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A B S T R A C T

Fungal pellets are hierarchical systems that can be found in an ample variety of applications. Modeling
transport phenomena in this type of systems is a challenging but necessary task to provide knowledge-
based processes that improve the outcome of their biotechnological applications. In this work, an upscaled
model for total mass and momentum transport in fungal pellets is implemented and analyzed, using elements
of the volume averaging and adjoint homogenization methods departing from the governing equations at
the microscale in the intracellular and extracellular phases. The biomass is assumed to be composed of a
non-Newtonian fluid and the organelles impervious to momentum transport are modeled as a rigid solid
phase. The upscaled equations contain effective-medium coefficients, which are predicted from the solution
of adjoint closure problems in a three-dimensional periodic domains representative of the microstructure. The
construction of these domains was performed for Laccaria trichodermophora based on observations of actual
biological structures. The upscaled model was validated with direct numerical simulations in homogeneous
portions of the pellets core. It is shown that no significant differences are observed when the dolipores are
open or closed to fluid flow. By comparing the predictions of the average velocity in the extracellular phase
resulting from the upscaled model with those from the classical Darcy equation (i.e., assuming that the biomass
is a solid phase) the contribution of the intracellular fluid phase was evidenced. This work sets the foundations
for further studies dedicated to transport phenomena in this type of systems.

1. Introduction

Fungal cultures, filamentous and non-filamentous, are of interest in
industry and research due to their essential role in many biotechno-
logical processes. Some applications of fungal biomass are in wastew-
ater treatment (Espinosa-Ortiz et al., 2016; Legorreta-Castañeda et al.,
2020), environmental systems (Ángeles-Argáiz et al., 2020), enzymes
and metabolites production for food, pharmaceutical and other indus-
trial applications (Böl et al., 2020; El-Gendi et al., 2021).

In submerged agitated cultures, mycelia (i.e., clusters of branching
hyphae) grow intertwined and form hemispherical porous structures
named (bio)pellets. Due to the complex geometrical configurations
formed in these structures and the variation of hyphal density (or pellet
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porosity), different spatially homogeneous zones have been identi-
fied (Espinosa-Ortiz et al., 2016; Reyes et al., 2017; Li et al., 2020). The
intricate hyphal topologies may hinder oxygen and nutrients transport
within the inner part of the pellets, where hyphal density usually
increases, leading to a decreasing metabolic activity when approaching
the center of the pellets, even reaching cease of activity or lysis (Silva
et al., 2001; Hille et al., 2005; Krull et al., 2010). The presence,
topology, compactness and thickness of these regions depend upon the
fungal species, mycelia age and culture conditions. The latter include
culture medium composition, pH, inoculum size and characteristics,
agitation and aeration rates, geometry and bioreactor scale, and, in the
case of stirred tank bioreactors, the type of impeller used (therefore also
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the power supplied per unit volume, shear stress and viscous energy dis-
sipation with respect to circulation time, among others) (Shamlou et al.,
1994; Hellendoorn et al., 1998; Cui et al., 1998a; Silva et al., 2001;
Hille et al., 2005; Kelly et al., 2006; Duarte, 2009; Krull et al., 2010).
Also, hyphae can be either septated or non-septated (coenocytic). In
the former case, hyphae are divided by septa (permeable barriers), into
compartments of roughly the same length (Mouriño-Pérez, 2013). Septa
may play some key roles in momentum transport (Van Driel et al.,
2008; Mouriño-Pérez, 2013). The first one is to increase rigidity of
the hyphae by providing additional cellular wall. The second one is
related to prevention, to a limited extent, of mechanical damage at
growing-tip regions. The last one is to localize damage and cytoplasmic
loss to a certain portion of the hyphae and thus protect the remaining
compartments. Moreover, the structural complexity of the septal region
is species-dependent. For example, Basidiomycota possess a specialized
septa denominated dolipores that control mass and momentum trans-
port between adjacent compartments (Sumbali et al., 2005). All these
factors, which depend on the microstructure, significantly influence
transport phenomena within agitated pellet cultures (Hille et al., 2005,
2009).

Mass and momentum transport at the scale of hyphae impact the
microorganism metabolism, viability and product formation, which
ultimately have repercussions in hyphal growth (Böl et al., 2020).
It is therefore of prime importance to study the effects of transport
phenomena inside fungal pellets of varying constitutive morphologies.

The culture of mycelium pellets is a hierarchical system with dif-
ferent levels of scale, regardless the type of vessel used (Nielsen and
Krabben, 1995; Davidson, 2007). In a hierarchical system, transport
phenomena at a given scale are determined by the corresponding
phenomena at the inferior scale(s) (see, for instance, Sánchez-Vargas
and Valdés-Parada, 2022). As shown in Fig. 1, the hyphal scale is the
smallest one for this system and it is also denoted as the microscale in
the following. Here, only the individual hyphae and the culture medium
are distinguished. Moreover, the characteristic length may correspond
to either the maximal hyphal thickness or to the maximal distance
between hyphae, which are on the order of microns (Roberson et al.,
2014; Vetchinkina et al., 2017). Next is the pellet scale (also denoted
the macroscale in this work), where the characteristic length may be
associated to the diameter of the fungal pellets, i.e., on the order of
hundreds of microns to millimeters (Pradella et al., 1990; Rossi et al.,
2002, 2007). Finally, the largest scale corresponds to a portion of a flask
or bioreactor, which is on the order of centimeters to meters. These
two differ by the presence of bubbles in the bioreactor and incorporate
different pellet sizes and disperse mycelium.

The mathematical models found in the literature can be grouped
according to the scale hierarchy proposed above. At the scale of hy-
phae, probabilistic modeling has been used to describe their elongation
and branching (Yang et al., 1992) and hyphal extension by vesicle
incorporation to the tip wall (Bartnicki-Garcia et al., 1989), more
recently expanded to a 3D model (Gierz and Bertnicki-Garcia, 2001)
and including diffusive transport of vesicles (Tindemans et al., 2006).
In the latter, vesicles are conceived as a chemical species for which
mass transfer obeys Fick’s law, and focus was laid on the extending tip
of a hypha, neglecting convective transport with respect to diffusive
transport on the basis of a sufficiently small Péclet number value.
This assumption precludes the application of the model to regions of
the hypha, within the same cell but far from the extending tip, in
which cytoplasmic flow contribution to mass transport gains impor-
tance (Mogilner and Manhart, 2018). Deterministic modeling has been
applied to describe the dynamics of the cytoskeleton (regarded as a
viscoelastic fluid) and diffusive and advective (cytoskeleton-mediated)
vesicle transport (Regalado and Sleeman, 1999). A different approach
consists of the application of global species mass balances to model
hyphal length extension due to turgidity and the concentration of
vesicles or organelles based on their consumption or production rates

and volume flow rates of the cytoplasm or the cytoskeleton (King,
2015).

At the scale of pellets, probabilistic modeling was used in the work
of Meyerhoff and Bellgardt (1995), consisting of a model to represent
the processes of spore germination, pellet fragmentation due to shear
stress and the pre-culture and culture of up to 100 pellets. In the work
by Lejeune and Baron (1997), the model was extended from spore
germination to pellet formation using fractal geometry to represent the
complex pellets structure. These works represent some of the few mod-
eling approaches that connect the first two scales of the system depicted
in Fig. 1: the hyphae and pellet scales. Other works deal with mass and
substrate diffusive transport and reaction in pellets through postulated
time- and space-dependent models (Davidson, 1998; Boswell, 2003).
Some other analyses are based upon population models that render a
time-dependent class distribution based on pellet sizes, as described
by Tough et al. (1995) and Tough and Prosser (1996). These two works
consider both pellets growth and death, as well as fragmentation due
to shear stress in submerged cultures, with pellet fragments serving
as germinal points for generating new pellets. At this scale level,
diffusive mass transport models are frequently postulated in the form
of average equations, where the effective diffusion coefficient needs
to be experimentally quantified (Cui et al., 1998a; Silva et al., 2001;
Celler et al., 2012; Schmideder et al., 2019, 2020). It has been shown
that the assumption of diffusive-driven mass transport inside the fungal
pellets is only valid in specific scenarios, such as in very compact
structures (Hille et al., 2009). In less-dense pellets, substrates transport
occurs through turbulent diffusion and convective flow (Schügerl et al.,
1983; Wittler et al., 1986; Hille et al., 2005; Krull et al., 2010), thus
highlighting the relevance of also studying fluid flow inside these
structures.

Fluid flow at the microscale and macroscale have been scarcely
studied in agitated pellet cultures, even though they provide valuable
information about pellets mechanics and therefore represent the basis
to study convective mass transport and relate it to the process pro-
ductivity (Böl et al., 2020). Also, fluid flow analysis is required to
study the effects of shear stress over pellet morphology by coupling the
(total) mass and momentum balance equations. Moreover, momentum
transport is fundamental in order to unveil the interconnection between
growth, the mechanical forces applied, pellet shaving, species mass
transport and vacuolization, some of the main factors that determine
pellet structure and size during the culture (Paul et al., 1994; Shamlou
et al., 1994; Cui et al., 1998b,a). This momentum multiscale analysis
is typical in non-biological applications, such as catalytic inert pellets,
fixed-bed reactors and other porous materials (Bear, 2018). Here Darcy
or Darcy-like models are typically employed at the macroscale, which
usually emerge as a result of an upscaling process of the governing
equations at the microscale using methods such as volume averaging
or homogenization (Kulkarni et al., 2008; Salejova et al., 2011; Das
et al., 2018; Yang et al., 2023).

Upscaling techniques are adequate to study multiscale processes by
systematically filtering the relevant information from the lower scale
levels and allowing the final model predictions to be influenced by all
the underlying scales. As a salient feature of upscaling, the resulting
model is mathematically simpler than its microscale counterpart, fa-
cilitating its solution with less computational requirements. However,
a drawback of upscaling approaches is that the analysis can only be
performed in terms of average quantities. This implies that it is not
possible to use the model to retrieve the detailed information at the
lower scale levels. Also, accuracy of the upscaled model predictions
strictly depends on the starting and upscaling assumptions taken in
the following way. Firstly, the starting assumptions adopted at the
microscale influence the pertinence with respect to naturally-occurring
phenomena in the biological system. Given the complex nature of
biological systems, approximations of the actual behavior are usually
adopted. Secondly, upscaling assumptions should be carefully posed so
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Fig. 1. Diagram representing a shake flask and an aerated stirred tank bioreactor as hierarchical systems for the culture of fungal pellets, with their corresponding characteristic
lengths as order of magnitude estimates. At scale level I (microscale), the individual hyphae and surrounding culture medium that make up the fungal pellet are observed. Level
II (macroscale) corresponds to a fungal pellet, conceived as a porous biological (hyphal) structure while the liquid phase corresponds to the culture medium that floods the pores.
In level III, the flask or bioreactor scales are identified.

that the average model predictions are in agreement with the average
of the model solution at the microscale.

The goal of the present study is to formulate and apply an upscaled
fluid mechanics model, considering the essential microscale system
characteristics of fungal pellets. This work is the starting point of
several studies directed at modeling this complex multiscale system
and will serve as a first step towards studying species mass trans-
port. Derivations are made taking elements from the volume aver-
aging method (Whitaker, 1999) and the adjoint homogenization ap-
proach (Bottaro, 2019), based on the works of Lasseux and Valdés-
Parada (2022) and Sánchez-Vargas et al. (2023) for two-phase flow in
porous materials. Results from the upscaling process are presented in
Sections 3.2 and 3.3 for (total) mass and momentum transport, respec-
tively. The mathematical model derived here has some generality as it
is not formulated for a particular fungal species. However, to illustrate
the use of the model, a case study using pellets of the ectomycorrhizal
fungus Laccaria trichodermophora is considered. For this fungal species,
a geometrical characterization of hyphae from shake flasks cultures,
necessary for the model application, is presented in Section 3.4. A
parametric analysis, along with the validation of the model via direct
numerical simulations, are reported in Section 3.5. Finally, conclusions
are drawn in Section 4.

2. Methodology

This section is divided in two parts. In the first one, the math-
ematical descriptions and tools for performing the upscaling of the
total mass and momentum balances equations are provided. The second
part corresponds to the experimental methodology used to quantify
the required characteristics for application of the mathematical models

on fungal pellets of Laccaria trichodermophora, chosen as a particular
case study. Certainly, the model may be applied to any pellet-forming
microorganism.

