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A B S T R A C T

We present an adaptive physics-informed deep homogenization neural network (DHN) approach to formulate a 
full-field micromechanics model for elastic and thermoelastic periodic arrays with different microstructures. The 
unit cell solution is approximated by fully connected multilayers via minimizing a loss function formulated in 
terms of the sum of residuals from the stress equilibrium and heat conduction partial differential equations 
(PDEs), together with interfacial traction-free or adiabatic boundary conditions. In comparison, periodicity 
boundary conditions are directly satisfied by introducing a network layer with sinusoidal functions. Fully 
trainable weights are applied on all collocation points, which are simultaneously trained alongside the network 
weights. Hence, the network automatically assigns higher weights to the collocation points in the vicinity of the 
interface (particularly challenging regions of the unit cell solution) in the loss function. This compels the neural 
networks to enhance their performance at these specific points. The accuracy of adaptive DHN is verified against 
the finite element and the elasticity solution respectively for elliptical and circular cylindrical pores/fibers. The 
advantage of the adaptive DHN over the original DHN technique is justified by considering locally irregular 
porous architecture where pore–pore interaction makes training the network particularly slow and hard to 
optimize.   

1. Introduction

Engineered microstructured materials with man-made porosity/fiber
are prevalent in a diverse array of technologically significant applica-
tions, including aerospace engineering, building construction, and the 
electronic industry, among others [1–5,31]. They are utilized to obtain 
better strength-to-weight ratios, acoustic suppression, and filtration. The 
porosity/fiber in heterogeneous materials produces local stress field 
concentrations which significantly affects the overall stiffness and 
strength [6]. Typically, these microstructured materials are fabricated 
with a uniform dispersion of diverse hole/fiber shapes and distribution 
patterns. These characteristics are defined by a repeating unit cell 
(RUC), serving as the fundamental building block for the entire array. 

The porosity/fiber architecture (such as porosity/fiber volume 
fraction, shape, and arrangement) holds a crucial role in determining the 
overall behavior and local stress field distributions, and thus the failure 
mechanisms in this type of material. In order to design microstructured 
materials with desired properties, micromechanics and homogenization 
approaches have been extensively utilized for analyzing their response 

to different loading types. To predict the elastic properties of such ma-
terial, we refer to the early contributions of Koiter and Langer [7], 
Grigolyuk et al. [8], and Mejiers [9], with the work of O’Donnell and co- 
workers [10] leading the way. More recent work in the literature utilizes 
the finite element, finite volume, or finite difference methods for solu-
tions to the unit cell problem [2,11–13]. These numerical techniques are 
capable of handling more complicated pore/fiber shapes and arrange-
ments, as well as inelastic mechanisms that are taking place in each 
phase. Exact solutions of microstructural arrays of different patterns and 
shapes, subjected to periodic traction and displacement boundary con-
ditions, are scarce with the exception of the locally exact homogeniza-
tion theory (LEHT) pioneered by Pindera and his coworkers [14,15]. 

Recently, physically informed deep neural networks (PINN) have 
become a compelling alternative to conventional numerical and 
analytical methods for solving partial differential equations (PDE) [16]. 
In contrast to the purely data-driven approaches that do not take into 
account the relevant physics, the PINN incorporates explicitly the 
physics law described by a set of PDEs as a part of the neural network 
loss function over a set of collocation points, such that the network 
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outputs are physics-law consistent. A range of elastic and inelastic 
boundary-value problems, in both the infinitesimal and finite- 
deformation domain, have been addressed by different variants of 
PINN [17–21]. The demonstrated advantage of PINN motivated us to 
develop a new micromechanics theory called deep homogenization 
neural nets for predicting the local temperature, displacement, tem-
perature gradient, and heat flux distributions of thermoconductive and 
elastic unidirectional or particulate composites [22,23]. This method 
adopts a double-scale expansion of the temperature/displacement field 
into averaged and microscopic contributions. The incorporation of a 
periodic layer with sinusoidal functions ensures that the periodic 
boundary conditions of displacement/traction and temperature/heat 
flux are exactly fulfilled [24]. Nevertheless, when dealing with traction- 
free interfacial boundary conditions, the DHN must incorporate extra 
loss terms, posing a challenge in determining the appropriate loss 
weights. What’s more, the loss landscape for the microstructural mate-
rials is quite complex and non-convex and is harder to optimize due to 
the microstructure-induced stress concentrations. In many scenarios, the 
DHN may face challenges in training or optimization, often necessitating 
a considerably large number of layers and neurons and training epochs 
to achieve the desired solutions. 

