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Abstract

Recently, Triply Periodic Minimal Surface (TPMS)-based lattices have received significant attraction in structural applications
across a variety of engineering sectors, including automobile, aerospace, and biomedical, owing to their improved mechanical
properties and lightweight potential. The mechanical characteristics of these lattices are intrinsically linked to the design-related
topological descriptors that include the spatial arrangement of their topological cell wall, geometrical sizes, and relative density.
In practical applications, however, these structures are often exposed to fluctuating loads that can induce depreciation of their me-
chanical properties and eventually fatigue failure. Therefore, it is crucial to conduct a comprehensive analysis of their orientational-
dependent fatigue response and explore the structure-property correlation under fatigue subjected to various loading conditions.
To address this challenge, a novel numerical framework based on the Finite Element Method has been proposed and employed
to investigate the fatigue strength of TPMS lattices, specific to uniaxial loading conditions. The stress-based Crossland criterion
has been adopted as the fatigue criterion, and the fatigue strength of the considered volume is computed using a fatigue indicator
parameter (FIP). The developed framework is undertaken to examine the performance of two widely studied sheet-based TPMS-
lattices, namely Schoen Gyroid, and Schwarz Primitive. Besides, the approach permitted to demonstrate the influence of localized
material distribution and loading direction towards the evaluation of fatigue strength and structural efficiency. It is observed that
among the proposed lattices, Schoen Gyroid is shown to exhibit better fatigue properties in accordance with the existing literature
studies. The outcome of these case studies suggests that the proposed numerical framework offers a promising solution for solving
topology optimization problems involving lattices, wherein not only the selection of the lattice but also their preferred orientation
can be taken into account as design variables.
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1. Introduction

The exploration of light-weighting the structural components continues to be an active and dynamic field of re-
search and development, spanning multiple sectors. In particular, the automotive and aerospace industries consider

∗ Corresponding author.
E-mail address: sudeep-kumar.sahoo@ensam.eu

2210-7843© 2023 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the Fatigue Design 2023 organizers.

Available online at www.sciencedirect.com

Structural Integrity Procedia 00 (2023) 000–000
www.elsevier.com/locate/procedia

Fatigue Design 2023 (FatDes 2023)

Exploration of the orientational-dependent fatigue response of triply
periodic minimal surface cellular structures: A numerical study

Sudeep K. Sahooa,∗, Nicolas Saintiera, Yves Chemiskya
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light-weighting as a pivotal strategy for enhancing fuel efficiency and mitigating environmental challenges by reduc-
ing emissions. Apparently, this has sparked a significant surge in interest and research efforts toward finding innovative
solutions, such as lightweight materials and structures, that offer promising solutions for leveraging these benefits.
Parallel to these developments, the rapid advancements in additive manufacturing (AM) technology have attracted
considerable interest among researchers, particularly in the realm of fabricating lightweight lattice structures. These
structures exhibit complex geometries and a repetitive arrangement of unit cells, showcasing a diverse spectrum of
adjustable multifunctional properties that are intricately influenced by their distinctive topology (Lu et al. (2022); Yu
et al. (2018)). By carefully designing the unit cell topology, lattice structures can be tailored to demonstrate desirable
properties, such as high strength-to-weight ratios, low densities, high energy absorption capabilities, high surface area-
to-volume ratio, and tunable porosities derived from their engineered micro-architecture (Maconachie et al. (2019);
Poltue et al. (2021); Refai et al. (2020b); Sharma and Hiremath (2020)).

Nomenclature

TPMS Triply Periodic Minimal Surfaces
X, Y, Z Cartesian Coordinate System
n & L number and length of the unit cell, respectively
c level-set parameter
ρ̄ Relative density of the lattice structure
σ̄i j Equivalent Stress field (Second-rank tensor)
ε̄kl Equivalent Strain (Second-rank tensor)
C̄i jkl Homogenized effective stiffness matrix (Fourth-order tensor)
RVE Representative Volume Element
VRVE Overall volume of the RVE
v Effective (or the real) volume of the lattice cell
σeq. Cross Equivalent Crossland Stress
J2,a 2nd invariant of deviatoric stress amplitude
σH,max Maximum Hydrostatic Stress
α& β Crossland Criterion parameters
FIP Fatigue Indicator Parameter
Cs Coefficient of Security
Es Elastic Modulus
νs Poisson’s ratio
R Fully reversed loading condition (R = −1)
Ar Anisotropic Ratio