2.1. Mathematical definitions and tools

The derivation of the upscaled (macroscopic) mass and momen-
tum balance equations can be made using a variety of techniques as
reviewed by Battiato et al. (2019). In the present work, the upscal-
ing process is performed taking elements from the volume averaging
method (Whitaker, 1999), the adjoint homogenization approach (Bot-
taro, 2019) and Green’s integral formulation. This approach requires
accounting for the following elements: (1) the existence of an averaging
domain, (2) the application of integral theorems, decomposition and
series expansions and (3) the use of periodic unit cells. These three
elements are explained in the following paragraphs.

2.1.1. Existence of an averaging domain
The application of an upscaling process is restricted to systems in

which there is a separation of length scales between the microscale (𝓁)
and the macroscale (𝐿) (Battiato et al., 2019). As shown in Fig. 2, at the
microscale, two phases are identified, namely, the extracellular fluid or
culture medium, which is denoted as the 𝛾 phase, and the intracellular
fluid (i.e., the 𝛽 phase). Both phases are separated by the fungal cell
wall and membrane, which is modeled here as a dividing surface, for
simplicity.

In this way, the characteristic length 𝓁 is associated to the maximum
length between the width of the individual fungal cells (𝓁𝛽) or the
distance between them (𝓁𝛾 ). In the following, 𝓁 is assumed to be
much smaller than the minimum length scale associated to the fungal
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Fig. 2. Sketch of the scale hierarchy under study in the present work. The macroscale
corresponds to a pellet and the microscale to a sample of hyphal compartments. The
main phases and characteristic lengths are identified, as well as the support scale used
during the upscaling procedure.

pellets (𝐿). This motivates defining an intermediate scale between the
microscale and the macroscale (i.e., a support scale), of characteristic
length 𝑟0, at which upscaled models are applicable. Under this assump-
tion, an averaging domain V , of measure 𝑉 , is defined, containing
portions of all the phases that make up the system and being representa-
tive of the microscale configuration. In order to avoid losing important
information from the microscale, 𝑟0 must be much smaller than 𝐿.
In systems in which the microscale geometry is regular (i.e., spatially
periodic), 𝓁 and 𝑟0 could be of the same order of magnitude. However,
in biological systems that degree of homogeneity is rarely met. In
most systems, a separation in two orders of magnitude is a constraint
generally adopted to satisfy the representativeness of the domain of size
𝑟0 (Whitaker, 1999). Regarding 𝐿, it must be larger (by two orders
of magnitude) than 𝑟0 to make upscaling pertinent. Nevertheless, it
is worth remarking that this constraint on length scales separation
may be overly severe and the upscaled models may still be applicable
if there is only one order of magnitude of difference. In cases that
do not comply with this last constraint, different approaches should
be adopted, either by solving the microscale equations everywhere or
using a different type of mathematical tool that allows application in
non-regular geometries. Therefore, the characteristic length, 𝑟0, of V is
assumed to comply with the following constraint

𝓁 ≪ 𝑟0 ≪ 𝐿. (1)

It is desirable to experimentally verify this inequality prior to the
application of the upscaled model so that the starting assumptions are
met to assess its consistency with the model derivation.

In terms of the averaging domain, superficial and intrinsic averaging
operators of a piece-wise continuous pore-scale quantity, 𝜓𝛼 , defined
anywhere within the 𝛼 phase (in the following, the subscript 𝛼 is used

to represent either one of the fluid phases, i.e., 𝛼 = 𝛽, 𝛾), are respectively
defined by

⟨𝜓𝛼⟩𝛼||𝐱𝛼 = 1
𝑉 ∫V𝛼

𝜓𝛼||𝐫𝛼 𝑑𝑉 , (2a)

⟨𝜓𝛼⟩
𝛼
|

|𝐱𝛼
= 𝜀−1𝛼 ⟨𝜓𝛼⟩𝛼||𝐱𝛼 = 1

𝑉𝛼 ∫V𝛼

𝜓𝛼||𝐫𝛼 𝑑𝑉 . (2b)

Here, V𝛼 (of measure 𝑉𝛼) corresponds to the space occupied by the
𝛼 phase in V . Note that points in the 𝛼 phase are located by the
position vector 𝐫𝛼 , with respect to a fixed coordinate system, while the
resulting average is positioned at the barycenter of the 𝛼 phase (𝐱𝛼 =
⟨𝐫𝛼⟩𝛼 , as long as the 𝛼 phase is incompressible). Moreover, the volume
fraction of the 𝛼 phase is defined as 𝜀𝛼 = 𝑉𝛼∕𝑉 . When this macroscopic
parameter exhibits negligible spatial variations within a given domain,
such zone of the system can be classified as homogeneous at the support
scale (Whitaker, 1999). Therefore, this parameter is used later on to
determine the existence of homogeneous regions in the fungal pellets.

2.1.2. Integral theorems and series expansions
The averaging process requires using the general transport theo-

rem (Bird et al., 2002) and the spatial averaging theorem (see for
example, Howes and Whitaker, 1985). These theorems are used in
order to exchange (temporal and spatial) differentiation and spatial
integration.

Furthermore, a microscale quantity, 𝜓𝛼 , can be expressed in terms
of its intrinsic average and spatial deviations, 𝜓̃𝛼 , as defined by Gray
(1975)

𝜓𝛼||𝐫𝛼 = ⟨𝜓𝛼⟩
𝛼
|

|𝐫𝛼
+ 𝜓̃𝛼||𝐫𝛼 . (3)

Note that the average term is evaluated at the same point as 𝜓𝛼
and not at the phase barycenter. To overcome this issue, a Taylor
series expansion can be used as follows (see, for example, Lasseux and
Valdés-Parada (2023))

⟨𝜓𝛼⟩
𝛼
|

|𝐫𝛼
= ⟨𝜓𝛼⟩

𝛼
|

|𝐱𝛼
+ 𝐳𝛼 ⋅ ∇ ⟨𝜓𝛼⟩

𝛼
|

|𝐱𝛼

+ 1
2
𝐳𝛼𝐳𝛼 ∶ ∇∇ ⟨𝜓𝛼⟩

𝛼
|

|𝐱𝛼
+… . (4)

Here, 𝐳𝛼 ≡ 𝐫𝛼 − 𝐱𝛼 is a position vector that locates the same point as
𝐫𝛼 but with respect to 𝐱𝛼 . Substitution of the previous expression into
Eq. (3) leads to

𝜓𝛼||𝐫𝛼 = 𝜓̃𝛼||𝐫𝛼 + ⟨𝜓𝛼⟩
𝛼
|

|𝐱𝛼
+ 𝐳𝛼 ⋅ ∇ ⟨𝜓𝛼⟩

𝛼
|

|𝐱𝛼

+ 1
2
𝐳𝛼𝐳𝛼 ∶ ∇∇ ⟨𝜓𝛼⟩

𝛼
|

|𝐱𝛼
+… . (5)

The above developments are used during the upscaling procedure
while formulating the problem in a unit cell, as reported in the next
paragraph.

2.1.3. Periodic unit cells
It is pertinent to mention that, for periodic realizations of the

microstructure, the fluid velocity and deviations of other fields, like the
pressure, can be assumed periodic over the averaging domain (Lasseux
and Valdés-Parada, 2022). This leads to propose the solution of boundary-
value problems not in the entire domain but in a periodic unit cell
that captures the essential features of the microscale. The use of a
periodic unit cell is a convenience more than a necessity. System-
specific experimental measurements must be performed, leading to
construction of geometries that may be incorporated in periodic unit
cells to represent the microscale structure (Auriault et al., 2009). This
also implies that the averaging domain has to have homogeneity, at
least in its geometrical properties. In the paragraphs that follow, it
is shown that, while working in a periodic unit cell, adjoint closure
problems are defined in order to derive the macroscale model for
momentum transport. This can be done by using Green’s formula as
reported in Appendix A of Sánchez-Vargas et al. (2022).
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2.2. Experimental materials and methods

The model application requires the following information that can
be obtained from experiments: (1) Measurement of the characteristic
length scales 𝓁 and 𝐿 in order to verify that 𝓁 ≪ 𝐿 (see (1)). (2)
Quantification of the volume fraction of one of the fluid phases and de-
termination of the existence of homogeneous regions inside the pellet.
This step involves proposing values of 𝑟0 that meet the inequality given
in (1). (3) Information of the essential microscale geometrical features
that should be incorporated in periodic unit cells. These experimental
measurements are performed on fungal pellets of L. trichodermophora
for illustration purposes.

2.2.1. Microorganism and culture
The CA15-F10 strain of L. trichodermophora, previously reported

by Ángeles-Argáiz et al. (2020), was used. Biotin Folic Acid (BFA)
culture medium was employed for plate culture, as well as liquid
pre-inoculum and inoculum preparation, in the following composition:
dextrose, 10 g L−1; peptone from gelatin, 2 g L−1; yeast extract, 0.2 g
L−1; potassium phosphate dibasic (KH2PO4), 0.5 g L−1; magnesium
sulphate, (MgSO4⋅7H2O) 0.5 g L−1; calcium chloride (CaCl2), 0.1 g L−1;
zinc sulphate (ZnSO4), 1 mg L−1; manganese sulphate (MnSO4), 5 mg
L−1; thiamine HCl, 50 μg L−1; biotin, 1 μg L−1; folic acid, 100 μg L−1;
inositol, 5 μg L−1. The pH was set to 5.50 ± 0.05 with the addition of
0.5 M HCl, and 10 g L−1 of bacteriological agar was added for solid
medium preparation (Ángeles-Argáiz et al., 2020). All reagents were
purchased from Merck-Sigma-Aldrich (USA).

For pre-inoculum preparation, three samples of approximately
9 mm2 were cut from the periphery of 15-days-old colonies growing
in BFA plates and used to inoculate a 250 mL Erlenmeyer baffled flask
with 50 mL of BFA liquid medium (Gamboa-Suasnavart et al., 2011).
The latter was grown for 10 days (until the exponential phase) under
a controlled temperature of 25 ± 2 ◦C in an orbital shaker (C25 New
Brunswick Scientific, USA), with an orbital diameter of 2.54 cm, at 100
rpm. From this flask, 1 mL of culture medium containing hyphae was
used to inoculate a 250 mL baffled flask with 50 mL fresh BFA liquid
medium (inoculum flask). The inoculum was incubated at 25 ± 2 ◦C
and agitation at 100 rpm for 10 days was carried out.

From the inoculum, 1 mL of medium containing hyphae was taken,
2% v/v, and added to 250 mL Erlenmeyer baffled flasks with 50 mL of
defined culture medium with a carbon:nitrogen ratio of 16:1 and pH of
5.5 ± 0.1. The composition of the defined medium is that of BFA, re-
placing the complex nutrients (peptone from gelatin and yeast extract)
with 0.554 g L−1 urea and 20 g L−1 MES buffer (C6H13NO4S⋅xH2O).
These baffled flasks were incubated at 25 ± 2 ◦C and agitated at 100
rpm in the same orbital shaker (C25 New Brunswick Scientific, USA).

2.2.2. Pellets and clumps imaging and processing
From baffled flask cultures, clumps and pellets were taken with

a pipette and visualized on light microscopy. A Nikon A1R+ STORM
confocal microscope was used in bright field, performing mosaic acqui-
sitions in the median plane of each pellet. The images were processed
with Fiji software (ImageJ2 version 2.9.0/1.53t) (Rueden et al., 2017).

2.2.3. Volume fraction determination in pellets
Four baffled flasks were inoculated and cultured as described in

Section 2.2.1. A flask was taken on days 7, 14 and 21 (inter-spaced
days during L. trichodermophora growth curve) and three samples of
pellets were randomly selected from each flask. Samples were fixed and
glucose-infiltrated following Vasquez-Martínez et al. (2023). Briefly,
they were fixed with a 4% paraformaldehyde solution for 24 h and
subsequently rinsed 4 times with phosphate-buffered saline (PBS 0.1
M, pH 7.4, with: 0.026 g L−1 NaH2PO4⋅H2O, 0.127 g L−1 Na2HPO4
and 0.085 g L−1 NaCl) buffer solution. Afterwards, the pellets were
incubated at 4 ◦C for 1 h in a 10% sucrose solution and then for 1 h at
4 ◦C in a 20% sucrose solution. Finally, they were incubated for 24 h in

a 30% sucrose solution at 4 ◦C. Individually, the pellets were placed in
molds, embedded in Tissue Freezing Medium (Leica Biosystems) and
freezed at −20 ◦C for 20 min. Frozen pellets were stored at −20 ◦C
until sectioned. A Leica CM1520 cryostat operated at −18 ◦C was used
for the sectioning and 13 μm thickness sections were obtained. They
were placed on gelatin-adhesive slides, allowed to dry, and stained with
toluidine blue.

