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Separated Representation of the Finite Element
Solution of Nonlinear Magnetostatic Problem Based on

Non-Intrusive Proper Generalized Decomposition

T. Hennerona,∗, S. Cléneta

aUniv. Lille, Arts et Métiers Institute of Technology, Centrale Lille, Junia, ULR 2697 -
L2EP, 59000, Lille, France

Abstract

The Proper Generalized Decomposition has shown its efficiency to solve pa-
rameterized problems in nonlinear system events when it is combined with the
Discrete Empirical Interpolation Method. Nevertheless, the solution of finite
element model with the Proper Generalized Decomposition framework requires
to have access to matrices and vectors of the discretized problem, which makes
the method highly intrusive. In this context, based on a set of finite element
solutions for a set of input parameters, a surrogate model can be developed ap-
plying a non-intrusive Proper Generalized Decomposition approach. The pro-
posed non-intrusive approach is based on a canonical decomposition of the finite
element solutions combined with an interpolation method. We then obtain a
surrogate model approximating the finite element solutions for a wide range
of parameters. The surrogate model, given its evaluation speed, can be used
for real-time applications. In this paper, the proposed non-intrusive Proper
Generalized Decomposition approach is employed to approximate a nonlinear
magnetostatic problem and is applied to a single phase standard transformer
and to a three-phase inductance.

Keywords:
Nonlinear magnetostatic problem, Model Order Reduction, Proper
Generalized Decomposition.

1. Introduction

To study low frequency electromagnetic devices, the Finite Element (FE)
method is widely used. The FE method enables accurate results but requires
a long computational time due to numerical or physical features such as a high
number of Degrees of Freedom (DoF) in space, a high number of time steps and
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nonlinear behaviors introduced by ferromagnetic materials. In this context, it
is difficult to use a FE model for a co-simulation of an electromagnetic device
for a given operating cycle taking into account its electrical or/and mechanical
environment. It cannot be applied in real time, as for example, in the ”Model
in the Loop” context where an experimental bench is composed of real devices
and numerical models that exchange data in real-time. Model Order Reduction
(MOR) methods can be investigated in order to reduce the computational time
required to estimate the solution of the numerical model. In the literature, one
of the most popular approaches is the Proper Orthogonal Decomposition (POD)
combined with the (Discrete) Empirical Interpolation Method, this a-posteriori
approach can reduce the size of the time-dependent FE model and the compu-
tational time [1, 2]. Based on existing solutions of the FE model for different
values of parameters (called snapshots), the POD enables an approximation of
the solution of the FE model in a reduced basis [3]. The initial FE system is
projected onto the reduced basis determined from the snapshots, decreasing the
order of the numerical model to be solved for new parameter values. Neverthe-
less, in the context of real-time applications, the computational time cannot be
sufficiently small. Another method consists in constructing a surrogate model
which interpolates directly the FE solution for new parameter values. Different
approaches can be used to construct the surrogate model based on the POD. The
solution expressed into a reduced basis can be interpolated by an optimization
process [4], by polynomial functions [5] or by a Radial Basis Function (RBF)
interpolation method [6, 7, 8]. The Proper Generalized Decomposition (PGD)
is an a-priori approach of MOR which has been also investigated to determine a
surrogate model of the FE solution. The PGD method gives an approximation
of the FE solution under a separated representation of functions depending on
each parameter. After calculation of all functions, the PGD approximation is
very fast to be evaluated [9, 10]. In the domain of low frequency electromagnetic
modelling, the PGD approach has been used to study a parametric piezoelec-
tric energy harvester [11] or a magneto-quasistatic field problems coupled with
external electric circuits [12], for example. The PGD formulation to solve non-
linear problems can be difficult to implement when the number of parameters
(source terms, geometric parameters, ...) is significant and also intrusive be-
cause it requires modifications of existing FE softwares. To tackle this issue, an
approach is to solve the FE model for different values of parameters and to seek
for an approximation of the solutions under a separated form, similar to the
one given by the intrusive PGD. The PGD method consists in approximating
the FE solution to a sum of separable functions (i.e. product of monovariate
functions) each depending on one parameter, called modes. Each mode is cal-
culated by an iterative procedure and depends on the previous modes. At each
iteration, the functions associated with a mode are defined by a fixed point
technique, which requires to solve iteratively different equation systems. From
this so-called non-intrusive PGD, an approximate FE solution can be obtained
for a wide range of parameters without requiring any additional implementation
in the FE model. In the literature, this kind of non-intrusive PGD has been
developed for mechanical problem and combined with a nonlinear regression



