise

Gagge's two-node

ABSTRACT

A new model predicting the whole-body Dynamic Mean thermal sensation Vote (DMV) is described. The model is
useful for evaluating transient thermal conditions but is limited to uniform ones, It is based on physiological
signals (mean skin temperature and its rate of change, mean skin wittedness, and core body temperature)
simulated by using Gagge’s two-node thermophysiological model. It is derived from empirical data obtained
through experiments conducted under 160 steady-state thermal exposures at rest, 60 transient thermal condi-
tions at rest, and 24 static thermal conditions during exercise. An independent validation is performed against 13
transient thermal conditions during exercise. The model shows good agreement (RMSE less than 0.5) with
experimental observations within the range of air temperatures between 15 and 37 “C and when activity levels
are below 3 mel. It performs better than the widely used Fanger's PMV model, especially when far from thermal
neutrality, for step-change thermal transients, and under exercise conditions. Furthermore, the model’s
simplicity and low computational cost are important advantages over more complex and computationally

expensive thermal sensation models based on multi-segment and multi-node thermophysiclogical models.

1. Introduction

As humans, we are frequently exposed to transient thermal condi-
tions during our daily lives. These dynamic exposures can result from
our actions such as changes in clothing, body posture, and activity, They
can be encountered in free-running buildings due to fluctuating tem-
peratures and air velocities, and in any building when transitioning
between different thermal zones, and between the building and the
outdoors. Lately, ways forward for actively implementing heating and
cooling set-point temperature modulations are being explored to pro-
mote building energy savings and boost their energy flexibility as part of
demand-management electricity programs [1].

Despite transient thermal states being widespread in the built envi-
ronment and despite their potential to create thermal delight [2-5] and
enhance building occupants” well-being [6] and health [7-9], a quan-
titative model to describe both dynamic thermal sensation and comfort
under uniform conditions does not yet exist [10]. As a consequence,
researchers and practitioners continue to use steady-state indices of
thermal comfort, such as Fanger's PMV and PPD [11], even when
evaluating thermal conditions characterized by rapid changes in either

environmental or personal variables [12 19], However, Fanger's model
is only suited to predict thermal comfort near the zone of neutrality [20]
and under steady-state or slowly changing indoor conditions [21].

To predict the dynamic physical interaction between an occupant
and its environment, it is necessary to simulate the heat transfer phe-
nomena inside the body and at its surface. This can be achieved by using
thermophysiological models, which are mathematical models of human
thermoregulation [22]. The predicted core body and skin temperatures
can then become inputs for thermal perception models, which can be
developed from regression analysis of observed thermal sensation and
thermal comfort votes and simulated or monitored physiological
parameters.

Several multi-segment and multi-node thermophysiological models
have been developed in recent years (e.g., the JOint System Thermo-
regulation Model JOS-3 [22], the Human Thermal Model FIALA-FE
[24], the Berkeley Comfort Model [25], and ThermoSEM [26]). These
models simulate core body and skin temperatures for different regions of
the human body under asymmetric environmental conditions and
require coupling with equally complex predictive models of local and
overall thermal sensation and comfort. The best-known of these models

Abbreviations: TSV, Thermal Sensation Vote; PMV, Fanger's Predicted Mean Vote; SMV, Static Mean Vote; DMV, Dynamic Mean Vote.
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is the ABC Advanced Berkeley Comfort model derived by Hui Zhang and
able to predict local and overall thermal sensation and comfort for 19
body parts [2 4].

Despite its notable contribution to the understanding of thermal
comfort, Zhang's model has not been largely used for simulating thermal
sensation and thermal comfort in the context of the built environment.
Its ability to address sensory thermal responses from 19 human body
parts is of little utility in most building energy simulations, which only
provide average environmental conditions for the simulated thermal
zones. Moreover, the high level of insulation of new and renovated
buildings leads to little asymmetry and rather homogenous temperature
distributions which make multi-segment and multi-node models of little
use. Another limitation is represented by the computational burden
associated with their implementation, which is a practical obstacle for
researchers and practitioners especially when they need to run multiple
simulations.

For a wide range of design problems and applications in the context
of the built environment, it is useful to develop a computationally lighter
tool that can be used under uniform thermal conditions. This work
specifically addresses this research gap and aims to describe, validate,
and provide in open access a new analytical thermal sensation model
that can predict the whole-body Dynamic Mean thermal sensation Vote
(DMV) of a group of people. The model uses as inputs the mean skin
temperature and its rate of change, the mean skin wittedness, and the
core body temperature simulated by using the classical Gagge's two-
node thermophysiological model [27]. The mean thermal sensation
vote is predicted based on the widely used ASHRAE seven-point scale
[28].

Few physiological-based mathematical models of dynamic thermal
sensation are found in the existing literature. In a previous review [10]
four main models were identified (the input parameters are shown in
parenthesis).

e Zhang's ABC Advanced Berkeley Comfort model (ATgy mean. ATgy,
locals d’rsk,kwnl/dt) [2-4];

o Fiala's Dynamic Thermal Sensation (DTS) model (AT gre, AT means
d’rsk.mmn/d() [29];

o Takada's model (AT mean, 9T mean/dt) [30];

o Kingma's model (T means Tsk,mean/0t) [26];

Where AToore/ATskmean/AT sk local are the differences between the
body core, mean skin and local skin temperatures in the actual condi-
tions and their neutral threshold values, 0T mean/dt and dTg jocal/0t are
the rates of change of the mean and local skin temperatures, respec-
tively. The new DMV model is inspired by the structure of Fiala's DTS
model [29] but has three specific features.

e it accounts for the impact of high relative humidity at high air
temperatures by including skin wittedness as a model input;

e it better accounts for the psycho-physiological phenomenon of
“thermal overshool™” as a function of both the rate of change of the
mean skin temperature and the mean skin temperature;

o it explicitly takes into consideration the effect of high core body
temperatures during exercise.

These specificities of the model are also not part of the ABC
Advanced Berkeley Comfort model which does not consider skin wit-
tedness, only relates the thermal overshoot to the rate of change of the
mean skin temperature, and does not account for higher metabolic ac-
tivities than sedentary.