Herein, we incorporate an adaptive weighting technique into our 
recently proposed DHN theory and extend the DHN to the micro-
mechanical analysis of the elastic and conductive periodic heteroge-
neous arrays with different porosity/fiber architectures. The new theory 
applies fully trainable weights on each collocation point associated with 
the corresponding loss term [25]. These weights are simultaneously 
trained alongside the network weights. The significance of introducing 
trainable weights in the new DHN technique is that it automatically 
assigns higher weights to the collocation points in the vicinity of the 
interface (particularly challenging regions of the unit cell solution) in 
the loss function. This compels the neural networks to enhance their 
performance at these specific points. The accuracy of the new DHN 
technique is verified extensively against the finite element and the 
elasticity solution of Drago and Pindera [14]. The advantage of the 
adaptive DHN is justified by comparison with the original DHN tech-
nique for reproducing the local displacements and stress fields of the 
unit cell with locally irregular inclusion distributions. 

2. Governing equations for homogenization of periodic arrays

This section aims to offer a comprehensive overview of homogeni-
zation theories applied to thermoconductive and elastic porous/fibrous 
composites. Additionally, it introduces the pertinent notations adopted 
in this work, laying the groundwork for the subsequent development of 
the physically informed machine learning theory in the following 
section. 

For a heterogeneous solid containing periodically dispersed 

cylindrical porosities/fibers, the homogenized response of such hetero-
geneous media mirrors that of a Repeating Unit Cell (RUC) under peri-
odic boundary conditions, as illustrated in Fig. 1. This representation 
can be duplicated in two dimensions to constitute the entirety of the 
heterogeneous material. 

In the framework of asymptotic expansion homogenization [26–28], 
the temperature scalar variable T in the RUC of thermoelastic periodic 
microstructures can be partitioned into averaging and fluctuating con-
tributions dependent on the global and local coordinates x = (x1, x2, x3)

and y =
(
y1, y2, y3

)
as follows, 

T(x, y) = − H⋅x+ T′(y) (1)  

where H = [H1,H2,H3] indicates the homogenized (or applied) tem-
perature gradient and T′(y) is the fluctuating temperature scalar variable 
represented as a periodic function. The local temperature gradients are 
related to the temperature as follows: 

H = H − ∇T′ (2)  

where ∇ indicates the gradient operator. The heat flux Φ = [Φ1,Φ2,Φ3]
T 

is expressed in terms of temperature gradient H via Fourier’s law: 

Φ = − k⋅H (3)  

where k denotes the second-order thermal conductivity tensor. The 
fluctuating temperature T′(y) is obtained by satisfying the periodicity 
boundary conditions, and interfacial adiabatic condition together with 
the steady-state heat conduction partial differential equation. In the case 
of infinitely-long cylindrical porosity/fiber, noting that none of the 
temperature gradient and heat flux depends on the out-of-plane coor-
dinate y1, the local steady-state heat conduction partial differential 
equation (PDE) expressed in terms of fluctuating temperature reads: 

k22
∂2T ’

∂y2
2
+ k33

∂2T ’

∂y2
3
= 0, ∀(y2, y3) ∈ Ω (4)  

subjected to: 

T(xo + d) = T(xo) + Hidi,

Φn(xo + d) + Φn(xo) = 0, (xo, xo + d) ∈ S
(5)  

Φn(yo) = 0, yo ∈ Sr (6)  

where i = 1, 2, 3. Ω is the unit cell bulk domain, S is the unit cell 
boundary, and Sr denotes the pore boundary. d = (d2, d3) denotes a 
characteristic distance that defines the periods of the repeating unit cell 
in relevant directions. Φn = Φ2n2 +Φ3n3 indicates the heat flux passing 
through an inclined surface and [n2, n3] denotes the outer normal vector 
of the surface. 

In the same spirit, the displacement field u(x, y) = [u1, u2, u3]
T in the 

RUC of elastic periodic arrays can be written as: 

u(x, y) = ε⋅x+ u′(y) (7)  

where ε denotes the macroscopic strains and u′(y) =
[
u′

1, u′
2, u′

3
]T in-

dicates the fluctuating displacements induced by the heterogeneities. 
The strains are expressed in terms of displacements through the 
strain–displacement relation: 

ε = ε+ 1
2
(
∇u′ +∇u′T) (8)  

and the stresses are expressed in terms of the strains through Hooke’s 
law: 

σ = Cε (9)  

where C represents the fourth-order elasticity tensor. 

Fig. 1. A multiphase periodic porous array characterized by the smallest 
building block or the unit cell. 



