
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/25443

To cite this version :

Thomas LAVIGNE, Stéphane URCUN, Pierre-Yves ROHAN, Giuseppe SCIUME, Davide
BAROLI, Stéphane Pierre Alain BORDAS - Single and bi-compartment poro-elastic model of
perfused biological soft tissues: FEniCSx implementation and tutorial - Journal of the mechanical
behavior of biomedical materials - Vol. 143, p.105902 - 2023

Any correspondence concerning this service should be sent to the repository

Administrator : scienceouverte@ensam.eu

https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/25443
mailto:scienceouverte@ensam.eu
https://artsetmetiers.fr/

Tutorial

Single and bi-compartment poro-elastic model of perfused biological soft
tissues: FEniCSx implementation and tutorial
Thomas Lavigne a,b,c, Stéphane Urcun a, Pierre-Yves Rohan b, Giuseppe Sciumè c, Davide Baroli d,∗,
Stéphane P.A. Bordas a,e,f

a Institute of Computational Engineering, Department of Engineering, University of Luxembourg, 6, avenue de la Fonte, Esch-sur-Alzette, L-4364, Luxembourg
b Arts et Metiers Institute of Technology, IBHGC, 151 bd de l’hopital, Paris, 75013, France
c Arts et Metiers Institute of Technology, Univ. of Bordeaux, CNRS, Bordeaux INP, INRAE, I2M Bordeaux, Avenue d’Aquitaine, Pessac, 33607, France
d Università della Svizzera Italiana, Euler Institute, Lugano, Switzerland
e Clyde Visiting Fellow, Department of Mechanical Engineering, The University of Utah, Salt Lake City, UT, United States
f Visiting Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

A R T I C L E I N F O

Keywords:
Mixed space
Poro-elasticity
Bi-compartment
FEniCSx

A B S T R A C T

Soft biological tissues demonstrate strong time-dependent and strain-rate mechanical behavior, arising from
their intrinsic visco-elasticity and fluid–solid interactions. The time-dependent mechanical properties of soft
tissues influence their physiological functions and are related to several pathological processes. Poro-elastic
modeling represents a promising approach because it allows the integration of multiscale/multiphysics data
to probe biologically relevant phenomena at a smaller scale and embeds the relevant mechanisms at the
larger scale. The implementation of multiphase flow poro-elastic models however is a complex undertaking,
requiring extensive knowledge. The open-source software FEniCSx Project provides a novel tool for the
automated solution of partial differential equations by the finite element method. This paper aims to provide
the required tools to model the mixed formulation of poro-elasticity, from the theory to the implementation,
within FEniCSx. Several benchmark cases are studied. A column under confined compression conditions is
compared to the Terzaghi analytical solution, using the L2-norm. An implementation of poro-hyper-elasticity is
proposed. A bi-compartment column is compared to previously published results (Cast3m implementation). For
all cases, accurate results are obtained in terms of a normalized Root Mean Square Error (RMSE). Furthermore,
the FEniCSx computation is found three times faster than the legacy FEniCS one. The benefits of parallel
computation are also highlighted.

1. Introduction

Numerous biomechanical problems aim to reproduce the behav-
ior of a deformable solid matrix that experiences flow-induced strain
such as the brain (Budday et al., 2019; Hosseini-Farid et al., 2020;
Franceschini et al., 2006; Urcun et al., 2022), muscle tissues (Lavigne
et al., 2022), tumors (Sciumè et al., 2013; Sciumè, 2021; Oftadeh
et al., 2018), articular cartilages (Ateshian, 2009) and lumbar inter-
vertebral discs (Argoubi and Shirazi-Adl, 1996). The time-dependent
mechanical properties of soft tissues influence their physiological func-
tions and are related to several pathological processes. Although a
fluid–structure interaction (FSI) problem, the number, and range of
fluid flows are generally so vast that the direct approach of a defined
boundary between fluid and solid is impossible to apply, as it requires
an exponential computational cost at the organ scale with the require-
ment of extensive data acquisition at the micro-scale. In these cases,

∗ Corresponding author.
E-mail address: davide.baroli@usi.ch (D. Baroli).

homogenization and statistical treatment of the material–fluid system
is possibly the only way forward. A prominent technique of this type is
that of poro-elasticity.

Extensive studies have shown that poro-elastic models can accu-
rately reproduce the time-dependent behavior of soft tissues under
different loading conditions (Gimnich et al., 2019; Argoubi and Shirazi-
Adl, 1996; Peyrounette et al., 2018; Siddique et al., 2017; Hosseini-
Farid et al., 2020; Franceschini et al., 2006; Lavigne et al., 2022).
Compared to a visco-(hyper)-elastic formulation (Van Loocke et al.,
2009; Simms et al., 2012; Wheatley et al., 2015; Vaidya and Wheat-
ley, 2020), the poro-elastic properties are independent of the sample
size (please refer to Appendix A of Urcun et al. (2022) for further
justification). Furthermore, a poro-elastic approach can integrate mul-
tiscale/multiphysics data to probe biologically relevant phenomena at
a smaller scale and embed the relevant mechanisms at the larger scale

https://www.elsevier.com/locate/jmbbm
http://www.elsevier.com/locate/jmbbm
mailto:davide.baroli@usi.ch
https://doi.org/10.1016/j.jmbbm.2023.105902
https://doi.org/10.1016/j.jmbbm.2023.105902
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmbbm.2023.105902&domain=pdf

(in particular, biochemistry of oxygen and inflammatory signaling path-
ways), allowing the interpretation of the different time characteristics
(Urcun et al., 2021; Sciumè et al., 2013; Sciumè, 2021; Gray and Miller,
2014; Mascheroni et al., 2016).

In most commercially available FE software packages used for re-
search in biomechanics (ABAQUS, ANSYS, RADIOSS, etc.),
pre-programmed material models for soft biological tissues are avail-
able. The disadvantage of these pre-programmed models is that they
are presented to the user as a ‘‘black box’’. Therefore, many researchers
turn to implement their material formulations through user subroutines
(the reader is referred, for example, to the tutorial of Fehervary et al.
(2020) on the implementation of a nonlinear hyper-elastic material
model using user subroutines in ABAQUS). This task, however, is com-
plex. When documentation is available, these only provide expressions,
without any derivations, lack details and background information, mak-
ing the implementation complex and error-prone. In addition, in case
of a custom formulation or the introduction of biochemical equations
for example, specific computational skills are required making the task
even more challenging. In the end, the use of commercially available
FE software packages may limit the straightforward reproducibility of
the research by other teams.

The interest in open-source tools has skyrocketed to increase the im-
pact of the studies within the community (for example FEbio, FreeFem,
and Utopia Zulian et al., 2021, 2016). For Finite Element modeling,
the FEniCS project (Alnæs et al., 2015) is an Open-Access software that
has proven its efficiency in biomechanics (Mazier et al., 2022). Based
on a Python/C++ coding interface and the Unified Form Language, it
allows to easily solve a defined variational form. Furthermore, its com-
patibility with open-source meshers like GMSH makes its use appealing.
The project has already shown its capacity to solve large deformation
problems (Mazier et al., 2021) and mixed formulations (Urcun et al.,
2021, 2022; Bulle, 2022; Urcun et al., 2023). Previous work provided
the implementation of poro-mechanics within the FEniCS project (Haa-
genson et al., 2020; Joodat et al., 2018). However, the FEniCS project
is legacy and has been replaced by the FEniCSx project in August 2022
(Alnæs et al., 2014; Scroggs et al., 2022b,a).

The aim of this paper is to propose a step-by-step explanation on
how to implement several poro-mechanical models in FEniCSx with
a special attention to parallel computation. First, an instantaneous
uni-axial confined compression of a porous elastic medium is pro-
posed. This example corresponds to an avascular tissue. Then, the same
single-compartment model is computed for a hyper-elastic solid scaffold
followed by a confined bi-compartment modeling.

