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Abstract 

Numerical simulation is more and more used during the design stage of a manufactured product in order to 

optimize its performances. However, it is often too time consuming, particularly when it’s used to solve 

optimization problems, preventing an intensive usage. A-posteriori Model Order Reduction methods can be 

very effective to shorten the computational time. An approximated solution is then sought in a space of small 

dimension defined by a reduced basis. The accuracy of such methods is highly dependent on the choice of 

the reduced basis, extracted from preliminary numerical simulation. The method usually applied to construct 

such reduced basis is based on the Singular Value Decomposition (SVD), which can be time consuming, 

and is not adapted when a large collection of preliminary numerical simulations must be used to construct 

the basis. An alternative to this approach has been proposed recently with the Maximum Entropy Snapshot 

Sampling (MESS) method. In this paper, we propose to compare these methods with other approaches 

usually used for clustering or data classification based on vectors distance calculation, like the Centroidal 

Voronoi Tessellation (CVT), Density Based Spatial Clustering of Applications with Noise (DBSCAN), and 

Clustering Using Representatives (CURE). The methods are compared on a complex and realistic nonlinear 

problem in low frequency electromagnetics. The quality of the reduced bases obtained by the different 

methods are compared. Then, field distributions and global quantities, like eddy current losses and magnetic 

energy, are computed from the reconstructed results, to further analyze the quality of the reduced bases. 

Numerical simulation, Finite Element method, Model order reduction, Reduced basis, 

Electromagnetics 

Introduction 

Numerical simulation is a widely used tool in industry as well as in research, as it allows having access 

to any quantity of interest, without the constraint of conducting real life experiments. However, 

simulations can be extremely time consuming, especially in the case of parametric studies or 

optimization problems, when it is necessary to run many simulations with varying parameters. Hence, a 

reduction of the computation time of the simulation is required, accepting a loss of the precision on the 



result. In this context, there has been an intensive development of Model Order Reduction techniques in 

the past decades.  

Model Order Reduction field gathers a collection of methods to reduce the computation time of 

numerical simulations. Two kinds of reduction methods exists: a priori and a posteriori. A priori 

methods are automated algorithms, which do not require any specific knowledge on the problem to 

solve. This is a considerable asset in terms of ease of use. However, these methods are not necessary 

easy to implement and can have convergence issues when applied to non-linear problems. The Proper 

Generalized Decomposition (PGD) [1][2] and the Reduced Basis method (RB) [3] are examples of such 

methods. On the other hand, a posteriori methods require preliminary simulation results of the problem 

to solve, in order to derive the reduced model. From these preliminary simulation results, called 

snapshots, a reduced basis can be constructed, on which the problem solution and the matrix system are 

projected. The number of unknowns of the problem can be drastically reduced leading to an equation 

system of small size. With this reduction process, an accuracy loss appears on the solution, which is 

highly related to the choice of the reduced basis. In fact, to obtain a good approximation with the reduced 

model, its solution must be close to the solution of the initial problem projected in the space defined by 

the reduced basis. The challenges when using a posteriori reduction methods are the choice of the 

preliminary simulation results, as well as the method used to construct the reduced basis. Concerning 

the choice of preliminary results, it greatly depends on the targeted operating range of validity of the 

reduced model, and thus often necessitates a significant technical background to be correctly defined. 

In the case of low frequency electromagnetic problems, a methodology was proposed based on a well-

known standard approach using typical tests [4][5], which showed great accuracy of the reduced model 

as well as the need of an important quantity of preliminary results. Thereby, once the right preliminary 

results are generated, one can start to construct the reduced basis by applying numerical technics. The 

paper focuses on the comparison of these different technics.  

To construct a reduced basis using a posteriori reduction methods, one needs to find the redundancy 

information in the snapshots, with clustering techniques [6] or Singular Value Decomposition (SVD) 

[7]. SVD is the most used method to construct a reduced basis from a set of snapshots, as it allows 

extracting independent vectors containing the information of the snapshots, ranked in terms of energy. 

Clustering methods, on the other hand, allow selecting the snapshots for the construction of a reduced 

basis using various techniques. Centroidal Voronoi Tesselation (CVT) [8], for example, gathers in small 

sets snapshots that are close to each other in terms of the Frobenius norm, and extract the basis by 

computing the centers of each set. We can find applications of such methods for reduced model 

construction in robotics [9], design optimization [10], and power network analysis [11]. In 

computational physics, researchers use this kind of methods, in fluid dynamics [12][13],  mechanical 

systems [14][15] and electromagnetics [16][17][18]. Recently, model order reduction schemes have 

been coupled with uncertainty quantification methods to find an approximation of the solution of 

ordinary differential equations [19], and to nonlinear regression techniques and Optimal Transport to 

find parametric solutions of fluid dynamics problem [20]. Also, reduction methods have been used to 

simulate compressible flow with particular boundary conditions [21], and to represent in 3D the behavior 

of multilayered components in microwave fields [22]. On the other hand, clustering methods are used 

in Neural Network applied to electrical load forecasting for demand response programs [23] and to 

battery optimization through the application of the Elbow method to irradiance data [24]. 



However, comparisons of model order reduction methods, in terms of reduction ratio and reconstruction 

errors, have been limited to specific domains, in which specific methods are used. In mechanical systems 

[25], authors compared the Guyan reduction method, the Krylov subspace method and the balanced 

truncation method, and showed that the most suitable method depends on parameters of the problem to 

be solved (i.e. motion frequency). In structural dynamics [26], authors compared the modal displacement 

method, the balanced truncation method and the moment matching method, applied to a linear time-

invariant dynamical system of an actuation frame, and showed that the modal displacement method 

captures best the global dynamics of the system.  Nevertheless, a large variety of clustering methods can 

be employed to construct a reduced basis, such as Density Based Spatial Clustering of Applications with 

Noise (DBSCAN) [30], which works in a similar way than CVT, but only construct groups when a given 

density of vectors is found, excluding isolated ones. Clustering Using Representatives (CURE) [31] uses 

a different approach than CVT and DBSCAN, with the specificity of allowing initializing the groups of 

vectors using a sample of the data set. Eventually, Maximum Entropy Snapshot Sampling (MESS) [29] 

is another approach based on the information theory, as it works by computing the information gain 

associated with each vector of the data set, and constructs the reduced basis by extracting the vectors of 

highest information gain. Like SVD, these different methods enable to construct a reduced basis for 

model order reduction, in an engineering context. Therefore, an evaluation and comparison of their 

performances is required. 

In this paper, we aim to carry out a comparative study between different snapshots selection methods: 

clustering techniques (CVT, DBSCAN, CURE), the MESS method, and SVD, which remains until now 

the reference for reduced basis construction. The methods are applied to computational physics, on a 

finite element model of an induction machine connected to the power network, which is a complex and 

realistic non-linear low frequency electromagnetic problem. We estimate the quality of reconstruction 

on the solution of the field distribution, but also on quantities of interest derived from it.  

In Section 1, we introduce notations, the concept of a reduced basis, the snapshots selection methods 

and their implementation, as well as defining indicators. Section 2 presents the numerical experiment 

conducted to compare the methods, starting with the problem formulation. The comparison is made on 

field distribution but also on global quantities like energy and eddy current losses.  

1. Methodologies

In this section, we will introduce the concept of reduced basis, as well as the different methods used to 

generate one from simulation results. Let consider 𝑇 vectors 𝑥𝑖 with 𝑁 entries, solutions of a

computational physic problem resulting from an analysis in the time domain of a parametrized problem. 

