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Abstract. This article presents a two-step method to enhance metal-forming predictions by 
integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper 
upsetting operations. The process begins with developing a real-time predictive surrogate model 
that considers actual process parameters, acting as a crucial link between conventional numerical 
simulations and immediate decision-making. Subsequently, the surrogate model is integrated into 
a realistic VR environment, aligned with the experimental forging setup. The study underscores 
the need and potential advantages of real-time digital twins in the forging field, emphasizing the 
bridging capability between numerical simulations and instant decision-making through predictive 
modeling and immersive virtual environments. 
Introduction 
In forging processes, numerical simulations are crucial for predicting outcomes without physical 
experimentation. They excel in estimating challenging-to-measure variables like deformation 
fields and temperature distributions. While effective for accurate predictions and exploring diverse 
scenarios, their time-consuming nature limits real-time application. 

In recent times, thanks to technological advancements, the concept of digital twins has emerged. 
In the JENII project spearheaded by the Arts et Metiers Institute of Technology, immersive and 
interactive digital twins are developed to provide new training tools to students in specialized 
fields, such as the construction sector [1]. In this context, a digital twin of the VULCAIN 
laboratory's platform for forging is in progress. Immersion in a virtual environment allows 
students, among other things, to represent an industrial environment on real dimensions even if 
they do not have the machines, to see normally invisible things like the inside of a machine to 
understand its functioning or like a deformation field in a billet, to test several configurations in a 
trial-and-error approach at lower cost and in complete safety for men and machines. Moreover, 
this new educational tool will be accessible at any time, everywhere, for students, to prepare a 
practical work or to review their lessons for example. 

There are several definitions of the digital twin, from the basic model (a physical and a digital 
environment with a data flow to update the digital environment) [2] to more expert models (also 
integrating a permanent connection between the two environments, prediction services by 
simulations or deductions via AI tools, human interactions or product life cycle concepts) [3]. We 
consider here that a digital twin includes five elementary building blocks: 1) a physical 
environment, 2) a digital environment, 3) a sensor data acquisition to update the digital 
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environment, 4) advanced models to update the digital environment in real-time and predict future 
behavior, 5) a data flow from advanced models to control the physical system (Fig. 1).  

 
Fig. 1. Digital Twin Overview in a Cyber-Physical System. 

In this paper, we are particularly interested in blocks 4) and 2) described previously for a single-
blow cold copper upsetting operation. Digital twins aim to offer capabilities similar to numerical 
simulations (e.g., piloting, control, simulation, optimization), with real-time capability as a key 
differentiator [4]. To achieve real-time functionality, digital twins require highly predictive and 
responsive models of real-world processes [5], along with an accurate and realistic virtual 
representation. 

To address these challenges, we propose a two-step approach. First, a surrogate model is 
developed. This model considers the actual process parameters and can make real-time predictions 
about the final operation's outcome [6]. Secondly, the surrogate is incorporated into a well-defined 
and realistic Virtual Reality (VR) environment, designed specifically from the experimental 
forging setup. 
Experimental and Numerical Setup 
The studied forging operation involves the cold one-blow upsetting of a cylindrical pure copper 
billet using a screw press.  

The screw press employed in this experiment is a LASCO® SPR400, capable of delivering a 
maximum forging energy of 28.9 kJ at a ram speed of 680 mm/s (see Fig. 2a). Press control is 
achieved by setting the energy level between 1% and 100% of the maximum forging energy. The 
tools used in the press consist of flat surface dies located in both the press ram and the press table 
(see Fig. 2b). 
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Fig. 2. Experimental setup. a) Screw Press b) Upsetting tooling and billet. 

