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Quaternion-based finite-element computation of nonlinear
modes and frequency responses of geometrically exact beam
structures in three dimensions

Marielle Debeurre1 · Aurélien Grolet1 · Olivier Thomas1

Abstract
In this paper, a novel method for computing the nonlinear dynamics of highly flexible slen-
der structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous
work restricted to inplane (2D) deformations. It is based on the geometrically exact beam
model, which is discretized with a finite-element method and solved entirely in the fre-
quency domain with a harmonic balance method (HBM) coupled to an asymptotic numeri-
cal method (ANM) for continuation of periodic solutions. An important consideration is the
parametrization of the rotations of the beam’s cross sections, much more demanding than
in the 2D case. Here, the rotations are parametrized with quaternions, with the advantage
of leading naturally to polynomial nonlinearities in the model, well suited for applying the
ANM. Because of the HBM–ANM framework, this numerical strategy is capable of comput-
ing both the frequency response of the structure under periodic oscillations and its nonlinear
modes (namely its backbone curves and deformed shapes in free conservative oscillations).
To illustrate and validate this strategy, it is used to solve two 3D deformations test cases of
the literature: a cantilever beam and a clamped–clamped beam subjected to one-to-one (1:1)
internal resonance between two companion bending modes in the case of a nearly square
cross section.

Keywords Geometrically exact beam · Geometrical nonlinearities · Highly flexible
structures · Quaternions · Large rotations · Nonlinear modes · 1:1 internal resonance

1 Introduction

In this work, a numerical strategy to compute in the frequency domain the nonlinear dynam-
ics of highly flexible slender beam structures undergoing three-dimensional (3D) deforma-
tions is presented. This work is an extension of previous works: the work of Cottanceau et al.
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[1], which considered the 3D case in statics, and that of Debeurre et al. [2], which restricted
the model to inplane deformations in dynamics. Highly flexible slender beam structures are
commonly found in industrial applications with some examples including rulers, blades,
and flexible wings, and also as elements of multibody systems. Proper modeling of highly
flexible beams structures is paramount since these structures are capable of reaching very
large amplitudes of motion owing to their unique geometry. It is characterized by one di-
mension of the structure (e.g., the length) that is much larger than the other two dimensions
(e.g., the cross section), such that the resulting slender beam has a very low stiffness in
bending and can easily deform up to very large amplitudes. In such cases, the so-called ge-
ometrically exact beam model is well adapted to model the large-amplitude motion of these
structures since it exactly captures the arbitrarily large rotations of the structure’s cross sec-
tions without restriction. In [2], a finite-element discretization of the geometrically exact
beam model restricted to inplane motions (2D, restricted to inplane bending and axial mo-
tion) was derived and solved using a frequency domain-based numerical strategy combining
the harmonic balance method (HBM) with the asymptotic numerical method (ANM) for
continuation of periodic solutions. The present work proposes a natural extension to three-
dimensional deformations, based on the same HBM–ANM strategy.

Accurate representation of the large-amplitude motion of highly flexible structures with
the geometrically exact beam model has been a topic of increasing interest in recent decades.
Based on the foundational work of Reissner [3, 4] and Simo and Vu-Quoc [5, 6], many
works on the geometrically exact model have appeared in the literature [7–12]. Although
different approaches to deriving the equations of motion can be found in the literature, the
final partial differential equations are the same and all introduce a rotation operator. Differ-
ences then arise on how this rotation operator is parametrized (discussed more in the next
paragraph) or on how the continuous equations are discretized and solved. Finite-element
discretizations are most commonly found in the literature [7, 8, 11, 13–24], but other works
utilize techniques such as finite differences [25, 26] or Galerkin techniques [27, 28]. The dis-
crete equations can then be solved either with time integration or in the frequency domain.
Many time domain-based geometrically exact models have been proposed in the literature
[26, 29–34], but models solved with frequency-domain schemes are comparatively lacking.
Frequency-domain solving schemes can be particularly advantageous in modeling the non-
linear dynamics of vibrating systems since they directly target the steady state of the periodic
solution. The series of recent works by Farokhi et al. [27, 28, 35] on highly flexible beams
proposed a frequency-domain solving scheme to target periodic motions, but the proposed
model was limited in scope to cantilever beams. The topic of the current paper is to propose
a frequency domain-based geometrically exact model for the modeling of any general beam
structure.

The characteristic difficulty of geometrically exact models lies in treatment of the rotation
terms [12]. Fixing the motion to the plane, as in [2, 36], allows for the single rotation degree
of freedom to be parametrized with a rotation matrix in a straightforward way. With more
rotation degrees of freedom under consideration, up to three for full 3D motion, rotation-
matrix parametrization has some disadvantages, notably the presence of singularities at cer-
tain locations. Many alternative methods have therefore been proposed in the literature for
the parametrization of rotations in 3D (see, e.g.„ [37]), some of which include Euler angles
and Rodrigues parameters [38], unit quaternions [1, 25, 38–44] or a Lie group framework
[24, 32–34, 45]. In this paper, we choose to parameterize the rotations in 3D using quater-
nions, in large part since they naturally lead to polynomial nonlinearities in the model, ideal
for applying the ANM. Of particular interest (and that has not been done in the literature



to the knowledge of the authors) is solving a quaternion-based formulation of the geometri-
cally exact beam model in the frequency domain in order to target periodic solutions of the
equations of motion. This is precisely the aim of this work.

2 Beam equations in 3D

To begin, the geometrically exact beam equations are derived for motions in 3D in a way
analogous to [2] for plane motions and to [1] for 3D deformations in statics. The derivation
presented here is based on the formulation of Géradin and Cardona [38].

2.1 Beam kinematics in 3D

The geometry of the beam is reduced from the full nonlinear 3D continuum to a 1D con-
tinuum and is described by the series of cross sections through whose centroids passes a
curve termed the “centerline” of the beam. This allows defining the geometrically exact
beam model for which the displacement of any point in the cross section is computed based
on the displacement of the centroid falling along the centerline of the beam in that same
cross section. In three dimensions, 6 degrees of freedom are considered: 3 displacements
or positions of the centerline in the 3 directions considered (the longitudinal direction and
the two perpendicular transverse directions) and 3 rotations governing the orientation of the
cross sections around these directions.

For this geometrically exact beam model, the main assumption is that the deformation
of the cross sections is not considered, so that the cross sections are subjected to rigid-body
motions when the beam deforms. In this work, Timoshenko kinematics is adopted, so that
the effect of shearing is taken into account. This particular kinematics, which includes trans-
verse shear effects, is known to have a larger application range in terms of slenderness of
the geometry and/or of degree of the computed vibration modes, especially with respect to
Euler–Bernoulli (EB) kinematics that neglects shearing (also known as Kirchhoff theory of
rods [11]). However, in this paper, we are interested only in the first low-frequency nonlinear
modes of very slender beams, cases for which EB kinematics would be entirely suitable. Our
choice of Timoshenko kinematics is thus not dictated by the application range of the theory,
but because it enables low-order. finite-element discretizations (EB kinematics requires at
least 3rd-order finite elements, whereas 2nd-order ones are used here, see §4.1). Moreover,
with EB kinematics, the rotation of the cross section must be linked to the transverse dis-
placement field, which in this case would not be straightforward because of the sine/cosine
relations between the quaternions and the cross-sectional rotation.

Consider an elementary portion of a beam illustrated in Fig. 1 for which the initial (unde-
formed and unstressed, reference) configuration can be curved (its centerline is not straight).
Its geometry is defined by the position vector X0(s) = OC′ of the points C ′ of the centerline,
s ∈ R being a curvilinear parameter and O the origin of a fixed (right-handed orthonormal)
global frame (O,ux,uy,uz). Each cross section is orthogonal to the centerline, such that we
define a (right-handed orthonormal) local basis (Ex(s),Ey(s),Ez(s)), with Ex(s) tangent to
the centerline in C ′(s). Then, the position of any point P ′ of the cross section is defined
by the vector C′P′ = yEy + zEz, (y, z) ∈ S ⊂ R

2 being the coordinates of P ′ in the cross
section of domain S .

The possibly curved geometry of the initial configuration is defined by the orientation
of the basis (Ex(s),Ey(s),Ez(s)) with respect to the global basis (ux,uy,uz), defined by



Fig. 1 3D beam kinematics (Color figure online)

a rotation operator R0(s) such that
(
Ex(s),Ey(s),Ez(s)

)= R0(s)
(
ux,uy,uz

)
. As a conse-

quence, C′P′ = R0CP and:

X(s, y, z) = X0(s) + R0(s)CP. (1)

As any cross section of the beam undergoes a rigid-body motion during deformation, the
same logic is kept for defining the deformed (current) configuration of the beam. The de-
formed centerline is defined by the vector x0(s) = OC′′. The orientation of the cross section
is defined by a (right-handed orthonormal) material basis

(
ex(s), ey(s), ez(s)

)
, with ex nor-

mal to the deformed cross section at point C ′′. Note that ex is not necessarily tangent to the
deformed centerline at C ′′ because of the Timoshenko kinematics that allows for transverse
shearing. The orientation of this basis is defined with respect to the virtual straight configu-
ration by the rotation operator R(s), such that

(
ex(s), ey(s), ez(s)

)= R(s)
(
ux,uy,uz

)
. The

position of any point P ′′ of the deformed configuration is then:

x(s, y, z) = x0(s) + R(s)CP. (2)



As a consequence, the position of any point in the deformed configuration is governed
by the two fields x0(s) and R(s). The 3 positions in x0(s) and the 3 rotations governed by
R(s), then, constitute the 6 aforementioned degrees of freedom of the 1D beam model.

If necessary, the displacement field of the centerline between the initial and deformed
configurations can be defined by:

u0 = x0 − X0. (3)

Note that in the 2D model of [2, 36], the displacements are used as the degrees of freedom
in the governing equations, while in [1] the positions are used in the derivation of the gov-
erning equations. For convenience, and in order to remain consistent with the formulation
of Cottanceau et al. [1], the equations are derived in what follows based on the centerline
positions x0, but they can be easily rewritten in terms of the associated displacements u0

using the relation Eq. (3) (see also [38] for derivations of the equations based on both x and
u0).

2.2 Strain measures

In this work, the classical strain measures for the geometrically exact beam are used. They
can be decomposed into two parts [38]: the material measure of deformation of the neutral
axis, denoted � = [�x,�y,�z]T (axial strain �x and the two polarizations of shear strains
�y and �z), and the material measure of curvature related to rotations of the cross sec-
tion, denoted K = [κx, κy, κz]T (torsional curvature κx and the two polarizations of bending
curvature κy and κz). These vectors, with components in the material frame, are obtained
according to:

� = RTx′
0 − RT

0 X′
0 = RTx′

0 − �0, (4a)

K = vect
(
RTR′ − RT

0 R′
0

)= vect
(
RTR′)− K0, (4b)

where (�)′ = ∂(�)/∂s and the vect operator indicates a transformation from a 3 × 3 skew-
symmetric matrix to a 3-component vector:

ã =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ ⇔ a = vect(̃a) =
⎡

⎣
a1

a2

a3

⎤

⎦ . (5)

�0 and K0 represent, respectively, the initial deformation and initial curvatures of the
beam in the unloaded configuration. These terms can be computed from the initial configu-
ration as �0 = RT

0 X′
0 and K0 = RT

0 R′
0.

Equations (4a)–(4b) can be obtained in several ways. In so-called Cosserat theories, they
are derived by differentiation of x, R, x0, and R0 with respect to s [38, 46]. They can also be
obtained as the strain measures energetically conjugated to the generalized internal stresses
(internal forces and moments), as originally introduced by Reissner [3, 4, 7]. Finally, they
are also the result of a more direct continuum mechanics procedure since they appear in the
tensor components of a consistent linearization of the Green–Lagrange strain tensor by use
of a pseudopolar decomposition of the deformation gradient (see [36] in the 2D case for
initially straight configuration, [38] for the 3D case and [11, 47, 48] for an arbitrary curved
initial configuration). This consistent linearization allows for the second-order terms in the
strains, independent of the cross-sectional rotation that is kept exact, to be neglected. These
strain measures appear to coincide with Biot strain measures [36, 49].