2. Confined compression of a column: geometrical definition

The time-dependent response of soft tissues are often assessed based
on confined compression creep and stress relaxation test data (Budday
et al., 2019; Hosseini-Farid et al., 2020; Franceschini et al., 2006; Urcun
et al., 2022). All the benchmark examples focus on uni-axial confined
compression of a column sample as shown in Fig. 1. Both 2D and 3D
geometries are studied. The column is described by its width (0.1*h)
and height (h) in 2D and its length (0.1*h) in 3D.

The dolfinx version used in this paper is v0.5.2. FEniCSx is a profi-
cient platform for parallel computation. All described codes here-under
are compatible with multi-kernel computation. The corresponding ter-
minal command is:
mpirun -n <N> python3 <filename>

where <N> is the number of threads to use and <filename> is the
python code of the problem.

Within the FEniCSx software, the domain (geometry) is discretized
to match with the Finite Element (FE) method. The space is thus divided
in 𝑛𝑥 × 𝑛𝑦 = 2 × 40 elements in 2D and 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 = 2 × 40 × 2 elements
in 3D. The choice of the number of elements is further discussed
Section 3.5.2. In this article, the meshes are directly created within the

Fig. 1. Load (red), Boundary conditions (blue) and mesh (gray) of the uni-axial
confined compression of a porous 2D column of height h.

FEniCSx environment. However, as a strong compatibility exists with
the GMSH API (Geuzaine and Remacle, 2018), it is recommended to
use GMSH for this step. An example of the use of GMSH API for a
more complex geometry is given Appendix B. It is worth noting that
we identify all the boundaries of interest at this step for the future
declaration of boundary conditions.

2.1. 2D mesh

Conversely to the legacy FEniCS environment, FEniCSx requires to
separately import the required libraries. To create the 2D mesh, the first
step is to import the following libraries:

import dolfinx
import numpy as np
from dolfinx.mesh import create_rectangle , CellType

, locate_entities , meshtags
from mpi4py import MPI

Then, the domain of resolution (mesh) is computed with:

Width, Height = 1e-5, 1e-4 #[m]
nx, ny = 2, 40 #[]
mesh = create_rectangle(MPI.COMM_WORLD , np.array

([[0,0],[Width, Height]]), [nx,ny], cell_type=
CellType.quadrilateral)

Once the mesh object has been created, its boundaries are identified
using couples of (marker, locator) to tag with a marker value the
elements of dimension fdim fulfilling the locator requirements.

For the 2D mesh, the (marker, locator) couples are given by:

identifiers: 1 , 2, 3, 4 = bottom, right, top, left
boundaries = [(1, lambda x: np.isclose(x[1], 0)),

(2, lambda x: np.isclose(x[0], Width)),
(3, lambda x: np.isclose(x[1], Height)),
(4, lambda x: np.isclose(x[0], 0))]

Finally the entities are marked by:

facet_indices , facet_markers = [], []
dimension of the elements we are looking for
fdim = mesh.topology.dim - 1
for (marker, locator) in boundaries:

facets = locate_entities(mesh, fdim, locator)
facet_indices.append(facets)
facet_markers.append(np.full_like(facets, marker))

Table 1
Elastic mechanical parameters to compare with the Terzaghi solution.

Parameter Symbol Value Unit

Young modulus E 5000 Pa
Poisson ratio 𝜈 0.4 –
Intrinsic permeability 𝑘𝜀 1.8 × 10−15 m2

Biot coefficient 𝛽 1 –
Density of phase 𝛼 𝜌𝛼 – kgm−3

IF viscosity 𝜇𝑙 1 × 10−3 Pa s
Porosity 𝜀𝑙 0.5 –
Solid grain bulk modulus 𝐾𝑠 1. × 1010 Pa
Fluid bulk modulus 𝐾 𝑙 2.2 × 109 Pa

facet_indices = np.hstack(facet_indices).astype(np.int32
)

facet_markers = np.hstack(facet_markers).astype(np.int32
)

sorted_facets = np.argsort(facet_indices)
the meshtags() function requires sorted facet_indices
facet_tag = meshtags(mesh, fdim, facet_indices[

sorted_facets], facet_markers[sorted_facets])

2.2. 3D mesh

The method for a 3D mesh is similar to the 2D case. First, the
libraries are imported and the geometry is created using a 3D func-
tion. The (marker, locator) tuples are completed to describe all the
boundaries of the domain. The same tagging routine is used.
l i b r a r i e s
import do l f i nx
import numpy
from do l f inx . mesh import create_box , CellType , l o c a t e _ e n t i t i e s , meshtags
from mpi4py import MPI
Mesh generat ion
Length , Height , Width = 0.1 , 1 , 0.1 #[m]
nx , ny , nz = 2 , 40 , 2
mesh = create _box (MPI .COMM_WORLD, numpy . array ([[0 . 0 , 0 . 0 , 0 . 0] , [Length , Height ,

Width]]) , [nx , ny , nz] , c e l l _ t y p e=CellType . hexahedron)
Define the boundaries of the domain :
1 , 2 , 3 , 4 , 5 , 6 = bottom , r ight , top , l e f t , back , f r on t
boundaries = [(1 , lambda x : numpy . i s c l o s e (x [1] , 0)) ,

(2 , lambda x : numpy . i s c l o s e (x [0] , Length)) ,
(3 , lambda x : numpy . i s c l o s e (x [1] , Height)) ,
(4 , lambda x : numpy . i s c l o s e (x [0] , 0)) ,
(5 , lambda x : numpy . i s c l o s e (x [2] , Width)) ,
(6 , lambda x : numpy . i s c l o s e (x [2] , 0))]

f a c e t _ i n d i c e s , face t _markers = [] , []
fdim = mesh . topology . dim − 1
fo r (marker , l o ca to r) in boundaries :

f a c e t s = l o c a t e _ e n t i t i e s (mesh , fdim , l o ca to r)
f a c e t _ i n d i c e s . append (f a c e t s)
face t _marker s . append (numpy . f u l l _ l i k e (f ace t s , marker))

f a c e t _ i n d i c e s = numpy . hstack (f a c e t _ i n d i c e s) . astype (numpy . int32)
face t _marker s = numpy . hstack (face t _markers) . astype (numpy . int32)
s o r t e d _ f a c e t s = numpy . a rg so r t (f a c e t _ i n d i c e s)
f a c e t _ t a g = meshtags (mesh , fdim , f a c e t _ i n d i c e s [s o r t e d _ f a c e t s] , face t _markers [

s o r t e d _ f a c e t s])

3. Single-compartment porous medium

We propose to reproduce the instantaneous uni-axial confined com-
pression at the top surface of a single-compartment porous column of
height ℎ, Fig. 1, described by a 2D elastic or a 3D hyper-elastic solid
scaffold. Regarding the 2D elastic case, the column has a height of
ℎ = 100 μm, the instantaneous load 𝑝0 has a magnitude of 100 Pa
and is applied during 6 s. Regarding the 3D hyper-elastic case, the
column has a height of ℎ = 1 m, the instantaneous load 𝑝0 has a
magnitude of 𝑝0 = 0.3 MPa and is applied during 100 000 s. The
mechanical parameters are respectively given Tables 1 and 2. To assess
the reliability of our results, we compare our computed solutions to
Terzaghi’s analytical solution and the results of Selvadurai and Suvorov
(2016), for the elastic and hyper-elastic scaffolds respectively.

3.1. Terzaghi’s analytical solution

The Terzaghi consolidation problem is a reference in poro-
mechanics, that have been comprehensively described by classical
authors such as Biot (1941), Verruijt (2013) and Detournay and Cheng

Table 2
Hyper-elastic mechanical parameters from Selvadurai and Suvorov (2016). In the
absence of information on the porosity, solid grain bulk modulus and fluid bulk
modulus, the parameter are arbitrarily chosen.

