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In an industrial context of electrical device design or expertise, it is common for engineer to use models based on the Finite Element (FE) 

method. In the case of nonlinear magneto-quasistatic problems, it can lead to prohibitive computational times. Then, Model Order 

Reduction (MOR) approaches based on the Proper Orthogonal Decomposition (POD) combined with a hyper-reduction method can be 

employed to reduce the computational time but often leads to numerical instabilities. In this article, we aim to compare two hyper-

reduction methods that were developed to improve the stability of the nonlinear reduced model: the Gaussian Newton Augmented 

Tensors (GNAT) method and the Energy-Conserving mesh Sampling and Weighting (ECSW) method. The reduced models are evaluated 

in terms of accuracy on global and local quantities of interest and in terms of speedup, with application to a squirrel cage induction 

machine. Improvement of the ECSW method has been proposed such that it appears that this method is more competitive than the 

GNAT method and enables to obtain very good results both in terms of accuracy and time computation, which was reduced by a factor 

40 compared to the FE model.  

 
Index Terms—Nonlinear magneto-quasistatic problem, Finite Element Method, POD, GNAT, ECSW 

 

I. INTRODUCTION 

 

o study the behaviour of electrical equipment, it is now 

common to use numerical simulations, in order to 

efficiently prepare or replace tests that are difficult or dangerous  

to carry out. In this context, the Finite Element (FE) method is 

used intensively for the study of low frequency 

electromagnetism problems, such as the simulation of 

transformers or electrical machines. It is based on the 

discretization of the Maxwell’s equations leading to an 

differential algebraic equation  system often of large size. The 

numerical solution is achieved step by step in order to obtain 

the time evolution of the fields and quantities of interest (fluxes, 

currents, losses, couple, etc.) necessary for equipment diagnosis. 

This tool is particularly interesting in an industrial context since 

it enables to build a High Fidelity (HF) model, which can be 

considered as a virtual prototype of the equipment, but is often 

very expensive in terms of computational time. To overcome 

this issue, it is necessary to reduce the computational time 

associated with the solving of the equation system. In the 

context of engineering sciences, model order reduction (MOR) 

methods have been developed for this purpose and are therefore 

well adapted to this type of problem.  

The MOR methods are based on the definition of a reduced 

basis, defining a space of small dimension where an 

approximation of the FE solution is sought and which makes it 

possible to greatly reduce the size of the problem to solve (they 

will be referred as „projection” methods). These methods take 

advantage of the projection of the FE system in the reduced 

basis, and have often been developed for linear problems. 

Among the most known are the Proper Orthogonal 

Decomposition (POD) [1], the Proper Generalized 

Decomposition (PGD) [2], the Arnoldi method [3] and the 

Cauer Ladder Circuits [4]. However, in the case of nonlinear 

problems, the direct application of projection methods requires 

the reconstruction of the FE solution to evaluate the terms of 

the FE system (vector and/or matrix) at each iteration of the 

nonlinear loop, hindering the gain in terms of computational 

time provided by the reduction method.  

To alleviate this issue, complementary methods have been 

developped recently to reduce the computational time 

associated with nonlinear problems. In the case of CLN, a 

method to account for the nonlinear behavior of ferromagnetic 

materials has been proposed and tested with success on an 

induction machine. It accounts for the nonlinearity of the 

ferromagnetic materials in the stator but not in the rotor. This 

method consists in introducing a nonlinear inductance in the 

equivalent circuit constructed by the CLN method. This 

modification is based on physical considerations. The nonlinear 

behavior is taken into account by considering a global quantity, 

i.e. the linkage flux, and not on the local values of the magnetic 

field [5]. Numerical methods enabling to reconstruct locally the 

magnetic field distribution, refered in the following as „hyper-

reduction” methods have been also proposed. One approach to 

hyper-reduction consists in selecting a number of representative 

components (or points of space) on which nonlinear phenomena 

will be evaluated, and from which all non-linear vectors or 

matrices of the equation system will be reconstructed. The main 

methods are the oblique projection approaches based on Hyper-

Reduction (HR) [6] such as Missing Point Estimation (MPE) 

[7],  Discrete Empirical Interpolation Method (DEIM) [8], 

Gappy POD (GPOD) [9], Gaussian Newton Augmented 

Tensors (GNAT) [10] and Energy-Conserving mesh Sampling 

and Weighting (ECSW) [11]. Thanks to these approaches, it is 

possible to efficiently reduce the computational time associated 

with the simulation of nonlinear phenomena.  

Nonetheless, the application and coupling of both projection 

and hyper-reduction methods is not trivial for most problems 

constructed from physical equations, as it can generate ill 

conditionned matrix system leading to convergence issues [12]. 

From our experience on a nonlinear non stationary problem, i.e. 

induction machine, the application of POD combined with 
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DEIM doesn’t yield a stable reduced model, as the Newton-

Raphson algorithm diverges when the nonlinear terms become 

non-negligible. Then, it has been shown in [13] that applying 

the GPOD method instead of DEIM can allow increasing the 

stability of the reduced model for some non stationary problems. 

However, in the case of the induction machine, we don’t 

observe any significant improvement in the stability of the 

GPOD reduced model, which diverges as soon as the nonlinear 

terms become non-negligible.  