approach [13, 14, 15, 16].
An alternative approach to the non-intrusive PGD approach is proposed. Based
on the solutions of the FE model obtained from different parameter values, a
canonical polyadic decomposition is defined in the framework of the PGD. At
each iteration, the proposed non-intrusive PGD method computes the discrete
values of the functions depending on each parameter and on the previous modes
that do not require to solve any equation system. This method is called non-
intrusive discrete PGD (d-PGD) approach. The proposed approach is close to
the CANDECOMP/PARAFAC (CP) decomposition [18, 19], which is a popu-
lar approach to obtain a tensor decomposition of a multidimensional data. The
CP decomposition consists in calculating the discrete values of the functions for
all modes at the same time. To determine the CP decomposition, an iterative
technique based on the Alternating Least Square (ALS) approach is used. The
discrete values of functions obtained from the d-PGD or from the CP-ALS un-
dergo an interpolation method in order to define continuous functions depending
on each parameter. Then, we obtain a surrogate model of the FE solution which
can be evaluated for any parameter value.
In this paper, the d-PGD approach combined with an interpolation method is
applied to build a separated representation of the FE solution of a nonlinear
magnetostatic problem. Firstly, the numerical model of a nonlinear magneto-
static problem is presented. Secondly, the proposed d-PGD approach combined
with a cubic spline interpolation is developed. Finally, a single phase standard
transformer and a three-phase inductance are studied. The results obtained
from the proposed approach are compared with those given by the CP-ALS and
POD-RBF approaches.

2. Nonlinear magnetostatic problem

Let us consider a domain D of boundary Γ (Γ = ΓB
⋃

ΓH and ΓB
⋂

ΓH = 0)
with Nst stranded inductors, each supplied by a current ij (figure (1)).

Figure 1: Nonlinear magnetostatic problem.



In magnetostatics, the problem can be described with the following equations

curl H =

Nst∑
j=1

Njij (1)

div B = 0 (2)

H = ν(B)B (3)

with B the magnetic flux density, H the magnetic field, Nj and ij the unit
current density and the current flowing through the jth stranded inductor and
ν(B) the magnetic reluctivity. For the ferromagnetic material, ν(B) depends
on B in the nonlinear case. To impose the uniqueness of the solution, boundary
conditions must be added

B · n = 0 on ΓB and H× n = 0 on ΓH (4)

with n the outward unit normal vector. The previous problem can be solved
by introducing the vector potential A. From (2), this potential is defined such
that B = curlA with A×n = 0 on ΓB . Then, based on (1) and (3), the strong
formulation to be solved is

curl(ν(B)curl A) =

Nst∑
j=1

Njij . (5)

In the 3D case, A and Nj are discretized using edge and facet elements [17].
The Degrees of Freedom (DoF) of A are the circulations on the edges of the
mesh. Applying the FE method leads to the following system of equations,

M(X)X =

Nst∑
j=1

Fjij (6)

with ij ∈ Ij the jth current interval, M(X) the curl-curl matrix, Fj the source
vector associated with the jth inductor, X ∈ RNx the vector of DoF of A and
Nx the number of DoF. The previous nonlinear equation system is solved by
Newton’s method.

The magnetic linkage flux φj of each inductor j can be expressed as a function
of A by

φj =

∫
D

A ·NjdD = FtjX. (7)

3. Non-intrusive discrete Proper Generalized Decomposition

We seek a PGD approximation Xpgd of X in a separated form. For the sake
of simplicity, two inductors flowing by two currents i1 and i2 are considered
to describe the method, although it can easily extend to a higher number of
parameters. Xpgd is expressed by a sum of the products of two scalar functions



S1j(i1) and S2j(i2) depending on the currents i1 and i2 respectively and of a
vector XRj of the size of Nx (number of DoF’s of A),

Xpgd(i1, i2) =
M∑
j=1

XRjS1j(i1)S2j(i2). (8)

Where the term XRjS1j(i1)S2j(i2) is is the so-called mode and M the number
of modes. We are looking for a solution Xpgd(i1, i2) that approximate X(i1, i2).
Xpgd should be equal or at least be close to X(i1, i2) for a set of values of
(i1, i2). Then, a set of P vectors X(i1, i2) obtained from the solving of (6) for
different values of currents i1 and i2, is considered. The number of discrete
values for i1 and i2 is Ni1 and Ni2 , respectively and P = Ni1 ×Ni2 . We denote
X(i1k, i2l) = Xkl for k = 1, ..., Ni1 and l = 1, ..., Ni2 . From the P vectors Xkl, we
seek for the discrete values X1jk = S1j(i1k) and X2jl = S2j(i2l) for k = 1, ..., Ni1
and l = 1, ..., Ni2 . Hence, the discrete PGD (d-PGD) approximation can be
written by

Xd−pgd(i1k, i2l) = Xd−pgd
kl =

M∑
j=1

XRjX1jkX2jl. (9)

The d-PGD approximation seeks to satisfy

Xkl −Xd−pgd
kl = 0 for k = 1, ..., Ni1 and l = 1, ..., Ni2 . (10)

We define two vectors [X1j1, ..., X1jNi1
]t = X1j ∈ RNi1 and [X2j1, ..., X2jNi2

]t =

X2j ∈ RNi2 . To compute the vectors XRj , X1j and X2j for j = 1, ...,M ,
an iterative enrichment procedure is used. At the nth iteration, the d-PGD
approximation is