Parameter Symbol Value Unit

Young modulus E 600 000 Pa
Poisson ratio 𝜈 0.3 –
Bulk modulus K 500 000 Pa
Intrinsic permeability 𝑘𝜀 3 × 10−14 m2

IF viscosity 𝜇𝑙 1 × 10−3 Pa s
Porosity 𝜀𝑙 0.2 –
Solid grain bulk modulus 𝐾𝑠 1. × 1010 Pa
Fluid bulk modulus 𝐾 𝑙 2.2 × 109 or 5 × 105 Pa
Biot coefficient 𝛽 1 − 𝐾

𝐾𝑠 ≈ 1 –

(1993). Such problem is often used for benchmarking porous media
mechanics, as an analytical solution to this problem exists. An im-
plementation of this experiment was proposed by Haagenson et al.
(2020), within the legacy FEniCS project. The Terzaghi problem is
a uni-directional confined compression experiment of a column (see
Fig. 1). Assuming small and uni-directional strains, incompressible ho-
mogeneous phases, and constant mechanical properties, the analytical
expression of the pore pressure is given in terms of series in Eq. (1).

𝑝𝑙 =
4𝑝0
𝜋

+∞
∑

𝑘=1

(−1)𝑘−1

2𝑘 − 1
cos

[

(2𝑘 − 1)𝜋
2
𝑦
ℎ

]

exp
[

−(2𝑘 − 1)2 𝜋
2

4
𝑐𝑣𝑡
ℎ2

]

(1)

𝑐𝑣 = 𝑘𝜀

𝜇𝑙(𝑆𝛽 +
𝛽2
𝑀)

(2)

𝑀 =
3𝐾𝑠(1 − 𝜈)
(1 + 𝜈)

(3)

𝑆𝛽 =
𝛽 − 𝜀𝑙0
𝐾𝑠 +

𝜀𝑙0
𝐾 𝑙 (4)

where 𝑝0 = 𝐭imposed ⋅ 𝐧 is the full applied load, 𝑦 is the altitude, h is the
initial height of the sample, 𝑐𝑣 is the consolidation coefficient defined
by (Eq. (2)), M the longitudinal modulus (Eq. (3)), 𝑆𝛽 the inverse of
the Biot Modulus (Eq. (4)) and 𝜀𝑙0 is the initial porosity.

3.2. Governing equations

Let one consider a bi-phasic structure composed of a solid scaffold
filled with interstitial fluid (IF). The medium is assumed saturated. In
this section, to set up the governing equations, we make the hypothesis
of a Biot coefficient equal to 1. The following convention is assumed:
the superscript ‘‘s’’ (∙𝑠) denotes the solid phase and the superscript ‘‘l’’
(∙𝑙) denotes the fluid phase. For example, 𝜌𝑠 and 𝜌𝑙 would respectively
denote the density of the solid phase and of the fluid phase. The
primary variables of the problem are the pressure applied in the pores
of the porous medium, namely 𝑝𝑙, and the displacement of the solid
scaffold, namely 𝐮𝑠. (Eq. (5)) constrains the different volume fractions.
The volume fraction of the phase 𝛼 is defined by (Eq. (6)). 𝜀𝑙 is called
the porosity of the medium.

𝜀𝑠 + 𝜀𝑙 = 1 (5)

𝜀𝛼 = Volume𝛼

Volume𝑡𝑜𝑡𝑎𝑙
(6)

Assuming that there is no inter-phase mass transport, the continu-
ity equations (mass conservation) of the liquid and solid phases are
respectively given by Eqs. (7) and (8).
𝜕
𝜕𝑡
(𝜌𝑙𝜀𝑙) + ∇ ⋅ (𝜌𝑙𝜀𝑙𝐯𝑙) = 0 (7)

𝜕
𝜕𝑡
(𝜌𝑠(1 − 𝜀𝑙)) + ∇ ⋅ (𝜌𝑠(1 − 𝜀𝑙)𝐯𝐬) = 0 (8)

Regarding the distributivity of the divergence term, with a scalar
and V vector,

∇ ⋅ (𝑎𝐕) = 𝑎∇ ⋅ (𝐕) + ∇𝑎 ⋅ 𝐕 (9)

Applied to (7) and Eq. (8), and considering the definition of the
material derivative, D𝑠

D𝑡 𝑓 = 𝜕𝑓
𝜕𝑡 + ∇𝑓 ⋅ 𝐯𝑠, the continuity equations are

given by:
D𝑠

D𝑡
(𝜌𝑠(1 − 𝜀𝑙)) + 𝜌𝑠(1 − 𝜀𝑙)∇ ⋅ 𝐯𝐬 = 0 (10)

D𝑠

D𝑡
(𝜌𝑙𝜀𝑙) + ∇ ⋅ (𝜌𝑙𝜀𝑙(𝐯𝑙 − 𝐯𝑠)) + 𝜌𝑙𝜀𝑙∇ ⋅ 𝐯𝐬 = 0 (11)

For the fluid phase, the Darcy’s law (Eq. (12)) is used to evaluate
the fluid flow in the porous medium.

𝜀𝑙(𝐯𝑙 − 𝐯𝑠) = −𝑘𝜀

𝜇𝑙 (∇𝑝
𝑙 − 𝜌𝑙𝐠) (12)

where 𝑘𝜀 is the intrinsic permeability (m2), 𝜇𝑙 is the dynamic viscosity
(Pa s) and 𝐠 the gravity.

Introducing the state law 1
𝜌𝛼

D𝑠𝜌𝛼

D𝑡 = 1
𝐾𝛼

D𝑝𝛼
D𝑡 , 𝐾𝛼 being the bulk

modulus of the phase alpha, the Darcy’s law and summing (10) and
Eq. (11), we obtain:
(

𝜀𝑙

𝐾 𝑙 +
1 − 𝜀𝑙

𝐾𝑠

)

D𝑠𝑝𝑙

D𝑡
+ ∇ ⋅ 𝐯𝑠 − ∇ ⋅

(

𝑘𝜀

𝜇𝑙 ∇𝑝
𝑙
)

= 0 (13)

where 𝑆 =
(

𝜀𝑙

𝐾 𝑙 +
1−𝜀𝑙
𝐾𝑠

)

is called the storativity coefficient.
Once the continuity equations are settled, one can define the quasi-

static momentum balance of the porous medium, Eq. (14).

∇ ⋅ 𝐭tot = 0 (14)

where 𝐭tot is the total Cauchy stress tensor. We introduce an effective
stress tensor denoted 𝐭eff, responsible for all deformation of the solid
scaffold. Then, 𝐭tot can be expressed as:

𝐭tot = 𝐭eff − 𝛽𝑝𝑙𝐈𝐝 (15)

where 𝐈𝐝 is the identity matrix and 𝛽 is the Biot coefficient.
Finally, the governing equations of this single compartment porous

medium are:
(

𝜀𝑙

𝐾 𝑙 +
1 − 𝜀𝑙

𝐾𝑠

)

D𝑠𝑝𝑙

D𝑡
+ ∇ ⋅ 𝐯𝑠 − ∇ ⋅

(

𝑘𝜀

𝜇𝑙 ∇𝑝
𝑙
)

= 0 on 𝛺 (16)

∇ ⋅ 𝐭tot = 0 on 𝛺 (17)

Three boundaries are defined: the first one, 𝛤𝑢 has imposed dis-
placement (Eq. (18)), the second one 𝛤𝑠 has imposed external forces
(Eq. (19)) and 𝛤𝑝 is submitted to an imposed pressure (fluid leakage
condition (Eq. (20))). We obtain:

𝐭eff = 𝐭imposed on 𝛤𝑠 (18)

𝐮𝑠 = 𝐮imposed on 𝛤𝑢 (19)

𝑝 = 0 on 𝛤𝑝 (20)

According to Fig. 1, 𝛤𝑝 = 𝛤𝑠 is the top surface and 𝛤𝑢 covers the
lateral and bottom surfaces.

3.3. Effective stress

Two types of solid constitutive laws are considered: an elastic
scaffold and a hyper-elastic one.

3.3.1. Linear elasticity
In case of an elastic scaffold, the effective stress tensor is defined as

follows:

𝜖(𝐮) = 1
2
(∇𝐮 + ∇𝐮T) (21)

𝐭eff = 2𝜇𝜖(𝐮𝑠) + 𝜆tr(𝜖(𝐮𝑠))𝐈𝐝 (22)

where 𝐈𝐝 is the identity matrix and (𝜆, 𝜇) the Lame coefficients.