For the sake of simplicity, in the remainder of the paper only initially straight beams
whose centerlines are aligned with the ux -axis in the initial configuration are considered.
In this case, R0 = Id , i.e.,

(
Ex(s),Ey(s),Ez(s)

) = (ux,uy,uz

)
and the computation of the

initial strain and curvature is straightforward, leading to:

�0 = u1 =
⎡

⎣
1
0
0

⎤

⎦ and K0 = 0. (6)

2.3 Constitutive law

Each cross section is subjected to an internal force vector N(s) and moment vector M(s)

(expressed in the material frame) that correspond to the integral over the cross section of the
Biot stresses [36]. In this work, the stresses are related to the strains according to a linear
elastic Kirchhoff–Saint-Venant constitutive law for homogeneous and isotropic materials
as in [2]. This leads to a linear relation between the internal forces (N,M) and the strains
(�,K) according to the following constitutive relation:

N = CN� and M = CMK, (7)

where the 3 × 3 diagonal matrices CN and CM are given as:

CN = diag
(
EA, kyGA, kzGA

)
and CM = diag

(
GJ, EIy, EIz

)
, (8)

where A is the area of the cross section, E is Young’s modulus, G = E/[2(1 + ν)] is the
shear modulus (ν is Poisson’s ratio), ky and kz are the shear correction coefficients in direc-
tions ey and ez, J is the polar second moment of area (that can include warping effects for
twisting deformations), and Iy, Iz are the second moments of area in the ey and ez direc-
tions. If the cross section of the beam is variable, then the matrices CN and CM depend on
the position along the beam. In the remainder of this work, only beams with constant cross
sections are considered, so that the matrices CN and CM remain constant.

2.4 Computation of the variations

In this section, computation of the variations of the various terms is discussed, variations
that are needed in the derivation of the equations of motions are discussed in Sect. 2.5.

2.4.1 Variation of the rotation operator

In the remainder of this section, we will consider a classical parametrization for the rotation
operator R ∈ SO(3) using three angles of rotation [37]. The variation of the rotation operator,
denoted δR, can be expressed using Lie group theory [38] as:

δR = Rδ�̃, (9)

where δ�̃ is a 3 × 3 skew-symmetric matrix (an element of the Lie algebra of the rotation
group SO(3)) that can be converted to a 3 × 1 vector δ� by the definition:

δ� = vect(δ�̃). (10)



The vector δ� corresponds to an infinitesimal angular displacement, with components
in the material frame. This infinitesimal angular variation vector can also be expressed in
the global frame (denoted by δθ ) by using the following transformation:

δθ = Rδ�. (11)

2.4.2 Variations of the strains and curvature

Consider first the variation of the strains denoted δ�. Using the definition in Eq. (4a)–(4b),
Eq. (9), and the fact that the cross (vector) product of two vectors is equivalent to the multi-
plication with a skew-symmetric matrix as:

a × b = ã b, ∀a,b ∈R
3, (12)

the variation is computed as:

δ� = (� + �0) × δ� + RT δx′
0. (13)

Next, the variation of the curvature δK is obtained by equating the derivative (δR)′ with
the variation δ(R′). This leads to the following relation, expressed in terms of 3 × 3 skew-
symmetric matrices as:

δK̃ = δ�̃
′ + K̃δ�̃ − δ�̃K̃. (14)

The above relation can be expressed in terms of 3 × 1 vectors, leading to the following
expression for the variation of the curvature vector:

δK = δ�′ + K × δ�. (15)

2.4.3 Velocity and acceleration fields

By replacing the variation operator δ with the differential operator d , the variation of the
rotation operator can be used to compute the derivation of the rotation matrix with rela-
tion to time t : Ṙ = ∂R/∂t = R�̃, leading to the definition of the rotation velocity matrix
�̃ = ∂�̃/∂t = RTṘ, associated to the rotation velocity vector � (expressed in the material
frame):

� = vect(�̃) = vect(RT Ṙ) = ∂�

∂t
. (16)

Using the transformation definition in Eq. (2) and the variation of the rotation matrix as
presented in Sect. 2.4.1, the velocity ẋ of a point P of the beam is written (w.r.t. the global
frame):

ẋ = ẋ0 + Ṙ CP = ẋ0 + R �̃ CP = ẋ0 + R (� × CP), (17)

where �̃ is the rotation velocity matrix and � is the associated rotation velocity vector. The
acceleration field ẍ (w.r.t. the global frame) is then found as:

ẍ = ẍ0 + Ṙ �̃ CP + R ˙̃� CP = ẍ0 + R �̃
2

CP + R ˙̃� CP

= ẍ0 + R
[
� × (� × CP) + �̇ × CP

]
, (18)

where �̇ is the vector of angular acceleration (given in the material frame).



As explained in §2.1, this work aims at computing the response of very slender structures
around their first low-frequency resonances. In this situation, in the case of a linear model,
the rotary inertia is known to play a negligible role and is often neglected when using Euler–
Bernoulli kinematics. This is justified by analyzing the dispersion curves of bending waves
for several models (see [50] for beams and [51] for plates), showing that the rotary inertia
correction is of a higher order than the correction due to the inclusion of transverse shear-
ing. The same conclusion applies to geometrically nonlinear beams as analyzed in [52]. An
empirical justification for this choice is also provided in B, which demonstrates that there is
no noticeable difference in the backbone curve of the first mode of a cantilever beam with
and without inclusion of the rotary inertia. For these reasons, and because it simplifies the
computations by yielding solely linear inertia forces in the discretized model, we therefore
choose to neglect the rotary inertia of the cross sections. In this case, the expression for the
acceleration field simplifies to:

ẍ = ẍ0. (19)

2.5 Principle of virtual work and weak form of the equations of motion

In this section, the weak form of the geometrically exact beam equations of motion is derived
by making use of the principle of virtual work. It states that for any virtual variation of the
displacement fields δx, the sum of the virtual work of the internal forces and the virtual work
of the external forces is equal to the virtual work of the inertial (acceleration) forces:

δWi + δWe = δWa ∀δx, (20)

where δWa is the virtual work of the inertial forces, δWi that of the internal forces, and δWe

that of the external forces.
Following the definition of the displacement field x given in Eq. (2), it can be seen that

the variation δx involves the variation of the centerline displacement δx0 and the variation
of the rotation matrix δR (or equivalently the angular variation vector δ�). The variation is
expressed as follows:

δx = δx0 + δR CP = δx0 + Rδ�̃CP = δx0 + R(δ� × CP). (21)

Based on the kinematics of the geometrically exact beam (Sect. 2.1), after integration
over the cross section the virtual works of Eq. (20) are written as [38]:

δWa =
∫

V

ẍT δx dV =
∫ L

0

(
ρAẍT

0δx0
)

ds +
∫ L

0

(
(J�̇ + � × (J�))Tδ�

)
ds

≈
∫ L

0

(
ρAẍT

0δx0

)
ds, (22a)

δWi = −
∫ L

0

(
NTδ� + MTδK

)
ds, (22b)

δWe =
∫ L

0

(
nT

e δx0 + mT
e δθ
)

ds + [fT
e δx0

]L
0

+ [cT
e δθ
]L

0
, (22c)

where L is the length of the beam, A is the area of the cross section, ρ is the density of
the material, J is the inertia tensor of the cross section (expressed in the material basis); ne



and me are the external forces and moments per unit length applied on the current config-
uration; fe and ce are the external applied force and moment at the boundaries of the beam
in the current configuration, in s = 0,L; δx0 is the displacement variation of the center line;
δ� and δθ = Rδ� are the variation of angular displacements, expressed, respectively, in
the material basis and in the global basis. These last two vectors are required since some
variables are naturally expressed in the material frame (N, M, �, K, �), whereas others are
naturally expressed in the global frame (ne , me , fe , ce).

The weak form of the equations of motion for the geometrically exact beam is then
derived by substituting the expressions for the variations into the principle of virtual work
(and neglecting rotational inertia):

∫ L

0

[
NT RT δx′

0 + (ρAẍT
0 − nT

e

)
δx0 + MTδ�′ + ((N × (� + �0))

T

+ (M × K)T − mT
e R
)
δ�
]
ds

+ [fT
e δx0

]L
0

+ [cT
e Rδ�

]L
0

= 0,

(23)

which can be rewritten in the form of a dot product as:

∫ L

0

⎡

⎢
⎢
⎣

RN
ρAẍ0 − ne

M(
N × (� + �0) + M × K − RT me

)

⎤

⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

δx′
0

δx0

δ�′

δ�

⎤

⎥
⎥
⎦ds + [fT

e δx0

]L
0

+ [(RTce)
Tδ�

]L
0

= 0. (24)

3 Rotation parametrization with quaternions

In this section, the selected method for parametrization of rotations in 3D is introduced,
which consists in using unit quaternions. After presenting some generalities regarding
quaternions and this method of rotation representation, the weak form of the equations of
motion as derived in Eq. (24) is rewritten using this parametrization style.

3.1 Definition and basic properties of the quaternion algebra

Some basic properties of quaternion algebra used in the remainder of this paper are presented
in this section. The interested reader is referred to [38, 39, 42, 53] (and the references cited
therein) for more details on the mathematics of quaternion algebra.