Xd−pgd
n,kl = Xd−pgd

n−1,kl + XRnX1nkX2nl (11)

with Xd−pgd
n−1,kl the previous approximation with n− 1 modes. Then, the residue

Rn,kl of the nth approximation can be expressed for each (i1k, i2l) by

Rn,kl = Xkl −Xd−pgd
n,kl . (12)

Applying the fixed point technique leads to solving iteratively a problem com-
posed of three sub-problems giving each a solution for XRn, X1n and X2n

respectively. The process is repeated until the convergence is reached. In the
following, to alleviate the notations, we shall not write any index related to the
iteration of the fixed point loop. For the first sub-problem, we assume that the
vectors X1n and X2n are known. We compute XRn in order to have

Ni1∑
k=1

Ni2∑
l=1

X1nkX2nlRn,kl = 0. (13)

Expression (13) can be obtained by minimizing the sum of the square norm of
the residue Rn,kl when the entries X1nk and X2nl are fixed (They are supposed



to be known). After developing, we obtain

Ni1∑
k=1

Ni2∑
l=1

X1nkX2nlXRnX1nkX2nl =

Ni1∑
k=1

Ni2∑
l=1

(X1nkX2nlXkl −X1nkX2nl

n−1∑
j=1

XRjX1jkX2jl). (14)

Finally, the previous equation can be rewritten under a matrix form such as

αRnXRn = FRn −
n−1∑
j=1

αRjXRj (15)

with αRm = Xt
1mX1nXt

2mX2n and FRn =

Ni1∑
k=1

Ni2∑
l=1

X1nkX2nlXkl.

We can observe that since αRn is a scalar, the vector XRn is obtained by some
sums and products of vectors, which is quite unexpensive.

For the second sub-problem, we assume that the vectors XRn and X2n are
known. We seek for X1n to impose

Ni2∑
l=1

Xt
RnX2nlRn,kl = 0. (16)

Expression (16) is obtained by minimizing the sum of the square norm of the
residue Rn,kl where the vector XRn and the entries X2nl are supposed to be
fixed. Then, we obtain

Ni2∑
l=1

Xt
RnX2nlXRnX1nkX2nl =

Ni2∑
l=1

Xt
RnX2nlXkl −Xt

RnX2nl

n−1∑
j=1

XRjX1jkX2jl.

(17)
Finally, the previous equation can be rewritten under a matrix form such as

α1nX1n = F1n −
n−1∑
j=1

α1jX1j (18)

with α1m = Xt
RmXRnXt

2mX2n, F1n = Mt
2XXRn

and [M2X]k =

Ni2∑
l=1

X2nlXkl for k = 1, ..., Ni1.

[Y]k corresponds to the column k of the matrix Y. Again we can see that, since
α1n is a scalar, the computation of X1n is really fast.

For the third sub-problem, we assume that the vectors XRn and X1n are
known. In the same way, after minimizing, we obtain X2n by imposing

Ni1∑
k=1

XRnX1nlRn,kl = 0. (19)



The previous equation can be rewitten under a matrix form such as

α2nX2n = F2n −
n−1∑
j=1

α2jX2j (20)

with α2m = Xt
RmXRnXt

1mX1n, F2n = Mt
1XXRn

and [M1X]l =

Ni1∑
k=1

X1nlXkl for l = 1, ..., Ni2.

The equations (15), (18) and (20) are solved sequentially several times itera-
tively until convergence of XRn, X1n and X2n. In order to stop the iterations of
the fixed point loop, three different criteria based on XRn, X1n and X2n between
two successive iterations are defined. Then, at the iteration p, we define

εR =
||Xp

Rn −Xp−1
Rn ||2

||Xp−1
Rn ||2

, ε1 =
||Xp

i1 −Xp−1
i1 ||2

||Xp−1
i1 ||2

and ε2 =
||Xp

i2 −Xp−1
i2 ||2

||Xp−1
i2 ||2

. (21)

where Yp
a and Yp−1

a represent the quantity Ya at the iteration p and p − 1
respectively. The fixed point loop is stopped when εR, ε1 and ε2 are simulta-
neously inferior to the criterion εfp defined by the user or when the number of
iterations reach the fixed maximum value nmaxfp of iterations. We can see that
the process for calculating one mode is very fast because only several vector
products are required and no solution of equation system is necessary. The
number of modes M used for the PGD approximation is not known a− priori
by the user. Then, a criterion εX is defined to stop the enrichment process.
After each iteration of the enrichment loop, the relative error εkl is calculated
for each value (i1k, i2l) by

εkl =
||Xkl −Xd−pgd

kl ||2
||Xkl||2

. (22)

Then, the criterion εX is based on the average of the errors

εX =
1

P

Ni1∑
k=1

Ni2∑
l=1

εkl. (23)

The average error of the magnetic linkage flux for the jth inductor can be also
defined such as

εφj
=

1

P

Ni1∑
k=1

Ni2∑
l=1

eφj,kl
with eφj,kl

=
|φj,kl − φd−pgdj,kl |

|φj,kl|
. (24)

The enrichment process is stopped when εX is inferior to the fixed criterion
εep or when the number of iterations (i.e. modes) reach the fixed maximum
value Mmax of iterations. Algorithm 1 presents the implemented pseudo-code