Three cuts at different depths of each pellet were selected and serial
photographs along their diameter (as depicted in Fig. 3(a)) were taken
with a Nikon Optiphot 2 microscope in bright field with a 20x objective.
Later, the images were processed in the Fiji software (ImageJ2 version
2.9.0/1.53t) (Rueden et al., 2017). Each image was converted to 16-
bit, the mean method was used to adjust the threshold, and each
photograph was divided by overlapping a grid with a random origin.
The space occupied by the hyphae was quantified, starting at the center
of the vertical axis, in square regions (averaging surfaces) of different
sizes, namely 100, 200, 300, 400, 500, 600, 700, 800 and 900 μm in side
length. With these measurements, the extracellular volume fraction was
calculated at different positions with respect to the pellet diameter (𝑥
axis) and with different sizes of the averaging surface.

Finally, the extracellular volume fraction corresponding to each av-
eraging surface from each pellet section was quantified. This was done
according to the scheme illustrated in Fig. 3(b). For each averaging
surface within each section, located by its centroid, 𝑥, a unique value of
the volume fraction was computed. This value results from averaging
the phase indicator (taking the value 1 in the phase of interest and
0 elsewhere) in the 𝑥 and 𝑦 directions, thus compacting the structural
information over the corresponding 2D region into a point value. A final
computation of the mean and standard deviation of all the values was
also performed.

2.2.4. Hyphae length and width measurements inside the pellets
From baffled flasks of 6–8 days of growth, young pellets and clumps

(of approximately 3 mm in diameter, including both the core and hy-
phal projections of the pellet) were taken and stained with FM4-64 (N-
(3-triethyl-ammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatri-
enyl) pyridinium dibromide, Molecular Probes, Thermo Sci. USA) at
a concentration of 10 μM and an incubation time of 2 min. Stained
cellular structures were observed on a LSM800 inverted laser scanning
confocal microscope with an incubation chamber maintained at 25 ◦C,
using a Plan-Apochromat 63x/1.4 oil immersion objective and a 488
nm laser line. Transmitted light images were obtained with an Elec-
tronically Switchable Illumination and Detection (ESID) module, and
images of both channels were recorded simultaneously. Tile scans of
Z-stacks acquired at 0.3 μm intervals (1-2 μm in depth) were obtained
for the complete diameter of each pellet. The hyphal length and width
were quantified with the Fiji software at every section of the pellets.

2.2.5. Dolipore visualization and measurements
Four baffled flasks were inoculated and cultured as described in

Section 2.2.1. A flask was taken on days 7, 14, and 21, and three pellets
were randomly selected. Samples were treated with a methodology
based on that reported by Antonio-Rubio et al. (2015) as follows. Pellets
were fixed with a 4% paraformalin + 3% glutaraldehyde solution for
24 h and washed twice with PBS. A 1% osmium tetroxide post-fixation
was performed for 1 h and then washed with distilled water. Two
successive rinses, with increasing concentrations of ethanol, were used
for the dehydration of the samples. These concentrations were: 60%,
70%, 80%, 90%, 96% and 100%. Afterwards, 2-propylene oxide washes
were done. Subsequently, the impregnation of the resin in the samples
was carried out gradually in the following order: epon:propylene oxide
(1:2) for 1 h, epon:propylene oxide (1:1) for 24 h, epon:propylene oxide
(2:1) for 24 h, epon pure for 24 h. The inclusion was carried out in
silicone molds at 60 ◦C in an oven, for at least 24 h. The pellets were
stored until cut at room temperature.
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Fig. 3. (a) Scheme of the procedure for experimental determination of the volume fraction of pellets. The procedure consists of making sections at different positions in the 𝑧
direction and subsequently taking photographs along the section diameter. (b) Scheme of the averaging process at every position of the panoramic images. The process consists
of compacting the information within averaging surfaces of the pellets section into a value that represents the volume fraction that is located at the geometric center, 𝑥, of the
averaging surface.

The pellets were sectioned at different positions along their diame-
ter with a Leica Ultracut UCT ultramicrotome and a diamond blade.
The sections were made with a thickness of 70 nm and placed in
copper grids. The grids were double contrasted with uranyl acetate
and lead citrate. To summarize, each grid was impregnated with 2.5%
uranyl acetate for 10 min in a closed petri dish, protected from light.
After abundant rinsing with Milli-Q water and drying, grids were
impregnated with 0.3% alkaline lead citrate in a Petri dish, protected
from light. Finally, grids were rinsed and let dry. Observations were
performed in a LIBRA 120 Carl Zeiss transmission electron microscope
for the quantification of the dolipore width.

3. Results and discussion

The formulation and implementation of the flow model in fungal
pellets is reported. For this purpose, the first step is the statement of
the microscale governing equations for fungal cultures that serve as a
basis for upscaling of the total mass and momentum transport models
presented next. The following step is the experimental characterization
of L. trichidermophora that is detailed before finally presenting the
upscaled model predictions in a periodic unit cell constructed with
the experimental data. The intention here is to illustrate the whole
methodology that may be employed to model any other pellet-forming
microorganism.

3.1. Governing equations at the microscale

Here, the governing equations for total mass and momentum trans-
port at the microscale are presented along with the corresponding
boundary conditions. This implies adopting a set of starting assump-
tions, which are kept at minimum in order for the resulting upscaled
model to be applicable over a wide range of biological systems.

Focusing on (total) mass transport, assuming that both the in-
tracellular and extracellular phases are incompressible (i.e., the fluid

density in each phase is constant both in space and time), the following
expression is applicable at the microscale (Bird et al., 2002)

∇ ⋅ 𝐯𝛼 = 0, in the 𝛼 phase, (6a)

where 𝐯𝛼 is the fluid velocity in the 𝛼 phase (𝛼 = 𝛽, 𝛾).
In both the extra- and intracellular phases, momentum transport

is assumed to be stationary, i.e., time acceleration is neglected with
respect to viscous effects. In addition, inertial effects are known to be
relevant at least in the extracellular phase, as the Reynolds number
inside the pellets has been estimated to be in the range between 7
and 300, for Aspergillus niger, depending on pellet size and power input
during the culture (Hille et al., 2005). Thus, for the sake of generality,
inertial contributions are included in both phases. Also, gravity is
considered as the only volume force in the system and its effects are
included in both phases. Furthermore, a generalized Newtonian model
for momentum transport is adopted in both phases. In the extracellular
phase, this allows accounting for the influence of the concentration
of salts and organic compounds from the culture medium and the
accumulation of compounds produced by the microorganism to the
extracellular medium during culture, as well as loose hyphae con-
tributing to rheology at upper scale levels (see, for example, Bliatsiou
et al. (2020) for pellet culture of filamentous fungi). In addition, the
intracellular fluid is assumed to include the cytosol, organelles, vesicles,
proteins and polymer networks. Therefore, it can be regarded as a
pseudo-liquid phase. These components contribute to the rheology in
this phase as reported by Mogilner and Manhart (2018). Furthermore,
the cytoplasm of eukaryotic cells is known to have viscoelastic char-
acteristics due to its content of cytoskeletal polymers, proteins and
small organelles (Stamenović, 2008; Ahmed et al., 2018; Mathieu and
Manneville, 2019). Consequently, the viscous stress tensor in both fluid
phases (𝝉𝛼 , 𝛼 = 𝛽, 𝛾) is given by 𝝉𝛼 = 𝜇(𝛤𝛼)(∇𝐯𝛼 + ∇𝐯𝑇𝛼 ), with 𝜇(𝛤𝛼)
being the apparent viscosity, which depends on the strain rate modulus,
𝛤𝛼 =

√

1
2

(

∇𝐯𝛼 + ∇𝐯𝑇𝛼
)

∶
(

∇𝐯𝛼 + ∇𝐯𝑇𝛼
)

.
On the basis of the above considerations, following Bird et al.

(2002), the equations that describe momentum transport at the mi-
croscale for the extracellular and intracellular fluid phases are (𝛼 = 𝛽, 𝛾)
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𝜌𝛼𝐯𝛼 ⋅ ∇𝐯𝛼 = 𝜌𝛼𝐠 + ∇ ⋅ T𝑝𝛼 in the 𝛼 phase, (6b)

where the total stress tensor is defined as T𝑝𝛼 = −I𝑝𝛼 +𝝉𝛼 . Moreover, 𝜌𝛼
and 𝑝𝛼 are, respectively, the density and pressure of the 𝛼 phase and g
is the gravity acceleration vector.

As mentioned in the previous section, the cell wall and membrane
are modeled as a dividing surface, which is denoted as A𝛽𝛾 (see Fig. 2).
This is justified since the characteristic width of the cell wall and
membrane is much smaller than the characteristic size of the cells (i.e.,
𝓁𝛽). At this boundary the most significant resistance to momentum
transport occur. This is attributed to the structure of the cell wall, which
is usually made of an arrangement of chitin and 𝛽-glucans that are
coupled to a diverse set of polymers and glycosylated proteins, confer-
ring the cell wall resistant but flexible characteristics. These properties
allow the cell wall to comply with its biological function, acting as a
protective boundary but also allowing growth, as well as nutrients and
vesicles transport (Gow and Lenardon, 2022). Consequently, the stress
jump condition can be written in the following form (Slattery et al.,
2006)

𝐧𝛽𝛾 ⋅
(

T𝑝𝛽 − T𝑝𝛾
)

= 𝜻 at A𝛽𝛾 . (6c)

Here, 𝐧𝛽𝛾 is the unit normal vector at A𝛽𝛾 , directed from the 𝛽 to the
𝛾 phase. In addition, the vector 𝜻 represents the mechanical resistance
of the cell wall and membrane, A𝛽𝛾 .

At this same boundary, continuity of the velocity fields in both
phases is assumed to apply (see, for instance, Slattery et al., 2006). This
is,

𝐯𝛽 = 𝐯𝛾 at A𝛽𝛾 . (6d)

This condition can be justified on the basis of the following. Firstly,
although transport of chemical species takes place at the cell wall and
membrane, it is assumed that this process does not change significantly
the densities in both the intracellular and extracellular phases. This jus-
tifies continuity of the normal component of the velocity vectors in each
phase, equal to the normal component of the speed of displacement of
the cell wall and membrane, 𝐰. This is,

𝐧𝛽𝛾 ⋅ 𝐯𝛽 = 𝐧𝛽𝛾 ⋅ 𝐯𝛾 = 𝐧𝛽𝛾 ⋅ 𝐰, at A𝛽𝛾 . (6e)

Secondly, slip effects between the extra- and intracellular fluids at A𝛽𝛾
are disregarded, which justifies assuming continuity of the tangential
components of the velocity vectors.

In this work, momentum transport within the organelles is not con-
sidered. This is because in agitated pellet cultures, when moving from
the extracellular medium to the organelles, there are many boundaries,
including cell wall, cell membrane and organelle membranes, which are
assumed to provoke a marked decrease in the amount of momentum
experienced inside the organelles. In this way, momentum transport
within the organelles is neglected with respect to momentum transport
in the extra- and intracellular phases. In the following, large organelles
(denoted as the 𝜎 phase and with a characteristic length > 1 μm, see
Fig. 2) are assumed to behave as rigid and immobile solid inclusions
that are impervious to momentum transport. This also implies that a
no-slip boundary condition applies at the 𝛽-𝜎 interface (A𝛽𝜎).

The focus of this model relies on non-septate hyphae for the sake of
simplicity. The cell–cell boundary (A𝛽𝛽′ ) can have different morpholo-
gies depending on the fungal species under study. At these segments
of the hypha, for some fungal species, the septum might completely
separate adjacent compartments, while, for other species, septal pores
are located at the mid-section of the septum. Moreover, these pores
can be either open or occluded, as they play a role in regulation of
mass and momentum transport along the hypha. If the septal pore is
completely open or only partially occluded, momentum transport will
take place between hyphal compartments (adjacent segments of the
hypha that are separated by a septum). This means that, under these

conditions, the surface A𝛽𝛽′ can be divided into a septated portion
where 𝐯𝛽 = 𝟎 (A𝛽𝑠) and another one available for flow (A𝛽𝑓 ). In
the latter, the velocity field is assumed periodic in the single spatial
direction perpendicular to A𝛽𝑓 . The above can be expressed as follows

𝐯𝛽 = 𝟎, at A𝛽𝜎 ,A𝛽𝑠, (6f)

𝐯𝛽 (𝐫) = 𝐯𝛽 (𝐫 + 𝐥𝑓 ), at A𝛽𝑓 . (6g)

Here 𝐫 and 𝐥𝑓 respectively represent a position vector and the periodic
lattice vector. Notice that no momentum transport takes place in an oc-
cluded pore, when present. This is because of the presence of a complex
group of membranes, wall material and the dense proteinaceous plug
at this surface, which limits momentum transport between adjacent
compartments. Consequently, in this case the boundary condition at
A𝛽𝑓 reduces to the one given in (6f). Nevertheless, the boundary
conditions given in Eqs. (6f) and (6g) are general and are kept as such
in the developments that follow.