The quaternions set, denoted H, forms a noncommutative algebra of dimension 4 that
is spanned by the basis (1, i, j, k) with the properties i2 = j 2 = k2 = ijk = −1, see,
e.g., [39]. In what follows, quaternion quantities are represented using the hat symbol �̂. A
quaternion q̂ can be seen as a “4-dimensional complex number,” represented by the sum of
a scalar part (q0) and vector part (q = [q1 q2 q3

]T
) as:

q̂ = q0 + q = q0 + q1i + q2j + q3k. (25)

In quaternion algebra there exists an involution, equivalent to taking the conjugate of a
quaternion and indicated with the asterisk �∗, such that for any general quaternion q̂, q̂∗ is



defined as:

q̂∗ = q0 − q. (26)

Quaternion addition is straightforward and can be seen as the addition of vectors of
R

4. On the other hand, quaternion multiplication is more complex and is defined for two
quaternions p̂ and q̂ as a consequence of a standard multiplication of two quaternions de-
fined by Eq. (25) along with the properties of (i, j, k). It is denoted by p̂ q̂ and defined
as:

p̂ q̂ = (p0q0 − p · q) + (q0p + p0q + p × q), (27)

where p · q (resp., p × q) is the dot product (resp., the cross product) of vectors
of R

3. Note that quaternion multiplication is noncommutative (i.e., in general p̂ q̂ 
=
q̂ p̂).

To carry out computations in practice, it can be convenient to use a 4 × 1 vector to repre-
sent a quaternion, e.g., q̂ = [q0 q1 q2 q3

]T = [q0 qT
]T

. This is the approach used in
the code developed in this work and tested later in Sect. 5. In this case, quaternion multipli-
cations are carried out as matrix multiplications making use of the transformations denoted
�L and �R (“left” and “right” multiplications, respectively), such that the multiplication of
quaternions is represented in the following way:

â b̂ = �L(â)b̂ =
[
a0 −aT

a a0I3 + ã

][
b0

b

]

=

⎡

⎢⎢
⎣

a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

b0

b1

b2

b3

⎤

⎥⎥
⎦ , (28a)

â b̂ = �R(b̂)â =
[
b0 −bT

b b0I3 − b̃

][
a0

a

]

=

⎡

⎢⎢
⎣

b0 −b1 −b2 −b3

b1 b0 b3 −b2

b2 −b3 b0 b1

b3 b2 −b1 b0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

a0

a1

a2

a3

⎤

⎥⎥
⎦ , (28b)

where ã and b̃ are the 3 × 3 skew-symmetric matrices associated to the 3 × 1 vectors a and
b. The norm of a quaternion can be defined as |q̂| = √q̂∗ q̂ = √q̂ · q̂, where q̂ · q̂ is the
regular dot product of vectors of R4.

In the special case where the scalar part of the quaternion q̂ is zero (i.e., q0 = 0), q̂ is
called a pure quaternion (also called a vector quaternion). Pure quaternions are images of
the natural injection of R3 into H such that a pure quaterion q̂ = 0 · 1 + q is associated to a
3 × 1 vector q. Conversely, a pure quaternion (or actually any quaternion) can be projected
from H to R

3 through the operation defined here as vec(�) : H �→ R
3, so that vec(â) = a,

i.e., an extraction of the vector part of the quaternion. These properties are used extensively
in transforming quantities in the R

3 space in the equations of motion Eqs. (22a)–(22c) to
quaternions in R

4 and vice versa.
Finally, an extension of the cross product of two vectors p and q of R3 into the set H is

defined by considering the pure quaternion made out of the vector part of the product of the



two associated pure quaternions p̂ = 0 + p and q̂ = 0 + q:

p̂ × q = p̂ × q̂ = v̂ec(p̂ q̂). (29)

3.2 Rotations written with quaternions

Quaternions represent an alternative to using classical Euler parameters to describe finite
rotations [38]. The set of unit quaternions, i.e., quaternions with unit norm |q̂| = q̂ · q̂ = 1,
forms a (multiplicative) subgroup of the quaternion group that is able to represent rotation in
3D Euclidean space. The use of quaternions to describe rotations is particularly convenient
due to the ability to describe the rotations with only 4 parameters (versus the 9 components
of a classical rotation matrix) while remaining exactly equivalent to it. This ability can lead
to greater computational efficiency in computing the rotations, since far fewer operations
(multiplications and additions) are needed [53].

A general unit quaternion can be written under the following form:

q̂ = cos

(
θ

2

)
+ sin

(
θ

2

)
n = [q0 q1 q2 q3

]T
, (30)

where n is a unit vector. As Eq. (30) represents a unit quaternion, a unity constraint tied to q̂
is introduced, since the four components of q̂ are not independent. The unit quaternion can
be used to represent a rotation of angle θ around the axis oriented by the vector n. With q̂
defined in Eq. (30), the rotation operation R to rotate a vector p into the vector pr such that
pr = Rp is rewritten in quaternion algebra as:

p̂r = q̂ p̂ q̂∗. (31)

A key observation is made at this point: if p̂ is a pure quaternion (p0 = 0) and q̂ a
unit quaternion, then p̂r is also a pure quaternion and vec(p̂r ) = pr is the rotated vector
beginning from p = vec(p̂). This observation becomes useful in the next section when the
variables defined as vectors in Sect. 2 are rewritten as pure quaternions in the governing
equations.

Using the same logic, an opposite rotation to rotate pr back into p, or p = RTpr , is written
in quaternion algebra as:

p̂ = q̂∗ p̂r q̂. (32)

The rotation operations in quaternion formulation as defined in Eqs. (31) and (32) can
then be rewritten as matrix multiplications in the form:

p̂r = q̂ p̂ q̂∗ = �R(q̂∗)�L(q̂)
︸ ︷︷ ︸

R

p̂, (33a)

p̂ = q̂∗ p̂r q̂ = �R(q̂)�L(q̂∗)
︸ ︷︷ ︸

RT

p̂r . (33b)

Based on the 4 components of the unit quaternion q̂ (Eq. (30)) and using the operations
�L

(
q̂
)

and �R

(
q̂∗), it is shown in [53] that the equivalent 9 components of R as a 3D

rotation matrix can be written as:

R = Rq̂ =
⎡

⎣
q2

0 + q2
1 − q2

2 − q2
3 2 (−q0q3 + q1q2) 2 (q0q2 + q1q3)

2 (q0q3 + q2q1) q2
0 − q2

1 + q2
2 − q2

3 2 (−q0q1 + q2q3)

2 (−q0q2 + q3q1) 2 (q0q1 + q3q2) q2
0 − q2

1 − q2
2 + q2

3

⎤

⎦ , (34)



which underscores the storage efficiency of the 4-component quaternion (Eq. (30)) by com-
parison.

3.3 Beam equations rewritten with quaternions

In this section, the principle of virtual work, derived in the previous section, is rewritten
using unit quaternions to represent rotations. In what follows, all vector quantities (belong-
ing to R

3) defined in Sect. 2 are replaced with their pure quaternion counterparts using the
canonical injection from R

3 to H. For example, the strain vector � is replaced with the pure
quaternion �̂, defined as �̂ = [0 �x �y �z

]T
.

The 3D equations of motion obtained in this section can, furthermore, be reduced to
the case of a 2D beam problem (inplane motion) by restricting the appropriate degrees of
freedom. The 2D equations of motion based on the quaternion parametrization are derived
in A.

3.3.1 Strain measure, variation, and constitutive law written with quaternions

Using a unit quaternion q̂ to represent the rotation operation as shown in Eqs. (31), (32), and
(33a)–(33b), the strains �̂ and curvatures K̂ are written in the form of pure quaternions as:

�̂ = q̂∗x̂′
0q̂ − �̂0, (35a)

K̂ = 2q̂∗q̂′ − K̂0. (35b)

Taking the variation of these expressions leads to:

δ�̂ = 2(�̂ + �̂0)q̂∗δq̂ + q̂∗δx̂′
0q̂, (36a)

δK̂ = 2δq̂∗q̂′ + 2q̂∗δq̂′ = q̂∗(2δq̂q̂∗)′q̂. (36b)

Comparing Eqs. (36a)–(36b) to the expressions of the variations computed in Sect. 2.4
(using a rotation matrix R), the relation between the variation of the angles δ�̂ (seen as a
pure quaternion) and the variation of the unit quaternion δq̂ is identified as (see also [1]):

δ�̂ = 2q̂∗δq̂, (37)

or equivalently in the global frame (recall that δθ = Rδ�):

δθ̂ = q̂δ�̂q̂∗ = 2δq̂q̂∗. (38)

The expression for δ�̂
′
written in terms of quaternions is then derived as:

δ�̂
′ = 2(q̂∗)′δq̂ + 2q̂∗δq̂′. (39)

A formal relation between the variations using rotation matrices and the variations using
unit quaternions is then found to be:

⎡

⎢
⎢
⎣

δx̂′
0

δx̂0

δ�̂
′

δ�̂

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 2q̂∗ 2q̂′∗

0 0 0 2q̂∗

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δx̂′
0

δx̂0

δq̂′
δq̂

⎤

⎥
⎥
⎦ . (40)



The constitutive relation Eq. (7) can be rewritten directly in terms of quaternions as:

N̂ = ĈN �̂ and M̂ = ĈMK̂, (41)

where the 4 × 4 diagonal matrices ĈN and ĈM are given by:

ĈN = diag
(

0, EA, kyGA, kzGA
)

and ĈM = diag
(

0, GJ, EIy, EIz

)
.

(42)

3.3.2 Principle of virtual work

The principle of virtual work can now be rewritten in terms of quaternion variables. For
this, every 3 × 1 vector of R3 is replaced with its associated pure quaternion in H. Then,
the virtual work of the acceleration forces δWa (recalling that the rotary inertia of the cross
sections is neglected in this study) is rewritten as:

δWa =
∫ L

0
ρA ¨̂xT

0δx̂0ds. (43)

The virtual work of the internal forces δWi is likewise rewritten as:

δWi = −
∫ L

0

(
N̂Tδ�̂ + M̂TδK̂

)
ds. (44)

Finally, the virtual work of the external forces δWe is rewritten as:

δWe =
∫ L

0

(
n̂T

e δx̂0 + m̂T
e (2δq̂q̂∗)

)
ds +

[
f̂T
e δx̂0

]L

0
+ [ĉT

e (2δq̂q̂∗)
]L

0
. (45)

In addition to δWa , δWi , and δWe , the unity constraint for a unit quaternion q̂ represent-
ing a rotation must be considered, i.e., q̂ · q̂−1 = 0. For this, a Lagrange multiplier μ = μ(s)

is introduced with the virtual work of the constraint δWμ defined as [1, 42]:

δWμ =
∫ L

0
δ
(
μ
(
q̂ · q̂ − 1

))
ds =

∫ L

0

((
q̂ · q̂ − 1

)
δμ + 2μq̂Tδq̂

)
ds. (46)

The principle of virtual work then takes the form [37]:

δWa − δWi − δWe + δWμ = 0, ∀δx, δμ. (47)

In order to derive an explicit expression for the principle of virtual work as in Sect. 2.5,
the vector quantities are replaced with their pure quaternion counterparts in Eq. (24), the
rotation operator Rx is replaced with its quaternion counterpart q̂x̂q̂∗ and the relation in
Eq. (40) is introduced along with the virtual work of the constraint. Combining everything,
the following expression is derived:

∫ L

0

⎡

⎢⎢
⎢
⎣

q̂N̂q̂∗

ρA ¨̂x0 − n̂e

M̂(
N̂ × (�̂ + �̂0) + M̂ × K̂ − q̂∗m̂eq̂

)

⎤

⎥⎥
⎥
⎦

T ⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 2q̂∗ 2q̂′∗

0 0 0 2q̂∗

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

δx̂′
0

δx̂0

δq̂′
δq̂

⎤

⎥
⎥
⎦ds



+
∫ L

0

((
q̂ · q̂ − 1

)
δμ + 2μq̂Tδq̂

)
ds = 0, (48)

which can be rewritten as:

∫ L

0

⎡

⎢⎢
⎢⎢
⎢
⎣

q̂N̂q̂∗

ρA ¨̂x0 − n̂e

2q̂M̂

2q̂′M̂ + 2q̂
(

N̂ × (�̂ + �̂0) + (M̂ × K̂)
)

+ 2μq̂ − 2m̂eq̂

q̂ · q̂ − 1

⎤

⎥⎥
⎥⎥
⎥
⎦

T ⎡

⎢
⎢⎢
⎢
⎣

δx̂′
0

δx̂0

δq̂′
δq̂
δμ

⎤

⎥
⎥⎥
⎥
⎦

ds = 0. (49)

Finally, since x̂0, N̂ and n̂e are pure quaternions, they can be reduced by discarding their
scalar parts so that Eq. (49) is rewritten in terms of the 3 × 1 vectors x0 (and its derivative
x′

0 and their respective variations), N and ne as:

∫ L

0

⎡

⎢⎢
⎢⎢
⎢
⎣

Rq̂N
ρAẍ0 − ne

2q̂M̂

2q̂′M̂ + 2q̂
(

N̂ × (�̂ + �̂0) + (M̂ × K̂)
)

+ 2μq̂ − 2m̂eq̂

q̂ · q̂ − 1

⎤

⎥⎥
⎥⎥
⎥
⎦

T ⎡

⎢
⎢⎢
⎢
⎣

δx′
0

δx0

δq̂′
δq̂
δμ

⎤

⎥
⎥⎥
⎥
⎦

ds = 0, (50)

where Rq̂ is the rotation matrix expressed in terms of the components of the quaternion q̂ as
given in Eq. (34), verifying the property Rq̂N = vec(q̂N̂q̂∗).