3.3.2. Hyper-elasticity
In case of a hyper-elastic scaffold, other quantities are required. Let

one introduce the deformation gradient 𝐅:

𝐅 = 𝐈𝑑 + ∇𝐮𝑠 (23)

Then, J is the determinant of 𝐅:

𝐽 = det(𝐅) (24)

According to the classic formulation of a finite element procedure,
we introduce 𝐂 the right Cauchy–Green stress tensor and its first
invariant 𝐼1. By definition:

𝐂 = 𝐅T𝐅 (25)

𝐼1 = Tr(𝐂) (26)

The theory of hyper-elasticity defines a potential of elastic energy
𝑊 (𝐅). The generalized Neo-Hookean potential (Eq. (27)) introduced
by Treloar (1975), implemented in Abaqus and used by Selvadurai and
Suvorov (2016) is evaluated in this article.

𝑊 (𝐅) = 𝜇
2
(J−2∕3𝐼1 − tr(𝐈𝐝)) +

(𝜆
2
+

𝜇
3

)

(J − 1)2 (27)

However, other potential were developed. It was shown that the
hyper-elastic potential can be expressed as the combination of a iso-
choric component and a volumetric component (Simo, 1988; Horgan
and Saccomandi, 2004; Marino, 2018). We define the lame coefficients
by 𝜇 = 𝐸

2(1−𝜈) and 𝜆 = 𝐸𝜈
(1+𝜈)(1−2𝜈) . For a Neo-Hookean material, we

further have:

𝑊 (𝐅) = �̃� (𝐼1, 𝐽) + 𝑈 (𝐽) (28)

where �̃� (𝐼1, 𝐽) is the isochoric part and 𝑈 (𝐽) the volumetric one.
The study of Selvadurai and Suvorov (2016) presented a compressible
case (𝜈 = 0.3) reaching high deformation. Therefore, a compressible
formulation of the Neo-Hookean strain–energy potential from Pence
and Gou (2014), Horgan and Saccomandi (2004) is also computed for
comparison. Therefore, the implemented isochoric part of the strain
energy potential is:

�̃�1(𝐼1, 𝐽) =
𝜇
2
(𝐼1 − tr(𝐈𝐝) − 2 log[J]) (29)

Two different volumetric parts (𝑈1 and 𝑈2) which were proposed
in Doll and Schweizerhof (2000) are implemented,

𝑈1(𝐽) =
𝜆
2
log[J]2 (30)

𝑈2(𝐽) =
𝜆
2
(𝐽 − 1)2 (31)

Finally, from the potential (Eq. (28) or (27)) derives the first Piola–
Kirchhoff stress tensor as the effective stress such that:

𝐭eff = 𝜕𝑊
𝜕𝐅

(32)

3.4. Variational formulation

For the computation of the Finite Element (FE) model, the varia-
tional form of Eqs. (16) and (17) is introduced. Let one consider (q,v)
the test functions defined in the mixed space L20(𝛺) × [H1(𝛺)]2.

With a first order approximation in time, Eq. (16) gives:

𝑆
𝑑𝑡 ∫𝛺

(𝑝𝑙 − 𝑝𝑙𝑛)𝑞d𝛺 + 1
𝑑𝑡 ∫𝛺

∇ ⋅ (𝐮𝑠 − 𝐮𝑠𝑛)𝑞d𝛺

+𝑘𝜀

𝜇𝑙 ∫𝛺
∇𝑝𝑙∇𝑞d𝛺 = 0,∀ 𝑞 ∈ L20(𝛺)

(33)

Similarly, by integrating by part Eq. (17), and including the Neu-
mann boundary conditions, we get:

∫𝛺
𝐭eff ∶ ∇𝐯d𝛺 − ∫𝛺

𝛽𝑝𝑙∇ ⋅ 𝐯d𝛺 − ∫𝛤𝑠
𝐭imposed ⋅ 𝐧 ⋅ 𝐯d𝛤𝑠 = 0,

∀ 𝐯 ∈ [H1(𝛺)]2
(34)

Table 3
Initial conditions for the single compartment model.

Parameter Symbol Value Unit

Displacement 𝐮𝑠 0 m
Displacement at previous step 𝐮𝑠𝑛 0 m
IF pressure 𝑝𝑙 𝐭imposed ⋅ 𝐧 Pa
IF pressure at previous step 𝑝𝑙𝑛 0 Pa

The first order approximation in time impose to define the initial
conditions which are fixed according to Table 3.

Finally, the problem to solve is: Find (𝑝𝑙 ,𝐮𝑠) ∈ L20(𝛺)×[H1(𝛺)]2 such
that Eqs. (33) and (34) are verified.

3.5. 2D linear elastic solid scaffold

3.5.1. FEniCSx implementation
This section aims to provide a possible implementation of a 2D elas-

tic problem and its comparison with the Terzaghi analytical solution.
Conversely to the former FEniCS project, Dolfinx is based on a more
explicit use of the libraries and requires to import them in the FEniCSx
environment separately. Therefore, each function used in the following
implementation of the problem needs to be imported as a first step.
import numpy as np
from dolfinx import nls
from dolfinx.fem.petsc import NonlinearProblem
from ufl import VectorElement ,

FiniteElement , MixedElement , TestFunctions ,
TrialFunction

from ufl import Measure, FacetNormal
from ufl import nabla_div , dx, dot, inner,

grad, derivative , split
from petsc4py.PETSc import ScalarType
from mpi4py import MPI
from dolfinx.fem import (Constant , dirichletbc ,

Function , FunctionSpace , locate_dofs_topological)
from dolfinx.io import XDMFFile

Then, the time parametrization is introduced, the load value 𝑇 such
that 𝐭imposed = 𝑝0 ⋅ 𝐧 with 𝐧 the outward normal to the mesh, and the
material parameters which are defined as ufl constants over the mesh.
Time parametrization
t = 0 # Start time
Tf = 6. # End time
num_steps = 1000 # Number of time steps
dt = (Tf-t)/num_steps # Time step size
Material parameters
E = Constant(mesh, ScalarType(5000))
nu = Constant(mesh, ScalarType(0.4))
lambda_m = Constant(mesh, ScalarType(E.value*nu.

value/((1+nu.value)*(1-2*nu.value))))
mu = Constant(mesh, ScalarType(E.value/(2*(1+

nu.value))))
rhos = Constant(mesh, ScalarType(1))
kepsilon = Constant(mesh, ScalarType(1.8e-15))
mul = Constant(mesh, ScalarType(1e-2))
rhol = Constant(mesh, ScalarType(1))
beta = Constant(mesh, ScalarType(1))
epsilonl = Constant(mesh, ScalarType(0.2))
Kf = Constant(mesh, ScalarType(2.2e9))
Ks = Constant(mesh, ScalarType(1e10))
S = (epsilonl/Kf)+(1-epsilonl)/Ks
Mechanical loading
pinit = 100 #[Pa]
T = Constant(mesh,ScalarType(-pinit))

The surface element for integration based on the tags and the
normals of the mesh are computed.
Create the surfacic element
ds = Measure(" ds " , domain=mesh, subdomain_data=facet_tag

)
compute the mesh normals to express t^imposed = T.

normal
normal = FacetNormal(mesh)

Two types of elements are defined for displacement and pressure,
then combined to obtain the mixed space (MS) of the solution.

displacement_element = VectorElement(" CG " , mesh.
ufl_cell(), 2)

pressure_element = FiniteElement(" CG " , mesh.
ufl_cell(), 1)

MS = FunctionSpace(mesh, MixedElement
([displacement_element ,pressure_element]))

The space of resolution being defined, we can introduce the Dirich-
let boundary conditions according to Eqs. (19), (20) and Fig. 1.
1 = bottom: uy=0, 2 = right: ux=0, 3=top: pl=0

drainage , 4=left: ux=0
bcs = []
fdim = mesh.topology.dim - 1
uy=0
facets = facet_tag.find(1)
dofs = locate_dofs_topological(MS.sub(0).sub(1), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(1)))
ux=0
facets = facet_tag.find(2)
dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(0)))
ux=0
facets = facet_tag.find(4)
dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(0)))
leakage p=0
facets = facet_tag.find(3)
dofs = locate_dofs_topological(MS.sub(1), fdim, facets