Considering a matrix 𝑋 ∈ ℝ𝑁×𝑇 gathering the 𝑇  vectors 𝑥𝑖 ∈ ℝ𝑁 of the data set, we note 𝑋∗,𝑐 the matrix

containing the first 𝑐 columns of 𝑋, and 𝑋𝑐,∗ the matrix containing the first 𝑐 rows of 𝑋. Then, we

introduce the Frobenius norm of the matrix 𝑋, defined as follows: 

‖𝑋‖𝐹 = √∑ ∑ 𝑥𝑖𝑗
2

𝑇

𝑖=1

𝑁

𝑗=1

(1) 

1.1. Reduced basis 



A reduced basis can be extracted from the matrix 𝑋 ∈ ℝ𝑁×𝑇 using one of the methods presented

hereafter. The idea is to construct a matrix 𝛹 ∈ ℝ𝑁×𝑚, with 𝑚 < 𝑇, gathering orthonormal vectors 𝜑𝑖 ∈

ℝ𝑁, so that vectors of 𝑋 can be expressed, or at least well approximated, as a linear combination of the

vectors of 𝛹. This expression, or projection, generates error, meaning that the basis 𝛹 does not enable 

to reconstruct exactly the matrix 𝑋 but an approximation 𝑋̃. Doing so, we obtain a matrix 𝐶 ∈ ℝ𝑚×𝑇

containing a set of coefficients 𝑐𝑖 ∈ ℝ𝑚 defined as follows:

𝑋 ≈ 𝑋̃ = 𝛹𝐶 
(2) 

To obtain the coefficients 𝑐𝑖, we introduce the transpose of 𝛹 on both sides of (2), which gives us the

projection of 𝑋 in the reduced basis 𝛹 : 

𝐶 = 𝛹𝑡𝑋
(3) 

Then, instead of needing 𝑁 × 𝑇 terms to describe the matrix 𝑋, we only need 𝑁 × 𝑚 and 𝑚 × 𝑇 terms 

of the matrices 𝛹 and 𝐶 respectively. We can see that if 𝑚 is much lower than 𝑇, then the amount of 

data is much lower. We can later reconstruct the original matrix using (2), giving us the reconstructed 

matrix 𝑋̃, composed of 𝑇  vectors 𝑥̃𝑖 ∈ ℝ𝑁. The projection error can be computed for each vector of the

matrix as follows: 

𝜀𝑖 = ‖𝑥𝑖 −  𝑥̃𝑖‖2
(4) 

This error is generated by the representation of the 𝑇 vectors of matrix 𝑋 with a linear combination of 

only 𝑚 vectors and coefficients. Indeed, some information from one or multiple vectors of 𝑋 may not 

be contained in any of the 𝑚 vectors of 𝛹. Furthermore, a low value for 𝑚 will generate higher projection 

error and lower data needed to describe 𝑋, while a higher 𝑚 gives a better quality of reconstruction but 

more data. A trade off should be found. 

In the following, we present the different methods of snapshots selection, enabling to calculate the 

matrix 𝛹, that we want to compare. 

1.2. SVD 

The Singular Value Decomposition [7] is a method for extracting the dominant components of a two-

dimensional matrix via its singular values. It allows decomposing the matrix 𝑋 into three 

matrixes 𝑈, 𝛴, 𝑉, defined as: 

𝑋𝑉 = 𝑈𝛴 ⟺ 𝑋 = 𝑈𝛴𝑉𝑡 (5) 

The columns of 𝑈 ∈ ℝ𝑁×𝑁 are orthonormal eigenvectors of 𝑋𝑋𝑡 and are called the left singular vectors

of 𝑋, while the columns of 𝑉 ∈ ℝ𝑇×𝑇 are orthonormal eigenvectors of 𝑋𝑡𝑋 and are called the right

singular vectors of 𝑋. The matrix 𝛴 ∈ ℝ𝑁×𝑇 is a diagonal matrix composed of the singular values of 𝑋

usually ranked in a decreasing order of magnitude. If 𝑁 > 𝑇, which is often the case in computational 

engineering, only the first 𝑇 terms of the diagonal are non-zeros, and we can rewrite equation (5) as: 

𝑋 = 𝑈:𝑇𝛴:𝑇
:𝑇𝑉:𝑇

𝑡 ⟺ 𝑋 = ∑ 𝑢𝑘𝜆𝑘𝑣𝑘
𝑡

𝑇

𝑘=1

(6)



With 𝑋:𝑇 the matrix containing the first 𝑇 columns of 𝑋, 𝑢𝑘 and 𝑣𝑘 respectively the 𝑘𝑡ℎ vector of the

matrices 𝑈 and 𝑉, and 𝜆𝑘 the 𝑘𝑡ℎ singular value. Given that expression, as well as the decreasing

magnitude of the singular values, we can see that the contribution of the latest singular vectors will be 

very low in the reconstruction of 𝑋. This highlights the possibility of finding an approximation of  𝑋 by 

a matrix 𝑋𝑚 of rank 𝑚 < 𝑇. In fact, the Eckart-Young theorem guarantees that the best low rank

approximation of a matrix, in the perspective of the Frobenius norm, is given by its truncated SVD: 

𝑋𝑚 = 𝑈:𝑚𝛴:𝑚
:𝑚𝑉:𝑚

𝑡 (7) 

From this approximation, we can extract the reduced basis 𝛹𝑆𝑉𝐷 as the matrix 𝑈:𝑚, which columns are

orthogonal: 

𝛹𝑆𝑉𝐷 = 𝑈:𝑚 ∈ ℝ𝑁×𝑚 (8) 

1.3. CVT 

The Centroidal Voronoï Tesselation (CVT) is a clustering method that can be used to select snapshots 

from the matrix 𝑋 to construct a reduced basis. This is done by gathering the vectors 𝑥𝑖 of 𝑋 that look

alike (which are close in the sense of the 2-norm) in groups (called Voronoï regions), and to represent 

each group by a single vector, which corresponds to the center of the Voronoï region [8]. 

The principle of CVT is to partition the discrete space generated by the set of vectors of 𝑋 ∶  𝛺 =

{𝑥𝑖 ∈ ℝ𝑁 , 𝑖 = 1, … , 𝑇}. It is therefore a matter of choosing a number of "regions” 𝑉𝑗 , 𝑗 = 1, … , 𝑚 to

represent all vectors of 𝑋. Regions must satisfy the following conditions: 

➢ Each region is included in 𝛺 : 𝑉𝑗 ⊂ 𝛺

➢ Regions are disjoint: 𝑉𝑗 ∩ 𝑉ℎ = ∅ if 𝑗 ≠ ℎ

➢ Regions cover 𝛺 : ⋃ 𝑉𝑗
𝑚
𝑗=1 = 𝛺

The generators 𝜆𝑗 ∈ ℝ𝑁 , 𝑗 = 1, … , 𝑚 associated with the regions of Voronoï are defined as followed:

𝑉𝑗 = {𝑥𝑘 ∈ 𝛺  ‖𝑥𝑘 − 𝜆𝑗‖
2

⁄ < ‖𝑥𝑘 − 𝜆ℎ‖2 ;   𝑗 = 1, … , 𝑚 ;  𝑗 ≠ ℎ ; 𝑘 = 1, … , 𝑇} (9) 

This means that each vector belongs to the Voronoï region corresponding to the generator to which it is 

closest. 

Another characteristic of generators 𝜆𝑗 is that each of them must be merged with the center of mass of

its associated region. This gives us a centered partition of space. In the case of a discrete domain of 

constant density, meaning that each vector has the same weight, the center of mass of a region is defined 

by, with 𝑐𝑎𝑟𝑑(𝑉𝑗) being the number of vectors in the region 𝑉𝑗 :

𝑍𝑗 =
1

𝑐𝑎𝑟𝑑(𝑉𝑗)
∑ 𝑥𝑘

𝑥𝑘∈𝑉𝑗

(10) 

A CVT can be constructed by applying the Lloyd algorithm [27] on the matrix 𝑋. It is important to note 

that the first step of initialization of the generators can be critical in the construction of the CVT. The 

generators can be initialized by choosing randomly among the vector 𝑥𝑘, or from homogenous

distribution of the 𝑥𝑘. The choice of the initial generators will condition the accuracy of the reduced



basis construction as we will see in the following. Furthermore, the merging of the centers of mass with 

the generators is an iterative process, so the user must define a precision criterion 𝛿 to ensure it. Its value 

should be low enough to ensure the quality of the partitioning, but not too small to avoid extra 

computational time.  

The algorithm of CVT is presented in Figure 1. The inputs are the matrix 𝑋 ∈ ℝ𝑁×𝑇, the number of

regions 𝑚 and the merging precision criterion 𝛿, and the outputs are the 𝑚 centers of mass 𝑍𝑗.