In this context, HR methods were developped specificaly to 

be coupled with POD without degrading the stability of the 

nonlinear equation system. The GNAT method relies on the 

definition of a hierarchy of models, from the FE to the final 

MOR model, in order to ensure the consistency and optimality 

of the approximations, and was applied with success to 

computational fluid dynamics in [12]. The ECSW method 

consists in the selection of a small number of elements whose 

contributions are weighted to reconstruct the nonlinearities in 

the reduced system. It was adapted and compared to DEIM on 

an electromagnetic problem in [14], showing good 

performances in the case of problems where only parts of the 

domain are nonlinear. The efficiency of this method remains an 

open question in specific cases arising from industrial problems 

(i.e. induction machine simulation) : almost fully nonlinear 

domain, very large magnetic field variations, accounting for 

movement. In [15], the authors compared POD-DEIM, POD-

GNAT and POD-ECSW structural dynamic models of a 

propeler blade and concluded that the two latest methods allow 

a better accuracy and stability of the reduced model. The 

behavior of the proposed approaches depends highly on the 

underlying physics   

Hence, we propose to compare the GNAT and ECSW 

methods coupled with POD in the case of nonlinear magneto-

quasistatic problem. We also propose an improvement of 

ECSW method in order to drastically reduce the computation 

time associated with the offline stage, which can be prohibitive. 

The targeted application is a squirrel cage induction machine 

where the nonlinearity play a key role in its electromechanical  

behavior.    

In the first part, we present the construction of a FE system 

for a magneto-quasistatic problem, from the continuous domain 

to the discrete system of equations. In the second part, the 

projection method POD is detailed. In the third part, we 

introduce the two hyper-reduction methods GNAT and ECSW. 

In the fourth section, the methods are evaluated and compared 

on an industrial application case. The reduced model, 

constructed from the nominal operating point, is used for the 

simulation of faulty regimes of theinduction machine, to better 

assess the adequation of such reduced models to an industrial 

context. In the final part, concluding remarks are presented. 

II. MAGNETO-QUASISTATIC PROBLEM 

Let’s consider a nonlinear magneto-quasistatic problem 

solved on 𝐷 × [0, 𝑇] , where 𝐷  (Figure 1) is a domain of 

boundary 𝛤 = 𝛤𝐻 ∪ 𝛤𝐵   (with 𝛤𝐻 ∩ 𝛤𝐵 = 0 ) and 𝑇  is the length 

of the time interval.  

 

Figure 1. Nonlinear magneto-quasistatic problem  

We define the source subdomain 𝐷𝑠  composed of stranded 

windings, the conductive subdomain 𝐷𝑐   and the nonlinear 

subdomain 𝐷𝑛𝑙   composed of ferromagnetic materials. The 

electrical conductivity 𝜎(𝒙) is only non nul and constant on the 

conductive domain 𝐷𝑐  elsewhere we have 𝜎(𝒙).  The problem 

is then defined by the following equations: 

𝒄𝒖𝒓𝒍 𝑯(𝒙, 𝑡) = 𝜎(𝒙)𝑬(𝒙, 𝑡) + ∑𝑵𝑗(𝒙)𝑖𝑗(𝑡)

𝑁𝑠𝑡

𝑗=1

 (1) 

𝒄𝒖𝒓𝒍 𝑬(𝒙, 𝑡) = −
𝜕𝑩(𝒙, 𝑡)

𝜕𝑡
 (2) 

𝑑𝑖𝑣 𝑩(𝒙, 𝑡) = 0 (3) 

𝑯(𝒙, 𝑡) = 𝜈(𝑩, 𝒙)𝑩(𝒙, 𝑡) (4) 

with 𝑩  the magnetic flux density, 𝑯  the magnetic field, 𝑬  the 

electric field, 𝑵𝑗  and 𝑖𝑗  the unit source vector and the current 

associated with the jth winding, 𝑁𝑠𝑡  the number of windings, 

𝜎(𝒙)  the electric conductivity assumed to be constant and 

𝜈(𝑩, 𝒙)  the reluctivity which depends on the magnetic flux 

density in ferromagnetic material. The uniqueness of the 

solution is imposed through the boundary conditions, 

considering the outward unit normal vector 𝒏:  

𝑯(𝒙, 𝑡) × 𝒏 = 0 𝑜𝑛 𝛤𝐻   and 𝑩(𝒙, 𝑡). 𝒏 = 0 𝑜𝑛 𝛤𝐵  (5)  

To impose the voltage 𝑣𝑗 at the terminals of the winding 𝑗, 

the following circuit equation is added: 
𝑑𝛷𝑗(𝑡)

𝑑𝑡
+ 𝑅𝑗𝑖𝑗(𝑡) = 𝑣𝑗(𝑡) (6) 

with 𝑅𝑗 the resistance of the winding 𝑗 and 𝛷𝑗 the linkage flux. 

Then, in the specific cases of rotating machines, the rotor 

movement shall be considered, and we define the rotation angle 

𝜃(𝑡). Considering the 2D case, we then introduce the vector 

potential 𝑨, which is defined from equations (2) and (3) as:  

𝑬(𝒙, 𝑡) = −
𝜕𝑨(𝒙,𝑡)

𝜕𝑡
  and 𝑩(𝒙, 𝑡) = 𝒄𝒖𝒓𝒍 𝑨(𝒙, 𝑡) (7) 

The boundary conditions defined in (5) then transform to: 

𝒄𝒖𝒓𝒍 𝑨(𝒙, 𝑡) × 𝒏 = 0 𝑜𝑛 𝛤𝐻   

and 𝑨(𝒙, 𝑡) × 𝒏 = 0 𝑜𝑛 𝛤𝐵 
(8)  

 Combining the potential defined as (7) with the problem 

defined by equations (1) to (4) and the circuit equation (5), we 

obtain the following matrix system to solve [22]: 



 

 