3.2. Upscaling mass transport

This section focuses on upscaling the total mass transport equations
in both the intracellular and extracellular phases, using Eq. (6a) as
a starting point. The resulting macroscale balance equation has been
already derived in previous works dedicated to multi-phase flow in
porous media systems (see for example Whitaker, 1986; Auriault, 1986)
and the derivation is not repeated here. It shall be recalled that it results
from applying the superficial averaging operator (Eq. (2a)) to Eq. (6a),
and using the general and spatial averaging theorems, taking into
account the interfacial boundary conditions. The resulting expression
can be written in the following form
𝑑𝜀𝛼
𝑑𝑡

+ ∇ ⋅ ⟨𝐯𝛼⟩𝛼 = 0. (7)

To apply the above equation, the system has to comply with the
starting assumptions. Nevertheless, Eq. (7) does not require assuming
periodicity of the system geometry at the microscale.

The first term in Eq. (7) accounts for the temporal variations of the
volume fractions of each fluid phase and it can be associated to biomass
growth (when 𝜀𝛽 increases) or mycelium lysis (when 𝜀𝛽 decreases)
inside the pellet. These observations can be used in future works,
where total mass balance is coupled with species transport equations
to model cellular growth as reported by Wood and Whitaker (1999).
The temporal dependence at the macroscale arises from the possible
transient character of the cell wall and membrane, implicitly making
the momentum problem at the microscopic scale time-dependent. This
is true even if temporal acceleration is neglected with respect to viscous
effects in the momentum transport equations, as considered above.

It should be noted that, in steady state, the first term on the left-
hand side of Eq. (7) is zero. Furthermore, the same result is obtained
if the system geometry is spatially periodic so that the microscale fluid
velocity in each phase is also periodic. In this way, ⟨𝐯𝛼⟩𝛼 is spatially-
invariant and Eq. (7) reduces to 𝑑𝜀𝛼∕𝑑𝑡 = 0. Therefore, under any
of these two circumstances the macroscopic mass balance equations
reduce to

∇ ⋅ ⟨𝐯𝛼⟩𝛼 = 0, V periodic or A𝛽𝛾 stationary. (8)

3.3. Upscaling momentum transport

Recently, Sánchez-Vargas et al. (2023) derived an upscaled model
for steady non-Newtonian inertial two-phase flow in homogeneous
porous media. Although the physical system is strictly not the same
here, the governing equations and boundary conditions at the mi-
croscale are very similar. In fact, the difference lies in the incorporation
of the cell–cell boundary conditions given in Eqs. (6f) and (6g) and
differences in the boundary condition expressed in Eq. (6c). For this
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reason, only the essential steps leading to the upscaled momentum bal-
ance equations are recalled below and the reader is referred to the work
by Sánchez-Vargas et al. (2023) (see also (Lasseux and Valdés-Parada,
2022)) for a detailed description of the whole procedure.

It is convenient to adopt the periodic unit cell assumption at the
beginning of the derivations (Lasseux and Valdés-Parada, 2022). It must
be emphasized that this assumption does not represent a limitation
as it only exerts an influence at the closure level (microscale), with
a vanishing effect at the macroscale. Furthermore, upscaled models
that employ volume averaging (or other upscaling techniques that
imply the periodicity assumption, such as homogenization (Auriault
et al., 2009)), have been successfully used in practice, even in non-
periodic systems (see, for example Nolen et al. (2008)). The procedure
shown below consists in deriving a formal average solution of the flow
problem by defining adjoint closure problems and relating them to
the momentum transport equations using a Green’s function formalism.
Therefore, it is convenient (albeit not mandatory) to consider periodic
unit cells to reduce the solution domain of the adjoint closure problems.

In a periodic unit cell, both the velocity and pressure spatial devi-
ations can be assumed to be periodic. In this regard, Gray’s decompo-
sition in the form given in Eq. (5) is applied to the terms containing
the pressure in the microscale model (Eqs. (6)). It is worth recalling
that, at the unit cell level, the macroscopic pressure gradient can
be reasonably assumed to be constant. Under these conditions, the
momentum transport problem in a periodic unit cell can be written as
(𝛼 = 𝛽, 𝛾)

∇ ⋅ 𝐯𝛼 = 0, in V𝛼 , (9a)

𝜌𝛼𝐯𝛼 ⋅ ∇𝐯𝛼 = −∇⟨𝑝𝛼⟩𝛼 + 𝜌𝛼𝐠 + ∇ ⋅ T𝑝̃𝛼 in V𝛼 , (9b)

𝐧𝛽𝛾 ⋅
(

T𝑝̃𝛽 − T𝑝̃𝛾
)

= 𝐧𝛽𝛾
(

⟨𝑝𝛽⟩
𝛽 |
|

|𝐱𝛽
− ⟨𝑝𝛾 ⟩

𝛾 |
|

|𝐱𝛾

)

+ 𝐧𝛽𝛾𝐳𝛽𝛾 ⋅ ∇⟨𝑝𝛽⟩𝛽
|

|

|𝐱𝛽
− 𝐧𝛽𝛾𝐳𝛾𝛽 ⋅ ∇⟨𝑝𝛾 ⟩𝛾

|

|

|𝐱𝛾

+ 𝜻 at A𝛽𝛾 , (9c)

𝐯𝛾 = 𝐯𝛽 , at A𝛽𝛾 , (9d)

𝐯𝛽 = 𝟎, at A𝛽𝜎 and A𝛽𝑠, (9e)

𝐯𝛽 (𝐫) = 𝐯𝛽 (𝐫 + 𝐥𝑓 ), at A𝛽𝑓 , (9f)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = 𝐯𝛼 , 𝑝̃𝛼 , (9g)

⟨𝑝̃𝛼⟩
𝛼 = 0, (9h)

with

T𝑝̃𝛼 = −I𝑝̃𝛼 + 𝜇(𝛤𝛼)
(

∇𝐯𝛼 + ∇𝐯𝑇𝛼
)

. (9i)

Eq. (9g) represents the periodicity condition in the three directions,
with 𝐥𝑖 being the unit cell lattice vectors (∑𝑖 𝐥𝑖 = 𝐥𝑓 ). In addition,
Eq. (9h) is an integral constraint for the pressure deviations, which
is necessary to have a well-posed problem. In addition, note that
in Eq. (9c) the Taylor series expansion given in Eq. (4) was used.

At this point, it is convenient to emphasize that the resulting av-
erage pressures contained in Eqs. (9) arise from different sources. In
the extracellular phase, the pressure is the consequence of applied
agitation, whereas in the intracellular phase, the macroscopic pressure
is related to cytoskeleton-associated (Charras et al., 2008) and osmotic
pressure generated (Keren et al., 2009) forces, these last two capable of
acquiring similar orders in magnitude (Mogilner and Manhart, 2018).
The latter, is caused by the higher ion concentration in the intracellular
fluid with respect to the extracellular medium. Furthermore, as shown
in Appendix B of the work by Lasseux and Valdés-Parada (2022),
the macroscopic pressure gradients in both fluid phases can be safely
assumed to be the same.

In order to advance towards the derivation of macroscale balance
equations, adjoint closure problems are proposed and reported in Ap-
pendix A.1 (see Bottaro (2019) for details on how adjoint problems are
constructed for upscaling).

The flow problem defined in Eqs. (9) can then be related to the
adjoint closure problems by means of Green’s formula as detailed
by Sánchez-Vargas et al. (2023). This leads to the following macro-
scopic momentum balance equations in each phase (𝛼, 𝜅 = 𝛽, 𝛾)

⟨𝐯𝛼⟩𝛼 = −
H𝛼𝛼
𝜇𝑟𝑒𝑓𝛼

⋅
(

∇⟨𝑝𝛼⟩𝛼 − 𝜌𝛼𝐠
)

−
H𝛼𝜅
𝜇𝑟𝑒𝑓𝜅

⋅
(

∇⟨𝑝𝜅⟩𝜅 − 𝜌𝜅𝐠
)

+ 1
𝜇𝑟𝑒𝑓𝛼𝑉 ∫A𝛽𝛾

𝜻 ⋅ D𝛼𝛼 𝑑𝐴

+
𝜌𝛾 − 𝜌𝛽
𝜇𝑟𝑒𝑓𝛼𝑉 ∫A𝛽𝛾

𝐧𝛽𝛾 ⋅ 𝐰𝐰 ⋅ D𝛼𝛼 𝑑𝐴. (10)

Here, H𝛼𝛼 and H𝛼𝜅 (𝛼 ≠ 𝜅) are, respectively, the dominant and coupling
apparent permeability tensors in the 𝛼 phase, which are defined as

H𝛼𝛼 = ⟨D𝛼𝛼⟩
𝑇
𝛼 , H𝛼𝜅 =

𝜇𝑟𝑒𝑓𝜅
𝜇𝑟𝑒𝑓𝛼

⟨D𝜅𝛼⟩
𝑇
𝜅 . (11)

In the above equations, D𝛼𝛼 and D𝜅𝛼 are closure variables that solve
problems (A.1) and (A.2).

Eqs. (10) describe the average velocity of the fluid in the 𝛼 phase
(either the intracellular or extracellular fluid), in terms of four con-
tributions: two bulk (Darcy-like) terms and two interfacial terms. The
first (dominant Darcy-like) term represents the contribution to the flux,
resulting from the macroscopic forcing applied in the phase under
consideration, whereas the second (coupling Darcy-like) term describes,
through viscous coupling, the contribution of the macroscopic pressure
gradient in the adjacent phase. The last two terms in Eqs. (10) are the
interfacial contributions to the movement of the fluids, one accounts
for mechanical resistance effects, while the other one is produced by
inertia at A𝛽𝛾 .

To conclude, it is pertinent to make three remarks about the
macroscale model derived in the previous sections and its application.
First, it is important to recall the underlying requirements that include
satisfying the separation of length scales, as stated in inequality (1),
which needs to be confirmed through experimental quantification of
the constitutive elements of the system, i.e., the hyphae and pellet
characteristic lengths in the present work. Also, as described in Sec-
tion 3.1, the system must be composed of two incompressible fluids
(extra- and intracellular fluids) separated by a delimiting element (in
the present biological application, a cell wall and membrane) and a
phase behaving as an immobile solid (in this case, the organelles)
only in contact with one phase (the wetting phase, in the present
case, the intracellular fluid). No restriction is imposed concerning the
fluids rheology, as the model allows them to acquire a generalized
Newtonian nature. Moreover, the intracellular fluid must be divided,
either partially or completely, into compartments. It must be noted
that this last configuration, if not encountered, requires the correction
of the boundary conditions stated above in the microscale model, as
well as in the closure problems with, nevertheless, the same upscaling
methodology.

Second, it is important to summarize the experimental information
required from a particular biological system in order to apply the
model. This includes the existence of representative regions inside the
pellet, where the system topology should remain spatially homoge-
neous on average. This can be assessed by verifying that the volume
fractions of the phases remain constant. Also, and for the purpose of
constructing the representative periodic unit cell, the length and width
of the hyphal compartments and the determination of the presence and
size of the septal pores is needed. Note that the system geometry is
not required to be spatially periodic in order to apply the macroscale
models. Furthermore, if periodicity cannot be reasonably assumed, as
it may be the case in systems where there is no clear separation of
length scales (for example in clumps or very small pellets), then the
closure problems solution can still be applied, albeit in domains larger
than a single unit cell. For convenience, the model can be solved in a
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Fig. 4. Bright-field micrography of clumps and pellets of L. trichodermophora, illustrating, in six different stages, the formation of consolidated pellets (hemispherical structures
possessing a dense core and loose hyphal projections) from hyphal clumps (agglomeration of hyphae starting at their initial growing stage) during culture in agitated baffled flasks.
The biomass is classified according to geometrical characteristics and size: young clumps (stages 1–2), mature clumps (stages 3–4), young pellets (stage 5) and consolidated pellets
(stage 6). This process takes place constantly during the culture, which gives place to clumps and pellets of different sizes at all stages of the culture.

Fig. 5. Sections of the core of a 7 days-old fungal pellet of L. trichodermophora, of 448 μm in radius, at successive 𝑧 positions measured from the center of the pellet: 0 μm (bottom),
95 μm (middle) and 181 μm (top).

dimensionless form, thus reducing the number of degrees of freedom.
The parameters needed are the Reynolds number, the fluids viscosity
ratio and rheological parameters of the fluid phases (precise definitions
are given later on in Section 3.5).