For infinitely long cylindrical porosities/fibers, enforcing the peri-
odicity boundary condition and the interfacial traction-free condition 
(in the case of porous microstructures) together with the local equilib-
rium equations yields the solution for fluctuating displacements u′(y)
under specified macroscopic strains: 

C66
∂2u’

1

∂y2
2
+ C55

∂2u’
1

∂y2
3
= 0,

C22
∂2u’

2

∂y2
2
+ C44

∂2u’
2

∂y2
3
+ (C23 + C44)

∂2u’
3

∂y2∂y3
= 0,

(C23 + C44)
∂2u’

2

∂y2
2
+ C44

∂2u’
3

∂y2
3
+ C33

∂2u’
3

∂y2
3
= 0

∀(y2, y3) ∈ Ω (10)  

subjected to: 

ui(xo + d) = ui(xo) + εijdj,

ti(xo + d) + ti(xo) = 0, (xo, xo + d) ∈ S (11)  

ti(yo) = 0, yo ∈ Sr (12)  

where i = 1, 2, 3. ti denotes the traction component from the Cauchy 
relation: ti = σijnj. 

It should be noted that the formulation of the axial shear problem 
shows that it is mathematically completely analogous to the transverse 
conductivity problem where the displacement u′

1 corresponds to the 
temperature T′, axial shear moduli C66, C55 correspond to transverse 
conductivities k22, k33 and axial shear stresses σ12, σ13 correspond to the 
transverse heat flux Φ2, Φ3. This analogy is well-known for isotropic and 
transversely isotropic phases and is employed in this manuscript. 

3. Adaptive deep homogenization neural network theory

Analytical solutions to the unit cell boundary value problems
described by Eq. (4) and Eq. (10), with periodic constraints, are scarce. 
In this section, instead of solving these equations analytically or 
numerically, the deep neural networks are harnessed as universal 
function approximators to predict solutions to the governing differential 
equations of the unit cells with prescribed periodicity boundary con-
straints and interfacial conditions. Following the framework of DHN 
proposed by the present authors, the fluctuating temperature T′(y) is 
approximated by fully connected residual network layers, which take 
the spatial coordinates y and output T′(y) as follows: 

[T′] = NN[y2, y3] (13)  

namely, a mapping from R2→R1, and in the case of an elastic hetero-

geneous solid, the network models can be represented by: 
[
u′

1

]
= NN[y2, y3],

[
u′

2, u
′
3

]
= NN[y2, y3]

(14)  

namely, mappings from R2→R1 and R2→R2, respectively. Deep neural 
networks are comprised of multiple hidden layers in which the inputs of 
each layer and outputs are propagated through the network as: 

ql
j = σ

(
wl

i,jq
l− 1
j + bl

j + ql− 1
j

)
(15)  

where ql− 1
j and ql

j denote the inputs and output of the lth layer. wl
i,j and bl

j 

are the weights and biases of the lth layer. σ represents the nonlinear 
activation function. The network parameters θ (including the weights w 
and biases b) are trained using gradient descent methods based on the 
backpropagation method by minimizing a loss function that penalizes 
the residuals for Eqs. (4)-(6) and Eqs. (10)-(12) as follows: 

L ⊖ (θ) = λ1L PDE(θ)+ λ2L per(θ)+ λ3L int(θ) (16)  

where λi’s are the weights associated with each loss term. L PDE(θ), 
L per(θ) and L int(θ) denote the PDE residuals, periodicity residuals, and 
interface heat flux or traction residuals, respectively, which should all 
vanish for a desired unit cell solution. 

In the presence of multiple loss terms, the weight of each loss term in 
Eq. (16) must be carefully selected and fine-tuned to achieve a successful 
neural network solution. Otherwise, the network model can easily pro-
duce unreliable approximations if not fail to train altogether. We note 
that in heterogeneous porous materials, large deformation, and stress 
gradient/localization are typically observed in the vicinity of the pore 
boundary. The deep neural networks have difficulty reproducing such 
“stiff” PDE solutions and accurately capturing the localized effects in 
heterogeneous materials using the gradient-based optimization method. 
This presents an additional hurdle in the development of machine 
learning homogenization methods. To mitigate this issue, two tech-
niques as described below are introduced in order to enforce exactly the 
periodicity boundary condition and adaptively determine the weights of 
each loss function term. 

3.1. Implementation of periodic boundary condition 

We employ the periodic function representation technique in our 
deep homogenization model to enforce the periodicity boundary con-
ditions. This step is vital as the homogenization theory necessitates exact 
adherence to periodic boundary conditions. Therefore, the accuracy of 
the solution for the unit cell neural network critically depends on the 

Fig. 2. Physically informed deep residual neural network acting as a surrogate model for homogenization of periodic thermoelastic microstructured materials.  



incorporation of periodic boundary conditions. 
As shown in Fig. 2, let us take the homogenization of thermo-

conductive porous/fibrous media as an example. The fundamental 
concept involves expressing an arbitrary function represented by a 
network using a collection of independent sinusoidal functions. These 
sinusoidal functions have predetermined periods and adjustable training 
parameters, cf. Dong and Ni [24], so that the neural network predictions 
exactly satisfy the periodicity conditions of any order: 

v2i(y2) = σ[A2icos(ω2y2 + ϕ2) + c2i ],

v3i(y3) = σ[A3icos(ω3y3 + ϕ3) + c3i ],

qj(y2, y3) = σ
[
∑m

i=1
v2i(y2)W

(2)
ij +

∑m

i=1
v3i(y3)W

(3)
ij + Bj

] (17)  

with 

ω2 =
2π
d2
,ω3 =

2π
d3

(18)  