4 Discretization into finite elements and resolution procedure

Next, in this section, discretization of the geometrically exact beam problem with unit
quaternion description of the rotations based on the finite-element (FE) method is presented.
In addition, some important details related to the solving procedure based on the Asymptotic
Numerical Method (ANM) are described.

4.1 Definition of the FE interpolation

In general, quaternions/rotations, which are multiplicative quantities, cannot be properly
interpolated additively [7]. Rather than using more complex interpolations (e.g., interpola-
tion on the special Euclidean group SE(3) that respects the multiplicativity of the rotations
[24, 33]), we choose instead to rely on a quadratic interpolation for its ease of implementa-
tion. This can lead to small errors due to loss of objectivity with polynomial interpolations
[7], but the errors are minimized by using a sufficiently refined mesh.

The beam is discretized into Ne finite elements of length Le with two boundary nodes and
one internal node equidistant from the two boundary nodes (recall the quadratic interpola-
tion). At each node, there are 8 degrees of freedom (dof) corresponding to the displacement
of the centerline x0 (3 dof), the quaternion used to describe the rotation of the cross section
q̂ (4 dof) and the Lagrange multiplier μ (1 dof). For a given element, the interpolation of the
various fields is written as:

⎡

⎣
xe

0(s, t)

q̂e(s, t)

μe(s, t)

⎤

⎦= P(s)ze(t), ∀s ∈ [0 Le], (51)



where P(s) is the interpolation matrix (of size 8 × 24) and ze(t) is the vector of element dof
(of size 24 × 1) defined as:

ze = [xT
0,1 q̂T

1 μ1
︸ ︷︷ ︸

node 1

xT
0,2 q̂T

2 μ2
︸ ︷︷ ︸

node 2

xT
0,3 q̂T

3 μ3
︸ ︷︷ ︸

node 3

]T. (52)

The interpolation matrix P(s) can be conveniently written as:

P(s) = [N1(s)I8, N2(s)I8, N3(s)I8
]
, (53)

where I8 represents the 8 × 8 identity matrix and N1, N2, N3 are the quadratic shape func-
tions, defined over a given element of length Le as, ∀s ∈ [0 Le]:

N1(s) = 2
( s

Le

)2 − 3
( s

Le

)
+ 1, (54a)

N2(s) = −4
( s

Le

)2 + 4
( s

Le

)
, (54b)

N3(s) = 2
( s

Le

)2 −
( s

Le

)
. (54c)

The space derivatives are then defined as:

⎡

⎣
xe

0
′(s, t)

q̂e ′(s, t)
μe ′(s, t)

⎤

⎦= P′(s)ze(t) = [N ′
1(s)I8 N ′

2(s)I8 N ′
3(s)I8

]
ze(t). (55)

The variation of the fields (and their derivatives) over a single element can be rewritten
in matrix form as:

⎡

⎢⎢⎢
⎢
⎣

δxe
0
′

δxe
0

δq̂e ′
δq̂e

δμe

⎤

⎥⎥⎥
⎥
⎦

= Q(s)δze, (56)

where δze is the variation of the element degrees of freedom, and where the interpolation
matrix Q(s) (of size 15 × 24) is defined as:

Q(s) =

⎡

⎢⎢
⎢⎢
⎣

N ′
1I3 0 0 N ′

2I3 0 0 N ′
3I3 0 0

N1I3 0 0 N2I3 0 0 N3I3 0 0
0 N ′

1I4 0 0 N ′
2I4 0 0 N ′

3I4 0
0 N1I4 0 0 N2I4 0 0 N3I4 0
0 0 N1 0 0 N2 0 0 N3

⎤

⎥⎥
⎥⎥
⎦

, (57)

where In represents the n × n identity matrix.

4.2 Principle of virtual work and elementary equations of motion

Beginning from the expression of the principle of virtual work given in Eq. (50), the elemen-
tary fields and the discretization are introduced by transforming the integral over the entire
beam length into a sum of integrals over each individual element. Incorporating Eq. (56),



the principle of virtual work given in Eq. (50) is written (for only a single element for the
sake of simplicity):

(δze)T

∫ Le

0
Q(s)T

⎛

⎜
⎜⎜⎜
⎜
⎝

⎡

⎢⎢
⎢⎢
⎣

0
ρAẍe

0
0
0
0

⎤

⎥⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢⎢
⎢
⎣

Re
q̂e Ne

0
2q̂eM̂e

2q̂e
′
M̂e + 2q̂e

(
N̂e × (�̂

e + �̂0
e
) + (M̂e × K̂e)

)

0

⎤

⎥
⎥⎥⎥
⎥
⎦

+

⎡

⎢
⎢⎢
⎢
⎣

0
−ne

e

0
−2m̂e

eq̂e

0

⎤

⎥
⎥⎥
⎥
⎦

+

⎡

⎢
⎢⎢
⎢
⎣

0
0
0

2μeq̂e

q̂e · q̂e − 1

⎤

⎥
⎥⎥
⎥
⎦

⎞

⎟
⎟⎟
⎟
⎠

ds = 0. (58)

With the previous relation holding for any δze , the equation of motion for a single element
can be written as:

Fe
a + Fe

i + Fe
μ = Fe

e, (59)

where Fe
a , Fe

i , Fe
μ, and Fe

e are, respectively, the inertial forces, the internal forces, the con-
straint forces, and the external forces acting over the element and defined hereafter.

The inertial force vector Fe
a is defined as:

Fe
a =

∫ Le

0
Q(s)T

⎡

⎢⎢
⎢⎢
⎣

0
ρAẍe

0
0
0
0

⎤

⎥⎥
⎥⎥
⎦

ds =

⎛

⎜⎜
⎜⎜
⎝

∫ Le

0
ρAQ(s)T

⎡

⎢⎢
⎢⎢
⎣

0 0 0 0 0
0 I3 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎦

Q(s)ds

⎞

⎟⎟
⎟⎟
⎠

z̈e

=M
e z̈e, (60)

where M
e is the mass matrix of the system (of size 24 × 24), which is found after (exact)

integration over the element to be:

M
e = ρALe

30

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

4I3 0 0 2I3 0 0 −I3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2I3 0 0 16I3 0 0 2I3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−I3 0 0 2I3 0 0 4I3 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (61)

Recall that the Lagrange multiplier μ is only a mathematical parameter introduced to
impose the unity constraint tied to q̂ and therefore contributes no mass. Because of the
introduction of μ, the system is a differential-algebraic system of equations (DAE) and
therefore has a singular mass matrix. In addition, the rotational inertia of the cross sections
is neglected, an additional singularity is created (there are empty rows and columns in the
mass matrix at positions associated to quaternions degree of freedom).



Next, the internal force vector Fe
i , the constraint force vector Fe

μ, and the external force
vector Fe

e are written under a common form Fe
α (with α = i, e,μ) as:

Fe
α =

∫ Le

0
Q(s)T feα(z

e)ds, (62)

where:

fei (z
e) =

⎡

⎢
⎢⎢
⎢⎢
⎣

Re
q̂e Ne

0
2q̂eM̂e

2q̂e
′
M̂e + 2q̂e

(
N̂e × (�̂

e + �̂0
e
) + (M̂e × K̂e)

)

0

⎤

⎥
⎥⎥
⎥⎥
⎦

,

fee(z
e) =

⎡

⎢
⎢⎢
⎢
⎣

0
ne

e

0
2m̂e

eq̂e

0

⎤

⎥
⎥⎥
⎥
⎦

, feμ(ze) =

⎡

⎢
⎢⎢
⎢
⎣

0
0
0

2μeq̂e

q̂e · q̂e − 1

⎤

⎥
⎥⎥
⎥
⎦

.

(63)

In order to avoid the effect known as shear locking associated with Timoshenko beam
models, the integral in Eq. (62) is evaluated with (two-point) reduced Gaussian integration
(the two points stemming from the use of quadratic shape functions) [54]. For a 3-node

element of length Le , the Gauss points are located at abscissa s1 = Le

2

(
1 − 1√

3

)
and s2 =

Le

2

(
1 + 1√

3

)
. In this case, Fe

α is computed as:

Fe
α =

∫ Le

0
QTfeα(z

e)ds ≈ Le

2

[
QT(s1)feα(z

e(s1)) + QT(s2)feα(z
e(s2))

]
. (64)

Having determined the expressions for the elementary matrices and force vectors, the
system of equations for the full structure can now be assembled. We introduce the vector z,
of size 8Nn × 1, which gathers all nodal degrees of freedom of the structure:

z = [xT
0,1 q̂T

1 μ1 xT
0,2 q̂T

2 μ2 . . . xT
0,Nn

q̂T
Nn

μNn

]T
. (65)

After assembly of the various elementary force vectors, the equations of motion for the
discretized beam take the following general form, where a Rayleigh damping has been a
posteriori introduced:

Mz̈ +Dż + Fint(z) = Fext, (66)

where M is the mass matrix of the full system (of size 8Nn × 8Nn and denoted with double
bars so as not to be confused with the internal moment vector), D is the linear Rayleigh
damping matrix, Fint = Fi +Fμ is the internal force vector (taking into account the constraint
forces), and Fext is the external forces vector.

4.3 Quadratic recast of the 3D system

The harmonic balance method–asymptotic numerical method numerical strategy for contin-
uation of periodic solutions, already implemented in the software MANLAB, is used here in



the same way as in the 2D case of [2]. This strategy enables direct computation of the forced
response of Eq. (66) under periodic excitation (Fext(t) is time periodic) or the nonlinear
modes (the solution to the underlying free conservative system of Eq. (66)).

In the MANLAB formalism, the input governing equation of the dynamical problem
should be rewritten in the form of a differential-algebraic system of equations (DAE) with
at most quadratic nonlinearities [55, 56]. Once the quadratic DAE is defined, the harmonic
balance method is applied, leading to a set of algebraic equations depending on a parameter
(usually the angular frequency). The asymptotic numerical method is applied to solve the
algebraic system [57], leading to solutions in the form of parametrized curves (each variable
of the algebraic system and the angular frequency are expressed as a power series of a con-
tinuation parameter). The quadratic DAE formalism allows for the ability to deal with a large
variety of nonlinearities, provided that the original dynamics can be expressed in the form
of a quadratic DAE through a procedure called the quadratic recast [55, 58], a procedure
that usually involves the definition of additional variables (called auxiliary variables).