Algorithm 1: CVT 

Inputs:  

the matrix 𝑋 ∈ ℝ𝑁×𝑇

the number of regions 𝑚 

the merging precision criterion 𝛿 

Outputs: 

the 𝑚 centers of mass 𝑍𝑗

1) Initialization of 𝑚 generators 𝜆𝑗 ∈ ℝ𝑁 , 𝑗 = 1, … , 𝑚

2) Calculation of the regions 𝑉𝑗 associated with these generators (9)

3) Calculation of the center of mass 𝑍𝑗 associated with each region (10)

As long as ‖𝑍𝑗 − 𝜆𝑗‖
2

> 𝛿 , 𝑗 = 1, … , 𝑚∶ 

i) We take the centers of mass as new generators 𝜆𝑗 = 𝑍𝑗  , 𝑗 = 1, … , 𝑚

ii) Calculation of the regions 𝑉𝑗 associated with these generators (9)

iii) Calculation of the center of mass 𝑍𝑗 associated with each region (10)

End 
Figure 1 – algorithm of the CVT 

Once we obtain a CVT of the matrix 𝑋, we can construct the reduced basis 𝛹𝐶𝑉𝑇 by concatenating the

obtained generators and applying a QR decomposition to orthogonalize the matrix: 

𝛹𝐶𝑉𝑇 = 𝑄𝑅(𝜆1, … ,  𝜆𝑚) ∈ ℝ𝑁×𝑚 (11) 

We chose to use the QR decomposition as orthogonalization process in this work, because it is reliable 

and has a low computational cost [28].  

1.4. MESS 

Maximum Entropy Snapshot Sampling (MESS) is another snapshot selection method that can be used 

to derive a reduced basis from the matrix 𝑋. It has been proposed in [29]. It is based on the construction 

of a recurrence matrix, which measures the similarities between the different vectors, and on the notion 

of entropy, which corresponds for each vector to the quantity of information it contains. 

The first step of this method is to calculate the recurrence matrix 𝑅𝜖 ∈ ℝ𝑇×𝑇 corresponding to the matrix

𝑋 ∈ ℝ𝑁×𝑇. To do this, we introduce a distance criterion 𝜖, and the matrix is built as follows:

𝑅𝜖
𝑖,𝑔

= {
1 𝑖𝑓 ‖𝑥𝑖 − 𝑥𝑔‖

2
< 𝜖

0 𝑒𝑙𝑠𝑒
 ;   𝜖 > 0 , 𝑖 = 1, … , 𝑇, 𝑔 = 1, … , 𝑇 (12) 

The entry 𝑅𝜖
𝑖,𝑔

is equal to 1 if the two vectors 𝑥𝑖 and 𝑥𝑔 are close to each other. The idea is then to go

through this recurrence matrix to deduce the entropy corresponding to each vector, and to determine 

those that contain the most “significant information”, which will be used to construct the reduced basis. 

For that, we define the 𝜖-Frobenius potential 𝑣𝜖, the 𝜖-Frobenius entropy 𝜂𝜖 and the information gain ℎ𝜖:



𝜐𝜖𝑖
= 𝜐𝜖(𝑋(: ,1: 𝑖)) =

1

𝑖²
‖𝑅𝜖(1: 𝑖, 1: 𝑖)‖𝐹

2  , 𝑖 = 1, … , 𝑇
(13) 

𝜂𝜖𝑖
= 𝜂𝜖(𝑋(: ,1: 𝑖)) = − 𝑙𝑜𝑔(𝜐𝜖𝑖) , 𝑖 = 1, … , 𝑇 (14) 

ℎ𝜖𝑖
= 𝜂𝜖𝑖+1

− 𝜂𝜖𝑖
 , 𝑖 = 1, … , 𝑇 (15) 

We can then construct the reduced basis by extracting the 𝑚 vectors 𝑥
𝑖

max (ℎ𝜖𝑖)
 of 𝑋 with the maximal

information gain: 

𝑥
𝑖

max (ℎ𝜖𝑖)
= 𝑎𝑟𝑔𝑚𝑎𝑥(ℎ𝜖𝑖

)
(16) 

The algorithm of MESS is presented in Figure 2. The inputs are the matrix 𝑋 ∈ ℝ𝑁×𝑇, the number of

vectors in the basis 𝑚 and the distance criterion 𝜖, and the outputs are the 𝑚 vectors of maximum 

information gain 𝑥
𝑖

max (ℎ𝜖𝑖)
.

Algorithm 2: MESS 

Inputs:  

the matrix 𝑋 ∈ ℝ𝑁×𝑇

the number of bases 𝑚 

the distance criterion 𝜖 

Outputs: 

the 𝑚 vectors of maximum information gain 𝑥
𝑖

max (ℎ𝜖𝑖)

1) Calculation of recurrence matrix (12)

For 𝑖 from 1 to 𝑇: 

i) Calculation of the 𝜖-Frobenius potential 𝜐𝜖𝑖
 (13)

ii) Calculation of the 𝜖-Frobenius entropy 𝜂𝜖𝑖
 (14)

iii) Calculation of the information gain ℎ𝜖𝑖
 (15)

2) Selection of 𝑚 vectors with maximum information gain 𝑥
𝑖

max (ℎ𝜖𝑖)
(16)

End 

Figure 2 – algorithm of the MESS 

The reduced basis is constructed by concatenation of 𝑚 vectors with the highest value of ℎ𝜖𝑖
, and an

orthogonalization with QR decomposition: 

𝛹𝑀𝐸𝑆𝑆 = 𝑄𝑅 (𝑥1

max (ℎ𝜖𝑖)
, … , 𝑥𝑚

max (ℎ𝜖𝑖)
) ∈ ℝ𝑁×𝑚 (17) 

1.5. DBSCAN 

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a clustering method 

proposed in 1996 [30] and which uses the notion of density to create groups from the matrix 𝑋. With 

this method, one cannot define the number of groups that the algorithm will create, as it would be the 

case for CVT or MESS. However, the user will define a criterion associated to the notion of density, 

which will influence the creation of the groups of vectors. From the matrix 𝑋, we can define the density 

as the “𝜖-neigborhood”: 

𝑁𝜖(𝑥𝑖) = {𝑥𝑘 ∈ 𝑋 | ‖𝑥𝑖 − 𝑥𝑘‖2 < 𝜖} (18) 

The first criterion set by the user is 𝜖, which corresponds to a distance threshold. If the distance between 

two vectors 𝑥𝑖 and 𝑥𝑘 of 𝑋 is lower than 𝜖, these vectors will be gathered. The other criterion is 𝑚𝑖𝑛𝑃𝑡𝑠,

imposing a minimum number of vectors close together to create a group. From these criterions and the 

definition of the “𝜀-neigborhood”, three categories of vectors appear: 



• If the cardinal of 𝑁𝜖(𝑥𝑖) is greater than 𝑚𝑖𝑛𝑃𝑡𝑠, 𝑥𝑖 is a “core” vector

• If the cardinal of 𝑁𝜖(𝑥𝑖) is between 0 and 𝑚𝑖𝑛𝑃𝑡𝑠, 𝑥𝑖 is a “border” vector

• If the cardinal of 𝑁𝜖(𝑥𝑖) is 0, 𝑥𝑖 is a “noise” vector

The three categories are illustrated in Figure 3, which displays the notion of density. 

The DBSCAN algorithm consists in calculating the “𝜖-neigborhood” associated with each vector of 𝑋 

to determine its category, and create groups of “core” and “border” vectors. It is presented in Figure 4. 

The inputs are the matrix 𝑋 ∈ ℝ𝑁×𝑇, the distance threshold criterion 𝜖 and the minimum number of

vectors to create a group 𝑚𝑖𝑛𝑃𝑡𝑠 , and the outputs are the 𝑚 centers of the created groups of vectors. 