𝒄𝒖𝒓𝒍 [𝜈[𝒄𝒖𝒓𝒍 𝑨(𝒙, 𝑡), 𝑥]𝑨(𝒙, 𝑡)]

= −𝜎(𝒙)
𝜕𝑨(𝒙, 𝑡)

𝜕𝑡

+ ∑𝑵𝑗(𝒙)𝑖𝑗(𝑡)

𝑁𝑠𝑡

𝑗=1

 

(9) 

𝜕

𝜕𝑡
∫ 𝑨(𝒙, 𝑡)𝑵𝑗(𝒙)𝑑𝐷𝑠
𝐷𝑠

+ 𝑅𝑗𝑖𝑗(𝑡) = 𝑣𝑗(𝑡) (10) 

In the 2D case, the vector potential 𝐴(𝒙, 𝑡)  can be chosen to 

have only one component normal to the 2D plane, the two 

components of the magnetic flux density are then given by 

𝐵𝑥(𝒙, 𝑡) =
𝜕𝐴(𝒙,𝑡)

𝜕𝑦
   and 𝐵𝑦(𝒙, 𝑡) = −

𝜕𝐴(𝒙,𝑡)

𝜕𝑥
 . To numerically 

solve this problem in 2D, we discretize 𝑨(𝒙, 𝑡) and the vectors 

𝑵𝑗(𝒙)  for 𝑗 = 1,… , 𝑁𝑠𝑡  using fisrt order nodal functions and 

functions constant per element respectively. We then refer to the 

value of 𝑨 at the ith node as 𝐴𝑖(𝑡), and introduce the set 𝝃 and 

number 𝑁𝜉  of elements  and number of degrees of fredom (dof) 

associated with nodes 𝑁𝐴. Applying the weighted residue and 

Ritz-Galerkin methods to the problem defined by equations (9) 

and (10), we can construct the following differential algebraic 

equation system: 

[𝑴(𝑿(𝑡)) + 𝑴𝑜𝑣𝑙(𝜃(𝑡))]𝑿(𝑡) + 𝑲
𝑑𝑿(𝑡)

𝑑𝑡
= 𝑭(𝑡) (11) 

where 𝑿(𝑡) is the vector of size 𝑁 = 𝑁𝐴 + 𝑁𝑠𝑡  gathering the 

unknowns 𝐴𝑖(𝑡)  and 𝑖𝑗(𝑡) . The 𝑁 × 𝑁  matrixes 𝑴  and 𝑲 

respectively take into account the magnetic and electric 

behavior, whilst 𝑴𝑜𝑣𝑙 allows considering the movement of the 

rotor, using the overlapping method in our case [16].To account 

for the movement of the stator and rotor, we use a Lagrangian 

approach. The matrix 𝑴𝑜𝑣𝑙 enables to “connect” the meshes of 

the stator and the rotor accounting for the rotation angle of the 

rotor. The vector 𝑭 of size 𝑁 corresponds to the voltage source 

of the stranded inductors. We apply an Euler implicit time 

discretization scheme coupled with a Newton-Raphson 

approach to solve (11). 

From the system (11) we can define the nonlinear vector 

𝑮(𝑿(𝑡)) = 𝑴(𝑿(𝑡))𝑿(𝑡) ∈ ℝ𝑁 , which is calculated as the 

sum of all elementary contributions. To explicitly describe the 

calculation of the nonlinear vector, let us a consider an element 

𝑒 ∈ 𝝃  of the mesh connected to 𝑛𝐴(𝑒)  nodes  

(𝑎𝑝1
, 𝑎𝑝2

, … , 𝑎𝑝𝑛𝐴(𝑒)
) , where 𝑝𝑗  is the index of the jth edge 

connected to the element 𝑒. Then, the elementary contribution 

𝒈𝑒(𝑿𝑒(𝑡)) ∈ ℝ𝑛𝐴(𝑒)  is calculated from the curl-curl matrix  

𝑪𝑒(𝑿𝑒(𝑡)) ∈ ℝ𝑛𝐴(𝑒)×𝑛𝐴(𝑒) (discrete counterpart of the operator 

𝒄𝒖𝒓𝒍 𝜈 𝒄𝒖𝒓𝒍  in (9)) ; and 𝑿𝑒(𝑡) ∈ ℝ𝑛𝐴(𝑒)  the restriction of 

𝑿(𝑡) to the nodes (𝑎𝑝1
, 𝑎𝑝2

, … , 𝑎𝑝𝑛𝐴(𝑒)
): 

𝒈𝑒(𝑿𝑒(𝑡)) = 𝑪𝑒(𝑿𝑒(𝑡))𝑿𝑒(𝑡) (12) 

To assemble the nonlinear vector, we then use the localisation 

matrix 𝑳𝑒 ∈ ℝ𝑁×𝑛𝐴(𝑒) constructed from the lines of the identity 

matrix of indices (𝑝1, 𝑝2, … , 𝑝𝑛𝐴(𝑒)) : 

 𝐺(𝑿(𝑡)) = ∑𝑳𝑒

𝑒∈𝝃

𝒈𝑒(𝑿𝑒(𝑡)) (13) 

III. Projection of the system 

To reduce the computational time associated with the solving  

of (11), we apply the POD method associated with the snapshot 

approach, using the “structure preserving” paradigm [17] which 

means that the unknowns related to the vector potential (stored 

in the 𝑁𝐴  vector 𝑿𝑨(𝒕) ) are considered separately from the 

unknowns related to the currents (stored in the currents vector 

𝑰(𝑡) = (𝑖1(𝑡), 𝑖2(𝑡), … , 𝑖𝑁𝑠𝑡
(𝑡)) ). We solve (11) for 𝑁𝑠  time 

steps and concatenate the vector  (𝑿𝑨
𝑘)