In these equations, 1⩽i⩽m and 1⩽j⩽n. qj
(
y2, y3

)
are the output of this 

layer. ω2 and ω3 are constants with fixed periods d2 and d3 that represent 
the characteristic lengths of the repeating unit cell, respectively. The 
inclusion of the activation function σ in the periodic layer guarantees 
that v2i(y2) and v3i

(
y3
)

encompass not only the frequencies ω2 and ω3, 
but also the higher frequencies with common periods in the pertinent 
direction. The training parameters of the periodic layer include: 

A2i,A3i,ϕ2i,ϕ3i, c2i, c3i,W
(2)
ij ,W(3)

ij ,Bj (19)  

The periodic layer defined in Eq. (17) enables the precise fulfillment of 
periodicity boundary conditions for the displacements/temperature 
field up to an infinite order (C∞), hence the periodicity boundary con-
ditions for tractions/heat flux are automatically enforced with precision 
at the machine level. As a result, the second term representing the 
periodicity boundary loss in Eq. (16) can be omitted directly from the 
total loss function by using this approach. 

3.2. Adaptive weight determination 

The DHN algorithm described in the previous subsection, with the 
unit cell periodicity boundary condition automatically satisfied, though 
provides a paradigm shift in approximating the unit cell solutions, can 

still produce inaccurate predictions in mimicking the response of het-
erogeneous media. This is because the competing effect between the 
PDE loss and the interfacial conditions, as well as the large deformation/ 
stress gradient that exists in the vicinity of the phase interface, adversely 
affects the network performance. Indeed, the gradient descent back-
propagation is a greedy procedure that may latch on some of the com-
ponents at the expense of the others, therefore creating an imbalance in 
the rate of descent among the different loss components, if not on 
different collocation points, and preclude convergence to the accurate 
solution. 

In this work, following the recent work by McClenny and Braga-Neto 
[25], instead of hard-coding weights in each loss term, we apply the fully 
trainable weights on each collocation point associated with the corre-
sponding loss term, resembling the soft multiplicative attention masks 
commonly utilized in computer vision. These weights are simulta-
neously trained alongside the neural network weights. As a result, the 
PDE and interface collocation points in the vicinity of the pore bound-
ary, which represents the difficult regions of the unit cell solution, are 
automatically assigned higher weights in the loss function. This compels 
the approximation to enhance its performance specifically in those 
critical areas. The loss function in Eq. (16) can be written as: 

L ⊖ (θ, λPDE, λint) = L PDE(θ, λPDE)+L int(θ, λint) (20)  

where λPDE =
(

λ1
p ,⋯, λNp

p

)
and λint =

(
λ1

i ,⋯, λNi
i
)

are trainable, non- 

negative adaptive weights associated with the Np PDE and Ni interface 
collocation points, respectively. 

During the training of the new deep homogenization model, we 
attempt to minimize the total loss function L ⊖ (θ, λPDE, λint) with re-
gard to the network parameters θ based on the gradient descent, but 
concurrently maximize the total loss function with regard to the adap-
tive weights λPDE and λint based on the gradient ascent as follows: 

θk+1 = θk − ηk∇θL ⊖ (θ, λPDE, λint),

λk+1
PDE = λk

PDE + ρk
PDE∇λPDE L ⊖ (θ, λPDE, λint),

λk+1
int = λk

int + ρk
int∇λint L ⊖ (θ, λPDE, λint)

(21)  

In the above equations, ηk denotes the non-negative learning rate for the 
network parameters at the kth step. ρk

(•)
denotes a separate non-negative 

learning rate for the self-adaptation weights. It’s important to highlight 
that the optimal hyperparameters for the neural network, including the 
number of hidden layers and neurons per layer, learning rate, and 

Fig. 3. (a) Training point distribution and (b) finite-element unit cell discretization.  



activation function, may vary depending on the specific case, as deter-
mined by our previous experience. In this manuscript, the hyperbolic 
tangent function σ(x) = tanh(x) for the periodic layer and all the hidden 
layers is utilized as a nonlinear activation function unless otherwise 
stated. 

4. Numerical results

In order to demonstrate the modeling and predictive capabilities of
the proposed methodology, several numerical experiments are con-
ducted using the proposed theory. The neural network results are vali-
dated extensively against in-house finite-element-based homogenization 
theory and the elasticity-based homogenization predictions available in 
the literature. 