Algorithm 3: DBSCAN 

Inputs:  

the matrix 𝑋 ∈ ℝ𝑁×𝑇

the distance threshold criterion 𝜖 

the minimum number of vectors to create a group 𝑚𝑖𝑛𝑃𝑡𝑠 

Outputs: 

the 𝑚 centers 𝐾𝑖

While there are vectors 𝑥𝑖 not ranked in any category (core, border, noise)

i) Calculate “𝜀-neigborhood”: 𝑁𝜖(𝑥𝑖) (18)

ii) Categorize  𝑥𝑖 by calculating 𝑐𝑎𝑟𝑑(𝑁𝜖(𝑥𝑖)) and comparing it to 𝑚𝑖𝑛𝑃𝑡𝑠
iii) If 𝑥𝑖 is a « core”, create a cluster  𝐶𝑖 gathering the vectors in 𝑁𝜖(𝑥𝑖)
iv) Categorize all the 𝑥𝑘 ⊂ 𝑁𝜖(𝑥𝑖)

End While 

1) Include each “border” vector in its closest cluster

2) For each cluster 𝐶𝑖, calculate its center 𝐾𝑖 =
1

𝑐𝑎𝑟𝑑(𝐶𝑖)
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑖

End 
Figure 4 – algorithm of DBSCAN 

The reduced basis is constructed by concatenation of the centers 𝐾𝑖, and orthogonalized with a QR

decomposition. 

Figure 3 - DBSCAN scheme. The points in orange correspond to Core vectors, as we see 4 of them close to each 

other, which is superior to the value of 𝒎𝒊𝒏𝑷𝒕𝒔. The points in blue are Border vectors, being sufficiently close to 

only one other vector. The points in grey are Noise vectors, as they are too far to any other vector. 



𝛹𝐷𝐵𝑆𝐶𝐴𝑁 = 𝑄𝑅(𝐾1, … ,  𝐾𝑚) ∈ ℝ𝑁×𝑚 (19) 

1.6. CURE 

Clustering Using Representatives (CURE) is a hierarchical clustering algorithm proposed in 1998 [31]. 

It differs from the methods presented above, with the capacity of creating the clusters with a sample of 

the data instead of all of it, and representing each cluster by more than one representative vector. It 

allows to handle clusters with complex shapes and large database in a very efficient way. 

Representatives are calculated by taking 𝑛𝑟𝑒𝑝 furthest vectors in a cluster, and shrinking them toward

the center of the cluster. The intensity of that shrinking can be chosen by the user, via a parameter 𝜃.  

With 𝐾𝑖 the center of the cluster 𝐶𝑖, and 𝑥𝑖
𝐹1 one of its furthest vectors, we calculate the representative

𝑅𝑒𝑝𝑖 with:

𝑅𝑒𝑝𝑖
1 = 𝑥𝑖

𝐹1 + 𝜃(𝐾𝑖 − 𝑥𝑖
𝐹1) (20) 

In this method, each vector in the sample data is initially considered as a cluster. The choice of the 

sample data is left to the user, and has an important impact on the quality of the reconstruction of 𝑋. 

Typically, it is required that the vectors of the sample data are already a good representation of the 

vectors of 𝑋. Then, clusters close to each other are fused until the desired number of clusters 𝑚 is 

obtained. Finally, all the remaining vectors of 𝑋 are compared to the clusters’ representatives, and added 

in the closest cluster.  

The algorithm of CURE is presented in Figure 5. The inputs are the matrix 𝑋 ∈ ℝ𝑁×𝑇, the number of

representative vectors for a group 𝑛𝑟𝑒𝑝, the shrinking intensity parameter 𝜃 and the number of sample

vectors 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠, and the outputs are the 𝑚 centers of the created groups of vectors.

Algorithm 4: CURE 

Inputs:  

the matrix 𝑋 ∈ ℝ𝑁×𝑇

the number of bases 𝑚 

the number of representative vectors for a group 𝑛𝑟𝑒𝑝

the shrinking intensity parameter 𝜃 

the number of sample vectors 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠

Outputs: 

the 𝑚 centers 𝐾𝑖

1) The first 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 vectors 𝑥𝑖 are considered as clusters 𝐶𝑖

While the number of clusters is superior than 𝑚 

i) For each cluster 𝐶𝑖, calculate its center 𝐾𝑖 =
1

𝑐𝑎𝑟𝑑(𝐶𝑖)
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑖

ii) For each cluster 𝐶𝑖, calculate its distance to the other clusters 𝐷𝑖(𝑘) = ‖𝐾𝑖 − 𝐾𝑘‖2

iii) Fuse the closest clusters

End While 

2) Calculate the 𝑛𝑟𝑒𝑝 representatives associated with each cluster 𝐶𝑖 (20)

For j from 𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 to T:

i) For each cluster 𝐶𝑖, calculate the distance between its representatives and 𝑥𝑗

ii) Add 𝑥𝑗 in its closest cluster

End for 

3) For each cluster 𝐶𝑖, update its center 𝐾𝑖 =
1

𝑐𝑎𝑟𝑑(𝐶𝑖)
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑖

Figure 5 – algorithm of CURE 



Then, we can construct the reduced basis by concatenation of the centers 𝐾𝑖, and orthogonalize using a

QR decomposition. 

𝛹𝐶𝑈𝑅𝐸 = 𝑄𝑅(𝐾1, … ,  𝐾𝑚) ∈ ℝ𝑁×𝑚
(21) 

1.7. Projection error 

In order to compare the efficiency of the presented methods for the selection of snapshots and the 

construction of reduced basis, we define the projection error. We calculate this error to evaluate the loss 

of information generated by the projection and reconstruction of the data (4). Then, the error relatively 

to the original data for each vector 𝑥𝑖 is computed by:

ℰ𝑥𝑖
𝑅𝑒𝑙 =

𝜀𝑖

‖𝑥𝑖‖2

(22)

2. Numerical experiments

In this section, we describe the experiments performed with the different methods presented above, in 

order to evaluate their ability to construct a reduced basis suited for the construction of a reduced order 

model from data provided by computational electromagnetics. Firstly, we present the mathematical 

formulation of the problem and simulation results, then we describe the computation of the reduced 

basis, and eventually we compare and analyze the results of the experiments in terms of projection error. 

2.1. Problem formulation 

We consider the application example of an induction machine, which can be described by magneto-

quasistatic equations in the time domain. 

𝑐𝑢𝑟𝑙(𝐻) = 𝐽𝑖𝑛𝑑 + ∑ 𝑁𝑗𝑖𝑗

3

𝑗=1

(23) 

𝑐𝑢𝑟𝑙(𝐸) = −
𝜕𝐵

𝜕𝑡

(24) 

𝑑𝑖𝑣(𝐵) = 0 
(25) 

𝑑𝑖𝑣(𝐽𝑖𝑛𝑑) = 0 and 𝑑𝑖𝑣(𝑁𝑗) = 0 (26) 

Where 𝐵 is the magnetic flux density, 𝐻 the magnetic field, 𝐸 the electric field, 𝐽𝑖𝑛𝑑 the eddy current

density in the conducting domain, and 𝑁𝑗 and 𝑖𝑗 the unit current density vector and the current flowing

though the winding 𝑗. The magnetic and electric behavior laws are defined by: 

𝐻 = 𝜗(𝐵)𝐵 
(27) 

𝐽𝑖𝑛𝑑 = 𝜎𝐸 (28) 

With 𝜗(𝐵) the magnetic reluctivity, depending on 𝐵 in the ferromagnetic material, and 𝜎 the electric 

conductivity, which is assumed to be constant in the conductive part and equal to zero in non-conductive 

parts (like in the  windings of the stator, assumed to be stranded, and the lamination where the effect of 

eddy currents is negligible). We use the vector potential formulation [32] to solve the problem given by 

the previous equations. Introducing the magnetic vector potential 𝐴 defined from (25) such as 𝐵 =

𝑐𝑢𝑟𝑙(𝐴), the electric field can be expressed from (24) by 𝐸 = −
𝜕𝐴

𝜕𝑡
. Then, from (23) and (26), the 

equation to be solved is: 



