
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/25189

To cite this version :

Adib SALIBA, Kifah TOUT, Chamseddine ZAKI, Christophe CLARAMUNT - A location-based
model using GIS with machine learning, and a human-based approach for demining a post-war
region - Journal of Location Based Services p.1-23 - 2024

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/25189
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/


A location-based model using GIS with machine learning, 
and a human-based approach for demining a post-war 
region
Adib Salibaa,b, Kifah Touta, Chamseddine Zakic and Christophe Claramuntb,d

aFaculty of Sciences, Lebanese University, Beirut, Lebanon; bNaval Academy Research Institute, 
Lanvéoc, France; cCollege of Engineering and Technology, American University of the Middle East, 
Kuwait; dOkinawa Institute of Science and Technology, Japan

ABSTRACT
Locating and removing landmines and other ERW (Explosive Remnants of War) is 
dangerous, hazardous, and time-con-suming. It requires implementing multilevel on-site 
surveys: general non-technical surveys to mark the areas affected and technical surveys to 
determine the perimeter of related mine-fields. This paper introduces a landmine location-
based pre-diction model, combining military experience with machine- learning techniques 
and spatiotemporal data, by introducing a new approach for area selection and adding 
military-based features for context modelling and model training. Besides predicting 
landmine’s location areas, this model classifies the affected regions by priority and difficulty 
of clearance, in such a way as to minimise the long time needed by surveys and reduce the 
danger related to that task, thus providing the clearance organisations with a good resource 
allocation for their operations. We applied several machine learning tech-niques that 
combine Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient 
Boosting (XGBOOST), tak-ing into consideration the imbalanced data problem and 
tweaking for the best performance and accuracy. The experi-mental results show that the 
model has the potential to provide reliable predictions and valuable services for demin-ing 
operations on the field.
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1. Introduction

Landmines are explosive devices that are designed to be placed on or in the 
ground to disable or kill enemy forces or civilians. They are often used in war 
or conflict situations, and they can remain active and dangerous long after 
the conflict has ended, posing a significant threat to civilians, and hindering 
the recovery and development of affected areas. In total, there have been 
2374 reported casualties of mines or other explosive remnants of war in 
Lebanon, of which 631 people were killed (from 1971 until the beginning of 
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2023). Humanitarian demining is the process of removing landmines and 
other explosive remnants of war from areas affected by a conflict. The goal of 
humanitarian demining is to reduce the risk of injury or death to civilians, 
facilitate the return of refugees and displaced persons, and support long- 
term development efforts in affected areas. It involves several steps, includ
ing surveying and mapping affected areas to identify the locations of land
mines, clearing and removing the mines using specialised equipment and 
trained personnel, and destroying the mines in a safe and controlled manner. 
The work of humanitarian demining is often done by specialised organisa
tions, such as the United Nations Mine Action Service (UNMAS), Non- 
Governmental Organizations (NGOs), and national demining programmes. 
These organisations use a variety of methods and tools to identify and 
remove landmines, including mine-sniffing dogs, metal detectors, and man
ual probing (Geneva International Centre for Humanitarian Demining GICHD  
2010a, 2010b).

Humanitarian demining is a challenging and dangerous task, as landmines 
are often difficult to detect and may be hidden in densely populated areas or in 
locations that are difficult to access. However, the work of demining is critical to 
reducing the harm caused by landmines and supporting long-term develop
ment and recovery efforts in affected areas. Lebanon faces a dual mines threat: 
one along its southern border and another one within the country itself, both of 
which were laid by different parties during a civil war. The whole issue is the 
responsibility of the LMAC (Lebanon Mine Action Center), the Lebanese national 
authority responsible for humanitarian demining.

The cost of humanitarian demining can vary depending on factors such as 
the size of the area to be cleared, the type and density of contamination, and the 
availability of resources. Humanitarian demining faces several challenges, 
including:

● Safety: Humanitarian demining is a life-threatening activity that puts
people’s lives at risk. Safety measures must be taken, for instance, the use
of protective equipment.

● Detection: Landmines and other explosive remnants of war can be difficult
to detect, especially if they are buried underground or hidden in vegeta
tion. Detection technologies such as metal detectors, ground-penetrating
radar, and sniffer dogs are used to locate landmines.

● Clearance: Once landmines are detected, they must be safely removed or
destroyed. Clearance methods include manual clearance, mechanical clear
ance, and mine detection dog clearance.