Third, as a result from the solution of the upscaled model, the
predictions that this model provides are in terms of the average velocity
of each fluid phase. Moreover, since the macroscale momentum model
explicitly expresses all the contributions to the average velocity, each
of them can be separately evaluated. This includes the determination
of the intrinsic or apparent permeabilities of the pellets, depending on
the presence of inertia, and the interfacial contributions to the average
velocity.

3.4. Characterization of Laccaria trichodermophora

This section accounts for the experimental information required
for the upscaled models application in geometries representative of L.
trichodermophora pellets. It must be noted that, given the generality of
the derived model, any other pellet-forming microorganism could have
been used instead for the characterization and further evaluation of the
model.

An increase in size and hyphal density is observed by bright field
confocal microscopy at the different stages of pellet formation (Fig. 4).
Based on their geometrical characteristics and size, the following
nomenclature is adopted in the remainder of the article. Stages 1 and
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Fig. 6. Dependence of the volume fraction of the extracellular phase, 𝜀𝛾 , with the area of the averaging surface for 7 days-old pellet sections (see Fig. 5) at different positions in
𝑧 and 𝑥. 𝑟20 indicates the area of the averaging surface. Each series represents a different position with respect to the center of the 𝑥 axis of the pellet. (a) 𝑧 = 0 μm, (b) 𝑧 = 95
μm, (c) 𝑧 = 181 μm. The shaded blue area represents the interval of 𝑟0 corresponding to a representative size of the averaging surface.

2 are denoted as young clumps, stages 3 and 4 correspond to mature
clumps, stage 5 comprises young pellets and stage 6 corresponds to
consolidated pellets.

3.4.1. Identification of homogeneous regions
Pellets of L. trichodermophora are hemispherical structures with a

dense hyphal core and hyphal projections (Fig. 4, stages 5 and 6). In
order to determine the presence of homogeneous regions inside the
pellets, 13 μm-thick sections were obtained from randomly selected
stage-6 pellets, following the sampling procedure depicted in Fig. 3.
Three sections per pellet (taken at different 𝑧 positions) were analyzed,
providing panoramic images of the core of a 7 days-old pellet (Fig. 5).
The same type of analysis was performed on 14 and 21 days-old pellets
(figures S1 and S2, respectively). It is important to notice that the
hyphal projections do not exhibit spatially homogeneous regions, thus
precluding the use of the model derived in this work in this zone
of the pellets. Conversely, the pellets core appears to comply with
this assumption. To confirm this observation, spatial properties were
evaluated on square regions of different sizes, which are referred to
as averaging surfaces, at different positions on the 𝑥 axis of the three
sections obtained for each pellet.

For an averaging surface to be representative of the microscale,
macroscopic properties (such as the volume fraction or permeability)
must exhibit negligible variations as the averaging surface size changes.
In the system under consideration, the volume fraction of the extracel-
lular fluid phase, 𝜀𝛾 , was experimentally quantified for this purpose.
The results corresponding to a 7 days-old pellet are shown in Fig. 6(a)–
(c) for sections at different positions in the 𝑧-direction. In all these
figures, 𝜀𝛾 takes values from about 0.15 to 0.8, oscillating for smaller
areas of the averaging surface and stabilizing above a certain threshold
of averaging surface size, which depends upon the specific section. For
the section at 0 μm in the 𝑧 position and 896 μm in diameter (Fig. 5,
bottom), 𝜀𝛾 stabilizes at a value of the area of the averaging surface of
4900 μm2. The same is true for the section at 181 μm in the 𝑧 position
(Fig. 5, top). However, for the 865 μm section, located at 95 μm on
the 𝑧 axis, stability is reached at 6400 μm2 (see Fig. 5, middle). For
all these sections, the value of 𝜀𝛾 remains roughly constant until the
last value of 𝑟20 that was considered, i.e., 8100 μm2 (Fig. 6(a) and (b))
and 10,000 μm2 (Fig. 6(c)). This means that the appropriate value of
𝑟0 is within the range of 70 and 100 μm. Representativeness may be
even better achieved with 𝑟0 larger than 100 μm. However, in the
present experiment, the limit was the width of the panoramic image
and the random positioning of the grid used for quantification. The
results presented for a 7 days-old pellet of L. trichodermophora indicate
the existence of homogeneous regions, regardless the positions under
consideration, inside the structure. This meets the upscaling method

assumption previously stated. Similar results were obtained for the 14
and 21 days-old pellets (figures S3 and S4, respectively).

The extracellular volume fraction, 𝜀𝛾 , varies along the pellet diam-
eter in the range from about 0.25 to 0.65 for 7, 14 and 21 days-old
pellets (Fig. 7). The average values of 𝜀𝛾 in each pellet core and the
corresponding standard deviation confirm some degree of homogeneity
between the pellets of different sizes and culture times and can be
estimated to be 0.405 ± 0.091, 0.369 ± 0.082 and 0.352 ± 0.096 (with
no significant differences among them), respectively for the 7, 14 and
21 days-old pellets. Given the evident dispersion of 𝜀𝛾 seen in Fig. 7,
there are two possible approximations to use the upscaled model in this
type of pellets. The first and more rigorous one is to solve the model in
each homogeneous regions, which implies a solution for every value of
volume fraction experimentally determined. This could be followed by
a second averaging of the model predictions for a determined region,
section or the whole pellet core. The second approximation consist in
solving the upscaled model only for the average volume fraction of the
pellet core, providing in this way a unique average velocity. For any of
the above scenarios, it is still interesting to evaluate the effect of the
volume fraction on the prediction of the average velocity in each phase.
Therefore, values of 𝜀𝛾 in the range from 0.3 to 0.65 will be used in
Section 3.5 for the numerical simulations to evaluate the validity of the
upscaled model in a fungal pellet. It must be noted that the presence of
homogeneous regions was only assessed in pellets that were on stages 5
and 6, because they are compliant with the separation of length scales.
As a final note, the fact of the volume fraction of the pellets core is
time-independent (as the average 𝜀𝛾 from the 7, 14 and 21 days-old
pellets are statistically the same) is in agreement with the quasi-steady
assumption for momentum transport (see Section 3.1).

3.4.2. Geometrical features at the microscale
Now that the existence of homogeneous regions inside the pellet has

been confirmed and the value of 𝑟0 has been established, the hyphae,
which are the basic element of the microstructure, must be charac-
terized in order to construct a periodic unit cell in which the closure
problems derived in Section 3.1 are to be solved. Young pellets and
clumps (stages 2–5 of Fig. 4) of 6–8 days old were used to determine
characteristics of the hyphae in three regions of the structure, namely
the periphery, middle and center. These regions were identified by
subdividing the panoramic images into five equal parts. In this way,
the diametrically-opposed parts correspond to the periphery regions,
while the two adjacent ones are referred to the middle regions and the
remaining part is the center. With this procedure, it was assumed that
these younger structures had similar hyphal geometries as pellets in
stages 5 and 6.

A typical configuration of hyphae inside a mature clump is shown
in Fig. 8, where stained cell membranes are visualized along the radius
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Fig. 7. Spatial dependence of the volume fraction of the extracellular phase, 𝜀𝛾 , in the 𝑧 and 𝑥 directions for (a) 7 days-old pellet, (b) 14 days-old pellet and (c) 21 days-old
pellet. (a) ∙ 𝑧 = 0 μm (corresponding to a 896 μm section), ■ 𝑧 = 95 μm (corresponding to a 865 μm section), ▴ 𝑧 = 181 μm (corresponding to a 704 μm section). (b) ∙ 𝑧 = 0 μm
(corresponding to a 1500 μm section), ■ 𝑧 = 654 μm (corresponding to a 743 μm section), ▴ 𝑧 = 728 μm (corresponding to a 512 μm section). (c) ∙ 𝑧 = 0 μm (corresponding to a
1070 μm section), ■ 𝑧 = 130 μm (corresponding to a 1040 μm section), ▴ 𝑧 = 433 μm (corresponding to a 631 μm section). The blue line represents the average value of 𝜀𝛾 in each
pellet, obtained by averaging 𝜀𝛾 of each individual homogeneous region in the pellet. The shaded blue region represents the interval of twice the standard deviation computed
from the data, centered on the average value of 𝜀𝛾 .

Fig. 8. Typical configuration of hyphae inside a mature clump of L. trichodermophora of 6 days of culture. The panoramic image corresponds to the left half of the pellet.
Fluorescence signal corresponds to membranes stained with FM4-64. The vertical marks at the bottom of the image indicate the approximate limits of the periphery, middle and
center regions.

Fig. 9. Transmission electron micrographs of dolipore structures taken at the core of a fungal pellet of L. trichodermophora of 7 days of culture. S: septum, black arrow: parenthesome,
red arrow: dolipore plug.

of a 6 days-old mycelial structure. Note that only three of the five parts
in which the panoramic image was segmented are shown, as this image
corresponds to only half of the pellet diameter. In this figure, a much
denser network of hyphae is observed in the center, while the periphery
is less populated, in accordance with Fig. 4.

Through image analysis, the hyphae width, length (determined as
the distance between adjacent septa) and branching frequency were
measured in the three different established regions (Table 1). With
these results, it is evident that even if hyphal compartments have
the same width among the defined regions, the length significantly
increases towards the periphery. Note that the cell length is approxi-
mately two orders of magnitude larger than its width. This relationship

is relevant and will be used in Section 3.5 for the construction of the
periodic unit cell representative of the microstructure. In addition, it
is important to remark that even though branching (i.e., the increase
in the amount of branches measured for a single compartment) takes
place in the center and middle sections, the frequency is less than two.
Furthermore, the vast majority of the young pellets and clumps volume
corresponds to non-branched hyphae. For these reasons, branching is
not considered in the unit cell design.

As mentioned, the fulfillment of the separation of length scales
between the microscale and the macroscale needs to be verified. For
this, the characteristic lengths to be taken into account correspond
to those of the hyphae width (𝓁) and homogeneous regions of the
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Table 1
Geometrical characteristics of hyphae through different sections of three young pellets
and clumps of L. trichodermophora cultures grown in baffled shake flasks.

Concept Measurement

Structure diameterd 3.33 ± 0.60 mm
Hyphae widthe 1.79 ± 0.31 μm
Hyphae length (periphery) 155.44 ± 40.99 μm𝑎

Hyphae length (middle) 103.75 ± 17.86 μm𝑏

Hyphae length (center) 76.23 ± 16.99 μm𝑐

Branches per hyphal compartment 0
(periphery)
Branches per hyphal compartment 0–1
(middle)
Branches per hyphal compartment 1–2
(center)

a,b,c Indicate significant difference (𝑝 < 0.0002) among hyphal lengths belonging to
different positions of the pellets and clumps. ANOVA, using Tukey post hoc test.
d Including the pellet core and hyphal projections.
e No difference was observed in cell width among the established regions, therefore
only one measurement is reported. In the center of the pellets very few irregular
hyphae can measure up to 2.6 μm thick, these were not considered in the analysis.
This measurement was confirmed via transmission electron microscopy.

pellet (𝑟0). As reported in the above sections, 𝑟0 > 70–90 μm, while
𝓁 = 1.79 μm, suggesting a contrast of almost two orders of magnitude.
In addition, the characteristic length of the pellets, 𝐿, is on the order
of 103 μm. Therefore, the constraint given in inequality (1) is met. At
this point it is pertinent to ponder about the applicability of the model
to other types and sizes of pellets. To address this query, it is suggested
that the following configurations could certainly be studied with the
model derived in this work: Small (since 100 μm in characteristic length
or two orders of magnitude above the width of the hyphae) dense or
loose pellets with regular inner structures. Large (with no upper limit in
characteristic length) dense or loose pellets that do not possess a void
domain at the center (due to cell lysis or any other factor), in any case
the model could only be applied to the remaining homogeneous regions
bordering the void center and far from their borders.

The dolipore-parenthesome complex in Agaricomycotina plays a
role in the selective transport of material between hyphal compart-
ments, while allowing cytoplasmic continuity, when the channel re-
mains unplugged (Patton and Marchant, 1978) and in general to cellu-
lar homeostasis (Van Driel et al., 2008; Van Peer et al., 2009). In this
case, the factors determining the magnitude of the space for fluid flow
are both the diameter of the dolipore channel (i.e., the free space for
fluid flow, located in the dolipore structure and communicating hyphal
compartments, subject to obstruction by a septal plug) and the diameter
of the parenthesome holes, which behave as a sieve, preventing large
organelles to block the flow through the dolipore (Van Driel, 2007). In
Fig. 9 three different locations of inter-compartmental division struc-
tures of L. trichodermophora are reported. The images show the septum,
the dolipore and the associated perforate parenthesome. It must be
noted that some of the dolipore structures appear to be associated
with multivesicular or membrane bodies. This follows previous reports,
where parenthesomes, which arise either from the endoplasmic reticu-
lum or share a common ancestor with it (Van Driel, 2007; Van Peer
et al., 2010), have been found to play a role in dolipore plugging
by either producing or storing pore-plug material (Van Driel, 2007).
For L. trichodermophora, the average length for fluid flow through the
dolipore (pore channel) was evaluated to be 98.9 ± 7.6 nm (roughly
6% of the hypha width), while the pores of the parenthesome have an
average diameter of 76.6 ± 7.0 nm. This feature is recalled during the
construction of the periodic unit cell.