𝑐𝑢𝑟𝑙(𝜗(𝐵)𝑐𝑢𝑟𝑙(𝐴)) + 𝜎
𝜕𝐴

𝜕𝑡
= ∑ 𝑁𝑗𝑖𝑗

3

𝑗=1

(29) 

with 𝐴(𝑡 = 0) = 0 in the conductive domain. We must also consider Dirichlet boundary conditions, to 

cancel the outgoing flux on the outer surface stator. The electromagnetic device is often connected to a 

voltage source, meaning that the voltage is imposed but not the currents 𝑖𝑗, which are then unknowns of

the problem. The following relations allow to impose the voltage 𝑉𝑗 at the terminals of the winding 𝑗,

with 𝑅 the resistance of windings, 𝛷𝑗 the linkage magnetic flux and 𝐷𝑗 the subdomain associated with

the winding 𝑗: 

𝑑𝛷𝑗

𝑑𝑡
+ 𝑅𝑖𝑗 = 𝑉𝑗

(30) 

𝛷𝑗 = ∫ 𝐴 . 𝑁𝑗  𝑑𝑥 
𝐷𝑗

(31) 

The rotor is assumed to rotate at constant speed and the movement is considered by means of the time-

stepping method [33]. In order to solve the problem, the fields 𝐴 and 𝑁𝑗 are discretized using respectively

edge and facet elements, and we denote 𝑋𝐴 ∈ ℝ𝑁 the vector of the components of 𝐴. The numerical

solution of (29) is obtained using the Finite Element (FE) method. The full numerical model is then 

composed of a strong coupling between the FE model and the electric equation (30). Describing the FE 

model in the time domain, using the Euler implicit scheme, leads to solve an equation system, at each 

time step 𝑘, for 𝑗 = 1,2,3: 

[𝑀𝜗 + 𝑀(𝜃𝑘−1) + 𝑀𝜎∆𝑡−1]𝑋𝐴,𝑘 − ∑ 𝐹𝑗𝑖𝑗,𝑘

3

𝑗=1

= 𝑀𝜎∆𝑡−1𝑋𝐴,𝑘−1

(32) 

𝐹𝑗
𝑡∆𝑡−1𝑋𝐴,𝑘 + 𝑅𝑖𝑗,𝑘 = 𝑉𝑗,𝑘 + 𝐹𝑗

𝑡∆𝑡−1𝑋𝐴,𝑘−1
(33) 

With ∆𝑡 the time step, 𝑋𝑡 the transpose of the matrix 𝑋, 𝐹𝑗 the vector depending on 𝑁𝑗 and 𝑀(𝜃𝑘−1) the

matrix used to consider the movement of the rotor.  

2.2. Simulation of an induction machine 

We consider a squirrel-cage induction machine similar to the one studied in [34], represented with a 2D-

extruded mesh as shown in Erreur ! Source du renvoi introuvable.. The mesh is composed of 86685 

prism elements and 31360 hexahedral elements, the vector potential is discretized using edge functions. 

Due to the boundary conditions, the degrees of freedom associated with the edges on the boundary are 

equal to zero, and the unknowns of the problem are associated with the edges located inside the domain. 

The number of degrees of freedom is then 𝑁 = 76616 unknowns. As said before, the machine is 

connected to a voltage supply delivering a nominal voltage 𝑈𝑛 = 6600 𝑉 at a frequency 𝑓 = 50 𝐻𝑧.

We set the rotation speed to half the synchronous speed, giving 𝛺𝑠𝑝𝑒𝑒𝑑 = 743 𝑟/𝑚𝑖𝑛. The eddy currents

are neglected everywhere except in the bars, which means that we set 𝜎 = 0 everywhere but in the bars 

where 𝜎 = 37,7 ∗ 106 𝑆𝑚−1. We perform a simulation on 𝑇 = 2000 time steps (≈ 15 electrical periods

or 0.31s), and thus obtain a result in the form of a matrix 𝑋𝐴 ∈ ℝ𝑁×𝑇. We can then use this result to

compute fields: the matrices of components of the magnetic flux density 𝑋𝐵 ∈ ℝ3𝑁×𝑇 and of the density

of eddy current 𝑋𝐽 ∈ ℝ3𝑁×𝑇, which are of size 3𝑁 × 𝑇 because they gather 3 components per unknown;

as well as global values: the eddy current losses 𝑃𝐽 ∈ ℝ𝑇, and the magnetic energy 𝐸𝑛 ∈ ℝ𝑇.



Figure 8, Figure 9, Figure 10 and Figure 11 display fields and global values as results of a simulation of 

the induction machine. Figure 8 shows the magnetic flux density in the machine, in the transient (at 50th 

time step) and in steady-state (at 750th time step), and reveals a high magnetic saturation of the machine 

in the transient. Figure 9 shows the eddy current density distribution in the induction machine, also in 

transient (at 50th time step) and steady state (at 750th time step). We can see that the current density is 

only generated in the bars of the machine, which correspond to what we expect. Figure 10 and Figure 

11 display the eddy current losses and the energy as global values of the induction machine. These 

graphs show clearly the presence of a transient and a steady state, with very high values of both losses 

and energy in the first electrical periods. 

(a) Front view (b) Side view 
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Figure 7 – electromagnetic field in the induction machine 

Figure 6 - mesh of the induction machine 
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Figure 8 – density of eddy current in the induction machine 

  
 
  

  
  

  
  

 
 

Figure 9 – Eddy current losses in the induction machine 

  
  

  
  

  

Figure 10 – energy in the induction machine 



2.3. Computation of reduced basis 

We compute a reduced basis from the matrix 𝑋𝐴 , which gathers the 𝑇 vectors of size 𝑁 corresponding

to the results of the simulation of the induction machine, with each method described above. In order to 

allow an objective comparison between the results obtained by the different reduced basis construction 

methods, we want all the basis to contain the same number of vectors 𝑚. Hence, we start by applying 

the DBSCAN on the matrix 𝑋𝐴 , since it is the only method in which the user cannot impose the number

of vectors in the reduced basis. We compute the density (18) setting = 0.03𝑑𝑚𝑎𝑥 , where 𝑑𝑚𝑎𝑥 is the

distance (as a 2-norm) between the two furthest away vectors of 𝑋𝐴 , and we set 𝑚𝑖𝑛𝑃𝑡𝑠 = 2. We choose

these values after a series of tests, in order to obtain a number of vectors 𝑚 = 212 ≈ 𝑇
10⁄ . This

generates the reduced basis associated with the DBSCAN 𝛹𝐷𝐵𝑆𝐶𝐴𝑁 ∈ ℝ𝑁×𝑚. Then, we can apply the

other methods, setting the number of vectors in the reduced basis to 𝑚. The SVD method is computed 

on the matrix 𝑋𝐴 and truncated at rank 𝑚 (7), and we obtain the basis 𝛹𝑆𝑉𝐷 ∈ ℝ𝑁×𝑚. A CVT is

performed on 𝑋𝐴, setting the number of regions to 𝑚. The generators chosen for the initialization are

homogenously distributed vectors of 𝑋𝐴, which is more efficient than an initialization with a random

choice. The merging precision criterion is set as 𝛿 = 0.0001, and the algorithm generates the basis 

𝛹𝐶𝑉𝑇 ∈ ℝ𝑁×𝑚. The CURE method is computed on the matrix 𝑋𝐴, with 𝑛𝑟𝑒𝑝 = 2, 𝜃 = 0.5 and

𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 360, and gives us the reduced basis 𝛹𝐶𝑈𝑅𝐸 ∈ ℝ𝑁×𝑚. Eventually, the MESS is calculated

on 𝑋𝐴, with 𝜖 = 0.002 ∗ 𝑑𝑚𝑎𝑥, and we obtain the reduced basis 𝛹𝑀𝐸𝑆𝑆 ∈ ℝ𝑁×𝑚. All values of the input

parameters are listed in Table 1.  

