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A B S T R A C T   

Based on new experimental observations, a comprehensive analysis of factors influencing microstructure 
refinement in laser powder bed fusion additive manufacturing of 316L stainless steel components is presented. In 
contrast to existing hypotheses, the study reveals that neither the solidification mode nor the mere presence of 
nano-oxides in powders suffices to fully elucidate the observed grain refinement. Instead, this research highlights 
the intricate interplay between a strongly ferrite forming composition and the simultaneous presence of Mn-Si 
nano-oxides as essential contributors to the microstructure refinement process. The study explores the role of 
heterogeneous nucleation mechanism involving nano-oxides and provides fresh insights into the solidification 
mechanisms in laser powder bed fusion process, enhancing our understanding of microstructure control in laser 
powder bed fusion processes and offering novel perspectives for advanced materials engineering.   

Recent advancements in additive manufacturing (AM) processes 
unlocked novel possibilities for manufacturing industrial components 
including repair capabilities, intricate designs, and microstructure 
tailoring [1–3]. The mechanical properties of AM components are 
significantly influenced by both their chemical composition and 
multi-scale microstructure characteristics [4]. Thus, it is imperative to 
exert control over these parameters to govern and enhance the final 
properties of these components. 

Under standard conditions, the laser powder bed fusion (LPBF) 
process is known to induce the development of elongated grains along 
the build direction, resulting in unwanted mechanical anisotropy, 
especially in the context of multi-axial loadings [5]. Consequently, there 
is a critical need to diminish grain size and replace elongated grains with 
fine equiaxed ones to mitigate mechanical anisotropy while enhancing 
strength. 

Numerous ways are available for controlling the microstructure of 
LPBF components amongst which modification of LPBF parameters, 
such as laser power or velocity, is one clear option. Lower energy den-
sities have been demonstrated to produce finer grains and a less aniso-
tropic texture, although this alteration also influences defect 
distribution [5,6]. As a result, a trade-off must be found between 

optimizing energy to minimize defects and limiting the energy range for 
microstructure modification. 

An alternative approach involves modifying the laser scan strategy to 
alter local solidification conditions or to restrict grain elongation by 
employing pattern rotations between each layer [7]. However, con-
trolling grain size remains challenging with this technique, and it also 
often modifies defect distribution, further limiting the range of micro-
structure control. 

The most powerful technique for refining grain size and mitigating 
grain anisotropy inherited from the LPBF process involves modifying the 
used powder. The literature records instances of achieving very fine 
equiaxed grain structures in the LPBF process using specific powders 
[8–11]. The results presented herein confirm that powder selection can 
reduce grain size by an order of magnitude while promoting equiaxed 
grains, and demonstrate that this effect is consistently observed 
regardless of the energy parameters used. 

However, the factors that explain grain refinement in 316L alloy 
powders have not yet been identified with any certainty. Various hy-
potheses exist, amongst which Ziri et al. [6] proposed that fine grains 
result from a ferrite → austenite solidification sequence influenced by 
the ferrite-forming element content. Alternatively, Chniouel [12] 
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attributes fine equiaxed grains to the presence of nano-precipitates 
which act as heterogeneous nucleation sites during solidification. 
Monier et al. [8] propose a further nucleation mechanism, namely the 
presence of icosahedral short range order (ISRO) in the liquid that 
promotes nucleation of equiaxed grains as already evidenced for some 
face centred cubic alloys [13,14]. 

At present, none of these hypotheses is universally accepted and, 
more importantly, none is fully consistent with the observations pre-
sented below. This paper thus undertakes a comprehensive examination 
of these hypotheses in light of our new results and seeks to synthesize 
these perspectives to elucidate grain refinement in 316L LPBF alloy. 

Two 316L stainless steel powders, designated as A and B and pro-
vided by Höganas, were employed in this investigation. They have 
diameter in the range of 15–45 µm and their chemical compositions, as 
provided by Höganas, are listed in Table 1 where they are compared to 
the ASTM A240 standard. The primary disparities in chemical compo-
sition relate to the Ni, Mo, and Si contents. 

For each powder, specimens were fabricated using LPBF process 
(SLM 125HL machine) with two distinct sets of process parameters 
denoted as low energy (LE) and high energy (HE), as outlined in Table 2. 
The main differences between these two parameter sets lie in the laser 
power (P) and laser velocity (v), while the hatch distance (h) and layer 
thickness (t) remained constant. Consequently, the volumetric energy 
density (VED), defined by Eq. (1), varies from 65 J/mm3 for the LE set to 
146 J/mm3 for the HE set. 