In some cases, a plug of proteins (septal plug), which is placed in
the dolipore channel, can be found depending on the needs of the
hypha and has evolved to protect intracellular content during stress
or hyphal damage (Van Driel et al., 2008). The presence of either an
open or closed dolipore channel is dynamic and depends upon many

factors including culture conditions such as carbon source availability,
temperature, osmotic pressure or presence of toxic agents (Van Peer
et al., 2009). In Fig. 9, it can be noted that the middle and right pictures
exhibit a septal plug, seen as an electron-dense occluding material (Van
Driel et al., 2008), blocking protoplasmic streaming and therefore mo-
mentum transport. As noted by Van Peer et al. (2009), the probability
of a plugged dolipore channel increases from the tip to the more
distal compartments of hyphae. In the case of L. trichodermophora, the
possibility of dolipores open to flow is considered, thus suggesting two
different configurations of periodic unit cells to be used for numerical
experiments in the following section.

All the measurements reported in this section are consistent (i.e.,
of the same order of magnitude) with those reported in the litera-
ture for other Agaricomycetes or Agaricales. For instance, Roberson
et al. (2014) reported images of the Agaricomycete Auriscalpium vul-
gare, where cells width and spacing for flow between hyphal com-
partments were measured to be of about 6 μm and 50 nm, respec-
tively. Raudaskoski (2019) reported hyphal compartments length of
around 150 μm for the Agarical Schizophyllum commune. Vetchinkina
et al. (2017) studied the Agaricomycetes Ganoderma lucidum, Grifola
frondosa and the Agarical Lentinula edodes and described cells of width
between 3 and 4 μm, while the space for flow through the dolipore of G.
lucidum and G. frondosa were quantified to be about 40 nm and 60 nm,
respectively. Venneman et al. (2020) observed dolipore channels in
nine different Serendipita species (Agarycomicetes) and quantified them
in the range from 95 ± 31 nm to 128 ± 17 nm. Patton and Marchant
(1978) analyzed the dolipore structure of 12 Agaricomycetes, among
which there were four Agaricales, and reported parenthesome pore
diameters mostly between 51 ± 8 nm and 143 ± 8 nm when excluding
Aphilloporales. These observations are of relevance, as they suggest
that the same architecture of periodic unit cell could be used to study
many other species of Agaricomycetes.

3.5. Macroscopic model predictions

Before proceeding to the solution of the upscaled model, it is
important to recall all the steps required for its application in any other
(bio)pellet aside from the strain used here. First, the biological system
to analyze must satisfy the starting assumption stated in Section 3.1.
Second, experimental information about the biological system needs
to be acquired, as described in Section 2.2, and the upscaling method
assumptions must be confirmed. Third, the solution requires the con-
struction of a 3D geometry, representative of the system configuration,
in which the closure problems solution can be carried out in order to
predict the macroscopic transport coefficients.

Employing the experimental data, two periodic unit cell configura-
tions were constructed for every volume fraction value (see Fig. 10).
All the unit cells keep the same proportions of the cellular compart-
ments, which consist in curved cylinders with ellipsoids and spheres
inside representing large organelles (>1 μm in characteristic length),
impervious to momentum transport. It is assumed that these shapes are
able to represent most of the organelles as a first approximation, since
information in the literature is scarce for L. trichodermophora or other
Basidiomycota. This choice could certainly be improved to include
more complex geometries in future works. To generate unit cells with
different volume fractions of the extracellular fluid, 𝜀𝛾 , the quadran-
gular prism representing this phase was increased or decreased in size
(by increasing the width of the quadrangular base of the prism), but
the cellular volume (including the intracellular fluid and organelles)
remained unaltered. The volume fraction of the extracellular fluid was
varied from 0.30 to 0.65, while the organelle volume fraction (with
respect to the intracellular content) was arbitrarily fixed to 0.39. The
mycelium curvature was given by a cosine function, whose amplitude
corresponds to the maximum possible fitting inside the 𝛾 phase domain.
Consequently, the amplitude increased with 𝜀𝛾 .
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Fig. 10. Scheme of a representative unit cell used for the closure problems solutions.
The figures correspond to a single mycelial compartment with an open (middle) or
closed (bottom) dolipore channel. The difference resides in the presence of a pore in
the center of the face on both ends of the cell length (top image). Proportions between
the length and width of the mycelial compartment, as well as the dolipore channel
width, correspond to those from Section 3.4.2 with an arbitrary curvature. In this
particular case, 𝜀𝛾 = 0.65 and the curvature is given by the function 0.00225cos(2𝜋𝑠),
where 𝑠 is the position in the 𝑥 direction. Periodicity was imposed in every direction
of the unit cells.

With the unit cell at hand, the microscopic mass and momentum
balance equations are solved (this is referred to as the direct numerical
simulation, DNS, in the following) assuming that body forces can be
lumped into the macroscopic pressure gradient (yielding a modified
macroscopic pressure gradient). Moreover, flow in both phases is as-
sumed to result from a horizontal macroscopic pressure gradient forcing
(along the 𝑥 axis). Note that this forcing could also be applied in
other directions, depending on the biological system. This force can be
understood as the result of the stress exerted during agitation by the
walls of the flask onto the bulk fluid which further transfer the forcing
to the pellet. In the present case, it is taken as

∇⟨𝑝𝛼⟩𝛼 =
𝜕⟨𝑝𝛼⟩𝛼

𝜕𝑥
𝐞𝑥 = −ℎ𝐞𝑥. (12)

The next step towards the solution of the model is to impose any
additional required simplification with the purpose of adapting the
general model derived here to particular scenarios and, incidentally,
facilitating the computation of the solution. The possible assumptions
that can be reasonably imposed depend upon the specific biological
system under concern. In the rest of this section, the analysis is re-
stricted to situations in which the cell wall and membrane only oppose
mechanical resistances in the direction orthogonal to A𝛽𝛾 . This is,
𝜻 = 𝜁𝐧, where 𝜁 is a constant scalar in Eq. (6c). This means that the
tangential mechanical contribution of the cell wall and membrane is
assumed negligible with respect to its normal and constant counterpart.
This assumption also allows simplifying the upscaled model. This is
because, after application of the divergence theorem and taking into
account the solenoidal nature of the closure variables (see Eqs. (A.1a)
and (A.2a)), the third term on the right-hand side of Eq. (10) vanishes.

To reduce the number of degrees of freedom of the upscaled mod-
els, the dimensionless definitions reported in Appendix B of Sánchez-
Vargas et al. (2023) are adopted and are recalled here as follows (the
superscript ∗ denotes dimensionless quantities)

𝐫∗ = 𝐫
𝓁𝑐
, 𝐯∗𝛼 =

𝐯𝛼𝑡𝑟𝑒𝑓
𝓁𝑐

, 𝑝∗𝛼 =
𝑝𝛼𝑡𝑟𝑒𝑓
𝜇𝑟𝑒𝑓𝛼

,

𝐻∗ = 𝐻𝓁𝑐 , 𝜇∗ =
𝜇𝑟𝑒𝑓𝛽
𝜇𝑟𝑒𝑓𝛾

, 𝑅𝑒𝛼 =
𝜌𝛼𝓁2

𝑐
𝜇𝑟𝑒𝑓𝛼𝑡𝑟𝑒𝑓

. (13)

Here, 𝓁𝑐 is the length of the unit cell in the 𝑥 direction, 𝑡𝑟𝑒𝑓 = 𝜇𝑟𝑒𝑓𝛾
ℎ𝓁𝑐

is a
reference time and ℎ is the value of the macroscopic pressure gradient
in the 𝑥 direction (see Eq. (12)). Moreover, 𝑅𝑒𝛼 is the Reynolds number
in the 𝛼 phase. In addition, the macroscopic forcing defined in Eq. (12)
takes the following dimensionless form

∇∗
⟨𝑝∗𝛼⟩

𝛼 = −𝜇𝑟𝑒𝑓𝛾∕𝜇𝑟𝑒𝑓𝛼𝐞𝑥. (14)

Using the above definitions and the assumptions stated in Sec-
tion 3.3 and in previous paragraphs, the macroscopic velocities in the
𝛼 phase (𝛼 = 𝛽 or 𝛾) can be written in their dimensionless form as

⟨𝐯∗𝛼⟩𝛼 = 𝝃∗𝛼𝛼 + 𝝃∗𝛼𝜅 + 𝝎∗
𝛼 , 𝛼 ≠ 𝜅, (15)

where the following nomenclature is used

𝝃∗𝛼𝛼 =
𝜇𝑟𝑒𝑓𝛾
𝜇𝑟𝑒𝑓𝛼

H∗
𝛼𝛼 ⋅ 𝐞𝑥, (16a)

𝝃∗𝛼𝜅 =
𝜇𝑟𝑒𝑓𝛾
𝜇𝑟𝑒𝑓𝜅

H∗
𝛼𝜅 ⋅ 𝐞𝑥, (16b)

𝝎∗
𝛼 =

𝜇𝑟𝑒𝑓𝛾
(

𝑅𝑒𝛾 − 𝑅𝑒𝛽𝜇∗
)

𝜇𝑟𝑒𝑓𝛼𝑉 ∗ ∫A𝛽𝛾

𝐧𝛽𝛾 ⋅ 𝐰∗𝐰∗ ⋅ D∗
𝛼𝛼 𝑑𝐴

∗. (16c)

Here, 𝝃∗𝛼𝛼 and 𝝃∗𝛼𝜅 are defined as the dominant and coupling Darcy-like
terms, respectively. Also, 𝝎∗

𝛼 stands for the interfacial term accounting
for inertial effects.

It must be noted that the dimensionless microscale flow problem
and closure problems differ from those in Sánchez-Vargas et al. (2023)
only in the boundary conditions, where an additional boundary be-
tween mycelial compartments has been incorporated in the present
work. For the sake of brevity, these problems are not written here in
their dimensionless form as they can be straightforwardly inferred from
the above reference.

For the numerical simulations, the culture medium (𝛾 phase) is
considered to be Newtonian while the intracellular fluid (𝛽 phase)
viscosity is supposed to obey the Carreau model given in the form

𝜇(𝛤𝛽 ) = 𝜇∞ + (𝜇0 − 𝜇∞)
[

1 + (𝜆𝛤𝛽 )2
](𝑛−1)∕2 . (17)

Here, 𝜇∞ and 𝜇0 (= 𝜇𝑟𝑒𝑓𝛽) are the infinite and zero shear-rate vis-
cosities, 𝜆 is the relaxation time, 𝑛 the power-law index and 𝛤𝛽 =
√

(∇𝐯 + ∇𝐯𝑇 ) ∶ (∇𝐯 + ∇𝐯𝑇 )∕2 is the strain-rate modulus. Following the
works of Airiau and Bottaro (2020) and Sánchez-Vargas et al. (2022), it
is assumed that 𝜇∞ = 0. Moreover, taking into account the definitions
in Eq. (13) and considering that 𝜇𝑟𝑒𝑓𝛽 = 𝜇0, the Carreau model can be
written in its dimensionless form as
𝜇(𝛤𝛽 )
𝜇𝑟𝑒𝑓𝛽

=
[

1 + (𝜆∗𝛤 ∗
𝛽 )

2
](𝑛−1)∕2

. (18)

In the above equation 𝛤 ∗
𝛽 = 𝛤𝛽 𝑡𝑟𝑒𝑓 and 𝜆∗ = 𝜆∕𝑡𝑟𝑒𝑓 . For the numerical

simulations carried out in this work, 𝑛 was set to 1.2, while 𝜆∗ was fixed
to 5, for the intracellular (𝛽) phase. This combination of parameters
implies that the intracellular phase behaves as a shear-thickening fluid
(i.e., the apparent viscosity increases with the shear rate) (Amoo and
Fagbenle, 2020). Fluids that exhibit this type of behavior are concen-
trated suspensions (Amoo and Fagbenle, 2020), which resemble the
conditions found inside fungal cells.