2. Preliminary knowledge and models
2.1. Thermal sensation and thermal comfort

Humans can directly sense the temperature of the body via

thermoreceptors distributed throughout its surface and within it. These
thermoreceptors are expressed in primary sensory neurons, that convert
thermal stimuli into pulses of electrical discharge, commonly described
as “firing rates”, which travel to secondary sensory neurons, where they
are further processed before being transmitted to the central nervous
system (CNS) [21,32]. While thermal perception originates in the CNS,
different zones of the CNS are implicated in different dimensions of it.
Thermal sensation (i.e., feeling warm, neutral, cold, etc.) is regarded as
its discriminative or objective dimension; it principally depends on
signals from peripheral thermoreceptors [32] and is formed in the pri-
mary somatosensory cortex and the thalamus. Thermal comfort is the af-
fective or hedonic component of thermal perception and has been
defined as “that state of mind which expresses satisfaction with the
thermal environment” [28]. Thermal comfort depends on the interac-
tion between signals from peripheral and central thermoreceptors [23]
and is believed to originate in the lateral parabrachial nucleus. It can be
assessed using different semantic constructs, for example, thermal
acceptability, thermal preference and/or thermal pleasure. Thermal
discomfort (and not thermal sensation) motivates thermoregulatory
behaviours in humans, which have been described as “an attempt to
avoid what humans call thermal discomfort or displeasure and to obtain
thermal pleasure” [34]. Thermal comfort is more difficult to predict than
thermal sensation because it is more strongly affected by contextual
non-thermal factors. In this work, the focus is on predicting thermal
sensation; another article will be dedicated to the prediction of thermal
comfort from thermal sensation.

2.2. Thermal overshoot and thermal alliesthesia

Under dynamic thermal conditions, human thermal sensation can
anticipate body temperature variations [25] and exaggerate the final
steady-state sensory response [26]. This anticipatory and overshooting
behaviour has been referred to as thermal overshoot. It depends primarily
on the ability of sensory neurons to detect the rate of change of the skin
temperature and to send this information to the CNS through spiking of
their firing rates [27,38], However, thermal overshoot is not the only
psycho-physiological phenomenon affecting thermal perception during
dynamic conditions. Pleasurable and unpleasurable thermal states can
arise during environmental transients when whole-body thermal
discomfort is suddenly removed/increased. Cabanac referred to this
“property of a given stimulus to arouse pleasure or displeasure according
to the internal state of the participant” with the term “thermal allies-
thesia” [39]). Extant empirical evidence now shows that positive/-
negative thermal alliesthesia does not only depend on the internal load
error but can also be induced in the thermoneutral zone when one or
more body parts are heated or cooled to reduce/increase the whole-body
peripheral load error [40-42]). Thermal overshoot and thermal allies-
thesia occur simultaneously during transient conditions and, therefore,
are closely intertwined with one affecting the descriptive dimension of
thermal perception (thermal sensation) and the other the affective one
(thermal comfort) [43,44]. In this work, the focus is on modelling how
the thermal overshoot affects thermal sensation during dynamic con-
ditions, another article will be dedicated to also accounting for the
phenomena of thermal alliesthesia when predicting thermal comfort
from thermal sensation. For a more in-depth review of the current state
of knowledge regarding thermal comfort under non-steady-state con-
ditions, readers are referred to Ref. [10].

2.3. Effect of exercise

During exercise, a significant portion of the metabolic rate required
to do external work is converted into heat which causes an increase in
core body temperature. Findings indicate that even when core body
temperature is elevated thermal sensation is still dominated by the mean
skin temperature [45]). However, the relationship between thermal
sensation and mean skin temperature when exercising is not the same as



that observed during rest since exercise reduces thermal sensitivity. This
effect is much more pronounced in the cold as evidenced by human
thermosensitivity studies [46 48]. The physiological mechanisms
behind the reduction of thermal sensitivity are still not well understood
but it can be hypothesized that the effect of a high metabolic rate and
associated high core body temperature is to shift the neutral threshold
for the skin temperature, for example towards lower values in the cold.
This is in line with other well-documented changes in the threshold
values regulating autonomic thermoregulatory responses, e.g., during
the day due to the circadian clock [49], during the menstrual cycle
[50-52], or due to fever [53]. For the case of fever, it is thought that
pyrogens (perhaps prostaglandin E2) increase the neutral thresholds for
thermoregulation, allowing the core body temperature to increase. With
a similar mechanism, the synthesis and release of various substances
during exercise (including prostaglandins) could cause a shift in the
mean skin temperature threshold regulating cold defence responses.

2.4, Gagge's two-node model

Gagge's two-node model is a simple, lumped parameter model in
which the human body (i.e., the passive/controlled system of human
thermoregulation) is simulated as two concentric thermal compart-
ments: a core cylinder (simulating muscle, subcutaneous tissue, and
bone) surrounded by a thin skin outer layer (simulating the epidermis
and dermis) [27,54]. The model simulates the heat transfer between the
two compartments and between the outer layer and the environment.
All the heat is assumed to be generated in the core compartment and the
temperature within each compartment is assumed to be uniform. The
active/controlling system of the model simulates the regulatory re-
sponses of vasoconstriction, vasodilatation, sweating, and shivering
based on a simple linear, temperature-based control theory of human
thermoregulation. The model simulates the heat exchange and the
temperature change of the two body compartments at 1-min intervals.
The performances of Gagge's model have been tested against experi-
mental data for a wide range of thermal conditions [55,56] and it has
been observed that.

¢ both core body temperature and mean skin temperature predictions
are accurate in neutral conditions and reasonable in warm and hot
conditions at rest,

o core body temperature predictions are poor in cool and cold envi-
ronments, especially for air temperatures less than 5 “C, while mean
skin temperature predictions are more accurate in such environ-
ments at rest,

e core body temperature predictions are poor in conditions of mod-
erate to high exercise intensity (approximately from 3.5 met to 8
met) as the model underestimates the rise in core body temperature
that accompanies exercise, especially in conditions with no air
movement. However, mean skin temperature predictions are more
accurate in such conditions.

In general, the accuracy of the model decreases as the thermal con-
ditions become more complex with increasing levels of air movement
and clothing and with exercise patterns characterized by short work and
rest cycles.