In what follows, the quadratic recast procedure is presented for the geometrically exact
beam model. This procedure is rendered straightforward by the polynomial nature of the
nonlinearities when written with the present quaternion parametrization. In particular, no
transcendental functions such as sine and cosine functions are required, as was the case in
[2]. To this end, we introduce auxiliary variables and we proceed to the quadratic recast
following a procedure analogous to the one described in [1].

In this case, only the term Fint = Fi + Fμ contains polynomial expressions of degree
greater than two and therefore must be rewritten. To exemplify the procedure, consider only
a single element. To begin, the expression of Fe

int is recalled here explicitly:

Fe
int =

∫ Le

0
Q(s)T

⎡

⎢
⎢⎢⎢
⎢
⎣

Re
q̂e Ne

0
2q̂eM̂e

2q̂e
′
M̂e + 2q̂e

(
N̂e × (�̂

e + �̂0
e
) + (M̂e × K̂e)

)
+ 2μeq̂e

q̂e · q̂e − 1

⎤

⎥
⎥⎥⎥
⎥
⎦

︸ ︷︷ ︸
ge(ze)

ds

≈ Le

2

[
Q(s1)

T ge(ze(s1)) + Q(s2)
T ge(ze(s2))

]
.

(67)

In order to render the previous expression quadratic, the expression of the internal force
ge(ze) is rewritten by introducing additional variables called auxiliary variables. At each
Gauss point, 17 auxiliary variables (3 vectors and 2 quaternions) are introduced, gathered in
the vector ve = [ve

1
T ve

2
T ve

3
T v̂e

4
T v̂e

5
T
]T

, defined as (see, e.g., [1]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ve
1 = �e = vec(�̂

e
) = vec(q̂e∗ x̂e

0
′ q̂e − �̂0) = vec(v̂e

4 q̂e − �̂0), (68a)

ve
2 = Ke = vec(K̂e) = vec(2q̂e∗ q̂e ′), (68b)

ve
3 = Ne × (�e + �0) + Me × Ke = vec(N̂e × (�̂

e + �̂0
e
) + M̂e × K̂e), (68c)

v̂e
4 = q̂e∗ x̂e

0
′, (68d)

v̂e
5 = q̂e N̂e. (68e)



Substituting Eqs. (68a)–(68e) into Eq. (67), the vector ge (at a given Gauss point) is recast
in quadratic form as:

ge =

⎡

⎢
⎢⎢⎢
⎢⎢
⎣

vec
(
v̂e

5 q̂e∗)

0

2q̂e
(

ĈM v̂e
2

)

2q̂e ′
(

ĈM v̂e
2

)
+ 2q̂e v̂e

3 + 2μeq̂e

q̂e · q̂e − 1

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

, (69)

where the constitutive relations N̂e = ĈN �̂
e

and M̂e = ĈMK̂e have been used in place of N̂e

and M̂e , and where v̂e
3 is the pure quaternion associated to the vector ve

3.
The final form of the equations of motion for a given element is then obtained by adding

the definitions of the auxiliary variables (at the two Gauss points) into the system of equa-
tions. This leads to a (first order in time) quadratic DAE of the following form:

że
− = Ve, (70a)

M
eV̇e

+ = Fe
ext − DeVe

+ − Fe
int, (70b)

0 = ve
11 − vec

(
v̂e

41 q̂e(s1)
)+ �0, (70c)

0 = ve
21 − vec

(
2q̂e(s1)

∗ q̂e ′(s1)
)
, (70d)

0 = ve
31 − (CN ve

11

)
�0 − (CN ve

11

)
ve

11 − (CMve
21

)
ve

21, (70e)

0̂ = v̂e
41 − q̂e∗(s1) x̂e

0
′(s1), (70f)

0̂ = v̂e
51 − q̂e(s1)

(
ĈN v̂e

11

)
, (70g)

0 = ve
12 − vec

(
v̂e

42 q̂e(s2)
)+ �0, (70h)

0 = ve
22 − vec

(
2q̂e(s2)

∗ q̂e ′(s2)
)
, (70i)

0 = ve
32 − (CN ve

12

)
�0 − (CN ve
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)
ve

12 − (CMve
22

)
ve

22, (70j)

0̂ = v̂e
42 − q̂e∗(s2) x̂e

0
′(s2), (70k)

0̂ = v̂e
52 − q̂e(s2)

(
ĈN v̂e

12

)
. (70l)

For a given element this quadratic DAE contains:

• 24 “displacement” dof (8 per node) contained in ze;
• 21 “velocity” dof (7 per node, the Lagrange multiplier μ does not have a time derivative)

contained in Ve:

Ve =
[

VT
x0,1

V̂T
q̂1

VT
x0,2

V̂T
q̂2

VT
x0,3

V̂T
q̂3

]T ; (71)

• 34 auxiliary variables (17 per Gauss point) contained in ve;

so that there is a total of 79 variables per element.
In Eq. (70a), the �− notation is used to indicate that the rows corresponding to the lo-

cation of the Lagrange multiplier have been removed in order to match with the dimension



of Ve . Conversely, in Eq. (A.19b), zeros should be added into Ve and V̇e in the locations
of the Lagrange multipliers in order to match dimensions with the other quantities. This is
indicated by the �+ notation.

4.4 Computation of eigenmodes of the linearized system

The eigenmodes of the structure are computed using the tangent stiffness matrix and the
mass matrix of the system. The tangent stiffness can be computed by computing the gradient
of the FEM forces relative to the degree of freedom [38].

The computation of the eigenvalues and eigenvectors relies on classical algorithms. In
the case of a singular mass matrix, eigenvalues with infinite norm will appear [38], those
being linked with the rank deficiency of the mass matrix (i.e., for a mass matrix of size
n with rank r , there will be n − r infinite eigenvalues). The modes associates with those
infinite eigenvalues are discarded, only the physical modes are kept and used to initialize the
continuation of the nonlinear normal modes.

4.5 Scaling of the equations in 3D

Scaling the parameters in order to render the equilibrium equations dimensionless is useful
in generalizing any results. The same dimensionless variables as in [2, 59] are introduced
here:

ū0 = u0

L
, x̄0 = x0

L
, s̄ = s

L
, t̄ = t

L2

√
EI

ρA
, ω̄ = L2

√
ρA

EI
ω, (72a)

N̄, m̄e = L2

EI
(N,me) , M̄ = L

EI
M, n̄e = L3

EI
ne, (72b)

where �̄ represents a dimensionless quantity and L is a characteristic length of the system,
in this case the length of the beam. If these dimensionless parameters are injected into the
equations of motion, the system (neglecting the effect of gravity) is found to depend on
two parameters, ηy and ηz, which are analogous to the “slenderness” parameter of [2, 59].
For three-dimensional motion, however, there are two transverse polarizations, so that two
“slenderness” parameters are considered:

ηy = Iy

AL2
, ηz = Iz

AL2
. (73)

As shown in Eqs. (72a)–(72b), however, only one second moment of area I is needed
to normalize t , ω, N, M, ne , and me . To be consistent with [2, 59], Iz is used to normal-
ize the parameters. This choice essentially states that, for asymmetrical cross sections, the
beam is oriented such that the low bending stiffness due to the slenderness of the beam
causes large bending around uz; for symmetrical or near-symmetrical cross sections, the
choice is largely irrelevant). In practice, the dimensionless system is recovered by set-
ting EIz = 1, EA = 1/ηz, ρA = 1, ρIz = ηz, ρIy = ηy , L = 1, kzGA = kz/ [2(1 + ν)ηz],
kyGA = ky/ [2(1 + ν)ηz], and GJ = 1/ [2(1 + ν)] (1 + ηy/ηz). As in [2, 59], the dimen-
sionless 3D beam model based on Timoshenko kinematics also depends on another dimen-
sionless parameter tied to the effect of shearing, one shear parameter μy and μz for each
direction of shearing.

Note that, in what follows, the �̄ notation is dropped. For the test cases studied in Sect. 5,
the normalization of each system (if applicable) is explicitly stated.



5 Test cases

Next, several test cases are modeled using the FE geometrically exact quaternion-based
formulation outlined above in order to validate the simulation strategy with others in the lit-
erature and demonstrate its capacity in simulating the nonlinear dynamics of flexible beams.
In [2], several test cases were introduced, two of which are taken up again here: the classical
cantilever (clamped–free) beam and the clamped–clamped beam. These two structures are
selected not only for their simplicity of implementation, but also because they exhibit the
two types of dominant nonlinear mechanisms found in flexible beam structures containing
geometrical nonlinearities: the axial-bending coupling is the primary nonlinear mechanism
of the clamped–clamped beam, while the cantilever beam represents the classic example of
the beam in large rotation.

Moreover, these two classical systems are often studied in the literature on nonlinear
beam dynamics [28, 36, 60–63]; some of these works are used in what follows as refer-
ence simulations in order to validate the quaternion-based model presented in this work. In
particular, given that in 3D the beam has two transverse directions orthogonal to the longi-
tudinal direction, we take a special interest in the one-to-one (1:1) internal resonance (IR)
phenomenon that is uncovered for beams of (near) symmetrical cross sections. In this case,
the beam has two nearly identical eigenfrequencies [64, 65] tied to a transverse bending
mode in each of the two transverse directions, leading to a 1:1 coupling between the two
nonlinear modes. As will be shown later, the result of the coupling is a combination in phase
quadrature of the two transverse polarizations, so that the beam appears to “rotate” between
the polarizations. Some examples in the literature can be found for both the cantilever [65]
and the clamped–clamped beam [66]. As real manufacturing processes are imperfect and
dimensions are traditionally made to certain tolerance levels instead of exact precision, a
slightly asymmetrical cross section can be reasonably expected in real-life applications. It is
therefore of importance in certain industrial applications, for example in MEMS and NEMS
applications [65], to characterize this 1:1 internal resonance in order to make the necessary
design choices to avoid or exploit it.

5.1 2D and 3D motions with quaternion formulation

The two test cases under study in this section are simulated using the mesh and simulation
parameters collected in Table 1 for elements of equal length (uniform mesh). Moreover, the
results of two distinct simulation codes are also compared: the full 3D code described in
Sect. 4 and a simplified version of it, based also on a quaternion parametrization of rotations
but restricted to inplane (2D) deformations only as described in A. In order to be able to
compare the 2D and 3D motions exactly, the same number of elements, nodes, and harmon-
ics retained in the HBM are used in 2D as in 3D; as such, there are far fewer degrees of
freedom involved in the 2D computation compared to 3D. In our models, the computational
cost is generally tied to the number of degrees of freedom. In 3D, the number of degrees
of freedom increases rapidly when more finite elements are used. In general, we aim to
minimize the number of elements while preserving a converged solution in order to reduce
computation times. The computation time of systems with many degrees of freedom, how-
ever, represents a topic of ongoing research (see Sect. 6). This serves to explain why, e.g.,
for the clamped–clamped beam, only 12 elements are used in this section versus 50 in [2].