4.1. Conductive porous media 

The first investigated porous architecture is thermoconductive media 
containing 20 % pore volume fraction. The unit cell representative of 
such pore media is characterized by a square unit cell with an off- 
centered cylindrical porosity with an elliptical cross-sectional shape. 
The aspect ratio of the elliptical pore is 1.5 whose major axis is rotated 

by 120 degrees with respect to the horizontal axis. The lack of plane 
symmetry in the considered pore architectures significantly alters the 
local field distributions relative to the symmetric geometry and provides 
a very demanding test of the proposed network homogenization since 
the effect of the periodicity boundary condition is more important. The 
thermal conductivities of the bulk materials are prescribed as: k22 =

k33 = 10 Wm− 1K− 1. A macroscopic transverse temperature gradient by 
H2 = 1K/m is applied with other components of temperature gradients 
set to zeros. 

We employ a fully connected DHN model, as shown in Fig. 2, with 1 
periodic layer, 3 hidden layers, and 30 neurons per layer. The DHN 
model is trained by Adam optimizer with a decreasing learning rate 
schedule to decrease the loss oscillation. The number of training points is 
8k points in the bulk materials and 360 points on the interface, 
respectively, which were generated randomly using the Monte Carlo 
simulations, see Fig. 3(a). The unit cell in finite element simulation was 
discretized into 48 × 12 elements in circumferential and radial di-
rections, respectively, see Fig. 3(b). The trained neural network model 
will be evaluated on a separate and unseen dataset containing 36,864 
integration points in the finite-element unit cell model. 

To demonstrate the performance of the proposed DHN technique on 
inferring local field distributions on unseen data, the results obtained 

Fig. 4. Comparison of the fluctuating temperature T′(K) for periodic arrays with an elliptical cylindrical pore under macroscopic temperature gradient H2 = 1K/m.  

Fig. 5. Comparison of transverse heat flux for periodic arrays with an elliptical cylindrical pore under macroscopic temperature gradient H2 = 1K/m.  



from the DHN predictions are quantitatively evaluated against the 
benchmark solutions, using the relative L2 error as a metric: 

L2 error =
‖V − V∗‖2

‖V∗‖2
(22)  

where V represents the DHN predictions (such as temperature, heat flux, 
displacements, and stresses) and V∗ represents the corresponding 
benchmark solutions. 

Figs. 4-5 depict the differences in the fluctuating temperature and 

transverse heat flux profiles predicted by the proposed adaptive DHN, 4- 
and 8-noded finite-element results. The neural network results are ob-
tained after 10k iterations with learning rates of 1× 10− 2, 5× 10− 3, 
2.5× 10− 3, 1.25 × 10− 3 and 6.25× 10− 4(decaying by 50 % after each 2k 
iteration). The adaptive weights associated with all the collocation 
points are initialized to 1. They are updated in the first 5k iterations and 
are held constant thereafter. As observed in Figs. 4-5, the DHN can 
predict the fluctuating temperature and heat flux in the whole bulk 
domain well quantitatively, even in the vicinity of the pore boundary 
where pronounced local field concentrations are observed. We note that 
the temperature and heat flux fields predicted by the DHN theory are 
smoothly varying in the entire analysis domain. In contrast, the finite- 
element method ensures only the continuities of the predicted temper-
ature, while the predicted heat flux is not continuous from one element 
to another, in particular with the lower-order finite-element technique. 

Table 1 shows the L2 error norms predicted by the proposed DHN 
technique with regard to the 4- and 8-noded finite-element reference 

Table 1 
Comparison of the L2 error norm generated by the DHN theory with regard to 
FEM Q4 and FEM Q8 predictions.   

T′ Φ2 Φ3 

L2 norm (w.r.t. FEMQ4)  0.0137  0.0383  0.1237 
L2 norm (w.r.t. FEMQ8)  0.0102  0.0062  0.0177  

Fig. 6. Physically informed deep residual neural network acting as a surrogate model for homogenization of periodic elastic microstructured materials.  

Fig. 7. Comparison of the fluctuating displacements u′
2 and u′

3 for periodic arrays with circular cylindrical pore under macroscopic strain ε22 = 1% predicted by the 
DHN, 8-noded FEM and the LEHT predictions of Drago and Pindera [14]. 



solution. It is observed that the L2 error for various fields predicted by 
the DHN technique is around 1 % with regard to the high-field 8-noded 
finite-element results. As expected, a little bit higher error is predicted 
with regard to 4-noded finite-element predictions. 