2.5. Fiala's dynamic thermal sensation model

Fiala's Dynamic Thermal Sensation (DTS) model predicts the mean
thermal sensation vote on the ASHRAE seven-point scale from the dif-
ferences between the core body and mean skin temperatures and their
neutral threshold values (AT.oe and ATy mes) and the rate of change

(first derivative) of the mean skin temperature ﬂ—‘f;‘f‘- [29]. The DTS
model was developed from regression analysis of experimental data
from 220 exposures to air temperatures ranging between 13 and 48 °C

and activity levels between 1 and 10 met. Each experiment was
re-simulated with the Human Thermal Model FIALA-FE to predict par-
ticipants’ mean thermophysiological responses. Statistical methods
were then used to correlate the observed thermal sensation votes with
the simulated physiological parameters. The threshold values for the
core body and mean skin temperatures were obtained by simulating
thermally neutral conditions using FIALA-FE [24].
The resulting model is composed of three main parts.

o a first part, as a function of ATy ., to model the response of par-
ticipants at rest under steady-state environmental conditions,

o asecond part, as function of AT, weighted by AT, 4.0, accounting
for effects associated with exercise and warm core body
temperatures,

e a third part, as a function of both positive and negative "‘T”,
dealing with transient thermal conditions.

Fiala refers to the first and second parts as the static comfort model,
while the third part simulates the dynamic component of human thermal
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sensation. The dynamic term depends on " to account for the
thermal overshoot caused by the skin cooling down. While to account for
the thermal overshoot caused by the skin warming up, the dynamic

component depends on the term ¢°*' o "L’I.Em; that represents the time-
weighted maximum positive rate of change of the skin temperature, This
dynamic term was derived from Fiala's assumption that, during skin
warming, the thermal sensation is governed by the most intense rate of
change of skin temperature, weighted by a function of the time elapsed
since its occurrence,

3. Methods

This section describes the methodology adopted to develop the Dy-
namic Mean Vote. It starts by introducing the datasets used to derive and
validate the DMV model (3.1). It is then detailed how Gagge's two-node
model is applied to simulate participants’ thermophysiological re-
sponses (3.2). The section ends with a step-by-step description of the
model’s analytical derivation (3.3).

3.1. Datasets

The literature was surveyed [10] to identify laboratory experiments
that provided sufficient data to derive and validate the DMV model. The
following selection criteria were adopted only to include experiments.

o dealing with air exposures as water exposures are outside the domain
of application of the model,

e published in peer-reviewed articles,

* where the Thermal Sensation Vote (TSV) was surveyed on the clas-
sical ASHRAE seven-point scale: “Hot” (+3), “Warm" (+2), “Slightly
Warm™ (+1), “Neutral” (0), “Slightly Cool” (—1), “Cool” (-2), and
“Cold" (~3) [50].

e where the mean observed values of the air temperature T,, mean
radiant temperature T,, relative humidity RH, air velocity V,, par-
ticipants™ clothing insulation (in clo) and metabolic rate (in met)
could be manually extracted and given as time-dependent input
variables to Gagge's model.

A tabulated summary of the environmental and personal conditions
studied in each experiment is given in the Supplementary File no. 1.
Each experiment was simulated with Gagge's two-node model to predict
participants” mean thermophysiological responses with a time step of 1
min. The clothing values given in Supplementary File no. 1 include the
insulation of the chair for sitting participants. When the clothing insu-
lation of the chair was not specified it was assumed to be equal to 0.1 clo.



This was the case for datasets no. 7, 8, 14, 17, 20, 21, 26, and 28. In all
the experiments, the mean radiant temperature was approximately
equal to the air temperature, The metabolic rate for sitting participants
was generally set equal to 1 met. However, as can be observed in the
Supplementary File no. 1, this was not the case in all the experiments as
the degree of activities of participants can vary while sitting. The ac-
tivity performed before the experiment can also influence the metabolic
rate during the experiment if the duration of the thermal adaptation
period is not sufficiently long. A sitting metabolic rate higher than 1 met
was set for datasets no. 9, 10 and 11 based on the indications found in
the corresponding articles.

Most of the thermal sensation data were manually retrieved using
WebPlotDigitizer [57] from graphs showing the time-dependent mean
responses of a group of participants, Only mean votes (and not the in-
dividual participants’ votes) were used to derive and validate the model
and, for this reason, the DMV only predicts the “mean™ thermal sensa-
tion vote without considering any effect of interindividual variability.
This limitation is further discussed in section 6.1.

A description of the two largest and most important sets of experi-
ments included in the dataset is provided in the following two
paragraphs.

3.1.1. Nevins & Rohles's experiment

A total of 1600 participants were exposed to 160 steady-state ther-
mal exposures in groups of 10 (half females and half males) for 3-h
periods [58]. Half of the participants were tested in the afternoon
(14:00-17:00) and the other half in the evening (19:00-22:00). No
participant was used for more than one test. The 20 tested air temper-
atures ranged from 15.6 to 36.7 °C with increments of 0.56 “C, thus
covering the whole range of the ASHRAE seven-point scale. Eight levels
of relative humidity were selected: 15, 25, 35, 45, 55, 65, 75, and 85%.

3.1.2. McNall's experiment

A total of 420 participants were exposed to three different activity
levels under different steady-state thermal conditions for a total of 30
exposures [59]. Participants were tested in groups of 10 (half females
and half males) for 3-h periods, with half of the participants tested in the
afternoon (13:30-16:30) and the other half in the evening
(18:30-21:30). No participant was used for more than one activity level.
Nine to twelve combinations of air temperature and relative humidity
were tested for each activity level, see Supplementary File no. 1. For the
low activity level, the exercise consisted of alternating 5 min of walking
with 25 min of standing; for the medium activity level, 5 min of walking
were alternated with 10 min of standing, while the high activity level
consisted of 5 min of walking and standing alternatively.

3.2, Thermophysiological simulations

Gagge’s two-node model was originally developed in 1971 [27] and
has undergone many iterations and refinements so that several versions
are now available. The version of the model used in this work is mainly
based on the Python code provided in version 2.8.10 (the latest at the
time of writing this article) of pythermacomfort [60]. This version has
been slightly medified to allow for minute-by-minute predictions since
the model in pythermacomfort is coded to calculate a variety of thermal
comfort indices after a simulation of 60 min.