𝟏<𝒌<𝑁𝑠
, where 𝑿𝑨

𝑘 is 

the solution at the 𝑘𝑡ℎ  time step, to construct the snapshot 

matrix 𝑺 ∈ ℝ𝑁𝐴×𝑁𝑠 . As the number of stranded inductors is 

usually low compared to the number of unknowns contains in 

the vector 𝑿𝑨(𝒕), it is not necessary to construct a reduced basis 

for the currents vector 𝑰(𝑡). Then, applying the Singular Value 

Decomposition, 𝑺 can be written as: 

𝑺 = 𝑼𝜮𝑽𝑡 (14) 

With 𝑼 ∈ ℝ𝑁𝐴×𝑁𝐴  and 𝑽 ∈ ℝ𝑁𝑠×𝑁𝑠   matrices of orthogonal 

vectors, and 𝜮 ∈ ℝ𝑁𝐴×𝑁𝑠  a diagonal matrix containing the 

singular values ranked in descending magnitude. A reduced 

basis 𝜳 ∈ ℝ𝑁×𝑚  can be constructed from 𝑼:𝑛  the 𝑛  first 

vectors of 𝑼 , and extended to account for the current vector 

𝑰(𝑡) with: 

𝜳 = [
𝑼:𝑛 𝟎
𝟎 𝑰𝑑

] (15) 

where 𝑰𝑑  is the identity matrix of size 𝑁𝑠𝑡 × 𝑁𝑠𝑡  . Then we 

define 𝑿̃(𝑡)  an approximation of 𝑿(𝑡)  by the vector 𝑿𝑟(𝑡) ∈
ℝ𝑚 (with 𝑚 = 𝑛 + 𝑁𝑠𝑡 ≪ 𝑁) such that: 

𝑿(𝑡) ≈ 𝑿̃(𝑡) = 𝜳𝑿𝑟(𝑡) (16) 

Then, injecting the approximation (16) in the FE system (11) 

and applying a Ritz-Galerkin projection, we can derive a 

reduced model: 

[𝑴𝒓 (𝑿̃(𝑡)) + 𝑴𝑟
𝑜𝑣𝑙(𝜃(𝑡))] 𝑿𝑟(𝑡) + 𝑲𝑟

𝜕𝑿𝑟(𝑡)

𝜕𝑡
= 𝑭𝑟(𝑡) 

(17) 

where 𝑴𝒓(∙) = 𝜳𝑡𝑴(∙)𝜳 , 𝑴𝑟
𝑜𝑣𝑙(∙) = 𝜳𝑡𝑴𝑜𝑣𝑙(∙)𝜳  and 𝑲𝑟 =

𝜳𝒕𝑲𝜳  of size 𝑚 × 𝑚  are the reduced matrices, and 𝑭𝑟(∙) =
𝜳𝑡𝑭(∙) ∈ ℝ𝑚  the reduced source vector. As presented in the 

case of the full FE model, we can define the reduced nonlinear 

vector 𝑮𝑟 (𝑿̃(𝑡)) = 𝑴𝒓 (𝑿̃(𝑡)) 𝑿𝑟(𝑡) ∈ ℝ𝑚  that is calculated 

from (13) as: 

𝑮𝑟 (𝑿̃(𝑡))  = 𝜳𝑡 ∑𝑳𝑒

𝑒∈𝝃

𝒈𝑒 (𝑿̃𝑒(𝑡)) (18) 

The reduced system (17) has been drastically reduced with a 

number of unknows much lower than the FE system (11), 

allowing a faster resolution.  

Nonetheless, the computational complexity of 𝑮𝑟 (𝑿̃(𝑡)) is 

still significant, as it requires the following calculations at each 

time step, for each iteration of the Newton-Raphson algorithm 

to solve the nonlinear system (16): 

1. Reconstruction of the FE solution approximation 𝑿̃(𝑡) 

using (16), 



 

 

2. Loop through all elements 𝑒 = 1,… ,𝑁𝜉   to calculate 

each individual contribution 𝒈𝑒 (𝑿̃𝑒(𝑡))  and construct 

the nonlinear vector 𝑮(𝑿̃(𝑡)), 

3. Projection in the reduced basis to deduce 𝑮𝑟 (𝑿̃(𝑡)) =

𝜳𝑡𝑮(𝑿̃(𝑡)). 

Each of these calculations is associated with a complexity that 

depends on either 𝑁𝜉  or 𝑁, generating important computational 

time, that can completely counteract the acceleration from the 

reduction of the number of unknowns. To alleviate this issue, a 

hyper-reduction approach is investigated. 

IV. HYPER-REDUCTION 

We present two different methods used to reduce the 

computational burden of the nonlinear matrix: GNAT and 

ECSW.  

A. GNAT 

To accelerate the construction of 𝑮𝑟(∙), we aim to combine 

projection and interpolation, similarly to more commonly used 

methods such as DEIM or GPOD, to define an approximation 

of the reduced nonlinear vector. Using a mask 𝒁 ∈ ℝ𝑁𝑧×𝑁 

which is the concatenation of 𝑁𝑧 lines of indexes {𝑧1, … , 𝑧𝑁𝑧
} 

of the identity matrix, we select 𝑁𝑧 nodes of the mesh for which 

the nonlinear contributions of the set 𝝌  of 𝑁𝝌  neighbor 

elements (see Figure 2) will be calculated: 

𝑮|𝒛(∙) = 𝒁𝑮(∙) = ∑ 𝑳𝑒

𝑒∈𝝌

𝒈
𝑒
(∙)  (19) 

 

Figure 2. Example of a 2D mesh (𝑎) with 3 selected nodes in red (𝑏) 
and the associated set of neighbor elements 𝝌 in orange 

Then, an interpolation matrix 𝑸  is used to construct the 

approximation of the reduced nonlinear vector with: 

𝑮̃𝑟
𝐺𝑁𝐴𝑇(∙)  = 𝑸𝑮|𝒛(∙)  (20) 

To deduce the mask 𝒁 and define the interpolation matrix 𝑸, 

a reduced basis is constructed specifically for the nonlinear 

vectors, using the snapshot approach presented in III. 