4.2. Elastic porous media 

In the second example, the proposed DHN theory is utilized to pre-
dict the fluctuating displacements 

(
u′

2, u′
3
)
, and to infer the stress field 

distributions in elastic porous architectures under known macroscopic 
strain, as illustrated in Fig. 6. We demonstrate the accuracy of the pro-
posed DHN technique vis-à-vis 8-noded finite-element results and the 
elasticity-based locally-exact homogenization theory predictions 
(LEHT), developed by Pindera and his coworkers [14]. The latter 
method utilizes precise solutions of governing differential equations by 
employing Fourier series representation of displacement fields and the 
balanced variational principle to enforce periodic boundary conditions. 
This stands in contrast to the finite-element method, which relies on the 
discretization of unit cells. Consequently, the LEHT serves as an excel-
lent benchmark for evaluating the accuracy of the proposed DHN theory. 
However, it’s crucial to note that the LEHT has a limitation: it can only 
consider single-inclusion unit cells arranged in square and hexagonal 
arrays. 

We consider an aluminum periodic array with circular cylindrical 
pores. The Young’s modulus and Poisson’s ratio of the bulk aluminum 
are 72.4 GPa and 0.33, respectively. The pore volume fraction is pre-
scribed as 20 %. The small diameter of the fibers in comparison to the 
overall dimensions of the unit cell results in elevated stress and defor-
mation gradients at the pore interface, posing a rigorous test for the 
accuracy of the methods employed. A macroscopic transverse normal 
strain ε22 = 1% is applied since it is the most demanding. 

As before, the DHN model is constructed using fully connected neural 
network layers with 1 periodic layer, 3 hidden layers, and 30 neurons 
per layer. It is trained by Adam optimizer with the same decreasing 
learning rate schedule and the same number of epochs as in Section 4.1. 
The number of training points is 8k points (randomly sampled) in the 
bulk materials and 360 points on the interface, respectively (Not 
shown). The unit cell in finite element simulation was discretized into 
48 × 12 elements in circumferential and radial directions, respectively, 
while 36 harmonic terms were utilized in the LEHT simulation such that 
reliable solutions were obtained. It’s crucial to emphasize that the so-
lution methodologies utilized in the DHN, FEM, and LEHT are funda-
mentally distinct, providing robust support for the thorough validation 
of the deep homogenization theory and the subsequent conclusions 
drawn. 

Fig. 7 compares the difference between the proposed adaptive DHN, 
8-noded finite-element, and the LEHT predictions of the fluctuating 

Fig. 8. Comparison of the local stress field σ22, σ33 and σ23 for periodic arrays with circular cylindrical pore under macroscopic strain ε22 = 1% predicted by the 
DHN, 8-noded FEM, and the LEHT predictions of Drago and Pindera [14]. 



Fig. 9. Comparison of the local stress field σ12, σ13 for periodic arrays with circular cylindrical pores under macroscopic strain ε12 = 1% predicted by the DHN, 8- 
noded FEM and the LEHT predictions of Drago and Pindera [14]. 

Table 2 
Comparison of the L2 error norm predicted by the DHN with respect to the 8-noded FEM, and the LEHT predictions of Drago and Pindera [14].   

u′
2 u′

2 
σ22 σ33 σ23 σ12 σ13 

L2 norm(w.r.t. FEM Q8)  0.0078  0.0136  0.0051  0.0152  0.0139  0.0033  0.0013 
L2 norm(w.r.t. LEHT)  0.0079  0.0138  0.0050  0.0141  0.0141  4.07e-04  0.0015  

Fig. 10. Comparison of the fluctuating displacements u′
2 and u′

3 for periodic arrays of unidirectional fiber under macroscopic strain ε22 = 1% predicted by the 
adaptive DHN, 4- and 8-noded FEM. 



displacement fields u′
2 and u′

3 . As expected, the DHN predicts indistin-
guishable results vis-à-vis the high-fidelity finite-element results and 
exact elasticity solution, providing good support for the developed 
adaptive DHN technique. Fig. 8 illustrates comparison of stress fields σ22 
, σ33 and σ23 predicted by the three methods. Once again, the correlation 
between the three approaches is seen to be excellent for the three stress 
components. The stress concentrations at the pore boundary under this 
type of loading are captured by the DHN theory with sufficient accuracy. 

As mentioned, the formulation of the axial shear problem by any 
combinations of ε12 and ε13 shows that it is mathematically entirely 
analogous to the transverse conductivity problem under macroscopic 
loading H2 and H3. Therefore, we use directly the network architecture 
developed in Section 4.1 to obtain the solution of stress fields σ12 and σ13 
of elastic periodic porous arrays under axial shear loading by ε12 = 1%. 
For the FEM and LEHT computations, the strictly axial shear problem 
formulation is followed. The comparison of the axial shear stress dis-
tributions is displayed in Fig. 9. Similar comments can be applied to 
these results. 

We end this section by comparing the L2 error norm predicted by the 
DHN technique with respect to the finite-element and locally exact ho-
mogenization predictions, respectively (see Table 2). As anticipated, the 
differences between the proposed adaptive DHN and the benchmark 
solutions are negligible. 