The different existing versions of Gagge's model adopt different
values for the coefficients of vasodilation Cyy, vasoconstriction Cy,,, and
regulatory sweating C,r and for the neutral temperature thresholds
triggering autonomic thermoregulatory responses, i.€., Tg mean dreshold
and Ty dreshord- Gagge himself proposed different values in different
publications, further contributing to the confusion. A tabulated sum-
mary of the most often used values is given in the Supplementary File no.
2. The first set of values shown in the Supplementary File no. 2 is the one
originally provided by Gagge. The second set is the last one provided by

Gagge which is also the one adopted by Haslam [56] who has conducted
the most extensive validation of the model so far. The third set is the one
used by Doherty & Arens, 1988 [55] and Fountain & Huizenga, 1995
[61]. The fourth set is the one proposed in the ANSI/ASHRAE Standard
55 [28] and adopted by pythermalcomfort [60]. These coefficients and
thresholds significantly affect the model's predictions. The decision
taken in this work was to adopt the values proposed in the ANSI/ASH-
RAE Standard 55 and pythermalcomfort with the sole exception of Cy
which was set equal to the value of 50 L/(m”*hK) found in the 2021
ASHRAE Handbook—Fundamentals [62]. Among all the tested values
for Cyy (i.e., 50, 75, 120, and 200 L/(m?hK)) this was the one reducing
the model's tendency to underestimate T.,. during exercise and, thus,
the most suitable to predict the rise in core body temperature that ac-
companies exercise,

Only simulated thermophysiological data were used to build the
DMV model. In all simulations, Gagge's model is applied in combination
with the pythermalcomfort’s utility functions v_relative and clo_dynamic to
account for modifications of the air velocity and the insulation charac-
teristics of the clothing under exercise conditions, i.e., for metabolic
rates higher than 1 met. The pre-experimental thermal adaptation time
and conditions were not always specified in the articles so it was
assumed that they were always equal to: T, = T, = 25.5 °C, RH = 50%,
V, = 0.1 m/s, 0.6 clo and 1 met (i.e., neutral conditions as predicted by
Fanger's PMV model) with a duration of 30 min.

During exercise, the metabolic rate takes between 3 and 9 min to
stabilize [63-65] but the met values given in Supplementary File no. 1
are discrete ones and do not consider these real dynamics. Hence, for the
thermophysiological simulations a rolling mean with a moving window
of 5 min was implemented on the input met values given in the Sup-
plementary File no. 1 to reproduce more realistic metabolic variations.
The window of 5 min was the one minimizing the RMSE between the
simulated and observed met values from dataset no. 24 [64].

Some examples of the predictive performances of Gagge's two-node
model in terms of mean skin temperature and core body temperature
with the chosen coefficients and thresholds are shown in Fig. 1.
Although Gagge's model considers the body to have “core” and “shell”
temperatures, in reality, the temperature profile of the human body is
continuous and the temperatures of the deep body tissues vary. The
validation of the core body temperature is here based on either rectal or
oesophageal temperatures (depending on the availability) which are
considered to be its most representative estimate. The shell temperature
is compared with the mean skin temperature which is calculated using
different formulae depending on the number of skin measurement points
used in the experiment. Figs. 2 and 2 show the mean skin and core body
temperatures simulated by Gagge's two-node model against predictions
by the Human Thermal Model FIALA-FE. The simulated conditions are
those from Nevins & Rohles’s experiments that are also used to derive
the static part of the DMV model. For the core body temperature, only
the trends can be compared as Gagge's T, does not correspond exactly
to Fiala's predicted hypothalamus temperature. For a more exhaustive
validation of Gagge's model, the reader is referred to previous works
[55,56].

3.3. Dynamic mean vote model

To derive the whole-body Dynamic Mean Vote (DMV), a modelling
approach similar to Fiala's was followed and consisted of first deriving
the static part of the thermal sensation model (3.3.1) and then its dy-
namic part (3.3.2) under conditions at rest. These two parts were then
modified to account for the effect of exercise (3.3.3).

3.3.1. Static model at rest

Data from Nevins & Rohles’s 3-h steady-state experiments (3.1.1)
were used to derive the static model at rest. Only the mean thermal
sensation votes surveyed at the end of the 3 h were considered for
building the model. Regression analysis was used to model TSV as a
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Simulated Data from Nevins & Rohles, 1970 (Dataset No. 7)
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Fig. 3. Core body temperatures simulated by Gagge's two-node model against predictions by the Human Thermal Model FIALA-FE. The simulated conditions are

those from Nevins & Rohles's experiments.

function of the difference between the simulated mean skin tempera-
tures and their neutral threshold, ie., ATumean = Tekmean —
T'sk mean shreshotd- The neutral threshold is the same as the one used in
Gagge's model for triggering autonomic thermoregulatory responses, i.
€., Ty mean thresioid = 33.7° C (see also Supplementary File no. 2). As can be
observed in Fig. 5, the thermal sensation vote does not depend linearly

on Ty mean but rather reaches a positive and negative asymptote at +3
and —3 when moving away from Ty umen gveshors ©0 the warm and cold
side. To model this asymptotic behaviour following Fiala's approach,
the hyperbolic tangent function was used, where the function’s limits
were extended from +1 and ~1 to +3 and -3 respectively, i.e., TSV =
3etanh(a + be ATy ). Thus, arctanh(3¥) was the dependent
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Fig. 5. Observed and simulated thermal sensation votes as a function of the
simulated mean skin temperatures under steady-state thermal conditions for
participants at rest. Data from Nevins & Rohles, 1970,

variable of the linear regression model, instead of TSV. Always in
accordance with Fiala's method, separate models were fitted for positive
(AT mean = 0) and negative (AT mean < 0) error signals to account for
differences in thermal sensitivity to warm and cold stimuli. The key
assumptions of linear regression (normality, homoscedasticity, and no
autocorrelation of the residual errors) were checked and met. The Static

Table 1

Mean Vote at rest (SMV) on the cold side is then given by the following
equation:

SMV =3 e tanh(a,, +b,, ® ATy ...) 1

The coefficients a., and b,, are defined in Table 1.