Depending upon the topological arrangement, the unit cells of the lattice structures can be broadly categorized
into two main types: strut-based lattices and sheet-based lattices. Strut-based lattices are characterized by intercon-
nected struts forming the unit cell at the nodes, while sheet-based lattices consist of thin walls composing the unit cell.
Within the realm of sheet-based lattices, Triply Periodic Minimal Surface (TPMS) structures have garnered significant
attention in recent years. TPMS structures are characterized by non-self-intersecting surfaces with zero mean curva-
ture, which can be described mathematically using specific equations (Al-Ketan et al. (2019); Bobbert et al. (2017);
Chatzigeorgiou et al. (2022); Refai et al. (2020a)). Furthermore, the absence of nodes and discontinuities in their cur-
vature leads to decreased stress concentration, thereby improving their mechanical performance. Understanding the
fatigue response of lattice structures, on the other hand, is crucial in real-time scenarios because the structural parts
constructed by tessellating these elementary cells are exposed to unprecedented cyclic loading conditions which im-
pact their structural performance. External parameters such as vibrations, fluctuating loads, rotational or reciprocating
motion, thermal cycling, etc., or a combination of these parameters often contribute towards these cyclic stresses. As a
consequence, stress concentration occurs in certain sections, resulting in the degradation of mechanical properties and
an unforeseen risk of failure (Kelly et al. (2019); Molavitabrizi et al. (2022)). In light of this, precise prediction and
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characterization of the fatigue performance of these cellular structures are essential for a comprehensive understanding
of the issues involved, especially when dealing with the interconnected complicated cell wall morphology.

A comprehensive review of fatigue studies on lattice structures pointed out that the fatigue properties of cellular
solids, including their mechanical properties, are mainly governed by several key aspects: (i) the mechanical prop-
erties of the bulk material, (ii) relative density, (iii) cell geometry, and (iv) material distribution within the structure,
which determines the shape of cell walls or struts (Ahmadi et al. (2015); Cutolo et al. (2020); Downing et al. (2021);
Maskery et al. (2015); Yavari et al. (2015)). Pursuing an experimental strategy to examine the influence of these
factors on the fatigue properties of lattice structures can be a time-consuming and resource-intensive endeavor since a
large number of samples are required for fatigue testing, which incurs additional expenses. Alternatively, the computa-
tional method offers a robust and efficient approach to accelerate the process by simulating experimental conditions. In
this regard, several numerical models (Molavitabrizi et al. (2022); Peng et al. (2021); Peng et al. (2022); Refai et al.
(2020a)) have been proposed to predict the fatigue behavior. However, a research gap still remains for the development
of a numerical framework that could effectively predict the orientational-dependent fatigue characteristics.

Based on this perspective, the present investigation is undertaken with two main objectives. Firstly, a numerical
framework is proposed to assess the fatigue behavior of lattice structures under uniaxial loading conditions. This
approach utilizes the local stress-based Crossland criterion and computes the fatigue strength of the analyzed volume
using a fatigue indicator parameter (FIP). Secondly, a suitable technique is proposed to visually demonstrate the
computed mechanical response in a three-dimensional spatial representation. This representation aids in exploring
the anisotropic behavior and orientation dependence of the lattice properties under investigation. The reliability of
the proposed approach was tested critically by applying it to two sheet-based TPMS lattice structures, namely Schoen
Gyroid and Schwarz Primitive. Consequently, the developed numerical framework enables the identification of critical
sections within these lattice structures corresponding to the high symmetry directions of the cubic crystal, specifically
[001], [110], and [111] loading directions. The main finding of this proposed framework serves as a valuable tool for
effectively directing the design and optimization process to tailor the material’s mechanical properties to meet specific
application requirements, thereby ensuring the durability and safety of components and structures.