Classically when applying the DEIM or GPOD [13], the FE 

system (11) is solved for 𝑁𝑐  time steps and the nonlinear 

vectors 𝑮(𝑿𝑘)  are concatenated in a snapshot matrix 𝑪 ∈
ℝ𝑁×𝑁𝑐. We apply a SVD on 𝑪 and choose a truncation rank 𝑚𝑏 

to define the basis of nonlinear vectors 𝜫 ∈ ℝ𝑁×𝑚𝑏 . Then, the 

mask 𝒁  can be deduced by maximizing the volume of the 

submatrix 𝒁𝜫, using either a LU or a QR decomposition on 𝜫 

and extracting the indexes of the permutation matrix [18]. 

Finally, the interpolation matrix  𝑸 ∈ ℝ𝑚×𝑁𝑧 is defined by: 

𝑸 = 𝜳𝑡𝜫[𝒁𝜫]+  (21) 

  with [𝑷]+  being the pseudo-inverse of the matrix 𝑷 . The 

approximation (20) only requires evaluating the contributions 

of a reduced number of elements 𝑁𝜒 ≪ 𝑁𝜉 , and the calculation 

of the product with the interpolation matrix 𝑸 , offering an 

important reduction of the computational time.  

The GNAT approach is quite different from the previous 

approaches which can lead to numerical instabilities [12]. The 

GNAT approach consists in a thorough methodology for the 

construction of 𝜳 , 𝒁  and 𝜫 , ensuring the consistency and 

optimality of the approximations (16) and (20). It introduces a 

hierarchy of models where, at each step, an approximation is 

introduced to define the next one, as depicted in Figure 3. 

  

Figure 3. Hierarchy of models and approximations 

In step 1., we solve the FE system (11) to generate 𝑁𝑠 

snapshots defined as ∆𝑿𝑨
𝑘 = 𝑿𝑨

𝑘 − 𝑿𝑨
𝑘−1  , so-called 

„increments” in the following where 𝑿𝑨
𝑘  corresponds to the 

solution at the time step 𝑘 . The increments are stored in a 

snapshot matrix 𝑺 on which we apply the SVD as described in 

III to construct the reduced basis 𝜳  of size 𝑚  using (15), 

ensuring the consistency of the approximation (16), meaning 

that implemented without snapshot compression, it introduces 

no additional error in the solution at the training points. 

Then in step 2., we solve the reduced system (17) to generate 

𝑁𝑐 nonlinear vectors 𝑮(𝑿̃𝑘) merged to a snapshot matrix 𝑪. As 

they were generated by the POD model, these nonlinear vectors 

take into account the approximation (16). Then, the basis of 

nonlinear vectors 𝜫 of size 𝑚𝑏 is computed applying the SVD 

on 𝑪, and the mask 𝒁 of size 𝑁𝑧 is deduced by means of a QR 

decomposition on 𝜫. Finally, we can construct the interpolation 

matrix with (21). 

In step 3., we can use the GNAT model to solve (17), taking 

advantage of the gain in computational time offered by the 

approximation (20). 

B. ECSW 

Another approach to speed up the computation of the reduced 

nonlinear vector 𝑮𝑟(∙)  consists in approximating it from the 

weighted contributions of a low number of selected elements, 

applying the ECSW method. Let us introduce 𝝐 ⊂ 𝝃 a set of 𝑁𝝐 

elements and 𝜻 = (𝜁𝟏, … , 𝜁𝑁𝝐
)  the associated set of positive 

weights. Then, from the definition of the reduced nonlinear 

vector (18) based on the sum of the contributions of all 



 

 

elements, we can define an approximation by only considering 

the weighted contributions of the elements of 𝝐: 

𝑮̃𝑟
𝐸𝐶𝑆𝑊(∙)  = 𝜳𝑡 ∑ 𝑳𝑒𝜁𝒆

𝑒∈𝝐

𝒈𝑒(∙) (22) 

 Firstly, as described in III, we solve (11) to generate 𝑁𝑠 

snapshots in the matrix 𝑺 and deduce a reduced basis 𝜳 of size 

𝑚  by means of truncated SVD. It should be mentioned that 

incremental snapshots can also be used in the ECSW method as 

in the GNAT method. Numerical experiments show that we 

obtain very similar results than the ones obtained using 

snapshots of the solution of the FE problem.  Then, we choose 

𝑁𝑝 ≤ 𝑁𝑠  vectors in 𝑺  that will allow to calculate different 

values of the nonlinear contributions 𝒈𝑒(∙). For each selected 

vector 𝑿𝑨
𝑘 we calculate the reconstruction 𝑿𝑨

̅̅ ̅̅ 𝑘
 in the basis 𝜳 

(to account for the approximation) with: 

𝑿𝑨
̅̅ ̅̅ 𝑘

= 𝜳𝑡𝜳𝑿𝑨
𝑘

 (23) 