In this section, the nonlinear modes, visually depicted as the backbone curves in an
amplitude–frequency plot, are the primary focus as in [59]. This is primarily due to the
backbone curve being a more efficient way of characterizing the system’s nonlinear behav-
ior than several forced-response computations. However, it is fully possible to compute the



Table 1 Mesh and harmonic parameters: number of discrete elements per structure used in numerical simu-
lations, corresponding number FE nodes (+ 1 internal node per element) and harmonics retained in the HBM

Structure Elements Ne Nodes Nn = 2Ne + 1 Harmonics H

Cantilever 10 21 20

Clamped–clamped 12 25 10

forced response of the quaternion-based model presented in this paper; the method is the
same as in [2].

Cantilever The first system under study is the classical cantilever (initially straight) with one
end fixed and the other free. With the centerline of the beam aligned with the ux -direction
such that (ux,uy,uz) = (Ex,Ey,Ez) according to Fig. 1, the beam is able to deform in two
orthogonal transverse directions, Ey and Ez. For a beam of perfectly square cross section
(b = h where b is the width of the beam (the dimension in the Ez-direction) and h its thick-
ness (the dimension along Ey )), the eigenfrequencies and the motion on each bending mode
are identical in each of the transverse polarizations. In order to “create” the 1:1 internal
resonance coupling, a small asymmetry or “detuning” [65, 66] is imposed by breaking very
slightly the symmetry between b and h. In doing so, the two transverse polarizations become
slightly different, in that the eigenfrequencies and mode shapes are separated slightly. Then,
when one transverse nonlinear mode is excited, at a certain amplitude of vibration (corre-
sponding to a certain evolution of the oscillation frequency) an intersection or “overlap”
between the two modes is induced such that the two resonant frequencies of the nonlinear
modes intersect and the second mode (i.e., the twin bending mode in the other transverse
direction) is excited in turn.

To visualize this phenomenon, the beam of Vincent et al. [65] is used, a beam of length
L = 1 m and nearly square cross section is modeled (h = 0.03 m and b = 0.03015 m),
leading to a 0.05% detuning in the symmetry of the square cross section. The system is
normalized by its characteristic length, here the length of the beam L. The first two (dimen-
sionless) linear resonant frequencies corresponding to the first transverse bending mode in
Ey and Ez are, respectively, ω1 = 3.5144 and ω2 = 3.5320 (a 0.5% detuning between the
eigenfrequencies).

Beginning with the first nonlinear mode of the cantilever, the backbone curve of the
dimensionless transverse displacement in Ey at the free end of the cantilever w(L, t)/L

(computed as the maximum of the absolute value of the displacement over one period of
oscillation) is shown in Fig. 2(a). The same nonlinear behavior as found in [2] is recovered
both in 2D and 3D: the well-known hardening trend of the first nonlinear mode of the can-
tilever beam [2, 36, 59] is recovered. The maximum displacement w/L at the free end of the
beam is identical when using both the 2D and 3D quaternion formulations, both of which
follow the same pattern as that of Fig. 4(b) in [2] (the backbone of which is inset in Fig. 2(a)
for reference; here the internal resonance branches that were shown in [2] are not computed
for efficiency). A direct comparison to the backbones of [2] is performed in the next section.

The deformed shape of the cantilever is also traced at very large amplitude and shown
in Fig. 3(a) and (b) for both transverse polarizations. The amplitudes along the backbone
curves of Fig. 2 at which the deformed shapes are sketched are marked with green circles.

Of greater interest is the second nonlinear mode of the cantilever in 3D as it is on this
mode that the 1:1 internal resonance manifests. The second nonlinear mode is shown in
Fig. 2(b), where both the transverse displacement in Ey w/L and the transverse displace-
ment in Ez v/L are depicted. It is clearly seen that at a certain amplitude in v(L, t), there



Fig. 2 First nonlinear bending modes of the cantilever beam in the two transverse polarizations, (a) first
nonlinear bending-mode polarization: maximum amplitude of w(L, t)/L over one period of oscillation in
2D and 3D, inset: Uy/L backbone of [2] for comparison of the IR at high amplitude, (b) second nonlinear
bending-mode polarization: maximum amplitudes of w(L, t)/L and v(L, t)/L over one period of oscillation
and 1:1 IR, (c) 3D visualization of the backbone curves (Color figure online)

is a transfer of energy to the first nonlinear bending mode, exemplified by the takeoff of
displacement w(L, t) in the other transverse polarization. At this point, the cantilever be-
gins to rotate in an elliptical motion, shown in Fig. 3(c). The amplitude at which Fig. 3(c) is
sketched is marked by a red circle in Fig. 2(b). Figure 3 illustrates both the deformed shape
in 3D and, in Fig. 3(d)–(f), the projections of the deformed shape in each plane in order to
better visualize the motion. In Fig. 2(b), the bifurcation to the elliptic 1:1 internal resonance
mode is located at a frequency /ω1 � 1.005 and at an amplitude of v/L � 0.1, matching
the results of [65]. The displacements v/L (in black) and w/L (in purple) are plotted to-
gether in Fig. 2(b) to demonstrate the transfer of energy from the Ez-direction mode to the
Ey -direction mode. With only a small 0.5% difference between the eigenfrequencies of the
two modes, it can be seen in Fig. 3(c) that the beam rotates in almost a perfect circle since
the displacements w and v are almost equivalent, especially far from the birth point of the
internal resonance branch.

Finally, the backbones are gathered in a 3D plot in Fig. 2(c) following the style of [67].
Each of the bending-mode backbones are fixed in their respective planes, whereas the 1:1
internal resonance branch has components in both w and v. The 3D plot clearly shows the
transfer of energy from one polarization to the other.

Clamped–clamped beam Next, the 1:1 internal resonance of the (initially straight)
clamped–clamped beam, with both ends of the beam blocked, is investigated following
the same procedure as for the cantilever beam. The clamped–clamped beam of Shen et al.



Fig. 3 Deformed shapes of the cantilever beam, (a) high amplitude on the first polarization (green circle
in Fig. 2(a)), (b) high amplitude on the second polarization (green circle in Fig. 2(b)), (c)–(f) 1:1 internal
resonance between the polarizations and projections onto each plane (red circle in Fig. 2(b)) (Color figure
online)

[66] is used (L = 1 m, b = 0.0315 m, h = 0.03) and normalized by L. The dimensions of
the beam create a ∼ 5% detuning between the first two (dimensionless) transverse bending
eigenfrequencies, which are, in Ey and Ez, ω1 = 22.2459 and ω2 = 23.3445, respectively.

The backbone curves of the clamped–clamped beam are depicted in the same way as for
the cantilever beam. We depict w/h and v/h at the midpoint of the beam (the place of maxi-
mum displacement). The 1:1 internal resonance of the clamped–clamped beam is uncovered
on the first nonlinear mode in contrast to the cantilever system (where it is uncovered on the
second). The w/h backbone curve of the first nonlinear bending mode is shown in Fig. 4(a).
As with the first nonlinear mode of the cantilever, the main backbone of the first nonlinear
mode of the clamped–clamped beam, known to be hardening [2, 60], is found. The second
branch depicting the 1:1 internal resonance of the clamped–clamped beam follows much of
the same patterns of the cantilever beam: at a certain frequency, there is an energy transfer
from the Ey -direction polarization to the Ez-direction where the displacement v/h begins
to take off, resulting in the beam rotating along an elliptical trajectory. The deformed shapes
of the rotating clamped–clamped beam at high amplitude and on its 1:1 internal resonance
branch are shown in Fig. 5(a)–(c), with projections onto each of the planes in Fig. 5(d) and
(f). The bifurcation leading to the coupling between the nonlinear modes occurs close to
/ω1 � 1.073 at an amplitude of w/h � 0.53, which matches the reference solution of
[66]. In [66], 3D beam finite elements were used in finding the 1:1 internal resonance of the
clamped–clamped beam, yet our simplified 1D FE beam model is able to capture the same
behavior. This could represent a significant saving in computational cost in simulating a 1D
beam model in place of a full 3D beam model.



Fig. 4 First nonlinear bending modes of the clamped–clamped beam in the two transverse polarizations, (a)
first nonlinear bending-mode polarization: maximum amplitude of w(L, t)/h and v(L, t)/h over one period
of oscillation in 2D and 3D and 1:1 IR, (b) second nonlinear bending-mode polarization: maximum amplitude
of v(L, t)/h over one period of oscillation, (c) 3D visualization of the backbone curves (Color figure online)

Furthermore, the w/h backbone computed in 3D is compared to the same backbone
computed in 2D using the quaternion formulation, which is overlaid as the light blue dashed
curve onto Fig. 4(a). The backbone in 2D is in perfect agreement with the backbone in
3D apart from a small shift in the location of the well-known 1:5 internal resonance of the
clamped–clamped beam, found also in [2] and in [60]. The shift in the location of the IR is
due to small differences in the eigenfrequencies between the 2D and 3D models, something
that is discussed in [2]. Nevertheless, the shape of the IR is exactly the same. The backbone
curve of the other transverse polarization y/h is shown in Fig. 4(b) in order to visualize the
behavior in the second bending polarization. The backbones are also once again combined
in a 3D plot in Fig. 4(c) to more easily view the transfer of energy between the bending
polarizations.

5.2 2D comparison with rotation-matrix formulation

In the previous section, several references are made to the test cases of [2] using the 2D
rotation-matrix formulation. Since the rotation-matrix formulation is validated by both the
von Kármán model used in [60] in [2] and the analytical model of Crespo da Silva and
Glynn [68–71] at low to moderate amplitudes in [59], a direct comparison between the two
2D formulations (rotation matrices vs. quaternions) serves to validate, if in agreement, the
quaternion-based formulation of this paper. Quadratic elements are used for the numerical
strategy of the present paper and for the test cases of Sect. 5.1; a direct comparison, however,
with the examples of [2] requires that the simulations be performed using the same type of



Fig. 5 Deformed shapes of the clamped–clamped beam, (a) high amplitude on the first polarization (green
circle in Fig. 4(a)), (b) high amplitude on the second polarization (green circle in Fig. 4(b)), (c)–(f) 1:1
internal resonance between the polarizations and projections onto each plane (red circle in Fig. 4(a)) (Color
figure online)

Table 2 Mesh and harmonic parameters: number of discrete elements per structure used in numerical simu-
lations, corresponding number FE nodes and harmonics retained in the HBM

Structure Elements Ne Nodes Nn = Ne + 1 Harmonics H

Cantilever 20 or 30 21 or 31 20

Clamped–clamped 50 51 10

element (in [2, 59], they are linear). For this reason, the 2D simulations using the quaternion
formulation are computed in this section using linear elements with the same number of
variables as in [2] (number of elements, nodes, and harmonics), summarized in Table 2.
The linear elements induce an error when interpolating the quaternion terms due to them
being insufficient for accurate interpolation of quaternions, as mentioned in Sect. 4. For
this reason, a greater number of linear elements should be taken in the quaternion-based
formulation to minimize any error.