VED =
P

Vht
(1) 

The specimens were examined in their as-built condition following 
standard metallographic preparation procedures outlined in a previous 
publication [7]. Electron back-scattered diffraction (EBSD) analyses 
were conducted using a JEOL 7100F scanning electron microscope 
(SEM) equipped with a Nordlys Nano CCD detector. Grain boundaries 
low limit was set at 10◦. Micrographs were obtained after etching with 
aqua regia (HCl + HNO3), and observations were carried out using a 
Zeiss Axiovert A1m optical microscope. 

Fig. 1 presents the inverse pole figure (IPF), IPF maps and micro-
graphs of specimens produced using powders A and B under LE and HE 
conditions. The IPF maps reveal a substantial reduction in grain size and 
a significant alteration in material texture for specimens fabricated with 
powder B compared to those obtained with powder A. IPF maps confirm 
the near-free texture of specimens obtained with B powder. Hence, it is 
evident that powder modification exerts a significant influence on the 
microstructure, whether under LE or HE parameter sets. 

The examination of melt pools reveals no discernible alterations in 
morphology, size, or arrangement attributable to the alteration in 
powder composition. Consequently, the changes observed in Fig. 1 are 
primarily associated with solidification mechanisms stemming from the 
modification in powder composition. This implies that using powder 
composition for microstructural control is effective and can be 

considered independently of energetic factors. As a result, parameter 
tuning can be pursued to minimize defects while optimizing powder 
composition to refine grain size. 

After confirming the feasibility of substantial grain size reduction at 
both LE and HE levels, this study was devoted to elucidating the 
fundamental powder-related factors that exert influence on these 
microstructural modifications in LPBF parts. At first, both powder 
batches, A and B, were observed under a SEM, as illustrated in Fig. 2. As 
expected, the analysis revealed no discernible differences in either the 
size or morphology of the powders. Furthermore, both batches exhibited 
minimal satellite particles. Therefore, it is clear that neither the size 
distribution nor the morphology could explain the microstructure 
modification as seen in Fig. 1 and the explanation for this effect should 
lie in powder’s composition. 

Chemical composition is known to play a pivotal role in determining 
the sequence of phase solidification of stainless steels [15]. Specifically, 
alloys rich in ferrite-forming elements such as Cr, Si, Mo, Ti, Al, tend to 
initiate solidification with the formation of delta ferrite. On the con-
trary, high levels Ni, Cu, Mn, N or C favor austenite as a primary phase. 
In Fig. 3-a, alloys A and B are located in the (Ni,T) isopleth section 
calculated (with 17.7 wt.% Cr, 2.5 wt.% Mo and 1.5 wt.% Mn) using 
Thermocalc code and the TCFE12 database. This suggests that alloy B 
likely solidifies initially as ferrite before transforming into austenite, 
while alloy A would probably solidify directly as austenite because of 
growth undercooling; see below. 

The sensitivity to solidification rate was examined in light of previ-
ous works [15–17]. To this end, equivalent Cr content, Creq, and 
equivalent Ni content, Nieq, were estimated through Eqs. (2) and (3) 
reported in Suutala’s work [15] and commonly used in the litterature 
[18–20]: 

Creq = %Cr + 1.37∗%Mo + 1.5∗%Si + 2∗%Nb + 3∗%Ti (2)  

Nieq = %Ni + 0.31∗%Mn + 14.2∗%N + 22∗%C + %Cu (3) 

Stainless steels can be discriminated as ferrite or austenite former 
depending on the ratio κ = Creq/Nieq. However, an increase in solidifi-
cation rate increases growth undercooling that favors primary austenite 
solidification for stainless steels whose composition is close enough to 
the peritectic valley as is the case of alloy A [16,17,21,22]. This sug-
gested to plot the type of primary phase during solidification in a map of 
κ versus the solidification rate as in Fig. 3-b adapted from Miettinen [21] 
where it is seen that the primary austenite field extends at high growth 
rate. In LPBF process, the maximum solidification velocity corresponds 
to the scanning speed but the actual solidification rate can be consid-
erably lower, and Yang et al. [23] calculated solidification rates in the 
range of 100–200 mm/s for a scanning speed of 750 mm/s. Therefore, 
alloys A and B have been positioned at a solidification velocity of 100 
mm/s, corresponding to the upper limit of Miettinen’s diagram 
(Fig. 3-b). Accordingly, alloy A is anticipated to exhibit primary 
austenite formation, while alloy B is expected to display primary ferrite 
formation during LPBF process. 

It appeared of interest to look at the influence of the κ ratio on the 
final microstructure in the existing literature (Table 3). This comparison 
revealed that A powder exhibited a ratio similar to that used in many 
studies (κ = 1.52), whereas B powder displayed one of the highest ratios 
(κ = 1.69). Elongated grain microstructures, indicative of epitaxial so-
lidification, have been obtained for a range of κ values from κ = 1.41 for 
Godec et al. [24], κ = 1.52 for alloy A in our study and up to κ = 1.70 for 

Table 1 
Chemical composition of the 316L stainless steel powders (wt.%, balance Fe).  