DBSCAN SVD CVT CURE MESS 

Inputs 

𝜖 = 0.03 ∗ 𝑑𝑚𝑎𝑥

𝑚𝑖𝑛𝑃𝑡𝑠 = 2 
𝑚 = 212 

𝑚 = 212 

𝛿 = 0.0001 

𝑚 = 212 

𝑛𝑟𝑒𝑝 = 2

𝜃 = 0.5 

𝑁𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 360

𝑚 = 212 

𝜖 = 0.002 ∗ 𝑑𝑚𝑎𝑥,

Outputs 𝛹𝐷𝐵𝑆𝐶𝐴𝑁 𝛹𝑆𝑉𝐷 𝛹𝐶𝑉𝑇 𝛹𝐶𝑈𝑅𝐸 𝛹𝑀𝐸𝑆𝑆

Table 1 – Parameters for the computation of reduced basis 

We can then compare the offline CPU time of the different methods. However, SVD is performed using 

the compiled LAPACK library, while the other methods were programmed by us using Python 

programming language, and therefore are much less optimized. Nonetheless, CVT gives very interesting 

results, with an offline computation two times faster than SVD. DBSCAN yields an equivalent offline 

time than SVD, while CURE and MESS are around 3 times slower. We should recall that these two 

methods were programmed in Python and are not optimized. According to this study, we can’t generalize 

the fact that the methods CURE and MESS are slower than SVD. 

2.4. Projection and reconstruction of results 

Once we have the reduced basis associated with each method, we perform the projection of the results 

matrix 𝑋𝐴 in the reduced basis using (2). Then, we reconstruct the results by re-projecting the projected

matrix in the reduced basis with (3). 𝐶𝐴 ∈ ℝ𝑚×𝑇  is the projected matrix, 𝛹 ∈ ℝ𝑁×𝑚 the reduced basis

used for projection and 𝑋̃𝐴 the reconstructed results. 

We perform the projection with each reduced basis computed beforehand, and obtain 

𝐶𝐴
𝑆𝑉𝐷  , 𝐶𝐴

𝐶𝑉𝑇 , 𝐶𝐴
𝐷𝐵𝑆𝐶𝐴𝑁 , 𝐶𝐴

𝐶𝑈𝑅𝐸  and 𝐶𝐴
𝑀𝐸𝑆𝑆 , all matrixes of size ℝ𝑚×𝑇.

We then reconstruct each projected matrix previously computed, using the associated reduced basis, and 

we obtain 𝑋̃𝐴
𝑆𝑉𝐷  , 𝑋̃𝐴

𝐶𝑉𝑇 , 𝑋̃𝐴
𝐷𝐵𝑆𝐶𝐴𝑁 , 𝑋̃𝐴

𝐶𝑈𝑅𝐸 and 𝑋̃𝐴
𝑀𝐸𝑆𝑆, all matrixes of size ℝ𝑁×𝑇.



In order to evaluate the efficiency of the methods to construct an efficient reduced basis to project the 

results, we firstly calculate a global projection error for each reconstructed matrix as follows: 

𝛯𝑋𝐴
= ‖𝑋̃𝐴 − 𝑋𝐴‖

𝐹
(34) 

We obtain 𝛯𝑋𝐴

𝑆𝑉𝐷  , 𝛯𝑋𝐴

𝐶𝑉𝑇 , 𝛯𝑋𝐴

𝐷𝐵𝑆𝐶𝐴𝑁 , 𝛯𝑋𝐴

𝐶𝑈𝑅𝐸 and  𝛯𝑋𝐴

𝑀𝐸𝑆𝑆, which values are displayed in Figure 12. We can

see that the value associated with the MESS is much higher than for other methods. Indeed, as mentioned 

in [35] where the MESS is compared to SVD, this method allows constructing the reduced basis much 

faster than SVD, and the basis constructed with MESS generates a better precision than with SVD for 

an identical calculation time. However, the MESS leads to a reduced basis of greater size than SVD for 

a given projection error. Then, as we evaluate the methods in term of reduction rate and precision, the 

MESS is not competitive with the other methods. From that observation, we propose to exclude the 

MESS from the rest of the study.  

We then compute relative error (22) associated with the reconstructed result for each method. We obtain 

𝜀𝑋𝐴

𝑆𝑉𝐷 , 𝜀𝑋𝐴

𝐶𝑉𝑇 , 𝜀𝑋𝐴

𝐷𝐵𝑆𝐶𝐴𝑁 and  𝜀𝑋𝐴

𝐶𝑈𝑅𝐸 , all vectors of size ℝ𝑇. Figure 13 shows the value of the relative error

for each method in function of the time steps. For all methods, the error calculated is lower than 0.01%, 

shows a bit of variability during the first time-steps and stays constant after the 500th. We can observe 

that the differences in the error generated by projection with the methods is concentrated during the first 

500 time-steps, which correspond the transient state where we have the strongest variation of the field 

distribution. SVD gives the lowest error, in terms of a moving average, along all the time steps, as 

predicted by the Eckart-Young theorem. CVT generates a bigger error in the transient, but comes very 

close to the SVD as we get in the steady state. CURE allows reconstructing some results perfectly in the 

Figure 11 – Global reconstruction error for each method 



first 250 time steps, which correspond to the samples used to initialize this method, and we can see the 

error being equal to zero. However, the reconstruction is degraded compared to SVD or CVT in steady 

state.  Finally, DBSCAN gives similar results than CURE, with a slightly bigger error than CVT and 

SVD in the steady state, but a lower error than CVT in the transient.  

2.5. Reconstruction of fields and global quantities 

As presented above, we can compute fields and global quantities of the simulated machine from the 

matrix 𝑋𝐴. In order to further evaluate the quality of the reconstructed result, we use the matrixes

𝑋̃𝐴
𝑆𝑉𝐷  , 𝑋̃𝐴

𝐶𝑉𝑇 , 𝑋̃𝐴
𝐷𝐵𝑆𝐶𝐴𝑁 and 𝑋̃𝐴

𝐶𝑈𝑅𝐸  to compute the fields and the global quantities, and compare them to

those calculated with the result matrix 𝑋𝐴.

2.5.1.  Magnetic flux density 

At first, we compute the magnetic flux density 𝐵, corresponding to a spatial derivative of the vector 

potential 𝐴. We obtain the reconstructed magnetic flux density 𝑋̃𝐵
𝑆𝑉𝐷 , 𝑋̃𝐵

𝐶𝑉𝑇 , 𝑋̃𝐵
𝐷𝐵𝑆𝐶𝐴𝑁  and 𝑋̃𝐵

𝐶𝑈𝑅𝐸, all

matrixes of size ℝ3𝑁×𝑇, and compute the relative errors 𝜀𝑋𝐵

𝑆𝑉𝐷  , 𝜀𝑋𝐵

𝐶𝑉𝑇 , 𝜀𝑋𝐵

𝐷𝐵𝑆𝐶𝐴𝑁 and  𝜀𝑋𝐵

𝐶𝑈𝑅𝐸 , vectors of

size ℝ𝑇.

Figure 14 displays the relative error on the reconstructed magnetic flux density for each method. At first, 

we see a higher error generated than on the vector potential 𝐴. This can be explained by the important 

time and space variability of the field compared to the potential (induced by the space derivative), and 

by the construction of the reduced basis using snapshots of the vector potential and not those of the 

magnetic flux density. Then, we see that a strong variation of the error during the first time steps (around 

Figure 12 - Relative error of reconstructed results for SVD, CVT, DBSCAN and CURE (bottom) Zoom on transient 

state (top left) Zoom on steady state (top right) 



30% for CVT), but it quickly decrease to 10% in transient state and less than 5% in steady state. 

DBSCAN and CURE yield lower error than CVT in transient state. The error oscillates around 2.5% in 

steady state for CURE and DBSCAN, and around 1.2% for SVD and CVT. SVD yields the lowest 

moving average error along all the time steps, and CVT, with peaks in the transient, generates a similar 

error than SVD in steady state. CURE generates a perfect reconstruction during the first time steps, as 

we saw beforehand, and DBSCAN give comparable results once again, with lower error than CVT in 

the transient but slightly higher in steady state.  

2.5.2.  Eddy current density 

Similarly, we compute the eddy current density, corresponding to a time derivative of the vector 

potential in the conductive regions. We obtain the reconstructed density of eddy current 

𝑋̃𝐽
𝑆𝑉𝐷  , 𝑋̃𝐽

𝐶𝑉𝑇 , 𝑋̃𝐽
𝐷𝐵𝑆𝐶𝐴𝑁 and 𝑋̃𝐽

𝐶𝑈𝑅𝐸, all matrixes of size ℝ3𝑁×𝑇, and compute the relative errors 𝜀𝑋𝐽

𝑆𝑉𝐷 ,

𝜀𝐽
𝐶𝑉𝑇 , 𝜀𝐽

𝐷𝐵𝑆𝐶𝐴𝑁 and  𝜀𝑋𝐽

𝐶𝑈𝑅𝐸  vectors of size ℝ𝑇.