Then, we define 𝑿𝑒
̅̅̅̅ 𝑘

∈ ℝ𝑛𝐴(𝑒)  the restriction of 𝑿𝑨
̅̅ ̅̅ 𝑘

  to the 

nodes (𝑎𝑝1
, 𝑎𝑝2

, … , 𝑎𝑝𝑛𝐴(𝑒)
) (see (12)). We define the projected 

elementary contribution 𝑫𝑘,𝑒  which is a vector of size 𝑚 , 

concatenated in the matrix 𝑫 ∈ ℝ(𝑚∙𝑁𝑝)×𝑁𝜉 such that: 

𝑫𝑘,𝑒 = (

𝑑𝑘,𝑒
1

⋮
𝑑𝑘,𝑒

𝑚
) = 𝜳𝑡𝑳𝑒𝒈𝑒 (𝑿𝑒

̅̅ ̅̅ 𝑘
) 

 
(24) 

𝑫 =

[
 
 
 
 
 
𝑫1,1 ⋯ 𝑫1,𝑁𝜉

⋮
𝑫𝑗,1

⋮
⋯

⋮
𝑫𝑗,𝑁𝜉

⋮
𝑫𝑁𝑝,1

⋮
⋯

⋮
𝑫𝑁𝑝,𝑁𝜉]

 
 
 
 
 

 

and we can calculate the assembled contributions vector 𝒃 ∈

ℝ(𝑚∙𝑁𝑝): 

𝒃𝑘 = (
𝑏𝑘

1

⋮
𝑏𝑘

𝑚
) = ∑𝑫𝑘,𝑒

𝑒∈𝝃

 

(25) 

𝒃 =

[
 
 
 
 
𝒃1

⋮
𝒃𝑗

⋮
𝒃𝑁𝑝]

 
 
 
 

 

We seek the weights 𝜻 that minimize the difference between the 

assembled contributions calculated from a small number of 

selected elements 𝝐, and by all elements. Translating this into 

equation, the weights 𝜻 can then be obtained from 𝑫 and 𝒃 by 

solving the following minimization problem: 

𝜻 = argmin
𝜿∈𝝓

‖𝜿‖0 (26) 

𝝓 = {𝜿 ∈ ℝ𝑁𝜉 ∶ ‖𝑫𝜿 − 𝒃‖2 < ‖𝜏𝒃‖2 ; 𝜿 > 𝟎} (27) 
In (27), 𝜏  is a tolerance parameter chosen by the user. An 

effective way to solve this minimization problem is by using the 

sparse Non-Negative Least Square (s-NNLS) algorithm [19], 

and the selected elements corresponds to those having a non-

null weight. 

 Then, once we have calculated the reduced basis 𝜳 and the 

weights 𝜻, we can inject the ECSW approximation (22) in the 

reduced model in place of (18) to define the POD-ECSW 

model. As we only evaluate 𝑁𝝐 ≪ 𝑁𝜉  contributions to construct 

the approximation of the reduced nonlinear vector, using the 

POD-ECSW model to solve (17) allows a significant gain in 

computational time.  

 However, looking at the important size of the elementary 

projected contributions matrix 𝑫 in its definition (24), we can 

expect memory issues when trying to allocate it. Therefore, we 

will need to reduce its size, by lowering the value of the 

parameter 𝑁𝑝  to a minimum. In this purpose, we propose to 

apply the k-means algorithm [20] to find a reduced number of 

representative vectors from the 𝑁𝑝 vector chosen in 𝑺. It merely 

consists in computing distances (in terms of the Frobenius norm) 

between vectors to gather close ones in small sets and represent 

each set by its center. The sets and centers are determined 

through an iterative process. The choice of this algorithm is 

motivated by its low computational time and ability to capture 

information. 

V. APPLICATION 

To compare the two hyper-reduction approaches, a 2D 

magneto-quasistatic example of a 500kW squirrel cage 

induction machine around its nominal operating point is studied. 

The spatial mesh constituted of 111833 elements associated to 

72233 unknowns is presented on Figure 4 (left), where 𝐷𝑠 

corresponds to the stator inductors (the color indicating 

different phases), 𝐷𝑐   to the bars (copper). Then, 𝐷𝑛𝑙  

corresponds to the stator and rotor, whose nonlinear magnetic 

behavior are considered via the curve presented on Figure 4 

(right).  The Euler scheme and Newton-Raphson method are 

used to solve (11) with 180 time-steps per electrical period. 

 

Figure 4. (left): quarter of the mesh with the three-phase winding (𝐷𝑠) 

in green, blue and pink, rotor bars (𝐷𝑐 ) in brown, ferromagnetic 

material (𝐷𝑐) in orange; (right) nonlinear curve of rotor and stator).  

In the following, we present results of the FE model and the 

construction of the reduced model for both GNAT and POD-

ECSW. Then, we compare the results obtained by the reduced 

models to those of the FE model, which will be considered as 

the reference, for both healthy and faulty modes. All 

calculations run on a laptop with a i7-11850H @ 2.50GHz × 16 

CPU, and all implementations are in FORTRAN90 based on the 

electromagnetic research FE code code_Carmel.  

 

A. Results of a FE simulation 

We perform a FE simulation of the induction machine, 

imposing nominal 50Hz voltage at the terminals of the windings 

and nominal rotation speed. Then, we focus on the time 

evolution of global quantities of interest: the currents in the 

windings (Figure 5), the electromagnetic torque (Figure 6), and 
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the eddy current losses (Figure 7). All these quantities are 

computed from the FE solution vectors and give valuable 

insights on the behavior of the machine. 