● Resources: Humanitarian demining requires significant resources, includ
ing funding, equipment, and trained personnel. Careful study of the con
taminated area must be undertaken to ensure good distribution of
resources.



Mining and demining are military tasks, and the most relevant feature that 
defines a military task is its spatiotemporal context, i.e. its precise area of 
application in a well-defined time constraint. Landmine prediction is a loca
tion-based task aiming to deliver demining operations to the exact location of 
mined areas, and to treat them at a convenient time. Besides that, military 
expertise plays a role in the context modelling of spatial data to classify the 
predicted mined areas by priority of clearance, and difficulty of clearance, with 
the same objective to assist the clearance operations in achieving their tasks 
efficiently.

The research presented in this paper introduces a predictive model for 
the location of landmines. It is based on an application and comparison 
study of machine learning techniques applied to historical data coupled 
with spatial data. The model is designed to predict the areas where land
mines are likely to be found and classify these areas by priority and 
difficulty of clearance. This information is useful for organisations that 
clear landmines in situ as it allows them to allocate resources more effi
ciently and safely. The rest of the paper is organised as follows. Section 2 
briefly discusses the related work. Section 3 presents the baselines that 
motivate the choice of the comparative algorithms and introduces our 
methodological approach, and Section 4 the implementation principles. 
Finally, Section 5 presents and discusses the results, and Section 6 con
cludes the paper and outlines a few directions for further work.

2. Related work

Nowadays many organisations combine Geographical Information Systems 
(GIS) and Machine Learning (ML) to derive valuable insights and predictions 
from spatial data (Baur et al. 2021; Krtalic and Bajic 2019; Milton and 
Roumpani 2019). When GIS and ML are used together, the analysis and 
interpretation of large, unstructured, and complex spatial datasets are 
facilitated. By using ML algorithms, GIS can identify patterns and relation
ships in the data that might be missed by common GIS analysis techniques. 
For example, ML can be used to classify land use types from satellite 
imagery, predict urban growth patterns, and identify areas at risk of 
mines, flooding, or other natural disasters (Digra, Dhir, and Sharma 2022; 
Mosavi, Ozturk, and Wing Chau 2018). A wide range of advanced data 
analytics has been applied to geographical and semantic properties to 
deliver location-based services such as store recommendations (Shahriari- 
Mehr et al. 2021), contact tracing (Gupta et al. 2021), archaeological pro
spection (Verschoof-van der Vaart et al. 2020), and building attractions 
(Elariane 2022). However, to the best of our knowledge, context-based 
demining operations haven’t yet been considered.



Many studies combine GIS and ML to predict rare event occurrences, 
such as mined areas (Rafique et al. 2019) with relatively good figures (i.e. 
accuracy 89%), earthquake vulnerability assessment (Shafapourtehrany et 
al. 2022) (i.e. accuracy 96.2%), and wildfire (Gohlamnia et al. 2020) (i.e. 
accuracy 88%). GIS analytic techniques are used to extract independent 
features from historical and topographic data, such as 3D data (e.g. 
elevation and hill slope), distances to different features (e.g. borders, 
roads, forests, rivers), population density, and vegetation classes identified 
by remote sensing NDVI images. However, according to military experts, 
the training samples are of relatively low prevision when dealing with 
mines (e.g. 4500 m (Sun Yoo et al. 2020)), as many minefields have an 
area of less than 1000 m2. Other studies focus on the usage of drones 
fitted with magnetometers and ground penetrating radars to detect the 
locations of landmines (Barnawi et al. 2022; Colorado et al. 2017; Garcia- 
Fernandez et al. 2019; Jangra and Dalal 2020), but still, these approaches 
are limited by sensor capacities and the one of integrating soil properties. 
However, as the usage of drones is fast growing, they will be considered 
complementary to our study after predicting the main mined areas first 
using historical data and ML, and after identifying the potential location 
of each mine.

A study reviews landmine detection approaches and especially how 
deep learning can be integrated to enhance their accuracy (Hamad, 
Kolo, and Balzter 2018), this paper incorporates GIS with machine learning 
to give better results and understanding of the correct usage of demining 
tools and methods. Another study presents in a different way the assess
ment of demining operations’ impact, as it emphasises the bad effect of 
heavy demining machinery on the soil and the remarkable change in the 
land cover due to their usage as identified by a combination of GIS and 
remote sensing techniques (Malik, Singh, and Harode 2017). In fact, as 
mining and demining are military-based operations, most if not all these 
studies do not consider military expert knowledge, this has been a major 
drawback.