4.3. Fibrous composites 

Next, we examine the fluctuating displacements and local stress 
fields in square array of unidirectional fiber with 20 % fiber volume 
fraction. The distribution of the Lamé constants in the unit cell micro-
structure is represented by the following expressions: 

λ(y) = 29.14

⎛

⎜
⎜
⎝1 + tanh

1 −
(y2+y3)

2

8 −
(y2 − y3)

2

2

0.05

⎞

⎟
⎟
⎠+ 52.84(GPa) (23)  

μ(y) = 69.72

⎛

⎜
⎜
⎝1 + tanh

1 −
(y2+y3)

2

8 −
(y2 − y3)

2

2

0.05

⎞

⎟
⎟
⎠+ 27.22(GPa) (24)  

As before, a macroscopic transverse normal strain ε22 = 1% is applied. 
We employ a fully connected DHN model with 1 periodic layer, 3 hidden 
layers, and 30 neurons per layer. 10k collocation points generated 
randomly are utilized to train the network model. The neural network 
results are obtained after 15k iterations by Adam optimizer with 
learning rates of 1× 10− 2, 5× 10− 3, 2.5× 10− 3, 1.25 × 10− 3 and 6.25×

10− 4(decaying by 50 % after every 2.5k iteration). The adaptive weights 

Fig. 11. Comparison of the local stress field σ22, σ33 and σ23 for periodic arrays of unidirectional fiber under macroscopic strain ε22 = 1% predicted by the adaptive 
DHN, 4- and 8-noded FEM. 



associated with all the collocation points are initialized to 1. They are 
updated in the first 7.5k iterations and are held constant thereafter. 

Fig. 10 shows the comparison of the fluctuating displacements u′
2 and 

u′
3 distributions generated by the proposed technique and the 4- and 8- 

noded FEM approaches. It is observed a good agreement between the 
DHN and finite-element reference results. Comparison of the local stress 
field σ22, σ33 and σ23 generated by the three approaches is given in 
Fig. 11. Similar comments apply in this case regarding the proposed 
theory’s accuracy, as well as the smoothness of the stress field of the 
DHN and the conventional finite-element techniques. 

Table 3 presents the comparison of the execution time between the 
proposed technique and the conventional finite-element method. These 
simulations were performed on a personal computer with 13th Gen Intel 
(R) Core (TM) I9-13900H @ 2.60 GHz, 32 GB memory, 64-bit operating 
system, and x64-based processor. We note that the proposed DHN 
approach consumes significantly higher execution time than that in both 
Q4 and Q8 FEM techniques. This is because the DHN approach trans-
forms a linear elasticity unit cell problem into a nonlinear optimization 
problem with a very rough energy landscape. Gradient-based optimi-
zation within this landscape is particularly computationally expensive. 
Despite the neural network approach cannot compete with the con-
ventional numerical method in terms of computational efficiency, ad-
vances in computational power have unlocked the potential of the 
neural network approach for solving boundary value problems in a 
reasonable time [22]. 

5. Multi-inclusion porous media

The applicability of the proposed DHN theory is further demon-
strated by considering a unit cell with locally irregular pore distribu-
tions. This microstructure is an ideal candidate for assessing the 
performance of the deep homogenization theory since the pore–pore 
interaction produces significant deformation/stress gradients which are 
more crucial in this type of unit cell microstructure [29,30]. In partic-
ular, the loss function for the random microstructure is quite complex 
and non-convex and it is harder to optimize relative to the single 

inclusion case. It is also the objective of this section to justify the 
adaptive homogenization theory developed in this manuscript. Specif-
ically, the PDE residuals in the bulk material, the traction residuals on 
pore interfaces, and the displacement and stress fields predicted by the 
adaptive DHN and the conventional nonadaptive counterpart are 
compared. 

The unit cell architecture is characterized by a unit square containing 
locally irregular pores as shown in Fig. 12. The pores at the unit cell 
boundary are precisely chopped such that a complete pore with periodic 
geometry can be formed at the opposite sides of the unit cell. The total 
volume fraction of the pores is set to be 20 % as before. A macroscopic 
transverse normal strain ε22 = 1% is applied to the unit cell. The finite- 
element unit cell for comparison with the DHN techniques is discretized 
into 1141 eight-noded elements with unconstructed meshes (not 
shown). To assess the performance of DHN models on an equal footing, 
both the adaptive and nonadaptive DHN models are constructed with 1 
periodic layer with 30 neurons and 5 hidden layers with 50 neurons per 
layer. The number of training points is given as 7969 collocation points 

Table 3 
Comparison of the execution time between the proposed technique and the 
conventional finite-element method (averaged based on three runs).  