 

Figure 5. Current in the windings of phase 1 from FE model  

 

Figure 6. Electromagnetic torque from FE model 

 

Figure 7. Eddy current losses from FE model 

On these quantities, we can see a strong transient where the 

machine is highly saturated in the first 0.1s of simulation, 

slowly converging to the steady-state at 0.2s. 

B. Construction of the GNAT model 

To construct the reduced model using GNAT, we follow the 

steps presented on Figure 3 and described in IV.A. In step 1, we 

construct 2 snapshots matrices containing increment solutions 

of the FE simulation presented in V.A, collected during the 

transient state (6 electrical periods generating 1080 vectors in 

𝑺∆𝟏) and the steady state (2 electrical periods generating 360 

vectors in 𝑺∆𝟐). We deduce the bases 𝜳∆𝟏 of size 25 and  𝜳∆𝟐 

of size 50 from these snapshots using SVD, choosing the sizes 

based on the analysis of the singular values (see Figure 8), and 

concatenate them to obtain the final reduced basis 𝜳∆ of size 

𝑚 = 75 . This choice is motivated by the observation that 

snapshots at the steady state regime are often considered of low 

energy by the SVD compared to the snapshots at the transient 

state. By separating the bases, and by setting a bigger size for 

the steady-state regime basis, the information of  this regime 

will not be ignored. Indeed, we know from previous works [21] 

that it is the case, when the basis is deduced from a single 

snapshot matrix concatenating solutions from both states.   

 

Figure 8. Relative weights of the singular values of 𝑺∆𝟏 and 𝑺∆𝟐 

Then, in step 2 of the GNAT methodology, we perform a new 

simulation of the machine at its nominal operating point with 

the POD model constructed using 𝜳∆. We generate nonlinear 

snapshots in the transient state (720 vectors corresponding to 4 

electrical periods) saved in the matrix 𝑪. Then, the nonlinear 

basis 𝜫 and mask 𝒁 are deduced using respectively SVD and 

QR decomposition, setting 𝑚𝑏 = 360  and 𝑁𝑧 = 800 

(corresponding to 4708 neighbor elements). In total, the offline 

time of the approach (without the FE simulation presented in 

V.A) is 3 hours and 12 minutes. 

C. Construction of the POD-ECSW model  

To construct the POD-ECSW model, we collect solutions 

from the FE simulation presented in V.A, of the transient state 

in  𝑺𝟏 (1080 vectors) and of the steady state in 𝑺𝟐 (360 vectors). 

The only difference with the GNAT model construction is the 

use of solutions and not increments. Using SVD, we deduce the 

bases 𝜳𝟏 of size 25 and  𝜳𝟐 of size 50 and construct the final 

reduced basis 𝜳 of size 𝑚 = 75 by concatenation (Figure 9).  



 

 

 

Figure 9. Relative weights of the singular values of 𝑺𝟏 and 𝑺𝟐 

Then, we need to choose snapshots that will be used to 

construct the matrix 𝑫  (24) and the vector 𝒃  (25), to 

eventually deduce the selected elements and their associated 

weight. To reduce the offline time of the method, and as we 

know from experience that the information on nonlinear 

contributions is contained in the first electrical periods, we will 

only use the first 720 solutions from the first 4 electrical periods 

of the FE simulation presented in V.A in (23). However, 

looking at the definition of 𝑫 and as discussed in IV.B, we must 

allocate memory for a 54000 × 111833 full matrix, which is 

prohibitive. To tackle this issue, and to further reduce the offline 

computational time of the method, we propose to lower the 

number of vectors used to construct 𝑫 and 𝒃 from 720 to 100. 

To do so, we apply the k-means algorithm [20] to find 100 

representative vectors that will be used to construct 𝑫 and 𝒃 , 

and then deduce the selected elements and weights with the s-

NNLS algorithm. The parameter 𝜏  is fixed to 10−2  giving us 

𝑁𝜖 = 333 elements (corresponding to 862 node values), with 

an offline time of the method of 1 hour and 44 minutes (without 

the FE simulation presented in V.A). We can see that the time 

computation of the offline stage is lower than with the GNAT 

method, which takes 3 hours 12 minutes. 

D. Comparison 

1. Selected elements 

As a first point of comparison, we present the selected 

elements (set 𝝌 in the GNAT case, 𝝐 in the ECSW case) in a 

small area of the mesh on Figure 10. We see that in both cases 

they are concentrated around the corner of the stator slots, as 

well as near the air gap of the machine, which are regions with 

an important variation of magnetic flux induction as well as a 

significant saturation. 

 

Figure 10. Top: set 𝝌 of elements connected to the selected nodes in 
the GNAT case (yellow), bottom: set 𝝐  of elements selected in the 
ECSW case (red) 

2. Simulation at nominal regime 

To compare the quality of the two reduced models, we 

perform the simulation imposing nominal 50Hz voltage at the 

terminals of the windings and nominal rotation speed with the 

GNAT model described in V.B and the POD-ECSW model 

described in V.C. Then, we compute quantities of interest in 

transient and steady state for both reduced models and compare 

to the reference of the FE model presented in V.A. We are 

interested in the electromagnetic torque 𝛤  relatively to its 

nominal value and the eddy current losses 𝑃 relatively to the 

nominal power of the machine, as well as the distribution of 

magnetic flux density 𝑩 . The time evolutions of the global 

quantities are presented on Figure 11 concerning the torque and 

Figure 12 for the eddy current losses. The magnetic flux density 

distribution in steady state regime of the FE model and the 

associated absolute error of the GNAT and ECSW models are 

shown on Figure 13.  