In Fiala’s DTS model, the effect of mean skin wittedness is not
considered. Even though humans lack a dedicated hygroreceptor, they
can sense skin wittedness through the integration of cold and mechan-
ical sensing [66]. Therefore, both contributions of mean skin tempera-
ture and skin wittedness to thermal sensation were considered in the
new DMV model. This was possible since Gagge's two-node model
simulates the effect of relative humidity on the evaporative heat ex-
change and allows the prediction of both mean skin temperature and
skin wittedness. Skin wittedness Wy n 1S defined as the proportion of
the skin covered by moisture. On the cold side (AT mean < 0), Gagge's
predicted mean skin wittedness is constant and equal to 0.06 so no effect
of skin wittedness could be modelled. On the warm side (ATw mean = 0),
Gagge's simulated mean skin wittedness is strongly correlated (Pearson
correlation coefficient =0.8) with the mean skin temperature. Hence, to
account for the effect of skin wittedness, a new variable was defined as
the difference AW mean between the skin wittedness and its mean value
at any given Ty pean (black curve in Fig. 4) based on Nevins & Rohles’s
simulated data. The static thermal sensation vote on the warm side is
then given by the following equations:

AW, e = Wit oo — 0.06 — b, ¢ AT 2
SMV =3 e tanh(a,. + b, ¢ AT +C0y @ AW ) 3

The coefficients by, @ya, Bug, and ¢, are defined in Table 1.

The positive value of the coefficient ¢,, indicates that, as skin
moisture levels rise, so does the perception of warmth.

The resulting static model at rest has a steeper curve on the warm
side compared to the cold one as shown in Fig. 5. This indicates that
humans are more sensitive to deviations in the mean skin temperature
from the neutral threshold on the warm side compared to the cold side
and can be explained by the fact that the mean skin temperature changes
less under warm than cold thermal conditions. Indeed, from Fig. 2 it can
be observed that the skin temperature decreases up to 5 °C on the cold
side due to vasoconstriction while the vasodilatation-induced increase
of the skin temperature on the warm side is limited to 2 °C by the
evaporation of sweat.

3.3.2. Dynamic model at rest

The relationship between thermal sensation and mean skin temper-
ature shown in Fig. 5 does not apply to dynamic conditions. As discussed
in section 2.2 the thermal overshoot phenomenon modifies the thermal
sensation during transient conditions depending on the intensity of the
rate of change of the mean skin temperature.

In Fiala's modelling approach, the thermal overshoot depends on the
rate of change of the mean skin temperature and its direction (warming
vs cooling). It has been recently observed in rats that the detection of the
warming rate is related to the inhibition of the firing rate of cold sensory

Regression coefficients of the static thermal sensation model at rest on the cold side (ATg < 0, no. Observations: 66. Adj. R-squared: 0.594), of the model fit
between (W pyn — 0.06) and ATLE - on the warm side (0 < ATy e < 2, no. Observations: 90. Adj. R-squared: 0.876), and of the static thermal sensation mode] at

rest on the warm side (AT, e = 0, no. Observations: 94, Adj. R-squared: 0.814).

Name Coef, Std.Err. t P>t [0.025 0.975]
Intercept Qo ~0.2116 0.074 ~2.865 0.006 ~0.359 ~0.064
AT rwen [ 0.2235 0.023 9.812 0.000 0.178 0.269
AT Bree 0.3446 0.014 25,257 0.000 0.318 0.372
Intercept Qe ~0.2044 0.057 ~3.582 0.001 ~0.318 ~0.001
ATk men Byea 0.9747 0,053 18.560 0.000 0.870 1.079
AWomen Con 0.8034 0.256 3.135 0.002 0.294 1.312




receptors and, therefore, inherently linked with cold detection [67]. For
example, the detection of a 10 “C warm step is more acute at a baseline
skin temperature of 22 “C than at 32 “C [68]. Thus, in humans, the
dynamic response might also depend on the absolute skin temperature
in addition to the sign and magnitude of the rate of change of the skin
temperature [10]. Fiala's dynamic part was developed using only two
exposures to step changes in air temperature: 28-18.28 °C and
28-48-28 °C [35]. This limited set of data was not sufficient to test the
above hypothesis. Hence, the dataset was extended to include longitu-
dinal time-series experimental data collected over a wide range of dy-
namic conditions covering step-change, cyclical and ramp thermal
transients (datasets no. 8 to 20 in Supplementary File no. 1). A modelling
approach different from Fiala's was also considered and both the mean

skin temperature AT mean and the rate of change of mean skin tem-
[Ty

perature === were included in the model. The dependent variable &
DMV was defined as the actual overshoot of thermal sensation compared
to its maximum absolute possible value. For example, when the static
thermal sensation is warm (SMV = + 2) the maximum absolute change
possible during skin warming is + 1, while the maximum absolute
change possible during skin cooling is + 5. Hence, the definition of A
DMV differs depending on the direction of the rate of change of the mean
skin temperature:

(DMV — SMV)

ADMYV = DMV, where: 4
DMV, = — SMV + 3 for "T‘;'““‘" =0 5
DMV, =SMV + 3 for ‘% <0 6

By looking at the relationship between ADMV and “*7== in Fig. 6 it

can be observed that ADMV does not grow indefinitely with "%‘. but
rather reaches a positive and negative asymptote. This asymptotic
behaviour was again modelled using the hyperbolic tangent and, thus,
regression analysis was applied to the linearized equation

arctanh(*04Y) = "%:"—" ® ATy mean- The coefficient 0.55 was obtained as
the result of a minimization procedure. Given the longitudinal nature of

the collected time-series data, Mixed-effects Linear Models (MLM) with

possible two-way interactions were employed with AT s and '"“T"“"

included as fixed effects. The different experimental conditions were
treated as random factors (random intercept model). The maximum

Datasets No. 8 to 20
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Fig. 6. Percentage dynamic change in thermal sensation as a function of the
rate of change of mean skin temperature for positive and negative mean skin
temperature error signals. Data are from datasets from no. 8 to 20.

likelihood was the chosen estimation method for the parameters in the
MLM model. Separate models were fitted for positive (7= = 0) and

T rean

negative (—**= < 0) skin temperature transients to account for differ-
ences in the thermal sensory response to skin warming and cooling. The

interaction term AT meas ""‘,;"" was found to be significant only for
skin warming transients. It was therefore confirmed that the skin
warming-induced thermal sensation overshoot is stronger under cool

compared to warm conditions. This is also evident from Fig. 6.