Methods DHN FEM Q4 FEM Q8 

Execution time (seconds)  2053.1  2.2  9.1  

Fig. 12. Comparison of the PDE and traction residuals as a function of training epoch generated by the adaptive DHN and conventional DHN approaches.  

Fig. 13. Comparison of the average weights associated with collocation points 
within the bulk materials and on the interface for evaluating PDE and tractions 
loss as a function of training epoch. 



inside the bulk materials and 360 points at each complete pore bound-
ary. The DHN models are trained by Adam optimizer with 30k iterations 
with an initial learning rate of 1 × 10− 2 which is decreased by half for 
every 3k iterations. While the adaptive weights are updated in the first 
15k iterations and hold constants thereafter, the loss weights for every 
collocation point are set to 1 for the non-adaptive method. 

Fig. 12 presents the evolution of the PDE and traction residuals as a 
function of the training epoch by adaptive and non-adaptive DHN 
schemes. Note that for a direct comparison of the two approaches, the 
weights were removed from the loss residuals in the adaptive technique. 
It is demonstrated that in the adaptive DHN method, both PDE and 
traction residuals continuously decrease after 2k iterations and signifi-
cantly low loss values have been achieved after 30k epochs relative to 
the non-adaptive scheme. Furthermore, in the non-adaptive DHN 
method, a substantial competing effect between the PDE and traction 
residuals exists which leads to significant variation in the PDE residuals 

and high ultimate loss values, indicating the conventional DHN might 
fail to train. 

Fig. 13 shows the comparison of the average weights associated with 
collocation points within the bulk materials and on the interface for 
evaluating PDE and traction loss, respectively, as a function of the 
training epoch. As observed, while the averaged weights are continu-
ously increasing, the rate of increase of the traction weights is much 
faster than that of the PDE weights since the traction loss tends to be 
neglected by the neural network. This indicates that the adaptive DHN 
theory has learned that traction loss is a more important part of the 
solution. The pointwise weight distributions after 30k training iterations 
for the PDE and traction training points are displayed in Fig. 14. It is 
observed that higher weight values are obtained for the collocation 
points in the vicinity of the pore boundary which is consistent with the 
observation in Fig. 13. Note that significant stress concentrations typi-
cally occur in the vicinity of the pore boundary, the proposed DHN 
method adaptively assigns higher weight values to the collocation points 
in the affected region, indicating the effectiveness of the proposed 
technique. 

Figs. 15-16 illustrate the comparison of the predicted fluctuating 
displacements and stress fields by the conventional DHN, adaptive DHN, 
and high-fidelity finite-element baseline solutions. It is demonstrated 
that the adaptive DHN theory shows a good level of accordance with the 
finite-element predictions. The displacement and stress concentrations 
in the vicinity of the pore interface are captured with high accuracy. In 
contrast, the non-adaptive DHN captures only the displacement and 
stress components at certain pore boundaries, while most of the pre-
dictions are completely off from the baseline solution. Therefore, 
introducing adaptative weights into the DHN has been justified. 

6. Conclusions

An adaptive deep homogenization neural network model has been
proposed for the micromechanical analysis of unidirectionally periodic 
heterogeneous arrays with different microstructures. This method 
adopts a two-scale expansion of the temperature and displacement fields 

Fig. 14. Pointwise weight distributions associated with collocation points 
within the bulk materials and on the interface. 

Fig. 15. Comparison of the fluctuating displacements u′
2 and u′

3 for periodic arrays with circular cylindrical pore under macroscopic strain ε22 = 1% for the unit cell 
with locally irregular pore distribution 



into macroscopic and microscopic contributions. The microscopic 
problem is solved by satisfying periodicity boundary conditions, stress 
equilibrium, or steady-state heat conduction equations, together with 
interfacial traction-free or adiabatic boundary conditions, respectively. 

To facilitate training the neural network, a periodic layer is intro-
duced in order to impose exactly the periodicity boundary conditions at 
the unit cell boundaries. Furthermore, fully-trainable weights are 
applied on each collocation point associated with the PDE and interfa-
cial loss terms. These weights are trained concurrently with the network 
weights. The numerical results presented in this work demonstrate that 
the DHN is capable of accurately capturing the displacement and stress 
field of the periodic microstructural arrays with comparable accuracy to 
the high-fidelity finite element and exact solutions. It has also been 
shown that the trainable weights in the new DHN technique facilitate 
more accurate neural network solutions by automatically weighting 
more collocation points in difficult regions of the unit cell solution in the 
loss function. 

The present DHN framework can be further extended in order to 
describe the nonlinear material behavior and continuum damage 
mechanisms involving path dependence and irreversibility. Such 
extension necessitates the implementation of a radial return algorithm at 
each loading step that ensures the proper storage and updating of state 
variables to obey the Kuhn–Tucker consistency conditions. This work 
will be conducted in a forthcoming publication. 
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