2. Numerical Methodology

2.1. Modelling the TPMS Cellular structures: Design and Generation

In this section, the design strategy to model TPMS-based lattice structures is obtained using the level-set trigono-
metrical equations (Chatzigeorgiou et al. (2022); Krishnan et al. (2022)), defined as:

fi(x, y, z) = c (1)

where, x = 2πnX/L, y = 2πnY/L, and z = 2πnZ/L. Here, the variables X, Y , and Z represent the cartesian coordinate
system, while n and L denote the number and length of the unit cell, respectively. The parameter ‘c’ in Eq. 1 represents
the level-set parameter, which determines the offset of the minimal surfaces, and controls the volume ratio between the
two sub-spaces. Specifically, for the extensively studied lattice structures, namely the Schoen Gyroid and the Schwarz
Primitive, the corresponding level-set functions are expressed as follows:

(a) S choen Gyroid : fG(x, y, z) = cos(x) · sin(y) + cos(y) · sin(z) + cos(z) · sin(x) (2)

(b) S chwarz Primitive : fP(x, y, z) = cos(x) + cos(y) + cos(z) (3)

By tuning the ‘c’ parameter, different desired density levels for both the Schoen Gyroid and the Schwarz Primitive
lattice structures are generated. The resultant lattice structures with varying relative density levels are modeled using
an in-house open-source software microgen (https://github.com/3MAH/microgen) and are shown in Fig. 1(a),(b). In
this context, the relative density (or volume fraction) denoted by ρ̄ for a lattice structure is defined as:

ρ̄ =
ρLatt

ρS
(4)

where, ρLatt and ρS denote the densities of the lattice structure and the constituent base material, respectively. The
parameter ρ̄ ranges from 0 to 1, with 1 indicating a fully solid structure. Both these lattice structures are well-known
for their unique geometries and potential applications in various structural domains.
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Fig. 1: Sheet-based Triply Periodic Minimal Surface (TPMS) lattice structures with relative density levels of 0.2 and 0.4 for: (a) Schoen Gyroid
and (b) Schwarz Primitive.

2.2. Computational Homogenization Framework

From the geometrical perspective of these lattice structures, it is evident that the presented lattices possess cubic
symmetry and may exhibit distinct topological-mechanical property relationships as a result of different cell-wall
topologies. In this aspect, it is crucial to establish a thorough understanding of the interaction between the macroscopic
properties of architected cellular materials and the design parameters associated with the lattice cell, such as unit
cell type and relative density. These relationships can be effectively determined using the numerical homogenization
method to evaluate the effective mechanical properties, which relies on generalized Hooke’s law. In this context, the
TPMS unit cell (shown in Fig. 1) is selected as the representative volume element (RVE) and is treated as an equivalent
homogeneous solid continuum whose mechanical response is described by a set of effective (or equivalent) material
properties.

According to the generalized Hooke’s law, the relationship between the equivalent stress field (σ̄i j) and the equiv-
alent strain (ε̄kl) for the sheet-based TPMS can be expressed as:

σ̄i j = C̄i jklε̄kl (5)

where, σ̄i j, ε̄kl, and the stiffness matrix (C̄i jkl) can be further defined as:



σ11
σ22
σ33
σ23
σ12
σ13



=



C11 C12 C13 C14 C15 C16
C22 C23 C24 C25 C26

C33 C34 C35 C36
sym C44 C45 C46

C55 C56
C66





ε11
ε22
ε33
2ε23
2ε12
2ε13



(6)

Furthermore, due to the cubic symmetric nature of the presented sheet-based TPMS, the elastic constants in the
stiffness matrix can be well represented by means of three independent constants as: C11 = C22 = C33, C12 = C13 =

C23, C44 = C55 = C66. The remaining constants in the matrix are set to zero. Based on these considerations, the
stiffness matrix can be expressed in a simplified form:



σ11
σ22
σ33
σ23
σ12
σ13



=



C11 C12 C12 0 0 0
C22 C12 0 0 0

C33 0 0 0
sym C44 0 0

C55 0
C66





ε11
ε22
ε33
2ε23
2ε12
2ε13



(7)
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In order to evaluate the values of three unknown constants in the stiffness matrix (Eq. 7), two FEM analyses are
required to be performed on the RVE: one for uniaxial and the other for shear strain. The strain conditions for these
computations are as follows:

For uniaxial strain : εkl =

1 0 0 0 0 0

T
(8)

For shear strain : εkl =

0 0 0 1 0 0

T
(9)

It is worth noting that in the linear elastic model, the imposed strain value has no influence on the stiffness properties
of the lattices. Hence, a unit value is adopted for simplicity. Eventually, the stiffness tensor C̄i j can be established by
calculating the average of the local fluctuation of the stress fields within the unit cell. The homogenized stress (σ̄i j)
under such scenario is determined based on Hill’s principle (Hill (1963)):

C̄i j = σ̄i j =
1

VRVE


v
σ̄dV (10)

where, σ̄ denotes the stress components of the stress tensors within the differential volume element dV , VRVE is the
overall volume of the RVE, and v is the effective (or the real) volume of the lattice cell.