The Dynamic Mean Vote for warming transients (% = 0) is then
given by the following equation:
DMV = SMV =+ 0.55 » tanh (b . dr";‘“'“ FCrr @ AT ® "T";;“"*‘)
® DMV, 7

The coefficients b, and ¢, are defined in Table 2,
While the Dynamic Mean Vote for cooling transients ("L‘&"’—" < 0) is
given by the following equation:

T it sweom

DMV =SMV < 0.55 e ranh (bm.. . ) e« DMV, 8
The coefficient b, is defined in Table 2,
The resulting model under different dynamic conditions for partici-
pants at rest is shown in Fig. 7. Two examples of simulated and observed
data from Liu et al. (dataset no. 16) are shown in Fig. 10.

3.3.3. Effect of exercise

Longitudinal time-series experimental data collected over a wide
range of activity levels under static thermal conditions (datasets no. 21
to 27 in Supplementary File no. 1) were used to account for effects
associated with exercise. This includes extensive data from McNall's
experiments with active participants at three different activity levels
(3.1.2). Only for McNall's experiment, the mean thermal sensation vote
given at the end of the final standing phase was considered and the
thermophysiological simulations were done with an average metabolic
rate.

As discussed in section 2.3 the relationship between thermal sensa-
tion and mean skin temperature when exercising is not the same as that
observed in Fig. 7 since exercise reduces thermal sensitivity, especially
in the cold. A linear regression model was first applied to account for the
effect of high core body temperatures under cold conditions
(AT mean < 0). The dependent variable was defined as the relative
change in the static thermal sensation compared to its maximum
possible value AEMV q. For example, when the static thermal sensation
at rest is cold (SMV = - 2) the maximum possible increase during ex-
ercise is + 5. Hence, the definition of AEMV_ is given by:

(EMV — SMV)

CMY o T e
AEMV = EMV... where: 9
EMV, .= —SMV <3 for AT, peen < 0 10

This new variable AEMV., allowed to account for modifications of
the static SMV due to elevated core body temperatures, similarly to the
approach used for dynamic exposures. The model’s independent vari-
able was the difference between the core body temperature and its
neutral threshold, i.e, AT, = Tewe ~ Tearesrahass Where the value for
the threshold is the same as the one used in Gagge’s model for triggering
autonomic thermoregulatory responses, Le., T.oemreon = 36.8°C (see
also Supplementary File no. 2). Given the longitudinal nature of the
collected time-series data, a Mixed-effects Linear Model (MLM) was
employed. The resulting model was AEMV, 43 = doye+beye © AT . In this
approach, it was assumed that when exercising under cold conditions
humans lose their ability to detect dynamic variations of the mean skin
temperature. The thermal sensation vote during exercise on the cold side
(AT mean < 0) is then given by the following equation:



Table 2

Regression cocfficients of the dynamic thermal sensation model at rest for warming transients (aT';""'"" > 0, no. Observations: 412. no. Groups: 55) and for cooling
transients (LM% _ 0 1o Observations: 433. no. Groups: 53).
Name Coef. Std.Err. z P=|z| [0.025 0.975]
[t Y- Brear 0.255 0.012 21.749 0.000 0.232 0.278
&
AT e - ~0.068 0.061 -1.105 0.269 ~0.188 0.052
iy pr— Canr -0.086 0.023 ~3.796 0.000 -0.130 -0.041
AT mwen ® x
[ ry— Deoct 0.208 0.010 21.031 0.000 0.189 0.228
3
Hot Datasets No. 21 to 27
100
@® ATskin, mean<0
Warm 75 t o AT sxin, mean>0
J P o 50bs.
® 200bs.
Slightly . 50
............. S 25
Neutral § .
0
Slightly
Cool
-25
Cool a -50
7 0.0 0.2 0.4 0.6 0.8 1.0 12 14
— V (Static at Rest)
Cold ATCW e (K)

32 33 M4 3B 36 3T 3B 39
Tsk.mm(oc)

Fig. 7. Thermal sensation vote as a function of the mean skin temperature
under different dynamic conditions for participants at rest.

EMV, 45 =SMV + (a,,+b,,. ® AT,,.) @ EMV,,, for AT, >0.15 11

The coefficients a,,, and b,,, are defined in Table 3. The resulting
model is shown in Figs. 8 and 9 for different values of AT,...

On the warm side, the thermal sensation vote is also modified during
exercise but in a much less substantial way compared to cold conditions
as can be observed in Fig. 9. The dynamic component of thermal
sensation also appears to be preserved so it was decided to calculate the
relative change in thermal sensation compared to its dynamic value
AEMV g = TP and regress it against ATey. This regression was
not significant as the relative decrease was constant and equal to 0.05 (i.
e., AEMV,qm = 0.05 for AT > 0.3) as shown in Fig. 8. The resulting
model was AEMV,_,;; = €. The thermal sensation vote during exercise
on the warm side (AT mean = 0) is then given by the following equation:

EMV, w=30c,, + (14+c..) e DMV for AT, =03 12

The coefficient ¢, is equal to 0.05.
Given that core body and mean skin temperatures are strongly
correlated (Pearson correlation coefficient >0.8) the result would have

Table 3

Regression coefficients of the thermal sensation model during exercise on the
cold side. The dependent variable is DTSV. no. Observations: 210. no. Groups:
37.

Name  Coef, Std.Err.  z P>z| [0.025  0.975]
Intercept Qe 0.087  0.024 3.562 0,000 0.039 0.134
ATee bere 0768  0.032 23.721 0000  0.705 0.831

Fig. 8. Percentage change in thermal sensation as a function the difference
between the core body temperatures and their neutral threshold value, Data are
from datasets from no. 21 to 27,
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Fig. 9. Thermal sensation vote as a function of the mean skin temperature for
participants under different exercise conditions characterized by different
values of AT... Data are from datasets from no, 21 to 27,

been similar if AEMV,qm was regressed against AT meun-
Two examples of simulated and observed data from Zhai et al.
(dataset no. 28) are shown in Fig. 10,
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Fig. 10. Simulated and observed data from Liu et al., 2014 (dataset no. 16) and Zhai et al., 2019 (dataset no. 28).