To solve the closure problems, as well as to perform DNS (for
validation), the finite-element software Comsol Multiphysics 6.1 was
employed, using a direct MUMPS solver. A mesh refinement analysis
was performed to guarantee that the results are independent of the
mesh size. Once DNS was performed, the average velocities over the
unit cell were computed in order to further compare them to their
predictions form the macroscopic model for validation of the latter. It
may be argued that DNS would require the numerical solution of the
microscale flow model in an array of unit cells. However, since the fluid
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Fig. 11. Streamlines of the dimensionless intracellular and extracellular flow fields resulting from the solution of the microscopic flow problem (DNS) in a unit cell of a mycelial
compartment with an open dolipore channel. Results are reported for five consecutive positions of 0.1 dimensionless length along the 𝑥 axis, from top to bottom the left corner
corresponds to: 𝑥 = 0.5, 𝑥 = 0.6, 𝑥 = 0.7, 𝑥 = 0.8, 𝑥 = 0.9. Other parameters are 𝜀𝛾 = 0.65, 𝜇∗ = 𝜇𝑟𝑒𝑓𝛽∕𝜇𝑟𝑒𝑓𝛾 = 5, 𝑅𝑒𝛾 = 1, 𝑅𝑒𝛽 = 0.1, 𝑛 = 1.2 and 𝜆∗ = 5. Gray objects represent large
organelles (≥1 μm in characteristic length).

velocity in both phases, as well as the geometry, are assumed periodic,
it is sufficient to perform DNS in a single periodic unit cell that is the
same for any other one in an array.

The (dimensionless) average velocity in each phase from the macro-
scopic model is directly obtained from Eq. (15), once each macroscopic
term is evaluated. To do so, the solution of the closure problems given
in Eqs. (A.1) and (A.2), once written in their dimensionless form, is
required. To carry out this solution, the velocity field in both phases
obtained from DNS was employed. Moreover, the viscosity field in the
intracellular phase was pre-computed using Eq. (18) in which 𝛤 ∗

𝛽 was
evaluated from the 𝛽 phase velocity field resulting from DNS. In the
following paragraphs, an analysis of the prediction of the macroscale
velocities and the corresponding validation with DNS are presented for
different values of 𝜀𝛾 and viscosity ratio, 𝜇∗.

In Fig. 11, the flow streamlines are represented for both the in-
tracellular and extracellular fluid phases. The mean flow, despite the
apparent disorder of the streamlines, goes in the horizontal (𝑥) di-
rection, in agreement with the horizontal macroscopic forcing applied
to both phases. Here, gray objects represent large organelles, which
behave as rigid solid obstacles for flow and produce deviations of
the streamlines from the pressure-driven horizontal movement. Con-
tinuity of the streamlines between the intracellular and extracellular
phases can be observed in this figure, in agreement with the boundary
conditions stated in Section 3.3.

To analyze the influence of the volume fraction and of the rheology
of the fluid phases on the average velocity in the intracellular and
extracellular phases, these two parameters were considered in a variety
of combinations, both in the DNS and in the prediction of the upscaled
model. It must be noted that the viscosity ratios were selected based
on previous reports of the viscosity values in both culture media and
intracellular content, whereas the former was reported to lie in the
range of 0.71 × 10−3 and 3 × 10−3 Pa s (Momen-Heravi et al., 2012;
Poon, 2022; ibidi GmbH, 2022), the latter varies between 0.75 × 10−3

and 18 × 10−3 Pa s (Parker et al., 2010; Puchkov, 2013). This leads
to a viscosity ratio in the range of 1 to 25 for a culture medium with
a viscosity similar to water. Moreover, the Reynolds number was set
to 1 in the extracellular phase, and this is motivated by the fact that,
in pellets, densely populated hyphal structures do not usually allow im-
portant internal inertial momentum transport (Hille et al., 2005). In the
intracellular phase, the Reynolds number was set to 0.1, slightly above
the maximum reported in the literature for animal cells (Mogilner and
Manhart, 2018). It is worth mentioning that, with the above set of
parameters, the density ratio between the intracellular and extracellular
phases is such that 0.1 ≲ 𝜌𝛽∕𝜌𝛾 ≲ 2.5. In this regard, the density of cells
is reported in the range of 0.75 and 1.16 g mL−1 (Häder et al., 2005;
Itoh et al., 2021; Figueroa et al., 2022), while culture medium density is
measured between 0.996 and 1.015 g mL−1 (Kastenhofer and Spadiut,
2020; Poon, 2022), yielding 0.65 ≲ 𝜌𝛽∕𝜌𝛾 ≲ 1.16.
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Fig. 12. Average 𝑥 component of the dimensionless velocity in the intracellular ((a), (b)), ⟨𝑣∗𝛽𝑥⟩𝛽 , or extracellular ((c), (d)), ⟨𝑣∗𝛾𝑥⟩𝛾 , phase for a geometry with ((a), (c)) or without
((b), (d)) an open dolipore channel. Predictions from the macroscopic model are represented as lines whereas DNS results are plotted as red dots. Results are reported for 𝜀𝛾 in
the range between 0.3 and 0.65, and for 𝜇∗ = 𝜇𝑟𝑒𝑓𝛽∕𝜇𝑟𝑒𝑓𝛾 between 5 and 19, 𝑅𝑒𝛾 = 1, 𝑅𝑒𝛽 = 0.1, 𝑛 = 1.2 and 𝜆∗ = 5.

Results on the 𝑥 component of the average dimensionless velocity,
⟨𝑣∗𝛼𝑥⟩𝛼 (𝛼 = 𝛽 or 𝛾), obtained from numerical simulations are reported
in Fig. 12, for two different geometries, considering or not momentum
transport between mycelial compartments. It must be noted that the
absence of momentum transport between adjacent compartments, as
imposed with a closed dolipore, does not imply no species transport.
From these results, the following comments are in order:

• From the four graphs, (a)–(d), it is clear that the macroscopic
model predictions are in excellent agreement with DNS. The rel-
ative error between the two approaches is below 5%, taking DNS
as the reference, regardless the degrees of freedom investigated in
all the cases reported here. This validates the macroscopic model
for the velocity, indicating a correct execution of the upscaling
process. It is worth mentioning that this comparison with DNS
should be regarded only as a first validation step (which assesses
the pertinence of the upscaling assumptions) and encourages
further validation with laboratory experiments to analyze the
pertinence of the starting assumptions. It must be recognized that
the latter poses a problem due to the difficulty to measure the

fluid velocity at the level of a single fungal cell or of a represen-
tative elementary volume portion, both in the intracellular and
extracellular phases.

• The 𝑥 component of the dimensionless average velocities in both
the intracellular and extracellular fluid phases, respectively ⟨𝑣∗𝛽𝑥⟩𝛽
and ⟨𝑣∗𝛾𝑥⟩𝛾 , increase with the extracellular volume fraction, 𝜀𝛾 .
Moreover, this effect is more pronounced as 𝜀𝛾 increases.

• The 𝑥 component of the dimensionless average intracellular ve-
locity remains almost unchanged for an open (Fig. 12(a)), or
closed dolipore channel (Fig. 12(b)) regardless the values of the
extracellular phase volume fraction or the viscosity ratio under
consideration here. This is also true for the extracellular fluid
phase (see Fig. 12(c) for the open dolipore channel and 12(d) for
the closed dolipore channel).

• The 𝑥 component of the dimensionless average velocity in the
extracellular phase is always larger (by roughly one order of
magnitude) than that in the intracellular phase.

An interesting advantage of the upscaled momentum transport
model implemented here is the possibility of evaluating the relative
contribution from each of the terms involved in the expression of the
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Table 2
Contribution from each term of the macroscopic flow model to the prediction of the average velocity for different extracellular fluid volume fractions, 𝜀𝛾 , and viscosity ratios,
𝜇∗ = 𝜇𝑟𝑒𝑓𝛽∕𝜇𝑟𝑒𝑓𝛾 .

Open dolipore channel Closed dolipore channel

𝜀𝛾 = 0.3 𝜀𝛾 = 0.65 𝜀𝛾 = 0.3 𝜀𝛾 = 0.65 𝜀𝛾 = 0.3 𝜀𝛾 = 0.65 𝜀𝛾 = 0.3 𝜀𝛾 = 0.65
𝜇∗ = 5 𝜇∗ = 5 𝜇∗ = 19 𝜇∗ = 19 𝜇∗ = 5 𝜇∗ = 5 𝜇∗ = 19 𝜇∗ = 19

⟨𝑣∗𝛽𝑥⟩𝛽 1.72 × 10−7 3.42 × 10−7 5.95 × 10−8 1.05 × 10−7 1.76 × 10−7 3.40 × 10−7 6.05 × 10−8 1.04 × 10−7

Error𝛽 (%) 0.18 2.40 0.12 2.65 0.72 0.07 0.55 0.30
𝜉∗𝛽𝛽 9.41 × 10−8 (54.7%) 1.02 × 10−7 3.35 × 10−8 3.24 × 10−8 9.54 × 10−8 9.76 × 10−8 3.38 × 10−8 3.09 × 10−8

𝜉∗𝛽𝛾 7.78 × 10−8 (45.2%) 2.42 × 10−7 2.59 × 10−8 7.35 × 10−8 8.05 × 10−8 2.45 × 10−7 2.67 × 10−8 7.41 × 10−8

𝜔∗
𝛽 −1.64 × 10−19 (≪0.1%) −5.49 × 10−16 7.88 × 10−21 5.25 × 10−17 5.30 × 10−20 −5.15 × 10−16 −5.74 × 10−21 5.30 × 10−17

⟨𝑣∗𝛾𝑥⟩𝛾 4.47 × 10−7 6.38 × 10−6 3.08 × 10−7 5.36 × 10−6 4.60 × 10−7 6.59 × 10−6 3.16 × 10−7 5.53 × 10−6

Error𝛾 (%) 0.18 2.40 0.12 2.65 0.72 0.07 0.55 0.30
𝜉∗𝛾𝛾 3.70 × 10−7 (82.8%) 6.14 × 10−6 2.83 × 10−7 5.28 × 10−6 3.80 × 10−7 6.36 × 10−6 2.89 × 10−7 5.46 × 10−6

𝜉∗𝛾𝛽 7.72 × 10−8 (17.2%) 2.40 × 10−7 2.57 × 10−8 7.29 × 10−8 8.00 × 10−8 2.41 × 10−7 2.65 × 10−8 7.27 × 10−8

𝜔∗
𝛾 8.77 × 10−20 (≪0.1%) 1.17 × 10−15 −2.64 × 10−20 −1.12 × 10−16 6.45 × 10−19 1.31 × 10−15 −4.20 × 10−20 −1.16 × 10−16

The error % is defined as Error𝛼 (%) = 100 × |⟨𝑣𝛼𝑥⟩𝛼𝐷𝑁𝑆 − ⟨𝑣𝛼𝑥⟩𝛼 |∕⟨𝑣𝛼𝑥⟩𝛼𝐷𝑁𝑆 . Here, 𝜉∗𝛼𝛼 and 𝜉∗𝛼𝜅 stand, respectively, for the 𝑥-component of the dominant and coupling Darcy-like
terms. Also, 𝜔∗

𝛼 stands for the 𝑥-component of the interfacial term accounting for inertial effects. 𝑅𝑒𝛾 = 1, 𝑅𝑒𝛽 = 0.1, 𝑛 = 1.2 and 𝜆∗ = 5.

average velocity, and therefore, to identify the major ones and those
which may be negligible. In Table 2, the contribution from each of the
terms of the macroscopic momentum balance equations are reported
for both the intracellular and extracellular phases. These results are
presented for both open and closed dolipore channel configurations,
two values of the volume fraction of the extracellular phase, 𝜀𝛾 = 0.3
and 0.65, and two viscosity ratios, 𝜇∗ = 5 and 19. From Table 2, the
following remarks can be drawn:

1. In all cases under consideration, the major contributions are
from the Darcy-like (dominant and coupling) terms of the macro-
scopic momentum equations as they represent together about
99% of the average velocity.

2. In the intracellular (𝛽) phase, both Darcy-like terms are equally
predominant. For the extracellular (𝛾) phase, the coupling term
is roughly one order of magnitude smaller than that involving
the dominant permeability (corresponding to viscous effects in
this phase) and represents between 82 and 98% of ⟨𝑣𝛾𝑥⟩𝛾 .

3. The interfacial term, in the present case, does not substantially
contribute to the average velocity (its contribution is much less
than 0.1%). This is attributed to the small values of the Reynolds
numbers used in this work, in particular in the homogeneous
core of the mycelial pellet. It is expected for the inertial contri-
bution to play a more relevant role in the zone outside of the
core (hyphal projections), where the Reynolds number usually
takes larger values (Hille et al., 2005).