Figure 15 is a plot of the relative errors on the reconstructed current density distribution, and highlights 

again that the relative error associated with SVD is the lowest of all methods. CVT generates an error 

peaking at 20% in the transient, and decreasing in steady state to match SVD, around 2.5%. CURE does 

not allow a perfect reconstruction for some time steps as it was the case with the reconstruction of the 

magnetic flux density 𝐵 (see 4.5.1). The current density corresponds to the time derivative of the vector 

potential, meaning that to have a perfect reconstruction of the current density requires having, at two 

consecutive time steps, a perfect reconstruction of the vector potential. DBSCAN and CURE give 

sensibly equivalent results, with a peak of error at 15% in the transient and a stabilization around 4% in 

steady state.  

Figure 13 - Relative error of reconstructed electromagnetic fields for SVD, CVT, DBSCAN and CURE (bottom) 

Zoom on transient state (top left) Zoom on steady state (top right) 



2.5.3. Global quantities 

We also reconstruct the eddy current losses 𝑃̃𝐽
𝑆𝑉𝐷  , 𝑃̃𝐽

𝐶𝑉𝑇 , 𝑃̃𝐽
𝐷𝐵𝑆𝐶𝐴𝑁 and 𝑃̃𝐽

𝐶𝑈𝑅𝐸, vectors of size ℝ𝑇, and

calculate the relative errors 𝜀𝑃𝐽

𝑆𝑉𝐷 , 𝜀𝑃𝐽

𝐶𝑉𝑇 , 𝜀𝑃𝐽

𝐷𝐵𝑆𝐶𝐴𝑁 and  𝜀𝑃𝐽

𝐶𝑈𝑅𝐸, vectors of size ℝ𝑇. Figure 16 displays

the original and reconstructed eddy current losses time evolution, and shows that all methods allow a 

very good reconstruction of the losses.  

Figure 14 - Relative error of reconstructed density of current for SVD, CVT, DBSCAN and CURE (bottom) Zoom on 

transient state (top left) Zoom on steady state (top right) 



Afterwards, we compute the reconstructed energy 𝐸̃𝑛
𝑆𝑉𝐷  , 𝐸̃𝑛

𝐶𝑉𝑇 , 𝐸̃𝑛
𝐷𝐵𝑆𝐶𝐴𝑁 and 𝐸̃𝑛

𝐶𝑈𝑅𝐸, vectors of size ℝ𝑇,

and calculate the relative errors 𝜀𝐸𝑛

𝑆𝑉𝐷  , 𝜀𝐸𝑛

𝐶𝑉𝑇 , 𝜀𝐸𝑛

𝐷𝐵𝑆𝐶𝐴𝑁 and  𝜀𝐸𝑛

𝐶𝑈𝑅𝐸, vectors of size ℝ𝑇. Figure 17 shows

the original and reconstructed energies, and we see that all methods allow a very good reconstruction of 

the energy, with a slight deviation on the first peak.  

  
 
  

  
  

  
  

 
 

Figure 15 - Original eddy current losses and reconstructed with SVD, CVT, DBSCAN and CURE 

  
  

  
  

  

Figure 16 - Original Energy and reconstructed with SVD, CVT, DBSCAN and CURE 



Figure 18 displays the relative errors associated with the reconstructed energies with each method, and 

shows that the error generated on the energy by the projection is low for all methods. CVT shows a peak 

of error around 6% in the transient, while DBSCAN rises to 2%. CURE and SVD generates a very low 

error even in the transient, below 1%. In steady state, we see that all the methods reconstruct the energy 

very well, with a relative error inferior to 1%.  

To summarize these results, we calculate statistic values of the relative error, for each reconstructed 

value and each method. Figure 19 displays these values in the form of a boxplot, with the lowest tick 

corresponding to the minimum, the base of the box to the first quartile, the line in the box to the mean 

value, the top of the box to the third quartile and the highest tick to the maximum (scheme of the boxplot 

in the bottom-left box).  

It highlights that projecting the result using SVD generates the lowest mean error, on every reconstructed 

value. In general, we see that CVT, CURE and DBSCAN give similar results, very close to those of 

SVD, with CURE giving slightly lower error.  

These remarks corroborate what the different plots of reconstructed values, or of their relative errors, 

showed: SVD always generates the lowest deviation from the original value, as predicted by the Eckart-

Young theorem. CVT is associated with a very precise reconstruction in steady-state (very close to SVD) 

but generates high peaks of error in transient. CURE and DBSCAN always give similar results, with a 

constant error along all time-steps, lower than CVT in transient but higher in steady-state.  

Figure 17 - Relative error of reconstructed Energy for SVD, CVT, DBSCAN and CURE (bottom) Zoom on transient 

state (top left) Zoom on steady state (top right) 



Figure 18 - Boxplot of statistic values of the relative error for each reconstructed value and each method 



3. Conclusion

Different methods (SVD, CVT, MESS, CURE and DBSCAN) for constructing a reduced basis have 

been described and compared for simulation results projection on a realistic application in computational 

electromagnetics. The size of the constructed bases was fixed equally, and we investigated the influence 

of the chosen method on the projection error. To do so, we projected and reconstructed the results using 

the reduced bases, and the deviation to the original data generated by the operation was calculated, in 

term of relative error. We used this error to compare the quality of the reduced basis of each method and 

could see, as expected, that the SVD allows to project and reconstruct the results with the lowest 

deviation. We saw that MESS is not suited for the criterions of this comparison, as it is a method very 

efficient to obtain a reduced basis with a very low computational time, but which does not perform 

correctly in terms of precision when the target is the reduced basis size. We showed that CURE and 

DBSCAN give similar results, with an error being stable and close to SVD, and that CVT generates 

peaks of error during the transient state, but similar results to SVD in steady-state. For all methods, the 

reconstruction of the results was precise, with relative errors below 0.1%. We were then able to use the 

reconstructed results to compute fields and global values of the machine, and further analyze the quality 

of the reduced bases constructed. We showed that the deviations generated on both the electromagnetic 

field and the density of eddy current are similar, with relative errors around 10%. We also showed that 

eddy current losses and magnetic energy can be computed from the reconstructed results, and generate 

very little error (≈ 5%). Moreover, it appeared that the projection error calculated from the unknowns 

of the problem (vector potential) gives a good image of the error on the other quantities, either local 

(magnetic field, eddy current density), or global (eddy current losses, magnetic energy). Consequently, 

we suggest that clustering methods, and particularly the CVT, can be valid alternatives to the SVD for 

reduced basis construction. Indeed, these methods showed similar results than the SVD in terms of 

projection error, and they may be used in cases where the SVD does not perform well, such as the 

construction of a basis from a very large set of preliminary simulation results. Besides generating 

reduced basis for model order reduction, the methods compared here are also valid for other applications, 

like the compression of results obtained from finite element simulation, to limit the storage space. In the 

application presented in this paper, the memory space can be divided by 10 without significant loss of 

accuracy. The memory space reduction can be controlled by means of the size of the reduced basis.   

Funding 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-

for-profit sectors.  



References 

[1] A. Nouy. ‘Proper generalized decompositions for a priori model reduction of problems formulated 

in tensor product spaces: Alternative definitions and algorithms’. In Proceedings of the Seventh 

International Conference on Engineering Computational Technology, Civil-Comp Press, 2010. 

[2] A. Nouy. ‘A priori model reduction through proper generalized decomposition for solving time-

dependent partial differential equations’. Computer Methods in Applied Mechanics and 

Engineering, 199(23) :1603–1626 

[3] G. Rozza, D. B. P. Huynh and A. T. Patera. ‘Reduced basis approximation and a posteriori error 

estimation for affinely parametrized elliptic coercive partial differential equations’. Archives of 

Computational Methods in Engineering, 15(3) :229–275, 2008. 