2.3. Modelling the Multiaxial High-cycle Fatigue Criterion

As a fatigue criterion, the stress-based Crossland criterion (Crossland et al. (1956)) is adopted for evaluating the
heterogeneity of the fatigue stress field. Mathematically, this criterion represents a linear combination of the maximum
value of the hydrostatic stress over a cycle (σH,max) and amplitude of the second invariant of the deviatoric tensor
(


J2,a) and is expressed as:

σeq. Cross =


J2,a + α · σH,max ≤ β (11)

Here,σeq. Cross is the equivalent Crossland stress, whereas α and β are two material parameters to be identified from the
fatigue tests, measured for a given number of cycles under alternated tensile and shear stress conditions, respectively.
The calculation of


J2,a is obtained by a double maximization over the whole loading cycle:


J2,a(M) =

1

2
√

2

max
ti∈T

max
t j∈T


S̄ (ti) − S̄


t j


: S̄ (ti) − S̄


t j


 (12)

where, S̄ is the deviatoric part of the stress tensor, and the symbol “:” expresses the contracted double product. t and
T are the time and the loading period, respectively. The maximum hydrostatic stress (σH,max) over a cycle (shown in
11) is defined as:

σH,max = max
t∈T


1
3

3
k=1

σkk

 (13)

where, σkk (k = 1, 2, 3) are the diagonal elements of the stress tensor.
Following the principles of the Crossland criterion (Eq. 11), the fatigue strength of the considered volume is

evaluated using a fatigue indicator parameter (FIP) proposed by Vayssette et al. (2019), which is expressed as:

FIPmax =


J2,a + α · σH,max, or, FIPmax = β (14)

The given expression (Eq. 14) facilitates the construction of the Crossland plot (also referred to as


J2,a versus σH,max

plot), as shown in Fig. 2, and the dashed line in the plot represents the line of the equation:


J2,a + α · σH,max = β (15)

which governs the fatigue limit.
The fatigue strength of a specific volume is considered to have been attained when the representative point (M) in

Fig. 2 reaches the material threshold line. This point of intersection is referred to as the coefficient of security (Cs),
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Fig. 2: Crossland plot showing the representative point (M) and the material threshold line along with the coefficient of security.

which is proportional to the distance between the representative point (M) and the material threshold line (as shown
in Fig. 2. Here, the representative point (M) denotes the coordinate point where the value of FIP is maximum.

By combining Eqs. 11, 14 and solving them, the following expression for the coefficient of security (Cs) can be
obtained:

Cs(M) =
β

FIPmax
, or, Cs(M) =

β√
J2,a + α · σH,max

(16)

Now, considering a unit safety factor (SF = 1), that is, when the FIPmax is equal to the Crossland parameter (β) for
a given macroscopic loading, the fatigue strength (σ̄ f ) is evaluated as:

σ̄ f =
σ̄m × β
FIPmax

(17)

where σ̄m is the amplitude of the arbitrary initial applied load. In the present context, this will be referred to as
“macroscopic fatigue strength”.

In addition, the present study also aims to investigate the influence of orientation on the fatigue strength of the
presented TPMS unit cells. To accomplish this, the stress tensor, a fundamental concept in mechanics, is employed
to describe the stress state of the material corresponding to a specific orientation. This assessment can be readily
accomplished by maintaining the lattice cell constant and employing the mechanics of stress tensor coordinate trans-
formation, which allows for the conversion of the initial reference coordinate system to the new coordinate system.
Such a procedure enables us to determine the resultant stress tensor components generated as a result of these trans-
formations.

2.4. Simulation Procedure

In the present investigation, the finite element analysis is accomplished using the Zebulon implicit solver (Z-Set),
a commercial finite element software, to compute the fatigue as well as the anisotropic response of TPMS-based
lattice structures. The FEA mesh was constructed using Second-order tetrahedral elements (C3D10) because of its
geometric flexibility and ability to handle complex geometries, thus allowing for a more precise analysis of the de-
formation response. To ensure computational accuracy and adequate geometric conformance, a mesh convergence
analysis was performed. An element size of 0.06 mm was selected, as it provided the necessary computational preci-
sion and geometric fidelity. Concerning the base material behavior, linear elastic, perfect plastic, and rate-independent
are assumed. Titanium alloy (Ti-6Al-4V) is chosen as the solid base material, with the following material properties:
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Elastic modulus (Es) = 110 GPa, and Poisson’s ratio (νs) = 0.3. The fatigue coefficients for the same alloy, that is, α =
0.707 and β = 416.7 MPa were adopted from the experimental work of Vayssette et al. (2019). The fatigue simulations
in this study are conducted under uniaxial loading conditions with fully reversed loading, for load ratio (R) = -1. The
obtained results for the fatigue strength are graphically represented using a spherical coordinate system; the details of
which can be found in Nordmann et al. (2018).