)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(1)))

The problem depends on the time Eq. (33). Initial conditions in
displacement and pressure are required. Therefore, we defined X0 the
unknown function and Xn the solution at the previous step. Giving
the collapse() function, the initial displacement function Un_ and its
mapping within the Xn solution are identified. Then, its values are set
to 0 and reassigned in Xn using the map. Xn.x.scatter_forward() allows
to update the values of Xn in case of parallel computation. The same
method is used to set up the initial pressure field. To fit with the studied
problems, the load is instantaneously applied. Therefore, the initial
pore pressure of the sample is assumed equal to 𝑝0.
X0, Xn: Solution and previous functions of space
X0 = Function(MS)
Xn = Function(MS)
Initial values
Solid Displacement
Un_, Un_to_MS = MS.sub(0).collapse()
FUn_ = Function(Un_)
with FUn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(0.0))
Assign in Xn and broadcast to all the threads
Xn.x.array[Un_to_MS] = FUn_.x.array
Xn.x.scatter_forward()
IF Pressure
Pn_, Pn_to_MS = MS.sub(1).collapse()
FPn_ = Function(Pn_)
with FPn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(pinit))
Assign in Xn and broadcast to all the threads
Xn.x.array[Pn_to_MS] = FPn_.x.array
Xn.x.scatter_forward()

The deformation and effective stress given Eqs. (21) and (22) are
defined by the following function:
def teff(u,lambda_m,mu):

from ufl import sym, grad, nabla_div , Identity
Deformation
epsilon = sym(grad(u))
Stress
return lambda_m * nabla_div(u) * Identity(u.
geometric_dimension()) + 2*mu*epsilon

Finally, splitting the two functions X0, Xn, and introducing the test
functions, the weak form is implemented as follows.

u,p =split(X0)
u_n,p_n=split(Xn)
Set up the test functions
v,q = TestFunctions(MS)
Equation 33
F = (1/dt)*nabla_div(u-u_n)*q*dx + (kepsilon/mul)*dot(

grad(p),grad(q))*dx + (S/dt)*(p-p_n)*q*dx
Equation 34
F += inner(grad(v),teff(u))*dx - beta * p * nabla_div(v)

*dx - T*inner(v,normal)*ds(3)

Introducing the trial function of the mixed space dX0, we define
the non-linear problem based on the variational form, the unknown,
the boundary conditions and the Jacobian:

dX0 = TrialFunction(MS)
Js = derivative(F, X0, dX0)
Problem = NonlinearProblem(F, X0, bcs = bcs, J = Js)

3.5.2. Solving and results
To solve the non-linear problem defined here-above, a Newton

solver is tuned.

solver = nls.petsc.NewtonSolver(mesh.comm, Problem)
Absolute tolerance
solver.atol = 5e-10
relative tolerance
solver.rtol = 1e-11
solver.convergence_criterion = " incremental "

The parameters were set according to Table 1. During the resolution,
we computed for each step the error in 𝐿2-norm in pressure defined
Eq. (35). These formulations are easily evaluated within the FEniCSx
environment by defining the following functions:

𝐸(𝑝𝑙) =

√

∫𝛺(𝑝𝑙 − 𝑝𝑒𝑥)2d𝑥
√

∫𝛺(𝑝𝑒𝑥)2d𝑥
(35)

where 𝑝𝑒𝑥 is the exact solution, computed from the Terzaghi’s analytical
formula.

def terzaghi_p(x):
kmax=1e3
p0,L=pinit,Height
cv = kepsilon.value/mul.value*(lambda_m.value+2*mu.
value)
pression=0
for k in range(1,int(kmax)):

pression+=p0*4/np.pi*(-1)**(k-1)/(2*k-1)*np.cos
((2*k-1)*0.5*np.pi*(x[1]/L))*np.exp(-(2*k-1)
2*0.25*np.pi2*cv*t/L**2)
pl=pression
return pl

def L2_error_p(mesh,pressure_element ,__p):
V2 = FunctionSpace(mesh, pressure_element)
pex = Function(V2)
pex.interpolate(terzaghi_p)
L2_errorp , L2_normp = form(inner(__p - pex, __p -
pex) * dx), form(inner(pex, pex) * dx)
error_localp = assemble_scalar(L2_errorp)/
assemble_scalar(L2_normp)
error_L2p = np.sqrt(mesh.comm.allreduce(error_localp
, op=MPI.SUM))
return error_L2p

To get a code suitable for parallel computation, the solutions needed
to be gathered on a same processor using the MPI.allreduce() function.
Once the error functions were defined, the problem is solved within the
time loop:

Create an output xdmf file to store the values
xdmf = XDMFFile(mesh.comm, " ./terzaghi.xdmf " , " w ")
xdmf.write_mesh(mesh)
Solve the problem and evaluate values of interest
t = 0
L2_p = np.zeros(num_steps , dtype=PETSc.ScalarType)
for n in range(num_steps):

t += dt
num_its, converged = solver.solve(X0)
X0.x.scatter_forward()

Update Value
Xn.x.array[:] = X0.x.array
Xn.x.scatter_forward()
__u, __p = X0.split()
Export the results
__u.name = " Displacement "
__p.name = " Pressure "
xdmf.write_function(__u,t)
xdmf.write_function(__p,t)
Compute L2 norm for pressure
error_L2p = L2_error_p(mesh,pressure_element ,__p
)
L2_p[n] = error_L2p
Solve tracking
if mesh.comm.rank == 0:

print(f " Time step {n}, Number of iterations {
num_its}, Load {T.value}, L2-error p {error_L2p:.2e
} ")

xdmf.close()

The results obtained for pressure and displacements are provided
Fig. 2. The code to evaluate the pressure at given points is provided
Appendix C.

The curves show the efficiency of the simulation to reproduce the
analytical solution. The accuracy of the simulation was also supported
by the estimation of the error based on the 𝐿2-norm of the pressure
equal to (3.57 ± 2.46) × 10−3 which is deemed satisfactory. The same
problem was solved using the legacy FEniCS version. The proposed FEn-
iCSx implementation was faster. It was computed in 9.48 s compared
to the previously 31.82 s.

To show the efficiency of the parallel computation, the 3D case Ap-
pendix A and a refine 2D case (10 × 500 discretization) are considered.
For a given 3D spatio-temporal discretization, a larger computational
time of 1 h 4 min 29 s is needed using FEniCSx. To reduce the time,
the code naturally supports parallel computation. The same code was
run for several number of threads. Computed on 2 threads, the code
required 53 min 27 s. For 4 threads, the running time was further
reduced to 46 min 27 s. Finally, using 8 threads, the computation time
was reduced up to 28 min 9 s. For the 2D case, a computation time
of 9 min was required on a single thread. Computed on 2 threads it
reduced to 5 min 35 s which corresponds to a 48% improvement and
further decreased up to 3 min 38 s on 4 threads corresponding to a
60% improvement. Computed on 8 threads, 2 min 43 s were required
which is an improvement of 70%. Finally, a convergence analysis on the
meshing of the column was carried out. The 𝐿2 error metric was used
and its evolution for a 𝑛𝑥 × 𝑛𝑦 discretized mesh is given Fig. 3. As we
could have expected from the 1D behavior of a confined compression
Terzaghi case, the error is almost independent from the 𝑛𝑥 choice.
Fig. 3(a) shows that a 𝑛𝑦 ≥ 10 gives better estimations. According
to Fig. 3(b), a balance between precision and computation time must
be considered. The more elements, the higher the computation time.
To ensure obtaining a reliable solution, a mesh of 𝑛𝑥 × 𝑛𝑦 = 2 × 40
was used (the convergence curve for the hyper-elastic case is provided
Appendix E).