 

 

 

Figure 11. Electromagnetic torque from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) in nominal regime 

 

Figure 12. Eddy current losses from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) in nominal regime 

We can observe, looking at the electromagnetic torque and eddy 

current losses, a similar deviation on peak values for both 

GNAT and ECSW models in transient regime. In steady state 

however, the ECSW model yields a much smaller error (< 5% 

for torque, ≈ 10% for losses) than the GNAT model (≈ 25% 

for torque, ≈ 60%  for losses). This is confirmed by the 

magnetic flux density distribution error, which is very small (<
5%) and concentrated for the ECSW model but spreads across 

the entire domain in greater magnitude (≈ 20%) for the GNAT 

model. 

 

Figure 13. Magnetic flux density distribution in steady state in nominal 

regime (a: FE distribution, b: GNAT absolute error, c: ECSW absolute 

error)  

3. Simulations in faulty regimes 

To go further on comparison, we propose to evaluate the 

reduced models in the context of a typical industrial study, 

usually performed by engineers and requiring multiple FE 

simulations. It consists in simulating the induction machine in 

faulty operating modes close to the nominal, to evaluate the 

impact on global quantities such as eddy current losses. Indeed, 

with the help of a thermal model, this quantity enables to 
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calculate the overheating to evaluate the impact on the lifetime 

of the induction machine. Here we will focus on the influence 

of a drop of the supply voltage and therefore fix a range of 

voltages corresponding to the electrical machine specifications.   

To do so, we impose carefully chosen values of voltage 

magnitude 𝑈 for the windings and rotor rotation speed 𝜔 (with 

𝑈𝑛 and 𝜔𝑛 the associated nominal values): 

▪ at 𝑈 = 0.9𝑈𝑛 and 𝜔 = 0.998𝜔𝑛 

▪ at 𝑈 = 0.8𝑈𝑛 and 𝜔 = 0.996𝜔𝑛 

Then, we simulate these faulty regimes with the FE model to 

set a reference, and with the two reduced models constructed 

from the nominal operating point simulation : the GNAT model 

described in V.B and the POD-ECSW model described in V.C. 

The values of electromagnetic torque and eddy current losses 

are presented on Figure 14 and Figure 15 concerning the first 

faulty regime and on Figure 16 and Figure 17 concerning the 

second one. 

 

Figure 14. Electromagnetic torque from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) at 𝑈 = 0.9𝑈𝑛 

 

Figure 15. Eddy current losses from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) at 𝑈 = 0.9𝑈𝑛 

 

Figure 16. Electromagnetic torque from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) at 𝑈 = 0.8𝑈𝑛 

 

Figure 17. Eddy current losses from FE model (black), GNAT (red 

dashes) and ECSW (cyan dashes) at 𝑈 = 0.8𝑈𝑛 

As in section V.D.2, we observe a similar deviation for both 

reduced models in transient regime, in all faulty regimes. Then, 

focusing on the electromagnetic torque (Figure 14 and Figure 

16), the POD-ECSW reduced model yields a very good 

approximation of the evolution of this quantity in steady state, 

while the GNAT reduced model shows an important deviation 

and strong oscillations. When looking at the eddy current losses 

(Figure 15 and Figure 17), we can observe a huge difference in 

precision of the reduced models. The POD-ECSW model shows 

a deviation of a magnitude lower than 15%, while the GNAT 

model greatly overestimates this quantity in steady state. For 

practical application, an error of 15% is totally acceptable. 

To sum up, we compute the average values of torque and losses 

in steady state regime and calculate the relative error to the FE 

reference. To do so, we first calculate the average value of the 

quantity of interest 𝑋 over a chosen time interval (2 electrical 

periods in steady state) for FE model (𝑋𝐹𝐸  ), GNAT model 

(𝑋𝐺𝑁𝐴𝑇  ) and ECSW model (𝑋𝐸𝐶𝑆𝑊 ). Then, we determine the 

relative error of the reduced model average value compared to 

the FE average value, for GNAT as an example: 𝑒𝑟𝑟𝑜𝑟𝐺𝑁𝐴𝑇 =
|𝑋𝐺𝑁𝐴𝑇−𝑋𝐹𝐸|

|𝑋𝐹𝐸|
.  

The values are shown on Table 1, as well as the online 

speedups of the reduced models compared to the FE model (to 

recall, simulations ran on a laptop with a i7-11850H @ 

2.50GHz × 16 CPU).  



 

 

Table 1. Relative error on electromagnetic torque and eddy current 

losses in steady state regime and online speedups. 

  
Looking at Table 1 confirms that the ECSW model yields a 

far better precision on both quantities of interest for all 

operating points when compared to the GNAT model. In terms 

of online speedup, both models show an important acceleration 

of the simulation, and allow to complete the simulation in a 

dozen of minutes when it takes 9h for the FE model. The POD-

ECSW model gives better speedups which can be explained by 

a lesser number of elements on which the nonlinearities are 

approximated compared to the GNAT. These results suggest the 

possibility of using ECSW models in an industrial context, 

where a precision of 15% is more than acceptable with a 

speedup of about 40. 

VI. CONCLUSION 

The GNAT and ECSW methods combined with POD have 

been applied to construct a reduced model of a squirrel cage 

induction machine in nonlinear case. Based on the example 

shown here, it has been shown that the ECSW method enables 

to reduce the computation time by a factor 40 with an 

acceptable degradation of the quality of the results. Moreover, 

an approach based on the k-means algorithm has been proposed 

to reduce the memory resource and the computational time 

required to construct the reduced POD-ECSW model in the 

offline stage. 
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