4. Results

In this section, an overview of the predictive performances of the
new DMV model against those of the widely used Fanger’s PMV model
[11] is reported. Fanger's PMV model is the most known and applied
index in the thermal comfort literature. It is often used outside the
boundaries of applicability originally defined by Fanger. Therefore, it is
important to evaluate Fanger's model over all the experimental condi-
tions reported in section 3.1 covering both steady-state and transient
environmental conditions and spanning a range of different exercise
intensities.

The root-mean-square-error (RMSE), the mean absolute error (MAE)
and the bias were used to measure and compare the difference between
the observed and predicted indices.

| B
I~ oV _ pvi?

RMSE:\IIIM 13

n

i /

MAE:M 14
n

b= 1OV =) 18

where OV is the observed value, PV is the predicted value, and n is the
number of data points, The RMSE, MAF and bias were always calculated
over the course of the experimental conditions but it was decided to
exclude the first 30 min of the exposure as there was always un-
certainties over the participants’ exact initial thermal conditions.
Overall mean predictive performance in terms of RMSE, MAE and bias of

the new DMV model against those of Fanger's PMV index are summa-
rized in Table 4,

In a prior extensive validation study [21], the accuracy of thermal
sensation predictions was regarded as acceptable when the RMSE was
within 1 unit, a value consistent with the typical standard deviation of
thermal sensation data [69]. In this work, the same criterion was used to
judge acceptable predictions (dashed red lines in Fig. 11, Fig. 13, Fig. 14,
and Fig. 15), while good predictions were considered for RMSE within
0.5 units.

Fig. 11 starts by showing the RMSE on TSV for DMV against Fanger’s
PMV under the different air temperature conditions studied in Nevins &
Rohles, 1970. It is to be highlighted that Fanger's PMV was also derived
from the same data. The DMV model has consistently good predictive
performances over the wide range of considered air temperatures in
contrast to Fanger's PMV model whose RMSE increases when deviating
further from neutrality. This predictive behaviour is further analysed in
Fig. 12 which shows the mean bias against bins of Fanger's PMV in
accordance with the validation method proposed by Humphreys and
Nicol [69] and re-adopted by Cheung et al. [20]. The following binning
criteria were used: Cold < 2.5, —-2.5 < Cool < —1.5, —1.5 < Slightly
Cool < —0.5, —0.5 < Neutral < 0.5, 0.5 < Slightly Warm < 1.5, 1.5 <
Warm < 2.5, Hot > 2.5. Humphreys and Nicol deemed the PMV model
unbiased when the mean bias fell within the range of +0.25, as denoted
by the dashed red lines in Fig. 12, According to this criterion and based
on Cheung's and Humphreys and Nicol's analysis of extensive obser-
vational data, the PMV was found to be valid only for neutral thermal
conditions, while for the other six categories, including slightly warm
and slightly cool, it was found not valid. Here, based on experimental
data from Nevins & Rohles it is observed that the PMV performs poorly



Table 4

Summary mean RMSE, MAE and bias of DMV against Fanger's PMV for different thermal scenarios.

Static Cyclical/Ramp Step-Change Static Exercise Dynamic Exercise
DMV PMV DMV PMmv DMV PMmv DMV PMV DMV v
RMSE 0.37 0.74 0.36 0.36 0.33 0.44 0.56 1.97 0.58 1.03
Bias 0.00 0.08 -0.15 -0.05 0.06 0.02 0.07 -0.47 -0.25 -0.38
MAE 0.29 0.57 0.31 0.29 0.27 0.36 0.44 1.36 0.42 0.70
Dataset No. 7 from Nevins & Rohles, 1970
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Fig. 11. RMSE on TSV of DMV against Fanger's PMV for the different air temperature conditions studied in Nevins & Rohles, 1970.
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Fig. 12. Mean bias on TSV of DMV against Fanger's PMV at different bins of
Fanger's PMV. Data from Nevins & Rohles, 1970.

at cold, warm and hot sensations, while its performances are good be-
tween slightly cool and slightly warm votes. The new DMV model has
good predictive performances over the whole range of thermal sensa-
tions. It is to be highlighted that the predictive performances of the
models shown in this section are strongly dependent on the fact that the
data comes from experimental well-controlled thermal conditions.
Heterogeneities and uncertainties in measuring the input parameters in
the field will surely lead to poorer predictive performances.

Fig. 13 shows the RMSE on TSV for DMV against Fanger’s PMV under
various transient conditions. Under step-change transients, the DMV has
better performances than Fanger's PMV model: the overall RMSE on TSV
is equal to 0.44 for Fanger's PMV and 0.33 for the new DMV model, see
Table 4, Fig. 14 shows the RMSE on TSV for DMV against Fanger's PMV
for various exercise intensities under static thermal conditions. Finally,

an independent validation of the new DMV model was performed
against 13 complex transient thermal conditions during exercise (data-
sets 28, 29, and 30). Fig. 15 shows the results of the independent vali-
dation. Under exercise conditions, the DMV has consistently better
performances than Fanger's PMV model: the overall RMSE on TSV is
equal to 1.97 for Fanger's PMV and 0.56 for the new DMV model under
static exercise, While under dynamic exercise the overall RMSE on TSV
is equal to 1.03 for Fanger's PMV and to 0.58 for the new DMV model,
see Table 4. However, it can be observed that the DMV's accuracy de-
creases as the exercise intensity increases, especially beyond 3 met
(Condition no. 24b, 26f, 30d, 30g, and 30h) and under cold conditions
(dataset 23 T, = 12.2 °C). This is related to the fact that Gagge's core
body temperature predictions are poor in cool and cold environments
(especially for air temperatures less than 5 °C) and under exercise
conditions as the model underestimates the rise in core body tempera-
ture that accompanies exercise as already highlighted in section 2.4, It is
to be noted that the maximum level of exercise in the dataset is equal to
4.6 met. So, there is no information regarding the predictive perfor-
mances for exercise conditions above 5 met.

5. Discussion

The DMV model, akin to any other model, is wrong. Some of the
model’s limitations are highlighted in the next section. However, given
the high model interpretability, it can serve as a useful tool for
enhancing researchers’ and practitioners’ comprehension and simula-
tion of the human thermal sensory response to dynamic and exercise
conditions in both indoor and outdoor settings. Here, some specificities
of this new model are discussed.