Algorithm 1 Non-intrusive d-PGD

Inputs: X(i1k, i2l) for k = 1, ..., Ni1 and l = 1, ..., Ni2 , εfp, n
max
fp , εep and Mmax

Outputs: XRj , X1j , X2j for j = 1, ...,M

- M = 0, εX = 1
while εX > εep and M < Mmax do

- M = M + 1
- p = 0
- initialisation such as Xp

2M = X2M−1 and Xp
RM = XRM−1

while (εR > εfp or ε1 > εfp or ε2 > εfp) and p < nmaxfp do
- p = p+ 1
- solve (18) to compute Xp

1M depending on Xp−1
2M and on Xp−1

RM

- normalization of Xp
1M

- solve (20) to compute Xp
2M depending on Xp

1M and on Xp−1
RM

- normalization of Xp
2M

- solve (15) to compute Xp
RM depending on Xp

1M and on Xp
2M

- computation of εR, ε1 and ε2 by (21)
end while
- computation of Xd−pgd

M,kl by (11)
- computation of εX by (23)

end while

to build a d-PGD approximation Xd−pgd(i1k, i2l). The inputs are εfp, εep, n
max
fp ,

Mmax and X(i1k, i2l) for k = 1, ..., Ni1 and l = 1, ..., Ni2 . With this algorithm,
the vectors X1j and X2j for j = 1, ...,M are normalized, the magnitude of the
d-PGD approximation is supported by XRj .

After convergence of the process, a d-PGD approximation Xd−pgd(i1k, i2l)
of the FE solutions X(i1k, i2l) for k = 1, ..., Ni1 and l = 1, ..., Ni2 is defined.
The d-PGD approach can only approximate solution for parameter values cor-
responding to the FE solutions already calculated. In order to obtain an PGD
approximation Xpgd(i1, i2) by (8) for any value of currents i1 and i2, it is nec-
essary to define the scalar functions S1j(i1) and S2j(i2) for j = 1, ...,M . Based
on the discrete values stored in the vectors X1j and X2j of these functions,
an interpolation method is used to build the functions S1j(i1) and S2j(i2). In
order to minimize the Runge phenomenon, an approach based on a cubic spline
interpolation is used. Finally, a surrogate model Xpgd(i1, i2) of the FE model is
obtained which can be evaluated quickly for any value of the currents i1 and i2.

From this surrogate model, we can compute approximations of the quantities
of interest. Then, the expression of the magnetic flux density depending on the
position x in the studied domain and on the currents is given by

B(x, i1, i2) = curl A(x, i1, i2) = [curl We(x)]tX(i1, i2) ≈

[curl We(x)]tXpgd(i1, i2) =
M∑
j=1

Bj(x)S1j(i1)S2j(i2) (25)



with Bj(x) = [curl We(x)]tXRj the jth spatial mode of B(x, i1, i2) and We(x)
the vector of edge interpolation functions depending on x ∈ R3 for all edges of
the mesh.

For the magnetic linkage flux associated with the kth stranded inductor, we
obtain

φk(i1, i2) = FtkX(i1, i2) ≈ FtkX
pgd(i1, i2) =

M∑
j=1

αjS1j(i1)S2j(i2) with αj = FtkXRj . (26)

4. Application

To evaluate the method proposed above, two examples of application are
studied. The first one is a single phase transformer and the second one is a
three-phase inductance.

4.1. Single phase transformer

Due to the symmetry, only one eighth of a standard single phase transformer
is modeled. Figure (2) presents the mesh of the magnetic core and of the
windings and the nonlinear magnetic curve respectively. The 3D mesh being
composed of 67177 tetrahedron elements, the number of DoF is Nx = 76663.
The FE model (6) is solved 225 times with Ni1 = Ni2 = 15 equidistributed
values for i1 ∈ [0, 1] A and for i2 ∈ [−2, 0] A.

(a) Mesh (b) Non-linear curve

Figure 2: Single phase EI transformer.

The d-PGD and CP-ALS approaches are applied to find a canonical decom-
position of the FE solutions. The CP-ALS method is presented in the appendix
A. The parameter values of the d-PGD algorithm are εfp = 1e−4, nmaxfp = 40



and Mmax = 150. For the CP-ALS, the parameter values are εals = 1e−4,
nmaxals = 2000, β = 1.3 and δ = 0.3. Figure (3) presents the errors εX and
εφj

associated with the d-PGD and CP-ALS approaches versus the number of
modes M . The convergence of the CP-ALS approach is faster than the one of
the d-PGD. Figure (4) gives the computational time of the d-PGD and CP-ALS
approaches versus the number of modes M . The d-PGD approach is based on
an enrichment process, the calculation of the terms associated with a mode de-
pend on all previous modes. In the case of the CP-ALS, all terms of modes
are computed at the same time. Then, the CP-ALS approach is more time
consuming than the d-PGD method.

Figure 3: Errors versus the number of modes for the d-PGD (continuous lines) and for the
CP-ALS (discontinuous lines).