Element Cr Ni Mo Mn Si O N P C S 

A 17.7 13.6 2.7 1.5 <0.1 0.04 0.01 <0.01 <0.01 0.002 
B 17.7 11.9 2.3 1.5 0.2 0.04 0.01 <0.01 <0.01 0.004 
ASTM A240 16.0–18.0 10.0–14.0 2.0–3.0 ≤2.0 ≤0.75 <0.1 ≤0.1 ≤0.045 ≤0.03 ≤0.030  

Table 2 
LPBF process parameters with the same scan strategy: Meander without rotation.  

Name V 
(mm/s) 

P 
(W) 

t 
(mm) 

h 
(mm) 

VED 
(J/mm3) 

Low Energy (LE) 700 275 0.05 0.12 65 
High Energy (HE) 400 350 0.05 0.12 146  

H. Roirand et al.                                                                                                                                                                                                                                
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Fig. 1. Inverse pole figures, inverse pole figure map oriented along building direction (BD) and associated micrography for specimens (a-c) A-LE, (d-f) A-HE, (g-i) B- 
LE and (j-l) B-HE. Texture index is multiple of random, mrd. LD is the laser direction and TD the transverse direction. 
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Kurzynowski et al. [25]. However, fine grain microstructures have also 
been achieved with κ values in a range that overlaps the previous one, e. 
g. in studies by Chniouel (κ = 1.63) [12], Monier et al. (κ = 1.66) [8], 

and Gray et al. (κ = 1.77) [26]. Thus, while the κ ratio alone does not 
fully explain the type of microstructure obtained in additive 
manufacturing, it can be stressed that fine/equiaxed grain 

Fig. 1. (continued). 

Fig. 2. SEM images from (a-c) A powder and (b-d) B powder.  

H. Roirand et al.                                                                                                                                                                                                                                
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microstructure has never been achieved for ratios smaller than κ = 1.6. 
In other words, while chemical composition alone does not entirely 
account for the observed microstructural refinement with B powder, it 
certainly plays a contributing role. 

To explain why either elongated or fine grain microstructure could 
be achieved at κ > 1.60, the possibility of heterogeneous nucleation 
addressed in the introduction was considered. Possible nuclei could be 
either due to ISRO as suggested by Monier et al. [8] or to substrates 
present in the material. Monier et al. [8] observed grain refinement in an 
alloy containing 130 ppm of N but not with one containing 900 ppm, and 
thus suggested that ISRO could show up provided the N content is low 
enough. In the present case, both A and B powders had very low N 
content, less than 0.01 % as measured by Höganas (Table 1) and 
respectively 84.3 ppm for A and 83.9 ppm for B as obtained by thermal 
desorption dosage with a Horiba EMGA-621 W machine. Based on 
Monier’s finding [8], fine equiaxed microstructures should have been 
obtained also with powder B which is not the case as demonstrated with 
Fig. 1-a,c. Therefore, the ISRO-based solidification mechanism could be 
discarded and the focus shifted to finding an alternative heterogeneous 
nucleation mechanism by studying the original powders. 

To achieve this, single powder grains from each batch were sectioned 
using focused ion beam (FIB) to extract foils for transmission electron 
microscopy (TEM) examinations that were carried out using a JEOL- 
2100F electron microscope operating at 200 kV. Electron images are 
illustrated in Fig. 4-a for powder A and Fig. 4-b for powder B. Further 
TEM observations of these foils (See Supplementary material section) 
revealed a similar microstructure between the two powder batches with 
grains of a few microns in size. The only major difference between the 
two powder batches was the evidence of particles with size up to 100 nm 
in powder B that appear in bright contrast in Fig. 4-b, while no such 
particles could be observed in powder A. 

Higher magnification TEM micrographs, such as that shown in Fig. 4- 
c, revealed that the nano-precipitates have a core-shell structure with a 
well-defined interface with the matrix. In addition, numerical diffrac-
tion patterns obtained by fast fourier transform (FFT) of high-resolution 
TEM (HRTEM) images, like that in Fig. 4d, show that these nano- 
precipitates have an amorphous nature. 

Additionally, their composition was analyzed in scanning trans-
mission electron microscopy (STEM) mode using high-angle annular 
dark-field STEM (HAADF-STEM) images and an energy dispersive 
spectrometry (EDS) analyzer (Brucker SDD XFlash 5030) in TEM, indi-
cating an enrichment in Mn, Si, and O compared to the matrix, along 
with a depletion in Fe, Cr, and Ni (Fig. 5). These precipitates are iden-
tified as mixed (Mn,Si) oxides or a combination of MnO and SiO2 oxides. 