Cantilever First, we compare the first nonlinear mode of the cantilever beam computed with
the quaternion formulation to the cantilever test case of [2]. The backbone curves of the
rotation of the cross section θ , the dimensionless transverse displacement at the free end of
the cantilever w(L, t)/L and the dimensionless axial displacement u(L, t)/L (computed as
the absolute value of the maximum displacement over one period of oscillation) are shown in
Fig. 6(a)–(c), respectively. In Fig. 6, three computations are shown: in black is the backbone
curve of the rotation-matrix formulation, a direct copy of the backbones of [2], in blue is



Fig. 6 Comparison of the 2D formulations’ first nonlinear mode of the cantilever beam. The backbone curve
in black is a reproduction of the one shown in [2] (2D w/ rotation matrices), (a) maximum amplitude of
θ(L, t) over one period of oscillation, (b) maximum amplitude of the transverse displacement w(L, t)/L,
(c) maximum amplitude of the axial displacement u(L, t)/L, (d) deformed shape at point A, representing 20
snapshots over one half-period of motion, overlaid onto the deformed shapes of [2], (e) deformed shape at
point B (Color figure online)

the 2D quaternion formulation with 20 elements (the same number as [2]), and in orange
is the same 2D quaternion formulation with 30 elements. It is clearly seen from Fig. 6 that
the quaternion formulation of this paper yields exactly the same main backbone curve as the
rotation-matrix formulation of [2]. This is a good sign, since we know from Sect. 5.1 that
the 2D and 3D quaternion formulations likewise yield the same results, thereby indicating
that all three formulations are in agreement.

The difference between the blue (2D quat. with 20 elements) and orange (2D quat. with
30 elements) curves in Fig. 6(a)–(c) requires some comment, however. At higher amplitude,
beginning around θ � 0.5π rad, the computation with only 20 elements begins to diverge
from the computation with 30 elements and the backbone of [2], indicating that the finite-
element solution based on the quaternion formulation of the equations of motion is not fully
converged with only 20 (linear) elements. This observation is interesting as it demonstrates
that, for the same (linear) element, more elements are required with the quaternion formu-
lation for the solution to be converged.

Finally, the deformed shapes at moderate (point A) and high (point B) amplitude along
the backbone curve computed using the quaternion formulation (with 30 elements) are over-
laid onto the deformed shapes computed using the rotation-matrix formulation of [2] in
Fig. 6(d) and (e), respectively. Note that since the continuation branches of the two compu-
tations are not exactly identical, it is not possible to trace the deformed shape at the exact
same point along the two backbone curves. Instead, the closest point of the quaternion com-
putation with 30 elements to the deformed shapes of [2] are selected. It is easily seen in
Fig. 6(d) and (e) that the deformed shapes are basically identical. Since the internal reso-
nance offshoots in Fig. 6(a)–(c) are not the same between the 3 computations, the deformed
shape on the IR branch is not traced.

Clamped–clamped beam Another comparison is made between the two 2D formulations
using the clamped–clamped beam test case of [2]. The clamped–clamped beam represents



Fig. 7 Comparison of the 2D formulations’ first nonlinear mode of the clamped–clamped beam. The back-
bone curve in black (2D rotation matrices) and of the nonlinear von Kármán in dashed blue are a reproduction
of those shown in [2], (a) maximum amplitude of w( 3L

100 , t)/h over one period of oscillation, (b) deformed
shape at point C, representing 20 snapshots over one half-period of motion, overlaid onto the deformed shapes
of [2], (e) deformed shape at point D (Color figure online)

an interesting test case beyond the reasons given at the beginning of this section since, as in
[2], the geometrically exact model can be validated with the nonlinear von Kármán model.
To this end, the simulation of [2] is carried out using the 2D quaternion formulation and the
results are shown in Fig. 7. The backbone curve of the first nonlinear mode of the clamped–
clamped beam is computed as the maximum transverse displacement over one period of
oscillation at the node located at s = 3L

100 on the beam (normalized by the thickness h of the
beam) using the quaternion formulation. The quaternion-based backbone curve is overlaid
onto a copy of the rotation-matrix backbone curve (taken from [2]) in Fig. 7(a). Additionally,
a zoom onto the 1:5 internal resonance is shown in the inset of Fig. 7(a).

First, it can be seen that as with the cantilever test case, the 2D computation with quater-
nions exactly matches the 2D computation with rotation matrices, with even the zoom onto
the 1:5 internal resonance matching nearly exactly (in contrast to the 3D computation, where
the 1:5 IR is slightly shifted from the 2D computation). This observation suggests that the
two computations (when converged with a sufficient number of elements) are (nearly) iden-
tical, with even the eigenvalues being computed identically. As in [2], the other branches of
internal resonance are not as similar in shape as the 1:5 internal resonance (point C), but all
occur at nearly identical locations. The main backbone curve, however, is nearly identical
across all three models until the von Kármán model begins to diverge around a transverse
displacement of ∼ w = 2.5h. Furthermore, since 50 linear finite elements are used in the
simulations of Fig. 7, it can be said that with 50 elements, the quaternion computation is
sufficiently converged so as to exactly match the results of the rotation-matrix computation.

Finally, the deformed shapes at points C and D along the backbone curve computed
with the quaternion formulation are overlaid onto those recopied from [2]. Unlike for the
cantilever beam, here the 1:5 IR branch is nearly identical between the 2D quaternion and
rotation-matrix formulations, so that the deformed shape [Fig. 7(b)] is nearly identical. This
is likewise the case for the higher-amplitude deformed shape, shown in Fig. 7(c).

6 Conclusion

In this paper, an extension of the work of [2] to three dimensions has been presented. In
3D, rather than continuing with the rotation-matrix parametrization of [2], the rotations are
parametrized through the use of unit quaternions, 4-dimensional complex numbers that ex-
actly represent the three rotation degrees of freedom about (Ex,Ey,Ez). First, the geomet-
rically exact beam model, discretized into finite elements, is expressed in 3D with quater-



nion parametrization of the rotations based on quaternion algebra. The beam model is then
reduced to 2D inplane motions with the simpler equations being written explicitly for a di-
rect comparison to the rotation-matrix formulation. The cantilever beam and the clamped–
clamped beam of [2] serve as test cases in order to validate the quaternion formulation with
the results of [2] and other works in the literature.

The limitations of this method lay the foundation for future work. First, due to the very
large number of degrees of freedom involved in 3D computations, we are limited to a cer-
tain extent by the computation time when many nodes and harmonics are included in the
simulation. Not only are there more degrees of freedom in 3D compared to plane motions,
but the quaternion elements of the quaternion-based formulation mean that more nodes (and
therefore degrees of freedom) are involved in the computation. Although the 3D simulations
here based on a 1D geometrically exact beam model remain more efficient than full 3D sim-
ulations based on 3D beam elements using, e.g., a FE software package, the 3D simulations
shown here are limited to structures composed of ∼ 15 or fewer elements, unless the num-
ber of harmonics kept in the HBM is reduced (which can lead to inaccuracy if the truncation
is too stringent). Ongoing research is looking to find ways to increase the computational
efficiency of MANLAB, especially when many degrees of freedom are involved.

Finally, future work aims to carry out a full analysis of the computational performance
of the 2D quaternion formulation, especially when compared to the 2D rotation-matrix for-
mulation of [2]. Even though it can be said that the two methods “compute the same thing,”
nevertheless it is still of scientific interest to compare different ways of writing the equations
of motion with the aim of improving computational efficiency. A full study comparing the
computational efficiency of the two approaches is envisioned to investigate the efficiency
of the quaternion formulation in computing the complex dynamics of flexible 1D systems.
A method of comparing the computational speeds of the two approaches must be devised,
which would take into account (1) the method of carrying out the quadratic recast (since
some ways of rewriting the system are more efficient than others, as was discussed in [2]),
(2) the initialization time of the system based on the number of degrees of freedom, (3) the
number of computed continuation branches, (4) the computation time per branch, etc. Fu-
ture work beyond this can then investigate other ways of parametrizing the rotation terms,
e.g., based on Lie groups, and interpolating the rotation field in order to further accelerate
the computation time.

Appendix A: Geometrically exact beam equations using quaternions
for 2D motion

In this appendix, the process of restricting the beam equations of motion using unit quater-
nions to represent rotations from 3D to 2D (inplane) motions is introduced. This is of interest
as it enables (i) to write explicitly each equation (especially the moment equation), and (ii)
to draw a direct comparison with the same model using a rotation matrix for the rotation
parametrization as used in [2].

A.1 Restriction to inplane motion

In order to be consistent with the work presented in [2], the 2D equations are written based
on the displacements u0 instead of the positions x0. Note, however, that the equations in
terms of position can be recovered by making use of the relation in Eq. (3).



When restricted to motion in the (x, y) plane, there are only two nonzero components
in the displacement vector u0(s), namely the axial displacement u and the transverse dis-
placement w. Based on the definition of the unit quaternion used to describe the rotation
of the cross section (see Eq. (30)), only two components in q̂ are nonzero, namely q0 and
q3 (corresponding to a rotation around the (fixed) axis in the z-direction). With the compo-
nents q1 = q2 = 0 in q̂, the �L(q̂) and �R(q̂) operations used to perform the quaternion
multiplication (see Eq. (28a)–(28b)) become:

�L

(
q̂
)=

⎡

⎢
⎢
⎣

q0 0 0 −q3

0 q0 −q3 0
0 q3 q0 0
q3 0 0 q0

⎤

⎥
⎥
⎦ , �R

(
q̂
)=

⎡

⎢
⎢
⎣

q0 0 0 −q3

0 q0 q3 0
0 −q3 q0 0
q3 0 0 q0

⎤

⎥
⎥
⎦ . (A.1)

In this case, the rotation matrix R as defined in Eq. (34) simplifies to:

R = Rq̂ =
⎡

⎣
1 − 2q2

3 −2q0q3 0
2q0q3 1 − 2q2

3 0
0 0 1

⎤

⎦=
⎡

⎣
R11 −R21 0
R21 R11 0
0 0 1

⎤

⎦ , (A.2)

with unity constraint: q̂ · q̂ = q2
0 + q2

3 = 1.

A.2 2D deformation and forces

Then, according to Eq. (35a)–(35b), the strains �̂ and curvature K̂ vectors are written ex-
plicitly as:

�̂ =

⎡

⎢
⎢
⎣

0
e

γ

0

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0(
1 − 2q2

3

) (
u′ + 1

)+ 2q0q3w
′ − 1

−2q0q3

(
u′ + 1

)+ (1 − 2q2
3

)
w′

0

⎤

⎥
⎥
⎦ ,

K̂ =

⎡

⎢
⎢
⎣

0
0
0
κ

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0
0
0

2q0q
′
3 − 2q3q

′
0

⎤

⎥
⎥
⎦ .

(A.3)

Retaining the same linear constitutive relation as in the 3D case (Eq. (41)), the stress
resultants in force and moment restricted to 2D motions are written, respectively, as:

N̂ = ĈN �̂ =

⎡

⎢
⎢
⎣

0
N

T

0

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎣

0
EAe

kyGAγ

0

⎤

⎥
⎥
⎦ ,

M̂ = ĈMK̂ =

⎡

⎢⎢
⎣

0
0
0
M

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

0
0
0

EIzκ

⎤

⎥⎥
⎦ ,

(A.4)

where the only nonzero elements in 2D are the axial force N , the shear force T , and the
bending moment M .