Therefore, our study considers smaller regions to generate a relatively accep
table accuracy (i.e. the number of samples’ number should increase with the size 
of the entire area of interest and decrease conversely). Moreover, military 
features and expertise are used as baselines when selecting the areas to mine, 
as they ensure the selection of an appropriate region where mines are supposed 
to be encountered and the identification of relevant areas to study. The perfor
mance of recent and extended machine learning algorithms is experimented 
with to deliver the most appropriate accuracy to the whole modelling and 
processing approach, and relevant support for location-based demining 
operations.



3. Methodological background

3.1. Machine learning comparison principles

ML algorithms are commonly applied to predictive processes involving several 
data dimensions as in our case. Our approach specifically retains a combination 
of approaches that together are relatively efficient in terms of usage, high 
accuracy, robustness to noise and outliers, built-in feature selection, non-linear
ity handling, scalability, and execution time, that is, SVM (Support Vector 
Machine), RF (Random Forest), and XGBoost. SVM and RF were used to properly 
classify similar problems (Gohlamnia et al. 2020; Shafapourtehrany et al. 2022), 
while XGBoost is a promising algorithm in classification for different problems, 
well known for the speed of execution and good accuracy (Malik, Singh, and 
Harode 2017).

SVM is a powerful ML algorithm used for classification, regression, and outlier 
detection. It is a supervised learning method that constructs a hyperplane in 
high-dimensional space to separate the classes. The hyperplane is chosen in 
such a way that it maximises the margin, which is the distance between the 
hyperplane and the closest points of each class (Awad and Khanna 2015). SVM is 
one of the most accessible algorithms and has been used in a previous compar
able study (Biau and Scornet 2015). Random Forest (RF) and XGBoost are both 
powerful ML classifiers used for solving complex classification problems. Both 
classifiers belong to the family of set methods, which means they combine the 
results of multiple models to make predictions (Zhang, Jia, and Shang 2022).

Random Forest is a type of decision tree algorithm that constructs multiple 
decision trees at training time and aggregates their predictions to generate the 
final output. Random Forests are effective in handling noisy data and reducing 
overfitting, and they can handle large and high-dimensional datasets. Random 
Forests also provide feature importance metrics to identify which features are 
most important in making predictions.

XGBoost, or Extreme Gradient Boosting, is an advanced implementation of a 
gradient-boosting algorithm that creates multiple decision trees sequentially. 
XGBoost is designed to improve the performance of traditional gradient boosting 
algorithms by optimising the computation time and memory usage. XGBoost 
uses regularisation techniques to reduce overfitting and provides feature impor
tance metrics (Fryer, Strumke, and Nguyen 2021).

Our approach uses and compares the ML techniques explained above (SVM, 
RF, and XGBoost) due to their popularity in such rare events prediction espe
cially life-threatening ones such as mines, their accuracy, and their speed of 
execution especially for XGBoost. The metrics watched for are accuracy, preci
sion, recall, area under curve, and confusion matrix.

● Accuracy is defined as the ratio between the well-classified samples (true
positives and true negatives) and the total number of samples.



● Precision is defined as the ratio between all the instances that were
correctly classified in the positive class against the total number of actual
instances classified in the positive class.

● Recall is defined as the ratio between all the instances that were correctly
classified in the positive class against the total number of actual members
of the positive class.

● Area under the curve is a plot of the true positive rate (TPR) against the false
positive rate (FPR) at various threshold settings.

● Confusion matrix is a table that is often used to describe the performance
of a classification model on a set of data for which the true values are
known. It gives the True Positive observations (TP, correctly predicted as
positive), True Negatives (TN, correctly predicted as negative), False
Positive and False Negative (FP and FN, wrongly predicted as positive
and negative respectively).

These algorithms are certainly tweaked for best parameters using the Scikit- 
learn library (GridSearch CV), where for each algorithm a set of parameters is 
tested and those giving the best results are chosen.

The rare event type of mining (i.e. imbalanced data: where the number of 
negative classes (value 0) is much greater than the number of positive classes 
(value 1)) is taken into consideration by first applying the military features 
(visibility and distance to confrontation lines) to correctly select the study area. 
Therefore, appropriate techniques (such as SMOTE() and BalancedRandomForest) 
are applied to deliver reliable results.

To predict the results on unseen data, cross-validation (precisely Stratified 
Cross Validation) is applied, where the original dataset is split into n datasets, 
and each time trained on n-1 datasets and tested on the remaining dataset 
considered as the unseen dataset.