3.6. 3D hyper-elastic scaffold

3.6.1. FEniCSx implementation
The implementation method of the 3D case is the same. However,

special attention must be placed on the boundary. Indeed, moving from
2D to 3D introduces two more boundaries. Therefore, the Dirichlet
boundary conditions definition is completed with:
uz=0
facets = facet_tag.find(5)
dofs = locate_dofs_topological(MS.sub(0).sub(2), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(2)))
uz=0
facets = facet_tag.find(6)
dofs = locate_dofs_topological(MS.sub(0).sub(2), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(2)))

Fig. 2. Comparison of the computed pore pressure against the analytical solution: in (a) time and (b) space. The pressure was well recovered based on the evaluation of the
𝐿2-norm error (3.57 ± 2.46) × 10−3. The full vertical displacement and pressure fields are provided at different time steps Appendix D.1.

Fig. 3. Convergence analysis for a 𝑛𝑥 × 𝑛𝑦 discretized mesh: L-2 norm (a) and Computation time (b).

The effective stress tensor is also different. As an example, the stress
tensor resulting from the potential 𝑊 (𝐅) = �̃�1(𝐼1, 𝐽) +𝑈1(𝐽) is defined
in FEniCSx by:

def teff(u,lambda_m,mu):
from ufl import variable , Identity , grad, det, tr,
ln, diff
Deformation gradient
F = variable(Identity(len(u)) + grad(u))
J = variable(det(F))
Right Cauchy-Green tensor
C = variable(F.T * F)
##Invariants of deformation tensors
Ic = variable(tr(C))
Potential
W = (mu / 2) * (Ic - 3) - mu * ln(J) + (lambda_m /
2) * (ln(J))**2
return diff(W, F)

All other developed potential are available in the supplementary
material.

3.6.2. Results
The same solver options as for the 2D case were used. To limit

the computation time, the time step was made variable: dt = 500 for
𝑡 ∈ [0, 20 000], dt = 1000 for 𝑡 ∈ [20 000, 60 000] and dt = 10 000 for
𝑡 ∈ [60 000, 100 000]. A total of 84 time steps was then considered.

The parameters were set according to Table 2. The results for the
previously defined strain–energy potential are given Fig. 4. Each finite
element problem was computed in 23.6 ± 4.3 s on 8 threads (instead
of 49.6 ± 9.9 s on a single thread). Independently from the choice of
the potential, the consolidated pressure was retrieved. On the contrary,
the resulting displacement depends on the chosen potential but a same
order of magnitude is found for all the cases and describe well the
observations proposed in Selvadurai and Suvorov (2016).

In the absence of information about the porosity or the fluid bulk
modulus in the referent study, two fluid bulk modulus were considered.
In case where the fluid bulk modulus is made close to the water one
(𝐾𝑓 = 2.2 × 109), the hyper-elastic material well recovers the expected
values. However, mismatches appear for a linear scaffold. This can
result from the use of a elastic law for large deformations. In case
of a lower value of the fluid bulk modulus 𝐾𝑓 = 5 × 105 (i.e., it
can correspond to a non-constant value of the permeability and the
porosity), the elastic behavior was recovered but differences on the
hyper-elastic formulation were obtained.

We believe that these differences result from a permeability depend-
ing on the stress state of the column which has not been developed in
the referent paper (‘Initial values of the permeability and viscosity are
the same for all three materials.’ from Selvadurai and Suvorov (2016)).

4. Confined bi-compartment porous-elastic medium

Section 3 proposed a poro-mechanical modeling of a single-
compartment porous medium (suitable for an avascularised tissue for
instance). In case of in vivo modeling, at least one more fluid phase is
required: the blood. A 3D confined compression example of a column
of height 100 μm is proposed, based on the here-after variational
formulation and Sciumè (2021) study. The corresponding material
parameters are provided Table 4. The load is applied as a sinusoidal
ramp up to the magnitude of 100 Pa during 5 s. Then, the load is
sustained for 125 s.

For more complex geometries, a gmsh example of a rectangle ge-
ometry indented by a cylindrical beam on its top surface and the
corresponding local refinement are proposed Appendix B.

Fig. 4. 𝐾𝑓 = 2.2×109: (a) Displacement of the to surface points and (b) pressure at the bottom of the column. 𝐾𝑓 = 5×105: (c) Displacement of the to surface points and (d) pressure
at the bottom of the column. The computed Linear Elastic (LE) and Neo-Hookean (NH) for both volumetric functions and the found calibrated parameters are super-imposed with
the expected values from Selvadurai and Suvorov (2016). The full vertical displacement and pressure fields (for the Eq. (27) constitutive law) are provided at different time steps
Appendix D.2.

Table 4
Mechanical parameters for the bi-compartment model.

Parameter Symbol Value Unit

Young modulus E 5000 Pa
Poisson ratio 𝜈 0.2 –
IF viscosity 𝜇𝑙 1 Pa s
Intrinsic permeability 𝑘𝜀 1. × 10−14 m2

Biot coefficient 𝛽 1 –
Density of phase 𝛼 𝜌𝛼 – kgm−3

Porosity 𝜀𝑙 0.5 –
Vessel bulk modulus 𝐾𝜈 1 × 103 Pa
Vessel intrinsic permeability 𝑘𝜀𝑏 2 × 10−16 or 4 × 10−16 m2

Blood viscosity 𝜇𝑏 4.0 × 10−3 Pa s
Initial vascular porosity 𝜀𝑏0 0% or 2% or 4% –
Vascular porosity 𝜀𝑏 Eq. (48) –

4.1. Governing equations

Let one consider a vascular multi-compartment structure composed
of a solid scaffold filled with interstitial fluid (IF) and blood. The
medium is assumed saturated. The following convention is assumed:
the superscript ‘‘s’’ (∙𝑠) denotes the solid phase, the superscript ‘‘l’’ (∙𝑙)
denotes the interstitial fluid phase and the superscript (∙𝑏) denotes the
vascular part. The primary variables of the problem are the pressure
applied in the pores of the extra-vascular part of the porous medium,
namely 𝑝𝑙, the blood pressure, namely 𝑝𝑏, and the displacement of the
solid scaffold, namely 𝐮𝑠. (Eq. (36)) links the different volume fractions.
The volume fraction of the phase 𝛼 is defined by (Eq. (6)). 𝜀𝑙 is called
the extra-vascular porosity of the medium.

𝜀𝑠 + 𝜀𝑙 + 𝜀𝑏 = 1 (36)

Assuming that there is no inter-phase mass transport (i.e. the IF and
the blood are assumed pure phases), the continuity equations (mass
conservation) of the solid, the IF and the blood phases are respectively
given by Eqs. (37), (38), (39).
𝜕
𝜕𝑡
(𝜌𝑠(1 − 𝜀𝑙 − 𝜀𝑏)) + ∇ ⋅ (𝜌𝑠(1 − 𝜀𝑙 − 𝜀𝑏)𝐯𝐬) = 0 (37)

𝜕
𝜕𝑡
(𝜌𝑙𝜀𝑙) + ∇ ⋅ (𝜌𝑙𝜀𝑙𝐯𝑙) = 0 (38)

𝜕
𝜕𝑡
(𝜌𝑏𝜀𝑏) + ∇ ⋅ (𝜌𝑏𝜀𝑏𝐯𝑏) = 0 (39)

According to Section 3.2, and dividing each equation by the corre-
sponding density, the continuity equations can be re-expressed as:
D𝑠

D𝑡
(1 − 𝜀𝑙 − 𝜀𝑏) + (1 − 𝜀𝑙 − 𝜀𝑏)∇ ⋅ 𝐯𝐬 = 0 (40)

D𝑠𝜀𝑙

D𝑡
+ ∇ ⋅ (𝜀𝑙(𝐯𝑙 − 𝐯𝑠)) + 𝜀𝑙∇ ⋅ 𝐯𝐬 = 0 (41)

D𝑠𝜀𝑏

D𝑡
+ ∇ ⋅ (𝜀𝑏(𝐯𝑏 − 𝐯𝑠)) + 𝜀𝑏∇ ⋅ 𝐯𝐬 = 0 (42)

For the fluid phase, Darcy’s law (Eqs. (43), (44)) is used to evaluate
the fluid flow in the porous medium.