The upsetting operation is modeled using a finite element method (FEM) software (FORGE®). 
A 2D model was made, as the billet was supposed to be axisymmetric (see Fig. 3). A Hansel-
Spittel constitutive equation was used to represent the billet’s rheology: 

𝜎𝜎𝑠𝑠 = 𝐴𝐴 ∙ 𝑒𝑒𝑚𝑚1∙𝑇𝑇 ∙ 𝜀𝜀𝑚𝑚2 ∙ 𝜀𝜀̇𝑚𝑚3 ∙ 𝑒𝑒
𝑚𝑚4
𝜀𝜀 .                                                                                              (1) 

where 𝜀𝜀 and 𝜀𝜀̇ are strain and strain rate respectively; 𝑇𝑇 is the temperature; 𝐴𝐴,𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,𝑚𝑚4 
are material constants, with specific values of 411.19, -0.00121, 0.13, 0.01472, and 0.002 
respectively. The tools consisted of flat rigid surfaces in both the upper and lower dies.  A 
Coulomb-Tresca friction law was used with 𝜇𝜇 = 0.1  and 𝑚𝑚� = 0.2 and low thermal exchanges 
were assumed (2000 𝑊𝑊/𝑚𝑚2𝐾𝐾). 

 
Fig. 3. Copper Upsetting: a) Experimental setup, b) Numerical setup. 

Surrogate Model: Setting the Model’s Architecture 
Surrogate models, integral to this study, rely on constructing a training database, commonly from 
experimental trials or numerical simulations. 

Numerical simulations, preferred for cost-effectiveness and flexibility, are advantageous over 
experiments. They enable exploring various process parameter combinations and excel in 
predicting multiple forging aspects, such as temperature gradients and stress distributions, crucial 
for comprehensive model training. 
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Reduced-order models, like surrogates, prioritize influential parameters for predicting desired 
outputs, omitting less impactful ones. Identifying these key input parameters is a pivotal step in 
surrogate model development. 

 
In the final VR application for 'what-if' scenarios, defining primary outputs is crucial. These 

outputs, represented in VR through metaphoric visualizations, play a central role in exploring and 
understanding process variations. 

In the current upsetting process, the aim is to predict the final shape of the copper billet and its 
deformation field after a single forging blow. A local sensitivity analysis around the billet’s final 
height was performed, as detailed in [6].  The input variables selected for the desired predictions 
are the billet's initial height, initial diameter, and the setpoint for forging energy, collectively 
contributing to over 80% of the cumulative sensitivity. For a visual representation of the surrogate 
model's inputs and outputs, please refer to Fig. 4. 

 
Fig. 4. Surrogate model's Inputs and Outputs. 

For the model’s training algorithm, the multilayer perceptron artificial neural network (MLP-
ANN) was selected due to its effectiveness in applications within the field of metal forming [6-7]. 
However, these models are typically designed for regression or classification tasks where scalar 
inputs are used to forecast scalar outputs, while the outputs in this upsetting case are not 
exclusively scalar values (see Final Geometry and Deformation field in Fig. 4).  

To address this data diversity challenge, model reduction techniques are employed. These 
techniques transform the non-scalar parameters into scalar variables. This reduction in complexity 
and dimensionality ensures the smooth integration of the geometry and field predictions with the 
neural network.  
Managing Complexity: Model Reduction Techniques 
Model Reduction Techniques serve as the essential bridge that allows to adapt the surrogate model 
to handle the non-scalar nature of the data effectively. Within the scope of this study, two distinct 
approaches are employed to reduce the complexity of the data: the Bézier curves for billet’s 
geometry representation and the Proper Orthogonal Decomposition (POD) for deformation fields 
representation. 
Simplifying Geometry Representation with Bézier Curves. The upsetting geometry is modeled 
in numerical simulation as 2D profiles, assuming an axisymmetric condition. This means that the 
overall geometry can be represented as a single cutting profile, specifically a scatter of 2D points 
(x, y) on the billet's external surface (see Fig. 5a).  

However, this representation is not suitable for a surrogate model, as accurately representing a 
profile requires between 15 and 30 coordinates, resulting in 30 to 60 data points. To address this, 
a parametric representation of these profiles is necessary. In this regard, Bézier curves have been 
employed [5].   