The model is derived from a dataset that has been put together
directly by the Author of this paper by mainly manually collecting data
from published literature. While the Author has been the only one
involved in this task and has taken great care, errors are unavoidable in
this manual process. An estimation of the accuracy achieved has not
been carried out but it is believed that this would not greatly affect the
analytical from of the model and its performances shown in Table 4 as
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Fig. 13. RMSE on TSV of DMV against Fanger's PMV for step-change, cyclical and ramp thermal conditions and under exercise.

the database is relatively large. The need of time-series experimental
thermal comfort data to develop mathematical models such as the DMV
model and the current difficulties in accessing this type of data (as
evidenced by the manual recovering done in this work) highlights the
importance of making experimental thermal comfort data FAIR (Find-
able, Accessible, Interoperable, and Reusable).

The structure and predictive performances of the DMV model are
inherently linked to those of Gagge's two-node model. There are several
other two-node thermophysiological models in the literature. Gagge's
model was here used because this model has been extensively validated

as illustrated in section 2.4 so that there is an understanding of where
and why it fails. Numerous variations and adaptations of Gagge's two-
node model can also be found in the literature, Hence, there likely ex-
ists an improved version of Gagge's two-node model compared to the
one currently implemented in pythermalcomfort, the version adopted for
this work. The decision to use the version currently available in pyther-
malcomfort (except for the adapted coefficient of vasodilation) was
dictated by the importance that this package has gained over the last
years and the growing number of researchers and practitioners now
using it.
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Fig. 14. RMSE on TSV of DMV against Fanger's PMV for the different air
temperature conditions studied in McNall et al., 1967.

6. Limitations and future perspectives

Some major limitations of the DMV model and future perspectives
for improvement are highlighted in the following paragraphs.

6.1. Effect of interindividual variability

The DMV model and the related Gagge's two-node model simulate
the average thermal sensation of an average man who weighs 70 kg and
has a surface area of 1.8 m? without accounting for any interindividual
variability. While simulating the average thermal perception is useful
for understanding the processes governing the dynamic sensory
response, effective design solutions can be only explored when interin-
dividual variability is considered. Interindividual variability in thermal
perception originates from a diversity of physiological, psychological,
and behavioural factors. From a physiological ground, several
morphological and functional differences affect thermoregulation and
body temperature distribution. For example, in the case of sex differ-
ences, females have on average a higher surface-to-volume ratio, higher
fat mass, less muscle mass, lower body surface area, and lower metabolic
rate than men [70-72]). Other than sex, individual differences can also
be due to age, body build, fitness level, and geographic/ethnic accli-
matization. Gagge's model is capable of addressing some physiological
differences between individuals by adjusting its model inputs, for
example by adapting the basal metabolic heat production for body
weight and body type and the blood flow amount for body type [73].
Recent results suggest that some interindividual differences need to be
considered not only in the thermophysiological model but also at the

level of the thermal perception model since the relationship between
thermal sensation and skin/core body temperature also varies for
different individual characteristics [74]. Hence, future efforts should be
dedicated to investigating and incorporating the effect of interindividual
variability at both levels of Gagge’s and DMV models.

6.2. Effect of intraindividual variability

Intraindividual variability is due to differences in thermal sensory
responses that the same person can experience, for example, during
different seasons due to thermal adaptation [75] and/or acclimatization
[76,77], during the day due to the circadian clock [49], during the
menstrual cycle [50-52], or due to fever [53]. The new DMV model does
not account for any of these effects. Hence, future efforts should be
dedicated to investigating and incorporating the effect of intraindividual
variability at both levels of Gagge's and DMV models.

6.3. Effect of thermal habituation

Other than thermal overshoot and thermal alliesthesia, dynamic
thermal perception is also affected by the phenomena of thermal
habituation. Thermal habituation is a short-term (i.e., of the order of
minutes or hours) adaptive process that modifies the body's sensory
response after prolonged non-neutral thermal exposures [10]. Tn
particular, the mean skin temperatures have been observed to stabilize
at slightly higher-than-neutral values after warm exposures, and slightly
lower-than-neutral values after cool exposure [74,78-80]. The corre-
sponding thermal sensations appear to be shifted in the opposite direc-
tion to the preceding thermal sensation, e.g., nudged towards slightly
warm after transitioning from cool conditions. The phenomenon of
thermal habitation is not included in the DMV model because Gagge's
model cannot simulate this phenomenon. Future efforts should be
dedicated to elucidating the psycho-physiology behind this phenome-
non and to understand whether it is important enough to warrant future
inclusion in the model.

6.4. Dynamics below 1 min

The DMV model has not been applied for time steps lower than 1 min
so nothing can be said about the predictive performances of the model
for thermal sensation simulations under 1 min. It is nevertheless
important that future developments of the model explore this time
dimension since some specific dynamics such as those induced by out-
door wind gusts can only be correctly modelled if time steps lower than
1 min are considered. A numerical model of cutaneous thermoreceptors
might be the best approach for such a case [26,581].

7. Conclusions

In this work, a new model predicting the whole-body Dynamic Mean
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Fig. 15. RMSE on TSV of DMV against Fanger's PMV for different dynamic thermal conditions under exercise.



thermal sensation Vote (DMV) is outlined. The foundation of the model
lies in physiological variables (mean skin temperature and its rate of
change, mean skin wittedness, and core body temperature), simulated
by using Gagge's two-node thermophysiological model. The model's
formulation is based on 160 static thermal exposures at rest, 60 transient
thermal conditions at rest, and 24 static thermal scenarios during ex-
ercise. The model has three novel specific features.

e It accounts for the impact of high relative humidity at high air
temperatures by including skin wittedness as a model input.

o It models the dynamic sensory phenomena of thermal overshoot as a
function of both the rate of change of the mean skin temperature and
the mean skin temperature,

o It explicitly accounts for the effect of high core body temperatures
during exercise.

Given the high model interpretability, the DMV model can serve as a
useful tool for enhancing researchers’ and practitioners’ comprehension
and simulation of the human thermal sensory response to dynamic and
exercise conditions, The model’s applicability is limited to uniform
conditions. An independent validation is performed against 13 complex
transient thermal conditions during exercise. The validation shows that
the DMV model has better predictive performances than the widely used
Fanger's PMV/PPD model, especially for dynamic conditions far from
neutrality and under exercise.
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