𝜀𝑙(𝐯𝑙 − 𝐯𝑠) = −𝑘𝜀

𝜇𝑙 (∇𝑝
𝑙 − 𝜌𝑙𝐠) (43)

𝜀𝑏(𝐯𝑏 − 𝐯𝑠) = − 𝑘𝑏

𝜇𝑏 (∇𝑝
𝑏 − 𝜌𝑏𝐠) (44)

where 𝑘𝜀, 𝑘𝑏 are the intrinsic permeabilities (m2), 𝜇𝑙, 𝜇𝑏 are the dy-
namic viscosities (Pa s), 𝑝𝑙, 𝑝𝑏 the pressures and 𝐠 the gravity.

Eq. (39) gives the following relationship:

D𝑠𝜀𝑙

D𝑡
= −D𝑠𝜀𝑏

D𝑡
+ (1 − 𝜀𝑙 − 𝜀𝑏)∇ ⋅ 𝐯𝐬 (45)

Table 5
Initial conditions for the bi-compartment model.

Parameter Symbol Value Unit

Displacement 𝐮𝑠 0 m
Displacement at previous step 𝐮𝑠𝑛 0 m
IF pressure 𝑝𝑙 0 Pa
IF pressure at previous step 𝑝𝑙𝑛 0 Pa
Blood pressure 𝑝𝑏 0 Pa
Blood pressure at previous time step 𝑝𝑏 0 Pa
Vascular porosity 𝜀𝑏 𝜀𝑏0 –

Considering Eqs. (43), (45), Eq. (41) becomes:

− D𝑠𝜀𝑏

D𝑡
− ∇ ⋅ (𝑘

𝜀

𝜇𝑙 ∇𝑝
𝑙) + (1 − 𝜀𝑏)∇ ⋅ 𝐯𝐬 = 0 (46)

Then, reading Eq. (44), Eq. (42) gives:

D𝑠𝜀𝑏

D𝑡
− ∇ ⋅ (𝑘

𝑏

𝜇𝑏∇𝑝
𝑏) + 𝜀𝑏∇ ⋅ 𝐯𝐬 = 0 (47)

Considering a vascular tissue, we assume that the blood vessels are
mostly surrounded by IF so they have weak direct interaction with
the solid scaffold. Furthermore, the vessels are assumed compress-
ible. Therefore, a state equation for the volume fraction of blood is
introduced Eq. (48).

𝜀𝑏 = 𝜀𝑏0 ⋅
(

1 −
𝑝𝑙 − 𝑝𝑏

𝐾𝜈

)

(48)

where 𝜀𝑏0 denotes the blood volume fraction when 𝑝𝑙 = 𝑝𝑏, 𝐾𝜈 is the
vessel compressibility.

It follows that Eqs. (46), (47) can be re-written as:

−
𝜀𝑏0
𝐾𝜈

(

D𝑠𝑝𝑙

D𝑡
−

D𝑠𝑝𝑏

D𝑡

)

− ∇ ⋅ (𝑘
𝜀

𝜇𝑙 ∇𝑝
𝑙) + (1 − 𝜀𝑏)∇ ⋅ 𝐯𝐬 = 0 (49)

𝜀𝑏0
𝐾𝜈

(

D𝑠𝑝𝑙

D𝑡
−

D𝑠𝑝𝑏

D𝑡

)

− ∇ ⋅ (𝑘
𝑏

𝜇𝑏∇𝑝
𝑏) + 𝜀𝑏∇ ⋅ 𝐯𝐬 = 0 (50)

Once the continuity equations are settled, one can define the quasi-
static momentum balance of the porous medium, Eq. (51).

∇ ⋅ 𝐭tot = 0 (51)

where 𝐭tot is the total Cauchy stress tensor. We introduce an effective
stress tensor denoted 𝐭eff, responsible for all deformation of the solid
scaffold. Then, 𝐭tot can be expressed as:

𝐭𝑡𝑜𝑡 = 𝐭eff − (1 − 𝜁)𝑝𝑙𝐈𝐝 − 𝜁𝑝𝑏𝐈𝐝 (52)

𝜖(𝐮) = 1
2
(∇𝐮 + ∇𝐮T) (53)

𝐭eff = 2𝜇𝜖(𝐮𝑠) + 𝜆tr(𝜖(𝐮𝑠))𝐈𝐝 (54)

𝜁 = 𝜀𝑏0

(

1 − 2
𝑝𝑙 − 𝑝𝑏

𝐾𝜈

)

(55)

Four boundaries are defined: the first one, 𝛤𝑢 has imposed dis-
placement (Eq. (56)), the second one 𝛤𝑠 has imposed external forces
(Eq. (57)) and 𝛺𝑝 has imposed pressure (fluid leakage condition
(Eqs. (58), (59))). We obtain:

𝐭eff = 𝐭imposed on 𝛤𝑠 (56)

𝐮𝑠 = 𝐮imposed on 𝛤𝑢 (57)

𝑝𝑙 = 0 on 𝛤𝑝 (58)

𝑝𝑏 = 0 on 𝛤𝑝 (59)

The initial conditions are given Table 5.

4.2. Variational form

For the computation of the FE model, the variational form of
Eqs. (49)–(51) must be introduced. Let one consider (𝑞𝑙, 𝑞𝑏,v) the test

functions defined in the mixed space L20(𝛺) × L20(𝛺) × [H1(𝛺)]3. With a
first order approximation in time, Eqs. (49), (50) gives:

−
𝜀𝑏0
𝐾𝜈

1
𝑑𝑡 ∫𝛺

(𝑝𝑏 − 𝑝𝑏𝑛 − 𝑝𝑙 + 𝑝𝑙𝑛)𝑞
𝑙d𝛺 + 1 − 𝜀𝑏

𝑑𝑡 ∫𝛺
∇ ⋅ (𝐮𝑠 − 𝐮𝑠𝑛)𝑞

𝑙d𝛺

+𝑘𝜀

𝜇𝑙 ∫𝛺
∇𝑝𝑙∇𝑞𝑙d𝛺 = 0,∀ 𝑞𝑙 ∈ L20(𝛺)

(60)

𝜀𝑏

𝐾𝜈
1
𝑑𝑡 ∫𝛺

(𝑝𝑏 − 𝑝𝑏𝑛 − 𝑝𝑙 + 𝑝𝑙𝑛)𝑞
𝑏d𝛺 + 𝜀𝑏

𝑑𝑡 ∫𝛺
∇ ⋅ (𝐮𝑠 − 𝐮𝑠𝑛)𝑞

𝑏d𝛺

+ 𝑘𝑏

𝜇𝑏 ∫𝛺
∇𝑝𝑏∇𝑞𝑏d𝛺 = 0,∀ 𝑞𝑏 ∈ L20(𝛺)

(61)

Similarly, by integrating by part Eq. (51), and including the Neu-
mann boundary conditions, we get:

∫𝛺
𝐭eff ∶ ∇𝐯d𝛺 − ∫𝛺

(1 − 𝜁)𝑝𝑙∇ ⋅ 𝐯d𝛺

−∫𝛺
𝜁𝑝𝑏∇ ⋅ 𝐯d𝛺

−∫𝛤𝑠
𝐭imposed ⋅ 𝐯d𝛤𝑠 = 0,∀ 𝑣 ∈ [H1(𝛺)]3

(62)

4.3. FEniCSx implementation

This section provides the code of a multi-compartment 3D column
in confined compression. In order to evaluate the FEniCSx implemen-
tation, this case is similar to the Cast3 m solution proposed in Sciumè
(2021). 3 cases are studied: avascular tissue, vascular porosity of 2%
and vascular porosity of 4%. The load is applied as a sine ramp during
5 s and then sustained during 125 s.