The algorithm giving the best results in mined area prediction is then applied 
to class the predicted mined areas over their difficulty and priority of clearance, 
respectively. Priority of clearance defines the importance to start demining of a 
certain minefield in relevance to its socioeconomic impact, whereas the diffi
culty of clearance represents how difficult will be to access and clear that 
minefield. Before that, the thresholds separating the difficulty and priority 
classes are well defined. For the priority, they are defined relative to their 
distances from land-use categories, infrastructure, and population (roads, 
urban areas, forests, agricultural areas, deserted areas, and population density), 
in such a way that the ones giving the most socioeconomic impact get the first 
priority of clearance. For the difficulty of clearance, they are defined as a 
function of the soil vegetation type (high or low vegetation), the slope, and 
the elevation of the terrain; the ones with high vegetation and higher slopes 
and high elevation will be the most difficult to clear. The predicted areas are 
prioritised into three classes (i.e. first, second, and third) and classed into three 



classes for the demining difficulty (i.e. hard, moderate, and easy). These two 
classes (priority and difficulty of clearance) are introduced by the military 
expertise as they are heavily used before conducting demining operations, to 
conduct these operations in a socioeconomic manner with favourable alloca
tion of resources.

On the other hand, landmines are planted by military-qualified personnel, 
who have to well study the area of operations, define its features, and precise 
the source of threat that may be caused by enemy infiltration or penetration, 
and block the vulnerable areas by mines. This is basically done by defining the 
area of conflict and its boundaries called confrontation lines (usually within a 
distance of 1000 m from these lines), the observation posts along those lines, 
and then performing visibility analysis from the observation posts to reveal the 
parts visible and invisible from these posts. The latter is more susceptible to 
being mined as they are hidden from observation. Besides that, mines are too 
dangerous and heavily pollute the land, so they must be laid carefully where 
they are just needed. So, military-qualified personnel are needed to assist in the 
prediction and clearance of mined areas.

Those military features are identified by going back to historical data 
regarding the conflict posts occupied by different parties and giving the 
exact location of confrontation lines between those posts. The objective is 
to extract the features with the 3D data available in the study area to compute 
the visibility from posts and distance to confrontation lines. Our approach has 
the peculiarity of integrating additional important properties not considered 
in previous work (e.g. Rafique et al. (2019)) such as confrontation line, visibility, 
priority, and difficulty. As the number of training samples plays a major role in 
ML algorithm accuracy, the number of samples used in our study has largely 
increased.

3.2. Methodological principles

The aim of our study is to predict mined areas in a post-war region as a first step 
and to classify those predicted areas into difficulty and priority of clearance in 
the second step. To achieve this goal, our approach combines military expertise, 
ML, and GIS, and is algorithmically formulated as follows:

3.2.1. Data preparation
● Carefully define the study area close to the confrontation lines, and the

observation posts along those lines.
● Divide the area into small samples (10 × 10 m boxes).
● Gather the GIS infrastructure, 3D, and population data, and use GIS tech

niques to extract the spatial features within the study area: Distance to
confrontation lines, Visibility, Slope, Elevation, Distance to urban areas,



Distance to agricultural areas, to deserted areas, Distance to forests, 
Distance to roads, and Population density.

● Add the features regarding the priority and difficulty classes.
● Export the data to CSV format readable in ML.

3.2.2. Data processing
● Hyper-tune the parameters for the three ML algorithms and choose the

best parameter sets.
● Apply the algorithms and choose the one giving the best results in mined

area prediction.
● Apply the same algorithm again on the areas predicted as mined to classify

them into priority and difficulty of clearance.

3.2.3. Results interpretation
● Export the resulting datasets to a location-based, readable GIS format.
● Interpret and analyse the results.
● Deliver the data to demining organisations to start the clearance process.

As shown in Figure 1, the first principle applied is to select the study area by 
military standards and divide it into small samples thus increasing the number 
of elementary areas but maximising the appropriateness of the evaluation 
process. The second one is the military expertise whose principle is to add 
visibility from observation posts and confrontation line constraints to existing 
mined areas and common geographic features. These include distances from 
different land aspects (forests, urban, transportation, …), and population char
acteristics, assign priorities and difficulty of clearance, and export the resulting 
vector to CSV file used as input to machine learning algorithms. The third 
principle is to apply the classifiers SVM, RF, and XGBoost to predict the sus
pected areas for mining and then to classify those areas by priority of clearance 
and difficulty of clearance.