Bézier curves are a mathematical tool that enables the creation of a smooth profile connecting 
an initial and a final point via a set of strategically positioned Control Points (CPs). The adjustment 
of these CPs precisely defines the curve's shape. Consequently, the parametric representation of 
the geometries becomes a more concise set of 2D coordinates. The number of CPs required 
depends on the complexity of the shape being represented and the desired level of accuracy. For 
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this case, with five CPs, the root-mean-squared error between the original FEM profiles and the 
Bézier-reconstructed bulging profiles is below 0.03mm and does not significantly decrease with 
the addition of more CPs. Consequently, five CPs were chosen for the parametric representation 
(see Fig. 5b).   

 
Fig. 5. Billet's Geometry representation:  a) 2D Scatter, b) Initial Bézier’s CPs, c) Reduced 

representation of the Bézier’s CPs. 

Additionally, considering the symmetry of the billet in its upper and lower portions, certain 
relationships were established: 𝑥𝑥1 = 𝑥𝑥4,𝑦𝑦2 = 𝐻𝐻 − 𝑦𝑦4, and 𝑦𝑦3 = 𝑦𝑦5/2. As a result, a new set of 
point conventions was adopted, introducing 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 and 𝐻𝐻 as new variables, as illustrated in Fig. 5b. 
This new convention allows for the representation of the entire billet geometry using only five 
parameters 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚,𝐻𝐻, 𝑥𝑥2,𝑦𝑦2, and 𝑥𝑥3 (see Fig. 5c). 

Choosing the fourth-order Bézier curve strikes a balance between computational efficiency and 
accurately representing complex bulge patterns in upsetting geometry. This order provides 
flexibility in capturing curvature variations across different deformation states, friction conditions, 
and upsetting ratios. 

 
Parametrizing deformation field data with Proper Orthogonal Decomposition (POD). The 
deformation fields of the billets are extracted from numerical simulations and are expressed as a 
3D point cloud, encompassing two spatial dimensions (𝑥𝑥,𝑦𝑦) and a third dimension indicating 
deformation (𝜀𝜀), as illustrated in Fig. 6a. The point cloud's coordinates correspond to the nodes of 
the FEM simulation. To represent the deformation fields in the different upsetting cases under 
study, between 4000 and 15000 nodes are required, varying with the billet's size. This 3D point 
cloud poses challenges for integration into a surrogate model due to its size and variable node 
count because of re-meshing during simulations. Therefore, parametric reduction and 
representation are accomplished using POD techniques. 

POD is a dimensionality reduction method that identifies dominant modes within the 
deformation field data. These modes, represented as a set of basis functions, capture the essential 
information while reducing the dimensionality. For the application of POD, an essential 
preliminary step is to discretize the deformation fields.  

The discretization process involves performing linear interpolation to transform any 
deformation field into a 100x100 matrix, as depicted in Fig. 6 The choice of a 100x100 grid size 
was determined through gradient analysis of the deformation fields while varying the grid size, 
considering both the field quality and computer storage constraints.  
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Fig. 6. Discretization Process of the Deformation Fields: a) Original Scatter, b) Discretized 

Field. 

After defining the discretization process, a reduced Design of Experiments (DoE) is carried out 
using the Latin Hypercube Sampling (LHS) technique. In this approach, the three input parameters 
shown in Fig. 4 are varied within defined ranges:  

• Initial Diameter= 15-50 [mm] 
• Initial Height/Initial Diameter= 1.5-2 
• Energy= 0-60 [%] of maximum energy 
• Compression ratio (1-Final Height/Initial Height) = 0-50 [%] 

Following the guideline of including a minimum of 10 combinations per active variable [8], 50 
combinations were generated using Latin Hypercube Sampling (LHS). Each simulation produced 
around 660 data points, contributing to a total database size of 33,000 combinations. This database 
served for both applying the POD and training the surrogate model. The matrix for the POD was 
a 10,000x33,000 matrix, considering the number of discretized points and combinations. The 
deformation values span from 𝜀𝜀 = 0 to 𝜀𝜀 = 1.5. 