[4] L. Montier, T. Henneron, S. Clenet, & B. Goursaud, (2021). “Model Order Reduction applied to a 

linear Finite Element model of a squirrel cage induction machine based on POD approach”, IEEE 

Transactions on Magnetics, 57(6), 1-4. 

[5] T. Delagnes, T. Henneron, S. Clenet, M. Fratila and J.-P. Ducreux, “Development of a FE 

Reduced Model on a Large Operating Range for a Squirrel Cage Induction Machine in Non Linear 

Case”, CEFC 2022, online 

[6] A. Saxena et al., ‘A review of clustering techniques and developments’, Neurocomputing, vol. 267, 

pp. 664–681, Dec. 2017, doi: 10.1016/j.neucom.2017.06.053. 

[7] G. W. Stewart, ‘On the Early History of the Singular Value Decomposition’, SIAM Rev., vol. 35, 

no. 4, pp. 551–566, Dec. 1993, doi: 10.1137/1035134. 

[8] Q. Du, V. Faber, et M. Gunzburger, « Centroidal Voronoi Tessellations: Applications and 

Algorithms », SIAM Rev., vol. 41, no 4, p. 637-676, 1999. 

[9] O. Goury, C. Duriez. ‘Fast, generic and reliable control and simulation of soft robots using model 

order reduction’. IEEE Transactions on Robotics, IEEE, 2018, 34 (6), pp.1565 - 1576. 

ff10.1109/TRO.2018.2861900ff. ffhal-01834483f 

[10] AT-M. Leung, R. Khazaka, ‘Parametric model order reduction technique for design 

optimization’. In : 2005 IEEE International Symposium on Circuits and Systems. IEEE, 2005. p. 

1290-1293. 

[11] X. Cheng, J. MA. Scherpen, ‘Clustering approach to model order reduction of power networks 

with distributed controllers’. Advances in Computational Mathematics, 2018, vol. 44, no 6, p. 1917-

1939. 

[12] T. Lassila, A. Manzoni, A. Quarteroni et al. (2014) ‘Model Order Reduction in Fluid Dynamics: 

Challenges and Perspectives’. In: Quarteroni, A. and Rozza , G., (eds.) Reduced Order Methods for 

Modeling and Computational Reduction. MS&A Modeling, Simulation and Applications, 9 . , 235 

- 273. ISBN 978-3-319-02089-1 

[13] A. Narasingam, P. Siddhamshetty, and J. Sang-Il Kwon, ‘Temporal clustering for order 

reduction of nonlinear parabolic PDE systems with time‐dependent spatial domains: Application to 

a hydraulic fracturing process’. AIChE Journal, 2017, vol. 63, no 9, p. 3818-3831. 

[14] S. Jain, P. Tiso ‘Model order reduction for temperature-dependent nonlinear mechanical 

systems: a multiple scales approach’. Journal of Sound and Vibration, 2020, vol. 465, p. 115022. 



[15] G. Kerschen, J.-C. Golinval, A. Vakakis, et al. ‘The method of proper orthogonal decomposition 

for dynamical characterization and order reduction of mechanical systems: an overview’. Nonlinear 

dynamics, 2005, vol. 41, no 1, p. 147-169. 

[16] T. Henneron and S. Clénet. ‘Model order reduction of quasi-static problems based on POD and PGD 

approaches’. The European Physical Journal Applied Physics, 64(02) :24514, 2013. 

[17] Y. Sato and H. Igarashi. ‘Model reduction of three-dimensional eddy current problems based on the 

method of snapshots’. Magnetics, IEEE Transactions on, 49(5) :1697–1700, 2013. 

[18] D. Schmidthausler and M. Clemens. ‘Low-order electroquasistatic field simulations based on proper 

orthogonal decomposition’. IEEE Transactions on Magnetics, 48(2) :567–570, 2012. 

[19] R. Pulch, “Model order reduction and low-dimensional representations for random linear dynamical 

systems”, Mathematics and Computers in Simulation, Volume 144, 2018, Pages 1-20, ISSN 0378-

4754 

[20] S. Torregrosa, V. Champaney, A. Ammar, V. Herbert, F. Chinesta, “Surrogate parametric 

metamodel based on Optimal Transport”, Mathematics and Computers in Simulation, Volume 194, 

2022, Pages 36-63, ISSN 0378-4754 

[21] G. Deolmi, S. Müller, “A two-step model order reduction method to simulate a compressible flow 

over an extended rough surface”, Mathematics and Computers in Simulation, Volume 150, 2018, 

Pages 49-65, ISSN 0378-4754 

[22] H. Tertrais, R. Ibañez, A. Barasinski, Ch. Ghnatios, F. Chinesta, “On the Proper Generalized 

Decomposition applied to microwave processes involving multilayered components”, Mathematics 

and Computers in Simulation, Volume 156, 2019, Pages 347-363, ISSN 0378-4754 

[23] M. Mansoor, F. Grimaccia, S. Leva, M. Mussetta, “Comparison of echo state network and feed-

forward neural networks in electrical load forecasting for demand response programs”, Mathematics 

and Computers in Simulation, Volume 184, 2021, Pages 282-293, ISSN 0378-4754 

[24] P. Ayuso, H. Beltran, J. Segarra-Tamarit, E. Pérez, “Optimized profitability of LFP and NMC Li-

ion batteries in residential PV applications”, Mathematics and Computers in Simulation, Volume 

183, 2021, Pages 97-115, ISSN 0378-4754 

[25] P. Koutsovasilis · M. Beitelschmidt. ‘Comparison of model reduction techniques for large 

mechanical systems A study on an elastic rod’, Multibody Syst Dyn (2008) 

[26] B. Besselink, U. Tabak, A. Lutowska, N. van de Wouw, H. Nijmeijer, et al.. ‘A comparison of model 

reduction techniques from structural dynamics, numerical mathematics and systems and control’. 

Journal of Sound and Vibration, Elsevier, 2013, 332 (19), pp.4403-4422. 

ff10.1016/j.jsv.2013.03.025ff. ffhal-01711355f 

[27] S. Lloyd, ‘Least squares quantization in PCM’. IEEE transactions on information theory, 1982, vol. 

28, no 2, p. 129-137. 

[28] K. Atkinson, An introduction to numerical analysis, John wiley & sons, 1991. 

[29] F. Kasolis and M. Clemens, ‘Maximum Entropy Snapshot Sampling for Reduced Basis Generation’, 

ArXiv200501280 Cs Math, May 2020. Available: http://arxiv.org/abs/2005.01280 

[30]  M. Ester, H.-P. Kriegel, and X. Xu, ‘A density-based algorithm for discovering clusters in large 

spatial databases with noise’, kdd, vol. 96, no. 34, pp. 226-231, 1996. 

[31]  S. Guha, R. Rastogi, and K. Shim, ‘CURE : An efficient clustering algorithm for large databases’, 
ACM Sigmod record, vol. 27, no 2, p. 73-84, 1998, doi: 10.1145/276305.276312 

http://arxiv.org/abs/2005.01280


[32]  Y. Le Menach, ‘Contribution à la modélisation numérique tridimensionnelle des systèmes 

électrotechniques’, Doctoral dissertation, Lille 1, 1999. 

[33]  T. W. Preston, A. B. J. Reece and PS Sangha. ‘Induction motor analysis by time-stepping 

techniques’, IEEE Transactions on Magnetics, vol. 24, no.1, pp. 471–474, 1988, doi: 

10.1109/20.43959 

[34]  J. Cheaytani, A. Benabou, A. Tounzi and M. Dessoude, ‘Stray Load Losses Analysis of Cage 

Induction Motor Using 3-D Finite-Element Method With External Circuit Coupling’, IEEE 

Transactions on Magnetics, vol. 53, no. 6, pp. 1-4, June 2017, doi: 10.1109/TMAG.2017.2661878 

[35]  M. W. F. M. Bannenberg, F. Kasolis, M. Günther, and M. Clemens, ‘Maximum Entropy Snapshot 

Sampling for Reduced Basis Modelling’, Preprint BUW-IMACM 20/46, 2020 