The canonical decomposition gives a compressed form of data from the so-
lutions X of the FE model for a value set of (i1k, i2l) for k = 1, ..., Ni1 and
l = 1, ..., Ni2 . The number of terms extracted from the solutions of the FE
model is 76663× 225. We define a compression ratio by

comp = 1− terms for M modes of the canonical decomposition

terms from the FE model
. (27)

A compression is effective when the ratio comp is in the interval [0, 1] and the
closer to 1 the higher the compression. The compression ratio gives the percent-
age of the reduction to the terms number by using a canonical decomposition.
The application example with the same assumptions has been studied by an ap-
proach based on the POD combined with a RBF interpolation in order to define
a surrogate model [8]. The POD-RBF approach is briefly presented in appendix
B. Table (1) presents a comparison of different approaches for the same order
of the error εX .



Figure 4: Computational time versus the number of modes for the d-PGD (continuous lines)
and for the CP-ALS (discontinuous lines).

d εX number of modes computational time [min] comp
d-PGD 3e−3 150 12 33%
CP-ALS 2.9e−3 80 143 64%

POD-RBF 8e−3 N/A 7 80%

Table 1: comparison of different approaches for the single phase transformer

The CP-ALS approach gives the best compression ratio while the POD-RBF
approach gives the lower computational time and the largest compression ratio.
Nevertheless, the best compromise between the computational time and the
error εX is obtained by the d-PGD approach. If the quantity of interest to be
approximated is the magnetic linkage fluxes φ1 and φ2, a good approximation is
obtained with a low number of modes. For local quantities such as the magnetic
flux density, the number of modes to be considered must be more significant.
Since the convergence of the d-PGD approach is quite slow (figure (3)), a good
approximation can still be obtained even with a low number of modes. We can
see that for the same number of modes (M = 80), the error remains acceptable
with the d-PGD (εX = 7e− 3). The computational time required to determine
the surrogate model becomes really competitive with the d-PGD being equal to
4.3 min (143 min with the CP-ALS). For M = 80 and εX = 7e−3 with the d-
PGD approach, the compression ratio is 64%. Then, the d-PGD approximation
is obtained with a reasonable computational time due in particular to the fact
that there is no need to solve any equation system.

From the d-PGD approximation (9) and the cubic spline interpolation ap-
plied to the vectors X1j and X2j for j = 1, ...,M in order to define the functions
S1j(i1) and S2j(i2), a surrogate model given by the PGD approximation (8) of
the FE model is defined for any value of currents i1 and i2. Then, we can obtain



an approximation of the magnetic flux density by (25) and of magnetic linkage
fluxes by (26). Figure (5) presents the spatial modes Bj for j = 1, 3, 5, 7 of the
magnetic flux density.

(a) B1 (b) B3

(c) B5 (d) B7

Figure 5: Distributions of spatial mode Bj

For the first spatial modes j < 5, the distributions of Bj are close to the
ones that can be obtained from the FE model with a supply current leading to
a physical meaning of such distributions. For the modes j > 5, the distributions
of Bj are mostly located in the corners where the magnetic saturation occurs
and which depends highly on the values of the currents. The evolutions of the
functions S1j(i1) and S2j(i2) for j = 1, 2, 3, 4 versus the currents i1 and i2 are
presented in figure (6). The crosses correspond to the values of S1j(i1k) and
S2j(i2l) with k = 1, ..., Ni1 and l = 1, ..., Ni2 computed by the d-PGD approxi-
mation (9). In the two curve sets of S1j(i1) and of S2j(i2), the curves have the
same order of magnitude and evolution. This was expected because, for this
kind of transformer, the primary and secondary windings create independently
a similar magnetic field distribution.

The distribution of the magnetic flux density is approximated by (25), we
compute the errors on the approximation of the magnetic linkage flux den-
sity distribution and on the magnetic fluxes associated with the windings. We
consider two cases, first for the current values (i1, i2) used to build the PGD
approximation and second for other values of currents. Figure (7) presents the
magnetic flux density obtained by (25) for current values (i1 = 1 A, i2 = 0
A) used to build the PGD approximation when the magnetic core is saturated.
Figures (8a) and (8b) gives the difference of the magnetic flux density obtained



(a) Functions S1j(i1) (b) Functions S2j(i2)

Figure 6: Functions S1j(i1) and S2j(i2) for j = 1, 2, 3, 4 (the crosses correspond to the values
of S1j(i1k) and S2j(i2l) with k = 1, ..., Ni1 and l = 1, ..., Ni2

.

from the FE model and from the PGD approximation for M = 80 and 150.
In both cases, the magnitudes of the differences are very small compared with
those of the magnetic flux density. When the number of modes increases, the
error located close to the internal corners of the magnetic core decreases.

Figure 7: Magnetic flux density B [T] when the magnetic core is saturated (i1 = 1 A, i2 = 0
A).

Figures (9a) and (9b) presents the magnetic flux density obtained from the
PGD approximation and the difference with M = 150 when the magnetic core
is not saturated for current values (i1 = 0.36 A, i2 = −0.86 A) used as solution
for the PGD approximation. As for the previous case (i1 = 1 A, i2 = 0 A), the
errors are small and localized in the corners.