Since, for the structure and flow conditions considered in this work,
the interfacial inertial term can be neglected in the upscaled model,
the remaining Darcy-like terms could certainly be merged (since the
macroscopic pressure gradients are equal), so that Eq. (10) reduces to
(𝛼, 𝜅 = 𝛽, 𝛾, 𝛼 ≠ 𝜅)

⟨𝐯𝛼⟩𝛼 = −
(

H𝛼𝛼
𝜇𝑟𝑒𝑓𝛼

+
H𝛼𝜅
𝜇𝑟𝑒𝑓𝜅

)

⋅ ∇⟨𝑝⟩. (19)

Here, ∇⟨𝑝⟩ represents the modified pressure gradient within either
the 𝛽 or the 𝛾 phase. Evidently, the above model is mathematically simi-
lar to Darcy’s law, with a modified apparent permeability instead of the
intrinsic permeability. This raises the question of using a much simpler
model with flow only in the extracellular phase, so that the cellular
region is treated as a rigid impervious solid phase. This approximation
is proposed since (as seen in Fig. 11 and Table 2) the extracellular phase
velocity is, in most cases, one order of magnitude larger than that of
the intracellular phase. With this approach, the average velocity in the
extracellular phase, considering a creeping (𝑅𝑒𝛾 = 0) and Newtonian
(𝜇𝑟𝑒𝑓𝛾 = 𝜇𝛾 ) flow, is given by the following macroscopic equation

⟨𝐯𝛾 ⟩𝛾𝐷𝑎𝑟𝑐𝑦 = −
K𝛾
𝜇𝛾

⋅ ∇⟨𝑝⟩, (20)

where K𝛾 is the intrinsic permeability tensor of the porous structure
where the solid (rigid) skeleton is the cellular phase. The intrinsic per-
meability tensor is obtained from the solution of the following closure
problem defined in a periodic unit cell and reported in Appendix A.2.

To evaluate the pertinence of the latter approach, the prediction of
the average velocity in the extracellular phase was computed from both
the single-phase Darcy model (Eq. (20)) and the complete two-phase
flow macroscopic model derived here (Eq. (15), 𝛼 = 𝛾, 𝜅 = 𝛽). This was
performed with the following parameters for the modified Darcy model:
𝑅𝑒𝛾 = 1, 𝑅𝑒𝛽 = 0.1, 𝑛 = 1.2 and 𝜆∗ = 5, with different values of 𝜇∗ and 𝜀𝛾
and for the two dolipore configurations, while, for the classical Darcy
model, the only variable was 𝜀𝛾 . The relative difference between the
two 𝑥-components of the average velocity, taking the velocity obtained
from the modified Darcy approach as the reference, is reported in
Fig. 13. It can be seen that only for the largest values of the viscosity
ratio, 𝜇∗, and smaller volume fractions of the extracellular phase, 𝜀𝛾 ,
the two approaches differ by about 6%. This is indeed expected since,
in these situations where the intracellular phase occupies a large part
of the unit cell and is much more viscous than the 𝛾 phase, it seems
reasonable to consider that the 𝛽 phase behaves as a solid. In all the
other situations the difference increases up to 47%. This is true both
for the open and closed dolipore channel configurations, with a slightly
larger relative difference in the latter case. These results highlight the
pertinence of the two-phase flow model derived in this work and the
role of viscous coupling, in particular, for the prediction of momentum
transport in the extracellular phase.

Finally, it must be mentioned that all the above analyses were
performed with the upscaled model in its dimensionless form. However,
with knowledge of the flow characteristics, (namely, viscosity and
density of both phases and pressure gradient) as well as morphological
properties of the structure (essentially, the curvature of the mycelial
compartment), dimensional values of the macroscopic velocities can be
evaluated for a particular system configuration.

4. Conclusions

In this work, total mass and momentum transport in fungal pellets
were theoretically studied under an effective-medium approach. A
model originally designed for porous media was adapted and imple-
mented to fungal pellets. The governing equations at the microscale
consider the steady and incompressible flow of two non-Newtonian flu-
ids, separated by an interface. This implies regarding the cell membrane
and wall as a dividing surface with structural resistance to momentum
transport. In addition, organelles are assumed to be impervious to mo-
mentum transport and are thus modeled as solid phases. Moreover, the
model statement is versatile in the sense that it allows considering the
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Fig. 13. Comparison in the predictions of the 𝑥-component of the average velocity in the extracellular (𝛾) phase from the upscaled model derived in this work (modified Darcy)
and from the classical Darcy model. Results are reported for a periodic unit cell (a) considering flow between hyphal compartments (i.e., an open dolipore channel) and (b) without
considering flow between compartments (i.e., a closed dolipore channel). The difference percentage is defined as 100 × |⟨𝑣𝛾𝑥⟩𝛾𝐷𝑎𝑟𝑐𝑦 − ⟨𝑣𝛾𝑥⟩𝛾 |∕⟨𝑣𝛾𝑥⟩𝛾 where ⟨𝑣𝛾𝑥⟩𝛾 and ⟨𝑣𝛾𝑥⟩𝛾𝐷𝑎𝑟𝑐𝑦 are
respectively given by Eqs. (15) and (20). Results are reported for 𝜀𝛾 in the range between 0.3 and 0.65 for both models, and for 𝜇∗ = 𝜇𝑟𝑒𝑓𝛽∕𝜇𝑟𝑒𝑓𝛾 between 5 and 19 for the modified
Darcy model. For the latter, the following parameters were used: 𝑅𝑒𝛾 = 1, 𝑅𝑒𝛽 = 0.1. The red line indicates a 5% difference threshold.

dolipore channels to be either open or closed. The resulting upscaled
momentum balance equations (see Eqs. (10)) comprise four terms
namely: two Darcy-like terms (a dominant one and a coupling one), as
well as two interfacial terms accounting for mechanical resistance and
inertial effects. The effective-medium coefficients in these equations
can be predicted from the solution of two adjoint closure problems in
representative periodic unit cells.

The application of the macroscopic model is restricted to homo-
geneous zones of fungal pellets, which were experimentally identified
through microscopic examination of pellets sections of L. trichoder-
mophora as an illustrative example. The geometrical characteristics of
the system required to construct the unit cell for the closure prob-
lems solution were acquired using confocal and electron microscopy.
Although the unit cells were specifically constructed for L. trichoder-
mophora, there are certainly other fungal species that possess similar
topological characteristics, which bestows some generality to the nu-
merical simulations reported here. The macroscopic momentum bal-
ance equations were validated with direct numerical simulations, yield-
ing less than 5% of error in all cases under study. Regardless the
presence or absence of an open dolipore channel, the predicted macro-
scopic velocity in both the intracellular and extracellular phases was
concluded to remain unaltered. This means that the dolipore configura-
tion is unimportant in macroscopic momentum transport. Under the set
of parameters considered here, the numerical results showed that the
interfacial inertial term of the upscaled model did not play a significant
role and thus was neglected with respect to the Darcy-like terms. This
leads to a model having a mathematical structure resembling classical
Darcy’s law (see Eq. (19)). Though mathematically similar in structure,
the predictions of the macroscopic velocity in the extracellular phase
from the two approaches were found to produce significantly different
results (of up to 47%). This leads to the conclusion that classical Darcy’s
law is not adequate, in general, to model momentum transport in fungal
pellets and that the modified Darcy-like model derived here should be
used instead, specially when the hyphae occupy more than 35% of the
pellet volume and/or the intracellular phase is much less viscous than
the extracellular phase.

As a final note, it is worth recalling that the application of the
macroscale model proposed here is bounded by the associated as-
sumptions adopted both in the statement of the microscale model and
through the upscaling process. Certainly, there are many biological sys-
tems of interest that are compatible with these assumptions. These and
other extensions of the derivations will be addressed in future works.

In addition, the results presented here form the basis for studying both
momentum transport at the hyphal projections and mass transport of
species at the pellet core.
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Appendix A

A.1. Modified Darcy closure problems

The closure (or adjoint) problems that arise during the derivation of
the upscaled model for momentum transport in both the extracellular
and intracellular phases (Section 3.3) can be written as follows (see
details in Sánchez-Vargas et al. (2023)) (𝛼 = 𝛽, 𝛾)

Problem I.

∇ ⋅ D𝛼𝛽 = 𝟎, in V𝛼 , (A.1a)

−
𝜌𝛼
𝜇𝑟𝑒𝑓𝛼

𝐯𝛼 ⋅ ∇D𝛼𝛽 = ∇ ⋅ T𝐝𝛼𝛽 + 𝛿
𝐾
𝛼𝛽 I, in V𝛼 , (A.1b)

𝐧𝛽𝛾 ⋅ 𝜇𝑟𝑒𝑓𝛽T𝐝𝛽𝛽 = 𝐧𝛽𝛾 ⋅ 𝜇𝑟𝑒𝑓𝛾T𝐝𝛾𝛽 , at A𝛽𝛾 , (A.1c)

D𝛽𝛽 = D𝛾𝛽 , at A𝛽𝛾 , (A.1d)

D𝛽𝛽 = 𝟎, at A𝛽𝜎 and A𝛽𝑠, (A.1e)

D𝛽𝛽 (𝐫) = D𝛽𝛽 (𝐫 + 𝐥𝑓 ), at A𝛽𝑓 , (A.1f)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = D𝛼𝛽 ,𝐝𝛼𝛽 , (A.1g)

𝐝𝛼𝛽 = 𝟎, at 𝐫0𝛼 . (A.1h)

Problem II.

∇ ⋅ D𝛼𝛾 = 𝟎, in V𝛼 , (A.2a)

−
𝜌𝛼
𝜇𝑟𝑒𝑓𝛼

𝐯𝛼 ⋅ ∇D𝛼𝛾 = ∇ ⋅ T𝐝𝛼𝛾 + 𝛿
𝐾
𝛼𝛾 I, in V𝛼 , (A.2b)

𝐧𝛽𝛾 ⋅ 𝜇𝑟𝑒𝑓𝛽T𝐝𝛽𝛾 = 𝐧𝛽𝛾 ⋅ 𝜇𝑟𝑒𝑓𝛾T𝐝𝛾𝛾 , at A𝛽𝛾 , (A.2c)

D𝛽𝛾 = D𝛾𝛾 , at A𝛽𝛾 , (A.2d)

D𝛽𝛾 = 𝟎, at A𝛽𝜎 and A𝛽𝑠, (A.2e)

D𝛽𝛾 (𝐫) = D𝛽𝛾 (𝐫 + 𝐥𝑓 ), at A𝛽𝑓 , (A.2f)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = D𝛼𝛾 ,𝐝𝛼𝛾 , (A.2g)

𝐝𝛼𝛾 = 𝟎, at 𝐫0𝛼 . (A.2h)

Note that these problems only differ by the location of the source
term, which lies within the intracellular fluid phase in Problem I and
in the extracellular fluid phase in Problem II, as indicated by the use
of the Kronecker delta, 𝛿𝐾𝛼𝜅 . In these problems, the following stress-like
third-order tensor was used (𝛼, 𝜅 = 𝛽, 𝛾)

T𝐝𝛼𝜅 = −I𝐝𝛼𝜅 +
𝜇(𝛤𝛼)
𝜇𝑟𝑒𝑓𝛼

(

∇D𝛼𝜅 + ∇D𝑇 1𝛼𝜅
)

, (A.3)

Here, I is the identity tensor and the superscript 𝑇 1 denotes the trans-
pose of a third-order tensor, which permutes the first two indices, i.e.,
(∇B)𝑇 1𝑖𝑗𝑘 = (∇B)𝑗𝑖𝑘. Similarly to the microscale problem, the boundary
conditions given by Eqs. (A.1h) and (A.2h) are needed in order for
the closure problem to be well posed. In these equations, 𝐫0𝛼 locates
an arbitrary point in the 𝛼 phase.

A.2. Classical Darcy closure problem

The closure problem required to compute the intrinsic permeability
tensor is reported in Whitaker (1999, Chap. 4). It is given by

∇ ⋅ D𝛾 = 𝟎, in V𝛾 , (A.4a)

𝟎 = ∇ ⋅ T𝐝𝛾 + I, in V𝛾 , (A.4b)

D𝛾 = 𝟎, at A𝛽𝛾 , (A.4c)

𝜓(𝐫 + 𝐥𝑖) = 𝜓(𝐫), 𝑖 = 1, 2, 3; 𝜓 = D𝛾 ,𝐝𝛾 , (A.4d)

𝐝𝛾 = 𝟎, at 𝐫0𝛼 , (A.4e)

K𝛾 = ⟨ D𝛾 ⟩𝛾 . (A.4f)

It must be noted that this problem is only defined in the extracellu-
lar phase. This is in contrast with Problems I and II from Appendix A.1
that are defined in each phase, hence composing a two-phase flow
problem.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.jtbi.2024.111853.
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