These combined amorphous nano-oxides correspond to the observed 
amorphous core-shell structure (Fig. 4-c,d), with one oxide potentially 
forming the shell and the other the core. However, the EDS resolution 
was unable to confirm the composition of the internal phase. Never-
theless, nano-sized Mn-Si oxides are found in B powders, potentially 
serving as nucleation sites during solidification, thereby explaining the 
microstructural refinement. In fact, (Mn,Si) oxides have been system-
atically observed in as-built 316L components because of residual oxy-
gen in the chamber [33] but this is their presence in the initial powder 
that appears instrumental for microstructure refinement. Indeed, inoc-
ulation through nanoscale precipitates is commonly used to reduce grain 
size and achieve less anisotropic microstructures in LPBF process on 
aluminum alloys [10,34], on Ti and NiTi alloys (see the review by 
Zhiyuen Liu et al. [35]), or else on ferritic steels [9]. However, it is worth 
mentioning that Chniouel [12] achieved columnar microstructures with 
a powder containing nano-oxides, demonstrating that the mere presence 
of nano-oxides does not fully account for the observed microstructural 
refinement. Because the alloy investigated by Chniouel had a low κ ratio 
at 1.53, it is most probable that a combined effect of nano-oxides present 

Fig. 3. (a) Isopleth Temperature-Ni section (calculated at 17.7 wt.% Cr, 2.5 wt.% Mo, 1.5 wt.% Mn) showing theoretical solidification sequences at equilibrium and 
(b) impact of solidification velocity on the primary phase formation (ferrite versus austenite) for 316 L, adapted from Miettinen [21]. 

Table 3 
Comparison of Cr and Ni equivalent compositions and corresponding micro-
structures among additively manufactured 316L specimens reported in the 
literature. Microstructure type is defined as fine (F), columnar (C) or a mix of 
both (F/C).  

Name Creq(%) Nieq (%) κ =

Creq/Nieq 

Microstructure 

A 21.5 14.2 1.52 C 
B 21.2 12.5 1.69 F 
Godec et al. [24] 21.9 15.5 1.41 C 
Mower et al. [27] 20.9 14.3 1.46 C 
Voisin et al. [28] 20.5 13.8 1.48 C 
Andreau et al. [29] 21.8 14.6 1.49 C 
Monier et al. (1) [8] 21.9 14.4 1.52 C 
Chniouel (1) [12] 21.0 13.7 1.53 C 
Zhai et al. [11] 21.3 13.4 1.59 C 
Chniouel (2) [12] 21.3 13.1 1.63 F 
Yang et al. [30] 20.2 12.2 1.66 C 
Monier et al. (2) [8] 21.3 12.9 1.66 F 
Byun et al. [31] 21.1 12.7 1.66 C/F 
Dryepondt et al. [32] 21.1 12.6 1.68 C/F 
Kurzynowski et al. [25] 21.2 12.5 1.69 C 
Gray et al. [26] 24.0 13.5 1.77 F  

H. Roirand et al.                                                                                                                                                                                                                                
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in the powder before LPBF processing and ferrite-forming composition 
contributes to equiaxed grain formation. Conversely, Godfrey et al. [36] 
studied an alloy at κ = 1.67 very close to our alloy B and did not notice 
any grain refinement but could evidence a competition between 
austenite and ferrite at the columnar solidification front. 

In summary, it has been established through counter-examples that 
the κ ratio alone does not account for the powder’s influence on grain 
refinement of 316L alloy, nor does it suffice to consider only the pres-
ence of nano-oxides. The most probable explanation is a process much 
alike the columnar to equiaxed transition in casting of metallic alloys 
and this is in this way that the effect of inoculation has been described 
[37]. During epitaxial solidification, the columnar front undergoes a 
growth undercooling that depends on both alloy composition and 
growth velocity. Heterogeneous substrates present ahead of this 
columnar front can grow with a lower growth rate and thus a lower 
growth undercooling than would the columnar front, and they will block 
it if they are numerous enough. These two conditions appear to be ful-
filled in the case of alloy B thanks to its high κ value and to the presence 
of the Mn-rich nano-oxides. 
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Fig. 4. Electron micrographs of a section from powder (a) A and (b) B. The yellow dashed circles in (b) locate the spherical nano-precipitates. (c) Electron 
micrograph and (d) HRTEM of a nano-precipitate identified in foil B with FFT of the central zone of an amorphous nano-precipitate and of the crystalline matrix near 
the nano-precipitate. 
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