3. Results and Discussion

3.1. Assessing the Fatigue Strength

Fig. 3 presents the three-dimensional spatial representation of fatigue strength of the examined sheet-based TPMS
lattice at relative density levels of 0.2 and 0.4, under uniaxial loading conditions. To evaluate the fatigue strength, the
numerical framework (as mentioned in subsection 2.3) based on the stress-based Crossland criterion (Crossland et al.
(1956)) is being adopted. It is important to note that, for all considered lattice structures, the fatigue responses are

observed at the same stress level. Here, the primary focus is to shed light on the impact of the intriguing topological
sheet arrangements and anisotropic characteristics of TPMS structures on their fatigue response when subjected to
different loading orientations. The plot displays variations in fatigue strength across the lattice structure, as shown in
Fig. 3, with different colors demonstrating the range of fatigue strength values reflected in the color scale bar. Ideally,
this three-dimensional shape function is typically characterized by a perfect sphere to represent isotropic material
behavior, demonstrating consistent mechanical properties in all directions. However, any deviation from this shape
indicates the level of anisotropy, highlighting the directional dependence of these properties in terms of strong and
weak directions.

It can be observed that the Schoen Gyroid structure demonstrates minimal variation in the fatigue strength irre-
spective of the loading direction, with deviations within the range of ±5% from the mean value. While the primitive
structure displayed a significant variation in fatigue strength depending on the loading direction relative to the sheet
orientation. The highest fatigue strength is observed along the diagonal direction and the lowest fatigue strength along
the axial direction, which corresponds to the [111] and [001] loading directions, respectively. This disparity in fatigue
strength between the Schoen Gyroid and Schwarz Primitive is primarily attributed to the unique alignment of the cell
wall arrangement within these structures with respect to the different loading orientations.

3.1.1. Influence of cell wall topology
Concerning the topological cell wall arrangement, the Schoen Gyroid demonstrates an efficient configuration of

cell walls that optimizes load distribution within the structure. The complex spiraling interconnected sheets form a
highly efficient network, facilitating the distribution and transfer of loads throughout the structure. This unique micro-
architecture enables a homogeneous fatigue response along various orientations, as the load is evenly dispersed and
shared across the interconnected network of cell walls. Consequently, the gyroid structure exhibits a more isotropic
behavior, meaning its mechanical properties are relatively consistent regardless of the direction of applied stress.
Indeed, previous studies (Bobbert et al. (2017); Yang et al. (2019)) on the deformation behavior of Schoen Gyroid
have also pointed out similar responses.

The micro-architecture of the Schwarz Primitive structure, on the other hand, is primarily driven by more regular
and straight sheet configurations, and it lacks the complex spiral network of support found in the gyroid structure.
As a consequence of such a design, the effective load transfer between neighboring sheets is limited, resulting in
more heterogeneous stress distribution. This shows that the configuration of cell walls is important in aiding load
transmission and the structure’s ability to resist deformation, influencing stress distribution across neighboring sheets.
Besides, it can be observed from Fig. 3, that increase in the relative density of the lattice structures resulted in higher
fatigue strength for both structures. This is based on the fact that higher relative density typically leads to increased
stiffness and resistance to deformation.

3.2. Anisotropic response

A better understanding of the anisotropic behavior of the lattice structures can be further quantified using the Zener
anisotropy index. This index, introduced by Zener and Siegel (1949), quantifies the degree of anisotropy exhibited
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Fig. 3: Three-dimensional spatial representation of the fatigue strength at specified relative density levels for (a) Schoen Gyroid, and (b) Schwarz
Primitive.

by the material, also referred to as anisotropic ratio (Ar). It is defined as the ratio of the shear modulus of the cubic
lattice, C44, to that of an isotropic material under the same stretching, (C11 −C12/2) and reads as:

Ar =
2C44

C11 −C12
(18)

Here, C44 represents the resistance to shear stress applied across the (100) plane in the [010] direction, and (C11 −
C12/2) is the resistance to shear stress applied across the (110) plane in the direction [110] (Abueidda et al. (2016)).
According to Eq. 18, when Ar = 1 the lattice structure is considered isotropic, indicating that the material exhibits the
same mechanical properties in all directions. Conversely, any deviation from Ar = 1 signifies the presence and extent
of anisotropy induced by the specific topological arrangement of the lattice structure.