4. Implementation

4.1. Data preparation

The first step of the implementation is to gather data from different sources 
related to all the features needed in the study. Common features and military- 
specific features are identified using military expertise to properly select the 
area of interest or study area, in a way that is close to the confrontation lines to 
give sense according to military standards (i.e. areas chosen to be mined). This 
specific approach to area selection is applied by military-qualified officers on the 
tactical level, working within the conflict area to reveal its military geographic 
aspects and then select the appropriate locations suitable for mining. The 



selected area is then structured into small samples of 10 × 10 m as a key feature 
to obtain better accuracy in machine learning algorithms. This is done by 
generating a grid of 10 × 10 to fill the selected area. To class these samples as 
mined or not mined, we assigned a value of 1 to the polygon covering a mined 
area, and a null value where no mines are present. The data is divided into two 
parts: the sample layer (10 × 10) to be filled by features and then transformed as 
input to ML algorithms, and the layers to be used as input for the features (from 
where the values are obtained). The underlying layers are first transformed into 
elementary units of 10 × 10-pixel size, and then into proximity layers where each 
pixel is assigned the distance to the proximity feature. Corresponding values are 
then allocated to the sample study area layer.

Military experts define the priority of clearance according to distances from 
mined areas to different features (e.g. urban areas, cultivated areas, deserted or 
unpopulated areas), population density in proximity, and other features. For 
instance, the closer the mined zone is to urban areas, the higher priority it is 
given; a cultivated area is given a higher priority than a deserted area, and then 
the higher the population affected by the mined area, the higher its priority of 
clearance is given. Accordingly, mined areas are classified by priority of clear
ance depending on their socioeconomic impact. Elevation data and slope are 
then used by military experts to classify the mined areas by difficulty of 
clearance.

For instance, distance thresholds are between 500 and 2500 metres, popula
tion thresholds are between 200 and 800 persons per square km, and priority 
values are given within these intervals (e.g. priority value 3 for distance ≤500 m, 2 

Figure 1. Modeling principles and workflow.



between 500 m and 2500 m, 1 for distance ≥2500 m). Similar steps are applied for 
the remaining features (i.e. elevation, slope), and priority values are given simi
larly. Finally, priorities are aggregated and classified into three classes (IsMinded, 
Priority of clearance, difficulty of clearance) using ten independent features 
(IsVisible, Distance to confrontation line, Slope, Elevation, Distance to Forests, 
Distance to Urban Zones, Distance to Deserted Areas, Distance to Agricultural 
Areas, Distance to Roads, and Population Density) and using around 630,000 
samples or polygons of 10 m side covering the study area. The data preparation 
outputs are transformed into an adequate format and passed to the ML algo
rithms mentioned above (SVM, RF, and XGBoost), tweaked for best parameters, 
and classified as mined or not mined, while these algorithms are finally evaluated 
in terms of accuracy to class mined areas by priority and difficulty of clearance.

As shown in Figure 2, the data gathering is accomplished from local data
bases: LMAC for mined areas and the national database for other features, 
including contour lines and elevation points, road network, population, land 
cover and land use, confrontation lines, and observation points.

The minefield data is in shapefile format and accessible from the Information 
Management System for Mine Action (IMSMA) in the LMAC, and the remaining 
data is stored in a PostGIS database in vector data format and accessible from 
within the army network. The study area is chosen in a way to cover the entire 
country, so it consists of four areas: one along the southern border where the 
Israeli army planted mines, and three other areas within the country where 
different militias were acting. Those areas cover a distance up to 1 km from the 
different confrontation lines and are processed as a grid of polygons of 10 
metres sides (around 630,000 samples, i.e. rows in the attribute table), and 
then a buffer zone of 10 km is added to select certain features. Figure 3 shows 
the study area which consists of four parts covering the country from South to 
North. Figure 4 shows the 10 × 10 samples or the grid of 10 metres and the 

Figure 2. Data integration principles.



features assigned to each grid. Figure 5 gives an example of confrontation lines 
and observation points, and Figure 6 shows the visible areas from an observa
tion post, which have a trivial role in area selection by converging to the areas 
with high priority of mining as are not visible from observation posts. The map 
outputs (i.e. Figures 3-6) are generated by the open-source GIS software for map 
production and analysis, Quantum GIS (QGIS).