Now, we consider two couples of currents (i1, i2) not used to determine the
surrogate PGD model (8). The current values are (i1 = 0.4 A, i2 = −0.9 A)
and (i1 = 0.95 A, i2 = 0 A). Figures (10) and (11) present the distributions of
the magnetic flux density obtained by (25) and the differences for both couples
of current. As for the previous studies, the maximum of the errors are located
in the corners and the magnitudes of the differences are small. In term of global
quantities, the magnetic linkage fluxes can be approximated by (26). Then, for
(i1 = 0.4 A, i2 = −0.9 A) and (i1 = 0.4 A,i2 = −0.9 A), we obtain (φ1 = −5.57



(a) M = 80 (b) M = 150

Figure 8: Difference of the magnetic flux density [T] when the magnetic core is saturated
(i1 = 1 A, i2 = 0 A).

(a) Magnetic flux density B [T] (b) Difference of the magnetic flux density
[T]

Figure 9: The magnetic core is not saturated (i1 = 0.36 A, i2 = −0.86 A).

Wb, φ2 = −2.73 Wb) and (φ1 = 0.29 Wb, φ2 = 0.14 Wb) respectively. The
maximal error on the quantity is about 0.32%.

(a) Magnetic flux density B [T] (b) Difference of the magnetic flux density
[T]

Figure 10: Distribution of the magnetic flux density [T] and of the error for (i1 = 0.4 A,
i2 = −0.9 A).



(a) Magnetic flux density B [T] (b) Difference of the magnetic flux density
[T]

Figure 11: Distribution of the magnetic flux density and of the error for (i1 = 0.95 A, i2 = 0
A).

4.2. Three-phase inductance

Due to the symmetry, one quarter of the three-phase inductance is modeled.
Figure (12) presents the mesh of the magnetic core and of the windings. We
consider the nonlinear magnetic curve presented on figure (2-b). The 3D mesh
is composed of 66382 tetrahedron elements, the number of DoF is Nx = 75584.
The FE model (6) is solved 2197 times with 13 equidistributed values Ni1 , Ni2
and Ni3 with the same current interval I = [−6, 6] A for all currents. The
number of terms extracted from the solutions of the FE model is 75584× 2197
and the computational time is about 57.5 h.

Figure 12: Mesh of the three-phase inductance.

Figure (13) presents the errors of the d-PGD approximation (9) and of mag-
netic linkage fluxes versus the number of modes.

The application example with the same assumptions has been studied by
the POD-RBF approach in order to define a surrogate model [8]. Table (2)
presents a comparison of both approaches for the same order of the error εX
with 350×(75584+13+13+13) terms computed for the d-PGD approximation.



Figure 13: Errors versus the number of modes.

The computational time and the compression ratio are the same order for both
approaches. Even if the errors εX are close, the errors of the magnetic fluxes
from the d-PGD approach are lower than those from the POD-RBF.

d-PGD POD-RBF
εX 1e−2 1.41e−2

εφ1 1.01e−2 4.38e−2

εφ2
3.47e−2 8.41e−2

εφ3
1.21e−2 6.38e−2

number of modes 350 N/A
computational time [h] 5.3 5

comp 84% 94%

Table 2: Comparison of different approaches for the three-phase inductance.

Figures (14) and (15) present the distribution of the magnetic flux density
obtained from the d-PGD approximation (9) and the difference when all wind-
ings are supplied such as the sum of currents is null (i1 = 6 A, i2 = −3 A,
i3 = −3 A) and when only the winding 2 is supplied (i1 = 0 A, i2 = 6 A,
i3 = 0 A). These two sets of currents have been used as solutions to build the
d-PGD approximation. For both cases, the errors are located at the corners of
the geometry with smaller magnitudes than those of the magnetic flux density.

From the d-PGD approximation, a surrogate model (8) of the FE model is
built to give an approximation of the FE solution for any value of currents (i1,
i2, i3). Then, we can compute an approximation of the magnetic flux density by
(25) and of magnetic fluxes by (26). To evaluate the accuracy of the surrogate
model, three cases are considered. In the first two cases, a balanced three phase



(a) Magnetic flux density B [T] (b) Difference of the magnetic flux density
[T]

Figure 14: Three-phase inductance when all winding are supplied

(a) Magnetic flux density B [T] (b) Difference of the magnetic flux density
[T]

Figure 15: Three-phase inductance when only the winding 2 is supplied.

current supply is applied such as i1(t) = IMsin(ωt), i2(t) = IMsin(ωt − 2π
3 )

and i2(t) = IMsin(ωt − 4π
3 ) with ω the angular frequency and IM = 6 A in

order to saturate the magnetic core of the three-phase inductance in the first
case and IM = 2 A in the second case. In the third case, an example of failure is
studied where the first winding is not supplied i1 = 0 A and the two others are
supplied such as i2(t) = −i3(t) = IMsin(ωt − 2π