Fig. 4 presents the anisotropic behavior of the lattice structures as a function of relative density. The plot reveals
that the Zener ratio for the Schoen Gyroid demonstrates a response close to isotropy (Ar ≈ 1), and remains relatively
constant even with increasing relative density up to 0.5. In contrast, the Schwarz Primitive, despite belonging to the
same family of sheet-based TPMS, displays a pronounced anisotropic behavior, as indicated by its significant deviation
from isotropy. However, as the relative density increases, the anisotropy of the Schwarz Primitive gradually decreases.
This is primarily attributed to the increased thickness of the cell wall, which transforms the porous structures into
solid ones, leading to a loss of the beneficial porous features. The contrasting anisotropic responses between the two
lattice structures, Schoen Gyroid and Schwarz Primitive, emphasize the influence of their geometric configurations on
mechanical performance, particularly in relation to the micro-architecture of the cell wall.

3.3. Identifying the critical sections and distribution of the Crossland Stress distribution pattern

To gain deeper insights into the deformation mechanisms of lattice structures under uniaxial loading conditions, the
Crossland stress field distribution is investigated for two examined geometries at relative density levels of 0.2 and 0.4.
The study focuses on specific loading orientations, namely [001], [110], and [111] and the results are presented in Fig.
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Fig. 4: Variation of anisotropic ratio (Ar) as a function of relative density (ρ̄) for the Schoen Gyroid and Schwarz Primitive.

5. The figures reveal that distinct regions within the lattice structures experience varying stress levels depending on
the loading orientation relative to the structure’s axes. These critical regions are of significant interest as they indicate
areas of high stress where the probability of material failure is more likely to occur. In addition, it is evident that the
highest stressed regions align consistently with the loading orientations.

By analyzing the sections of the Schoen Gyroid (Fig. 5a), it becomes apparent that stress is redistributed homoge-
neously among all the branches of the interconnected sheet network irrespective of the loading directions. However,
the branches aligned relative to the loading direction experience the highest stress levels as compared to the others.
Such arrangement of topological call wall offers a plausible explanation for the Schoen Gyroid’s isotropic behavior
in terms of mechanical performance and superior fatigue resistance, particularly when subjected to heterogeneous
loading conditions.

In contrast, the Schwarz Primitive (Fig. 5b) structure exhibits high anisotropy. When subjected to loading orien-
tations along [001], and [110], specific locations along the loading direction experience concentrated regions of high
stress. While along [111] direction, the distribution of the cell walls is preferentially aligned with a greater volume of
the lattice structure to resist the deformation, thereby providing higher fatigue strength. However, due to the increased
anisotropy of the lattice structure, Schwarz Primitive structures are more prone to stress concentration and cracking
when exposed to heterogeneous loading conditions.

4. Conclusions

To conclude, the numerical framework proposed in this study provides an efficient and effective method for eval-
uating the orientational-dependent fatigue response of lattice structures. Our results emphasize the importance of ge-
ometry, spatial arrangement of cell wall topology, cell wall curvature, and relative density in regulating the mechanical
behavior of lattice systems. The key findings are highlighted as follows:

(1) The Schoen Gyroid lattice demonstrated better fatigue qualities, which is consistent with prior findings in the
literature. This enhanced performance is due to the helical structure of its cell walls, which allows for homogeneous
load distribution over the whole cell volume independent of the loading direction.

(2) The Schwarz Primitive lattice presents more localized stress fields for specific loading directions, demonstrating
its sensitivity to loading direction and thus influencing the fatigue response.

In summary, our proposed methodology provides useful insights that lead to a better understanding of these mate-
rials’ overall mechanical characteristics for the design and optimization of lattice structures in a variety of engineering
applications.
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Fig. 5: Normalized stress field distribution referred to as Crossland FIP distribution for (a) Schoen Gyroid and (b) Schwarz Primitive.
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Fig. 5: Normalized stress field distribution referred to as Crossland FIP distribution for (a) Schoen Gyroid and (b) Schwarz Primitive.
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