Each of the vector features corresponding to the input data is transformed into 
an elementary unit whose value is extracted and added to the vector containing 
the samples. The Digital Elevation Model (DEM) derived from contour lines and 
elevation points is used to perform visibility analysis from the observation posts (i. 
e. to determine the areas visible and not visible), and also to create the slope layer.
The features added to the sample vector are categorised as distances from each 
polygon grid (10 × 10) to relevant features (i.e. distance to urban zones, forests, 
deserted areas, agricultural areas, confrontation lines, and roads), population 
density in the area up to 10 km from the study area, 3D derived data (i.e. visibility 
from observation posts, slope, and elevation). Two additional features are added 
as a function of the preceding variables, that is, priority of clearance and difficulty 
of clearance, to train the predictive model. Table 1 illustrates the data sample 
values, where Fid represents the unique cell ID.

After preparing the data, the obtained ratio of positive samples (i.e. 
mined, having a value of 1) to negative samples (i.e. not mined, having a 
value of 0), is 1/3.

Figure 3. Study area.



4.2. Parameters settings and tuning

The process of combining the parameters of an ML algorithm is an impor
tant aspect of model selection and configuration. It involves finding the 
best combination of data preparation schemes, learning algorithms, and 
model hyperparameters for a given predictive modelling task, so controlled 
experiments must be performed to discover what works best for a given 
dataset. This was introduced by the envelope of military expertise, so data 
preparation, learning algorithm, and algorithm hyperparameters are com
bined for a global optimisation task. After preparing the data and filling in 
all the required features, as well as the priority and difficulty classes, ML is 
used to build an appropriate model and teach it to predict the correct 
classes.

The three classifiers chosen in Section 3 due to their wide usage and speed of 
execution are tested to choose the best one fitting our data: SVM, RF, and 
XGboost. As the nature of data in real situations is slightly imbalanced, 
BalancedRandomForest (which is an implementation of the Random Forest 
algorithm that is designed to address the issue of class imbalance in the training 
data), the variable scale_pos_weight (a parameter in XGBoost that controls the 
balance of positive and negative weights, useful for imbalanced classes), and 
SMOTE (used in SVM to increase the number of cases in a balanced way) are 
used to tackle the imbalanced data problem. All of these three classifiers are 
tuned for best parameters using GridSearchCV (which is a process that searches 
exhaustively through a manually specified subset of the hyperparameter space 
of the targeted algorithm), and the following values as best hyperparameters 
were found:

Figure 4. Study area samples (grid 10x10).



● SVM: kernel=rbf, C = 10, and gamma = 0.01
○ rbf is a nonlinear kernel and measures the similarity between two data

points as a function of the Euclidean distance between them.
○ C parameter adds a penalty for each misclassified data point.
○ Gamma parameter controls the distance of influence of a single training

point.
● RF: n_estimators = 1000, max_depth = 45, max_features = 0.9, random_

state = 10.
○ n_estimators is the number of trees in the forest.
○ max_depth is the maximum depth of the tree.
○ max_features is the number of features to consider when looking for the

best split
○ random_state controls both the randomness of the bootstrapping of the

samples used when building trees.
● XGboost: colsample_bytree = 0.9, gamma = 3.10508, max_depth = 25,

min_child_weight = 4, reg_alpha = 37, reg_lambda = 1.80918, n_estima
tors = 1000, scale_pos_weight = 2.
○ colsample_bytree controls the number of features (variables) supplied to

a tree.
○ gamma controls regularisation (or prevents overfitting).
○ max_depth controls the depth of the tree.
○ min_child_weight controls when the tree splitting stops.

Figure 5. Confrontation lines and observation posts.



○ reg_alpha controls L1 regularisation term on weights.
○ reg_lambda controls L2 regularisation term on weights.
○ n_estimators is the number of gradient-boosted trees.
○ scale_pos_weight controls the balance of positive and negative weights.

The parameters mentioned above are selected for each specified algorithm as 
they have a great influence on its accuracy (e.g. max_depth or the path between 
the root node and the leaf node, the number of trees in the forest, the 
max_features or the number of features to take into account to make the best 
split), and ranges are passed to the GridSearchCV to choose the best combina
tion for each one.

After the prediction of mined areas, the resulting zones identified as mined 
are selected and extracted from the whole dataset, and reclassified according to 
priority of clearance, and difficulty of clearance. Accordingly, the data is ready 
for delivery to demining organisations to start the clearance process, in a safe 
and socio-economic way.