3 ) with IM = 4 A. In all three
cases, the angular frequency is fixed to ω = 2πf with f = 50 Hz and the time
simulation corresponds to one period with 60 time steps equidistributed. The
quantities of interest are the magnetic linkage fluxes of the windings computed
by (26) and the magnetic flux density at the point P located on the figure
(12) and calculated by (25). The results obtained from the surrogate model
are compared with those given by the FE model. Figures (16), (17) and (18)
present the time evolution of the magnetic linkage fluxes of the windings and
the magnetic flux density in the plan (x, y) at the point P obtained from the
PGD surrogate model. On these figures, the results given by the FE model
are presented by the curves with crosses. For all cases, the results calculated
with the surrogate model are in good agreement with the values obtained from
the FE model. In terms of computational time, the surrogate model and the
FE model require about 16 s and 80 min respectively to compute the magnetic
linkage fluxes and the magnetic flux density at the point P for 60 time steps.



(a) Magnetic linkage fluxes versus the time (b) Magnetic flux density on the point P

Figure 16: Case 1: a balanced three phases current supply is applied such as i1(t) =
IMsin(ωt), i2(t) = IMsin(ωt− 2π

3
) and i2(t) = IMsin(ωt− 4π

3
) with IM = 6 A.

(a) Magnetic linkage fluxes versus the time (b) Magnetic flux density on the point P

Figure 17: Case 2: a balanced three phases current supply is applied such as i1(t) =
IMsin(ωt), i2(t) = IMsin(ωt− 2π

3
) and i2(t) = IMsin(ωt− 4π

3
) with IM = 2 A.

(a) Magnetic linkage fluxes versus the time (b) Magnetic flux density on the point P

Figure 18: Case 3: default situation where the first winding is not supplied i1 = 0 A and the
two others are supplied such as i2(t) = −i3(t) = IMsin(ωt− 2π

3
) with IM = 4 A.



5. Conclusion

From solutions of a FE model for different values of parameters, a surrogate
model has been built based on a non-intrusive discrete PGD approach combined
with an interpolation method. The proposed approach has been developed
in the case of a nonlinear magnetostatic problem considering the currents of
the windings as parameters. Two 3D application examples have been studied.
The results obtained from the proposed non-intrusive PGD approach have been
compared with those given from the CP-ALS and POD-RBF approaches. The
proposed approach is a good trade-off in terms of accuracy, computational time
and compression ratio compared with both approaches. It appears through the
two examples of application that the PGD surrogate model is obtained with
reasonable computational times compared to those required to solve the FE
model for all sets of parameters. Moreover, the PGD surrogate model is very
fast to be evaluated in order to obtain an approximate FE solution and it can be
used in a real-time application or in co-simulation study to simulate a magnetic
device in its environment.

Appendix A. CP-ALS decomposition

The CANDECOMP/PARAFAC or canonical polyadic (CP) decomposition
[18] [19] is a popular approach to obtain a tensor decomposition of a multi-
dimensional data. One of the most popular methods used to compute a CP
decomposition is the alternating least squares (ALS) approach which consists
in solving a sequence of linear least squares problems. The non-intrusive PGD
approach introduced in the section 3 is a method close to the CP-ALS decompo-
sition approach. In the following, the CP-ALS approach is briefly presented in
the same context. The PGD approximation (9) is based on P solutions X(i1, i2)
of size Nx such as X(i1k, i2l) = Xkl for k = 1, ..., Ni1 and l = 1, ..., Ni2 . To apply
the CP-ALS method, the set of solutions is reordered as a third-order tensor
X of size Nx × Ni1 × Ni2 . The CP decomposition consists in determining an
approximation of X such as

X ≈
M∑
j=1

XRj ◦X1j ◦X2j (A.1)

with M the rank of the decomposition corresponding to the number of modes, ◦
the vector outer product, X1j = [X1j1, ..., X1jNi1

]t and X2j = [X2j1, ..., X2jNi2
]t.

The sets of vectors XRj , X1j and X2j for j = 1, ...,M are arranged in order to
define three matrices such as XR = [XR1 XR2 ...XRM ], X1 = [X11 X12 ...X1M ]
and X2 = [X21 X22 ...X2M ]. To apply the CP-ALS approach, the tensor X is
reordered by three different matrices MR, M1 and M2 of size Nx × (Ni1Ni2),
Ni1 × (NxNi2) and Ni2 × (NxNi2) respectively. Then, XR, X1 and X2 are



computed by repeating the solution of three equations

min
XR

||MR −XR(X2 �X1)t||F

⇒ XR = MR(X2 �X1)(Xt
2X2 ∗Xt

1X1)† (A.2)

min
X1

||M1 −X1(X2 �XR)t||F

⇒ X1 = M1(XR �X2)(Xt
RXR ∗Xt

2X2)† (A.3)

min
X2

||M2 −X2(X1 �XR)t||F

⇒ X2 = M2(XR �X1)(Xt
RXR ∗Xt

1X1)† (A.4)

with � the Khatri-Rao product and Y† the pseudo inverse of Y. Algorithm 2
presents the implemented pseudo-code of the CP-ALS approach with, as inputs,
M the number of modes, εals a criterion used to stop the iterations and nmaxals

the maximal number of iterations. The vectors of X1 and X2 are normalized,
the magnitudes are supported by the vectors of XR.