A.3 Principle of virtual work

With the previous definitions, the principle of virtual work given in Eq. (50) can be simpli-
fied and written explicitly for each nonzero component. First, the variations δ�̂ and δK̂ are
computed from Eqs. (A.3) and reorganized into the form:

⎧
⎪⎪⎨

⎪⎪⎩

δe = (1 − 2q2
3

)
δu′ + 2q0q3δw

′ − 2q3γ δq0 + 2q0γ δq3, (A.5a)

δγ = −2q0q3δu
′ + (1 − 2q2

3

)
δw′ + 2q3 (e + 1) δq0 − 2q0 (e + 1) , (A.5b)

δκ = −2q ′
3δq0 + 2q ′

0δq3 − 2q3δq
′
0 + 2q0δq

′
3. (A.5c)

Substituting into Eq. (50) and retaining only nonzero components leads to the following
explicit form of the principle of virtual work for inplane motion:

∫ L

0

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

R11N − R21T

R21N + R22T

ρAü0 − ne

ρAẅ0 − te
−2q3M

2q0M

−2q3γN + 2q3 (e + 1) T − 2q3
′M + 2μq0

2q0γN − 2q0 (e + 1) T + 2q0
′M + 2μq3

q0
2 + q3

2 − 1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

T ⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

δu′
0

δw′
0

δu0

δw0

δq ′
0

δq ′
3

δq0

δq3

δμ

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

ds = 0, (A.6)

where Rij are the components of the rotation matrix expressed as a function of q0 and q3 as
defined in Eq. (A.2).

A.4 Discretization into finite elements and quadratic recast

Discretization of the 2D system into finite elements follows much of the same procedure as
in the 3D case. The system is discretized into Ne elements of individual length Le . At each
node of the mesh, there are 5 degrees of freedom: the 2 displacements of the centerline (u,
the axial displacement, and w, the transverse displacement), contained in u0, the 2 nonzero
elements of q̂ (q0 and q3) and the Lagrange multiplier μ once governing the unity constraint.
Here, quadratic functions are again used for the interpolation of the various fields, and fol-
lowing the same conventions established in Sect. 4, the interpolation over a single element
can be written as:

⎡

⎢
⎢⎢
⎢
⎣

ue

we

qe
0

qe
3

μe

⎤

⎥
⎥⎥
⎥
⎦

= P(s)ze, (A.7)

where P(s) is the interpolation matrix of size 5 × 15 with the same interpolation functions
N1(s), N2(s), and N3(s) as defined in Eqs. (54a)–(54c):

P(s) = [N1(s)I5 N2(s)I5 N3(s)I5
]

(A.8)



and where ze is the vector gathering all degrees of freedom for a single element defined as:

ze = [u1 w1 q0,1 q3,1 μ1︸ ︷︷ ︸
node 1

u2 w2 q0,2 q3,2 μ2︸ ︷︷ ︸
node 2

u3 w3 q0,3 q3,3 μ3︸ ︷︷ ︸
node 3

]T. (A.9)

Finally, the variation of the fields (and their derivatives) over an element is rewritten
under matrix form as follows:

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

δ(ue)′
δ(we)′
δue

δwe

δ(qe
0)

′
δ(qe

3)
′

δqe
0

δqe
3

δμe

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

= Q(s)δze, (A.10)

where δze is the variation of the element dofs and the interpolation matrix Q(s) (of size
9 × 15) is defined as:

Q(s) =

⎡

⎢
⎢⎢
⎢
⎣

N ′
1I2 0 0 N ′

2I2 0 0 N ′
3I2 0 0

N1I2 0 0 N2I2 0 0 N3I2 0 0
0 N ′

1I2 0 0 N ′
2I2 0 0 N ′

3I2 0
0 N1I2 0 0 N2I2 0 0 N3I2 0
0 0 N1 0 0 N2 0 0 N3

⎤

⎥
⎥⎥
⎥
⎦

, (A.11)

where I2 represents the 2 × 2 identity matrix.

A.5 Discretization of the dynamic equilibrium equations

With all parameters now having been reduced to 2D from the general 3D motion, discretiza-
tion of the dynamic equilibrium equations follows exactly the same procedure as presented
in Sect. 4.2. For this reason, this section focuses simply on writing the principle vectors and
matrices for the 2D motions, in particular the elementary mass matrix M

e , the external force
vector Fe

ext, and the internal force vector, incorporating also the constraint as in Sect. 4.2,
Fe

g . Recall from Sect. 4 that to avoid shear locking, the integrals are evaluated using reduced
integration: in this case, a 2-point Gauss reduced integration for 3-node elements.

To begin, the virtual inertial work is discretized (recalling that the rotational inertia is
neglected), which is written:

δWe
a =

∫ Le

0
ρüe

0
TAδue

0ds = δzeT
M

ez̈e, (A.12)

where the mass matrix M
e (of size 15×15) can be deduced directly from that of the 3D case

by discarding the rows and columns associated with the unnecessary dofs (the out-of-plane
translation and the q1, q2 components of the quaternion).



The virtual work of the internal and the constraint forces can be gathered in the form:

δWe
i + δWe

μ = δzeT
∫ Le

0
QTge(ze)ds

︸ ︷︷ ︸
Fe

int

, (A.13)

such that the elementary internal force vector Fe
int can be computed using reduced integra-

tion. The expression for ge(ze) is given as:

ge =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

(
1 − 2qe

3
2)Ne − 2qe

0q
e
3T

e

2qe
0q

e
3N

e + (1 − 2qe
3

2)T e

0
0

−2qe
3M

e

2qe
0M

e

−2qe
3γ

eNe + 2qe
3 (ee + 1) T e − 2qe

3
′Me + 2μeqe

0
2qe

0γ
eNe − 2qe

0 (ee + 1) T e + 2qe
0
′Me + 2μeqe

3

qe
0

2 + qe
3

2 − 1

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

. (A.14)

Finally, the discretization of the virtual external work in 2D takes the form:

δWe
e = δzeT

∫ Le

0
PTfeeds

︸ ︷︷ ︸
Fe

ext

, (A.15)

with fee = [ne pe −2qe
3q

e 2qe
0q

e 0
]T

the element linear distribution of external forces
and moment. Once again, the point loads at the boundaries must be taken into account in
Fe

ext as in 3D.
The elements are assembled for the entire structure and the full discrete finite-element

model falls into the same general form Eq. (66), where the mass M and damping D matrices
reduce to size 5Nn × 5Nn for inplane motion.

A.6 Quadratic recast of the 2D system

When using a resolution of the dynamical system with the MANLAB package, the system
should be “recast” to include only quadratic nonlinearities. To this end, 6 auxiliary variables
are defined at each Gauss point of the elements as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Re
11 = 1 − 2qe

3
2
, (A.16a)

Re
21 = 2qe

0q
e
3, (A.16b)

ee = Re
11

(
ue ′ + 1

)+ Re
21w

e ′ − 1, (A.16c)

γ e = −R21

(
ue ′ + 1

)+ Re
11w

e ′
, (A.16d)

κe = 2qe
0q

e
3
′ − 2qe

3q
e
0
′
, (A.16e)

ve
6 = EAeeγ e − kzGAγ e (ee + 1) . (A.16f)



The auxiliary variables are added into the vector of degrees of freedom, which allows the
vector ge to be recast using only quadratic nonlinearities as:

ge =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

EARe
11e

e − kyGAR21γ
e

EARe
21e

e + kyGAR11γ
e

−2EIzq
e
3κ

e

2EIzq
e
0κ

e

−2EIzq
e
3
′κe − 2qe

3v
e
6 + 2μeqe

0
2EIzq

e
0
′κe − 2qe

0v
e
6 + 2μeqe

3

qe
0

2 + qe
3

2 − 1

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

, (A.17)

where EAee , kyGAγ e , and EIzκ
e have been substituted for Ne , T e , and Me , respectively,

in Eq. (A.17).
As in the 3D case, the full first-order quadratic DAE for a single finite element can be

written explicitly for the 2D inplane motions. Using 3-node elements, there are:

1. 27 primary variables:

• 15 “displacement” degrees of freedom (5 per node) contained in ze Eq. (A.9);
• 12 “velocity” degrees of freedom (4 per node) contained in Ve , noting that the La-

grange multiplier μ does not have a time derivative:

Ve = [Vu1 Vw1 Vq0,1 Vq3,1 Vu2 Vw2 Vq0,2 Vq3,2

Vu3 Vw3 Vq0,3 Vq3,3

]T
. (A.18)

2. 12 auxiliary variables contained in ve (Eqs. (A.16a)–(A.16f)) at 2 Gauss points,

such that the first-order quadratic DAE for a single finite element is written as:

że
− = Ve, (A.19a)

M
eV̇e

+ = Fe
ext − DeVe

+ − Fe
g, (A.19b)

0 = Re
11 −

(
1 − 2qe

3
2
)

, (A.19c)

0 = Re
21 − 2qe

0q
e
3, (A.19d)

0 = ee − Re
11

(
ue ′ + 1

)− Re
21w

e ′ + 1, (A.19e)

0 = γ e + Re
21

(
ue ′ + 1

)− Re
11w

e ′
, (A.19f)

0 = κe − 2qe
0q

e
3
′ + 2qe

3q
e
0
′
, (A.19g)

0 = ve
6 − EAeeγ e + kzGAγ e(ee + 1), (A.19h)

where, as in Sect. 4, the �− notation indicates that the locations of the Lagrange multipliers
μ have been removed, while �+ indicates that zeros have been added in Ve in the locations
of the Lagrange multipliers to match dimensions.

For the full first-order quadratic FE DAE, the total number of degrees of freedom is
Ndof = 27Nn + 12Ne . Of course, if a 2-node element with linear interpolation functions is
used, fewer degrees of freedom are involved in the full quadratic DAE.



Fig. 8 Comparison of the backbone curves of the first nonlinear mode of the cantilever beam of [2] with and
without rotational inertia for a beam of slenderness η = 8.33 × 10−8. (a) cross section’s rotation at the end
θ(L), (b) normalized axial displacement at the end U(L)/L, (c) normalized transverse displacement at the
end V (L)/L

Appendix B: Effect of rotational inertia on the backbone curves of
slender beams

In the work presented in this paper, rotary inertia of the beam cross section is neglected.
This assumption greatly simplifies the derivation of the virtual work of the inertial forces
δWa defined in Eq. (22a) as:

δWa =
∫ L

0

(
ρAẍT

0δx0

)
ds

︸ ︷︷ ︸
translational KE

+
∫ L

0

(
(J�̇ + �̃J�)Tδ�

)
ds

︸ ︷︷ ︸
rotational KE

, (B.1)

where the translational and rotational contributions to δWa have been identified. Neglecting
the rotary inertia has the effect of removing the second term of δWa and therefore neglects
rotational inertial effects in the mass matrix (as seen by the definition of the mass matrix in
Eq. (61), where zeros are added in the place of the rotation degrees of freedom).

To confirm that the rotary inertia of cross sections can indeed be neglected in the con-
sidered test cases (very slender beams), the results of a 2D simulation taking into account
the rotational inertia is compared to a simulation disregarding it. To this end, the cantilever
beam test case of [2], which takes into account the rotary inertia for an inplane motion, is
rerun with and without the rotational inertial contributions.

Note that we choose the cantilever as a test case since it has the largest amplitude of mo-
tion of any of the systems studied in [2], meaning that any rotational inertia effects should
be highest for the cantilever vibrating at large amplitude. The comparison between the sim-
ulations with and without inertia is summarized in Fig. 8.

In Fig. 8, the black backbone curves of the first cantilever mode are directly recopied
from [2], while the yellow backbone curve overlaid onto Fig. 8 represents the same compu-
tation while neglecting the rotational inertia. It is clearly seen that there is no distinguishable
difference between the computation with rotational inertia and without, thereby justifying
the assumption of neglecting rotary inertia for the kinematics of very slender 3D beam struc-
tures.
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