5. Experimental results

In machine learning, to interpret the results of a classification algorithm, the 
Shapley value (Shahriari-Mehr et al. 2021), a concept from cooperative game 
theory, is often applied. The Shapley value allocates the contribution of each 
player in a cooperative game, considering all possible combinations of players. 
The idea behind Shapley values is to assign a value to each feature that 
represents the average marginal contribution of that feature across all possible 

Figure 6. Visibility from an observation post.



feature combinations. By doing so, we can understand how each feature con
tributes to the prediction and gain insights into the model’s behaviour and 
feature importance. The Shapley value can be computed using various meth
ods, such as the Shapley sampling values, Kernel SHAP, or Tree SHAP, depend
ing on the nature of the model and the specific problem at hand. By using 
Shapley values, we can perform feature importance analysis, explain model 
predictions, and gain insights into which features have the most impact on 
the model’s output. This information can be useful for model debugging, 
feature selection, or understanding the underlying relationships in the data.

Figure 7 shows the contribution of our model features in the prediction 
results in descending order for the RF classifier. As you can see, the Distance 
to Forests and the Elevation gave the highest contribution, and the Visibility the 
lowest which is logically mathematically speaking, because Visibility is a binary 
value (visible 1 or invisible 0), while the other features have real values (dis
tances), but in terms of military importance, the visibility is the most important 
as previously discussed:

All experiments have been conducted on top of the free software QGIS which 
offers sufficient flexibility and capabilities to realise all data manipulations. All 
codes were implemented using the Python programming language and the 
Scikit-learn library.

The data is tested and validated by splitting it to 70% for training, 15% for 
testing, and 15% for validation. The metrics used to assess the validation of the 
model are accuracy, precision, recall, confusion matrix, and under-area curve 
(Table 2 for mine area predictions). As shown, these models gave good accuracy 
for the mined area prediction, as well as for other metrics (i.e. recall, precision, 
AUC). This means that the increase in the sample number and the inclusion of 
military expertise enhanced the model performance. Note that the RF model 
gave the best metrics, while XGBoost was the fastest and SVM the most time- 
consuming algorithm.

Cross-validation is used to tackle the performance on unseen data. Table 3 
shows the confusion matrices relative to five folds used in cross-validation, 
where the maximum and minimum accuracy obtained were as follows: max 
accuracy = 97.47%, min accuracy = 97.29%.

Table 4 shows the results of the test and validation datasets for the RF 
classifier, whose figures are almost equal and above 97% which indicates that 

Table 1. Data sample structure.



our model is performing well. Ablation tests have been performed and inserted 
in section 5. It appears that even though visibility and confrontation lines are 
binary variables, their influence on the computation experiments is minor as 
ablation results showed a decrease in accuracy by 2% as shown in Table 5. On 
the other hand, the role of those two added variables is essential from a military 
perspective, as they ensure the selection of an appropriate region where mines 
are supposed to be planted and eliminate the risk of selecting non-relevant 
data. In fact, if the study area is not properly selected, the study zone is too large 
and filled with parts unsuitable for mining, making the problem highly 
imbalanced.

Figures 8 and 9 are also generated by QGIS and show the prediction results 
for the splits (10 × 10 m) chosen by the RF algorithm for testing (i.e. for the 
combination 70/30, where 30% of the samples were chosen for testing and 70% 
for training), in different areas (South Lebanon and North Lebanon), and it 
appears that this model converges well in predicting mined areas within rela
tively small areas.

Military demining experts follow a methodical way to classify minefields by 
priority of clearance depending on their socio-economic impact, i.e. the most 
the mined area is susceptible to be accessed by people, the more it became 
important to clear it first, and thus will be classed as a priority for clearance. 
Those experts also classify the minefields by difficulty of clearance due to their 
altitude (relative to sea level) where the weather constraints took place, and also 
due to the slope of the terrain which makes them easy or hard to work in. After 
identifying the mined areas, they can be classified by priority of clearance. The 
Random Forest (RF) model (BalancedRandomForest) is used as it gave the best 

Figure 7. Shapley values, RF classifier.



accuracy results in the previous step. The results were 99.07% for all the metrics 
used (i.e. accuracy, precision, and recall) compared to the classification made by 
military demining experts. The last phase is the classification of mined areas by 
difficulty of clearance. The RF model is also used, and the results were also 
99.03% for all the metrics used (also compared to the classification made by 
military experts). Note that the results were high (99%) because the boundaries 
separating the priority and difficulty classes are clear and well defined as ranges 
of values, and the result of different features is well known. For instance, for the 
difficulty class, the variables used were elevation and slope and were split into 
ranges (i.e. 0 to 500, 500 to 2500, and >2500 for elevation, 0 to 15, 15 to 30, and  
>30 for slope) which makes it easy to correctly classify within these ranges.