Algorithm 2 CP-ALS approach

Input: X , εals and nmaxals

Output: XR, X1, X2

- p = 0, εX = 1
while εX > εals and nmaxals do

- p = p+ 1
- solve (A.3) to compute Xp

1 depending on Xp−1
2 and on Xp−1

R

- normalization of the vectors of Xp
1

- solve (A.4) to compute Xp
2 depending on Xp

1 and on Xp−1
R

- normalization of the vectors of Xp
2

- solve (A.2) to compute Xp
R depending on Xp

1 and on Xp
2

- computation of εX such as εX = ||M1 −Xp
1(Xp

2 �Xp
R)t||F

end while

It is well known that the convergence of the CP-ALS can be very slow. Then,
different approaches have been proposed in the literature in order to improve
the convergence. In [20], [21] and [22], the principle is to compute Xp

R, Xp
1 and

Xp
2 at each iteration p based on the approximations Xex

R , Xex
1 and Xex

2 . These

approximations are calculated by a line search approach depending on Xp−l
R ,

Xp−l
1 and Xl−p

2 with l = 1, 2, 3 such as

Xex
R = Xp−2

R + βGp
R (A.5)

with Gp
R = (1 + δ)Xp−1

R − (1 + 2δ)δXp−2
R + δXp−3

R

Xex
1 = Xp−2

1 + βGp
1 (A.6)

with Gp
1 = (1 + δ)Xp−1

1 − (1 + 2δ)δXp−2
1 + δXp−3

1

Xex
2 = Xp−2

2 + βGp
2 (A.7)

with Gp
2 = (1 + δ)Xp−1

2 − (1 + 2δ)δXp−2
2 + δXp−3

2



with β and δ two parameters. Algorithm 3 presents the implemented pseudo-
code of the CP-ALS approach combined with the line search approach.

Algorithm 3 CP-ALS approach combined with a line search approach

Input: X , εals and nmaxals

Output: XR, X1, X2

- p = 0, εX = 1
while εX > εals and nmaxals do

- p = p+ 1
- compute Xex

2 by (A.7)
- normalization of the vectors of Xex

2

- compute Xex
R by (A.5)

- solve (A.3) to compute Xp
1 depending on Xex

2 and on Xex
R

- normalization of the vectors of Xp
1

- solve (A.4) to compute Xp
2 depending on Xp

1 and on Xex
R

- normalization of the vectors of Xp
2

- solve (A.2) to compute Xp
R depending on Xp

1 and on Xp
2

- computation of εX such as εX = ||M1 −Xp
1(Xp

2 �Xp
R)t||F

end while

At each iteration p, the optimal value of the parameter β can be defined by
computing the value which minimizes ||M1 −Xex

1 (Xex
2 �Xex

R )t||F .

Appendix B. Surrogate model based on POD combined with RBF
interpolation

The determination of a surrogate model based on the POD approach com-
bined with the RBF interpolation method is briefly presented in the context of
the section 3. This approach is detailed in [6, 7, 8]. A POD-RBF surrogate
model is based on a set of P vectors X(i1, i2) for different values of currents
vector (i1, i2). Then, an approximation Xpod−rbf (i1, i2) is sought under the
form

Xpod−rbf (i1, i2) =
M∑
j=1

ψjgj(i1, i2) (B.1)

with ψj ∈ RNx , gj(i1, i2) a scalar function and M the number of modes.
Based on the Singular Value Decomposition (SVD) of the FE solutions ma-
trix MX = [X(i11, i21),X(i12, i22), ...,X(i1P , i2P )] = USVt, the reduced basis
Ψ = [ψl, ψ2, ..., ψM ] of size Nx ×M is defined by the M first columns of U.
The truncation is obtained by taking the vectors ψj corresponding to the M
most significant singular values of S. To determine the functions gj(i1, i2) for
j = 1, ...,M , the FE solutions matrix expressed into the reduced basis Ψ by
MXr = S(1:M,1:M)V

t
(1:P,1:M) is used. Each line of MXr corresponds to the

discrete values of gj(i1l, i2l) for l = 1, ..., P . From these values, an RBF inter-
polation is performed in order to express each function gj(i1, i2) for any current



vector (i1, i2) under the following form

gj(i1, i2) =
P∑
l=1

αjlφl(i1, i2) (B.2)

with αjl a coefficient and φl a radial function depending on the Euclidean dis-
tance between (i1, i2) and (i1l, i2l) and on a parameter called ”shape parameter”.
For the radial functions, multiquadric functions are used. Based on a FE solu-
tions matrix composed of Q vectors, a Greedy algorithm can be used to select
the P most significant FE solutions in order to optimize the reduced basis [8].

References

[1] S. Chaturantabut, D. C. Sorensen, ”Nonlinear Model Reduction via Dis-
crete Empirical Interpolation”, SIAM J. Sci. Comput., vol. 32, no. 5,
pp.2737-2764, 2010.
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