The outcomes of the POD analysis revealed that the first basis function (mode) captured 75% 
of the energy in the dataset, while the inclusion of the second and third modes increased the energy 
capture to 79% and 82%, respectively. This implies that the first three basis functions (modes) 
collectively captured a substantial portion of the overall deformation variability in the dataset, 
enabling the reconstruction of a deformation field with only three basis functions associated with 
three single parameters: 

𝐷𝐷𝐹𝐹100𝑥𝑥100 ≈ 𝐷𝐷𝐹𝐹����100𝑥𝑥100 + ∑ 𝑏𝑏𝑚𝑚 ∙ ∅𝑚𝑚𝑚𝑚=3
𝑚𝑚=1 = 𝐷𝐷𝐹𝐹����100𝑥𝑥100 + (𝑏𝑏1 ∙ ∅1 + 𝑏𝑏2 ∙ ∅2 + 𝑏𝑏3 ∙ ∅3). (2) 

Here, 𝐷𝐷𝐹𝐹100𝑥𝑥100 represents the discretized deformation field; 𝐷𝐷𝐹𝐹����100𝑥𝑥100 is the mean 
deformation field obtained from the POD database; ∅𝑚𝑚 is the 𝑖𝑖𝑡𝑡ℎ   basis function or mode obtained 
from the POD; and,  𝑏𝑏𝑚𝑚 is the coefficient associated with the 𝑖𝑖𝑡𝑡ℎ   mode.  

Using three modes, the Mean Absolute Error and Mean Absolute Percentage Error were 0.012 
and 0.16%, respectively, when comparing reconstructed and initial fields. No significant error 
reduction occurred beyond three modes, leading to their selection. This parametrized 
representation, using b₁, b₂, and b₃ as coefficients, enables field reconstruction with minimal error, 
streamlining the upsetting operation analysis. This parametrized representation, using 
𝑏𝑏1, 𝑏𝑏2, and 𝑏𝑏3 as coefficients, enables field reconstruction with minimal error, streamlining the 
upsetting operation analysis. 
Surrogate Model: Training, Validation, and Testing 
The MLP-ANN featured a two-layer architecture with 20 neurons each, constructed using Keras 
API in TensorFlow with ADAM optimizer for backpropagation. A dropout of 0.2 was applied, and 
ReLU activation was used for hidden layers and linear activation for the output layer. Loss 
function: Mean Squared Error. The 33,000-combination database was split 80-20 for training and 
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validation. Standardization addressed unit differences. Training metrics boasted an R2 of around 
0.99 and a Mean Absolute Percentage Error below 1%. The model's computation time is under 
500 milliseconds. 

To evaluate the model's overall performance, an entirely independent subset, referred to as the 
testing subset, was examined. Within this subset, a comparison was made between the FEM 
geometries and deformation fields with those predicted by the Surrogate Model (refer to Table 1). 
The selected energies adhered to specific criteria, ensuring a compression ratio below 50% and 
deformation levels under 1.0. These criteria were crucial considerations, particularly for cold 
copper, aiming to prevent cracking and to remain within the domain defined by the rheology's law, 
used for the database. 

Table 1. Billet Indexing: Testing Subset. 

Billet Initial 
Diameter 

(ID) 

Initial 
Height 

(IH) 

Energy 
Setpoint: 

Experimental 

Final Height 
(FH): 

Experimental 

Compression 
ratio: (1- 
FH/IH) 

I 32 [mm] 44.30 
[mm] 

4.05 [kJ] 32.15 [mm] 27.42 [%] 

II 56.85 
[mm] 

8.67 [kJ] 33.00 [mm] 41.95 [%] 

III 24 [mm] 33.20 
[mm] 

2.31 [kJ] 25.80 [mm] 22.22 [%] 

IV 37.75 
[mm] 

1.16 [kJ] 24.40 [mm] 35.36 [%] 

  
The results indicate nearly overlapping geometries with a root-mean-squared error of 0.062 

mm, a mean absolute error of 0.050 mm, and a mean absolute percentage error of 0.30% between 
every FEM bulging profile and every surrogate model's bulging profile prediction (see Fig. 7). 

 

 
Fig. 7. FEM vs Surrogate Model Geometry Predictions for Billet “I” (see Table 1 for Billet 

Indexing). 