Figure 10 shows the predictions for priority in an area close to urban agglom
erations, and the results gave high priority, and Figure 11 shows the low priority 
predictions in a deserted area where human access frequency is very low.

Figure 12 shows the area predicted as easy for the difficulty class in a plane 
land, and Figure 13 reveals the variation of difficulties from hard to easy with 
the slope variation, where the lighter areas stand for a higher slope and the 

Table 5. Ablation test.

Ablation test Accuracy %

All Features 97.47
Without Military Features 95.91

Table 2. Results for mined area prediction.

Accuracy Precision Recall AUC Execution time(s)

SVM 0.955 .978 0.93 0.955 14350

RF 0.975 .962 0.976 0.975 7207
XGBoost 0.941 .906 0.947 0.942 59

Table 3. Confusion matrices for five folds (cross-validation).

[[40834 784] [[40847 771] [[40919 698] [[40913 704] [[40888 729]
[808 16,267]] [750 16,325]] [789 16,287]] [820 16,255]] [787 16,288]]

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Table 4. Accuracy of test and validation datasets, RF classifier.

Dataset Accuracy %

Test 97.15
Validation 97.19



darker areas stand for plane land (low slope). As noticed in Figure 13, there is 
some heterogeneity in the 10 × 10 pixels classification for difficulty, this is 
related to the high resolution of the DSM used to generate the slope, where 
small variances in slope are recorded, and the final interpretation would be 
done by the military demining expert to assess the difficulty of the entire area. 
Figures 10-13 are generated by QGIS.

Figure 9. Predictions for mined areas in North Lebanon.

Figure 8. Predictions for mined areas in South Lebanon.



As can be observed, the accuracy results of our model are very good, but 
there is something to emphasise: the objective is to predict mined areas, i.e. 
the areas favourable to plant mines in, not the exact location of each mine. 
This can be later done by demining experts who have the human knowledge 
and the specialised equipment to do so and demine precisely those pre
dicted areas.

Finally, this modelling framework delivers to the military experts in charge of 
the demining system, as a service, well-defined vector data (location-based) 
covering the areas predicted as mined, with the context of their prioritisation 
and the relative difficulty of clearance, giving them a good starting point for the 
demining process. This facilitates clearance of the mined areas with high priority 
and less difficulty, while all areas can be covered progressively.

6. Conclusion and further work

This research highlights the potential of using GIS, ML techniques, and human 
knowledge in predicting and classifying landmine locations by priority and 
difficulty of clearance, to improve the efficiency and safety of in situ landmine 
clearance operations. One of the challenges in this field is that landmines are 
rare events, making it difficult to collect sufficient data to train an ML model. 

Figure 10. High-priority prediction in urban areas.



Figure 12. Easy difficulty predictions in plane areas.

Figure 11. Low-priority predictions in deserted areas.



However, the paper suggests that by combining machine learning techniques 
with military expertise, accurate predictions can be made.

By using their knowledge of landmine deployment and terrain properties, 
military experts can help to geographically identify areas that are more likely to 
contain landmines, and they can also refactor the data in a context-aware system 
capable of delivering further classifications related to priorities and difficulties of 
the location-based demining tasks. The availability of data is also an important 
factor, and the researchers note that increasing the number of training samples 
can lead to increased accuracy. The results of the study are promising, and the 
integration of military expertise is seen as particularly valuable.

Our model can be applied in real situations by military experts who have to 
first study the area of operations (i.e. observation and military posts, confronta
tion lines, 3D aspects of the terrain, the visibility from observation posts, 
population, and land use), then select the area susceptible to be mined, divide 
it to small samples, fill in the different features (variables), and finally apply the 
prediction model.

Future work in this field could focus on differentiating between types 
of mines, such as anti-personnel or anti-tank mines, depending on the 
purpose of use which might be defined again by military experts, as 
different mine types demand different clearance approaches. This would 
allow for more targeted demining efforts, as different types of mines 
require different resources and approaches, thus allocating the right 
resources for demining.

Figure 13. Mixed difficulties predictions varying with slope.



Overall, this research suggests that the combination of machine learning and 
military expertise has the potential to greatly improve landmine clearance 
operations and could ultimately save lives and improve the safety of commu
nities affected by landmines.
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