The results of the deformation fields are presented in Fig. 8. Both the FEM and the Surrogate 
Model show similar forecasts, with a mean absolute error below 0.0040 and a mean absolute 
percentage error below 1.20% between them.  
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Fig. 8. FEM vs Surrogate Model Deformation Field Predictions for billet “II” (see Table 1 for 

billet Indexing). 

Virtual Reality Integration 
Digital VR-environment creation. VR-environment is made according to a classic process [9]. 
First, all the machines are designed by CAD software. Secondly, the models are incorporated into 
Unity® and textures are applied from real environment photos for a realistic rendering. Then rigid 
body mobilities and other interactions between the components are managed by Unity built-in 3D 
physics (Nvidia PhysX) and by the XDE interactive physics engine developed by our partner CEA-
LIST [10] (Fig. 11b).  
Surrogate Model Integration. The dynamic incorporation of the surrogate model is presented in 
Fig. 9. The Keras neural network is converted to the ONNX format using tf2onnx, serving as the 
import format for Unity Sentis [11]. POD matrices are converted to .csv files and read at runtime 
for deformation field reconstruction. The model is deployed through the creation of the inference 
engine (GPU worker). The output tensor (1, 8) includes 5 geometric parameters and 3 coefficients 
of POD modes. A half-cylinder is constructed through a triangulated 3D geometric mesh and a 
corresponding UV-map is assigned (see Fig. 10b). Vertex positions are dynamically updated based 
on the geometric parameters (see Fig. 10c). Two-dimensional textures (100x100) are generated 
using POD for the deformation fields, enhancing visual representation with a color gradient. A 
standard material applies these textures to the constructed mesh using the corresponding UV map 
(see Fig. 10c). 

 
Fig. 9. Integration of the surrogate model in VR-environment: 1) Inputs defined in the VR-

environment, 2) Real-time Predictive Model, 3) Visualization of the results back in the VR-
environment. 
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Fig. 10. Real-time billet generation: a) Initial Billet b) Triangulated 3D geometric mesh and 

Initial UV-map (U=red, V= green). c) Dynamic representation of the forged billet (geometry and 
deformation field).  

Interactive Experience. The learner in the VR-environment can carry out its single-blow cold 
copper upsetting operation by adjusting the parameters as desired. In real time during the forging 
operation, he can visualize the internal workings of the machine and the deformation 
field (Fig. 11). 
 

 
 

Fig. 11. Real-time Prediction of Upsetting Operations 'What-If' Scenarios within a VR-
environment. 

a) learner in VR-environment, b) screw press in VR-environment, 
c) visualization of the internal working of the screw press, d) visualization of the deformation 

field of the billet. 

Discussion 
The surrogate model's assessment emphasizes geometry predictions, deformation field accuracy, 
and its potential extension for forecasting additional parameters in metal-forming processes. 

Achieving precision comparable to Finite Element Method (FEM) simulations, the model 
excels in predicting geometry and deformation fields during cold copper upsetting, boasting a rapid 
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computation time of 500 milliseconds for real-time decision-making. Its adaptability goes beyond, 
hinting at future applications like temperature and damage predictions. 

The focus on predicting scalar outputs, facilitated by dimensionality reduction techniques, 
balances simplicity and interpretability. Emphasizing scalar predictions streamlines the modeling 
process and prioritizes interpretability. However, alternative approaches like Deep Neural 
Networks (DNN) could handle more complexity, depending on data nature, computational 
resources, and specific objectives. 

Tailored criteria for energy selection, compression ratio, and deformation levels address unique 
considerations of working with cold copper. However, the methodology can be extended and 
applied to other materials, such as steels, and adapted for varying deformation levels. 
Conclusions 
This study introduces a two-step approach integrating Virtual Reality (VR) into Digital Twin 
models to enhance metal-forming predictions. Focusing on cold one-blow upsetting of a pure 
copper billet, the methodology combines surrogate models, model reduction techniques, and VR 
for real-time exploration of process parameters. It proves feasible, accurate, and cost-effective, 
with transformative potential in manufacturing efficiency and cost reduction. The research sets the 
foundation for refining the methodology, exploring new applications, and integrating advanced 
technologies for enhanced real-time decision-making in metal-forming processes. 
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