The time discretization is introduced.
t, t_ramp, t_sust = 0, 5, 125 # Start time
Tf = t_ramp+t_sust # End time
num_steps = 1301 # Number of

time steps
dt = (Tf-t)/num_steps # Time step

size

We then introduce the material parameters according to Table 5.
The three cases of vascularization and Eq. (55) are defined.
E = Constant(mesh, ScalarType(5000))
nu = Constant(mesh, ScalarType(0.2))
kepsilon_l = Constant(mesh, ScalarType(1e-14))
mu_l = Constant(mesh, ScalarType(1))
lambda_m = Constant(mesh, ScalarType(E.value*nu.

value/((1+nu.value)*(1-2*nu.value))))
mu = Constant(mesh, ScalarType(E.value/(2*(1+

nu.value))))
Knu = Constant(mesh, ScalarType(1000)) #

compressibility of the vessels
mu_b = Constant(mesh, ScalarType(0.004)) #dynamic

mu_l of the blood
case=1
if case ==0:

epsilon_b_0=Constant(mesh, ScalarType(0.00)) #
initial vascular porosity
k_b=Constant(mesh, ScalarType(2e-16)) #intrinsic
permeability of vessels
def zeta(pl,pb):

return Constant(mesh,ScalarType(0.))
elif case ==1:

epsilon_b_0=Constant(mesh, ScalarType(0.02)) #
initial vascular porosity
k_b=Constant(mesh, ScalarType(2e-16)) #intrinsic
permeability of vessels
def zeta(pl,pb):

return epsilon_b_0.value*(1-2*(pl-pb)/Knu.value)
elif case ==2:

epsilon_b_0 = Constant(mesh, ScalarType(0.04)) #
initial vascular porosity
k_b = Constant(mesh, ScalarType(4e-16)) #intrinsic
permeability of vessels

def zeta(pl,pb):
return epsilon_b_0.value*(1-2*(pl-pb)/Knu.value)

Then, the integration space, boundary and initial conditions are set
up for the displacement, the IF pressure and the blood pressure.

Mechanical loading (Terzaghi)
pinit = 200 #[Pa]
T = Constant(mesh,ScalarType(-pinit))
Define Mixed Space (R2,R, R) -> (u,pl, pb)
element = VectorElement(" CG " , mesh.ufl_cell(),

2)
pressure_element = FiniteElement(" CG " , mesh.ufl_cell(),

1)
MS = FunctionSpace(mesh, MixedElement([

element,pressure_element ,pressure_element]))
Create the solution and initial spaces
X0 = Function(MS)
Xn = Function(MS)
Create the surfacic element
ds = Measure(" ds " , domain=mesh, subdomain_data=facet_tag

)
compute the normals
normal = FacetNormal(mesh)
Define the Dirichlet conditions
bcs = []
uy=0
facets = facet_tag.find(1)
dofs = locate_dofs_topological(MS.sub(0).sub(1), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(1)))
ux=0
facets = facet_tag.find(2)
dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(0)))
ux=0
facets = facet_tag.find(4)
dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(0)))
uz=0
facets = facet_tag.find(5)
dofs = locate_dofs_topological(MS.sub(0).sub(2), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(2)))
uz=0
facets = facet_tag.find(6)
dofs = locate_dofs_topological(MS.sub(0).sub(2), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(2)))
leakage pl=pb=0
facets = facet_tag.find(3)
dofs = locate_dofs_topological(MS.sub(1), fdim, facets

)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(1)))
dofs = locate_dofs_topological(MS.sub(2), fdim, facets

)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(2)))
Set Initial values
Displacement
Un_, Un_to_MS = MS.sub(0).collapse()
FUn_ = Function(Un_)
with FUn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(0.0))
Update Xn for all threads
Xn.x.array[Un_to_MS] = FUn_.x.array
Xn.x.scatter_forward()
IF Pressure
Pn_, Pn_to_MS = MS.sub(1).collapse()
FPn_ = Function(Pn_)
with FPn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(0))
Update Xn for all threads
Xn.x.array[Pn_to_MS] = FPn_.x.array
Xn.x.scatter_forward()
Blood Pressure
Pbn_, Pbn_to_MS = MS.sub(2).collapse()
FPbn_ = Function(Pbn_)
with FPbn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(0))
Update Xn for all threads
Xn.x.array[Pbn_to_MS] = FPbn_.x.array
Xn.x.scatter_forward()

Internal variables are required. The vessels are compressible so we
include the evolution of the vascular porosity as a function representing
Eq. (48).

Internal variables: vascular porosity
Poro_space = FunctionSpace(mesh,pressure_element)
poro_b = Function(Poro_space) # vascular porosity
Initialize
with poro_b.vector.localForm() as initial_local:

initial_local.set(ScalarType(epsilon_b_0.value))
Update
poro_b.x.scatter_forward()
poro_b.name= " poro_b "

A xdmf file is opened to store the results.

xdmf = XDMFFile(mesh.comm, " terzaghi.xdmf " , " w ")
xdmf.write_mesh(mesh)

The test functions as well as the variational form are introduced
according to Eqs. (60), (61), (62).

u, pl, pb = split(X0)
u_n, pl_n, pb_n = split(Xn)
v, ql, qb = TestFunctions(MS)
dx = Measure(" dx " , metadata={ " quadrature_degree " : 4})
F = (1-poro_b)*(1/dt)*nabla_div(u-u_n)*ql*dx + (

kepsilon_l/(mu_l))*dot(grad(pl),grad(ql))*dx - (
epsilon_b_0/Knu)*((1/dt)*(pb-pb_n-pl+pl_n))*ql*dx

F += poro_b*(1/dt)*nabla_div(u-u_n)*qb*dx + (k_b/(mu_b)
)*dot(grad(pb),grad(qb))*dx + (epsilon_b_0/Knu)

((1/dt)(pb-pb_n-pl+pl_n))*qb*dx
F += inner(grad(v),teff(u))*dx - (1-zeta(pl,pb))*pl*

nabla_div(v)*dx - zeta(pl,pb)*pb*nabla_div(v)*dx -
T*inner(v,normal)*ds(3)

Finally, the problem to be solved is defined and a Newton method is
used for each time step, the vascular porosity is updated and the results
are stored in the xdmf file.

dX0 = TrialFunction(MS)
J = derivative(F, X0, dX0)
Problem = NonlinearProblem(F, X0, bcs = bcs, J = J)
solver = nls.petsc.NewtonSolver(mesh.comm, Problem)
Set Newton solver options
solver.atol = 5e-10
solver.rtol = 1e-11
solver.convergence_criterion = " incremental "
t = 0
for n in range(num_steps):

t += dt
if t < t_ramp:

f1 = 0.5 * (1 - np.cos(np.pi*t/t_ramp))
else:

f1 = 1
T.value = -200*f1
num_its, converged = solver.solve(X0)
X0.x.scatter_forward()
Update Value
Xn.x.array[:] = X0.x.array
Xn.x.scatter_forward()
Update porosity
poro_b.x.array[:] = epsilon_b_0.value*(1-(1/Knu.
value)*(X0.x.array[Pn_to_MS]-X0.x.array[Pbn_to_MS])
)
poro_b.x.scatter_forward()
Save data
__u, __pl, __pb = X0.split()
__u.name = " Displacement "
__pl.name = " Pressure IF "
__pb.name = " Pressure blood "
xdmf.write_function(__u,t)
xdmf.write_function(__pl,t)
xdmf.write_function(__pb,t)
xdmf.write_function(poro_b,t)

xdmf.close()

4.4. Results

The evolution of the vascular and interstitial pressures at the bottom
points and the vertical displacement at the top points are provided
Fig. 5. Each solution was obtained in 6±2 min on 8 threads (instead of

Fig. 5. Comparison of the results obtained using FEniCSx against (Sciumè, 2021) results. All results were shifted to obtain similar figures. The solid, dotted and dashed lines
respectively represent the 0%, 2% 4% initial vascular porosity. (a) Evolution of the pressure at the bottom points. (b) Displacement of the top points. (c) Vascular porosity at the
bottom points. The behavior was well retrieved for all the cases with a NRMSE lower than 10% for all variables according to Table 6.

Table 6
NRMSE computed for each studied variable.

Parameter 0% 2% 4%

𝑝𝑙 1.4% 3.1% 5.1%
𝑢𝑦 0.3% 2.2% 3.7%
𝑝𝑏 – 4.7% 8.8%
𝜀𝑏0 – 0.4% 0.6%

10.6 ± 1.7 min on a single thread) and the mesh was kept the same as
in the previous section. The convergence curve is provided Appendix E.
The overall behavior of the interstitial fluid pressure, the blood pressure
and the solid displacement were retrieved. To quantitatively assess the
reliability of our implemented model, The normalized root mean square
error (NRMSE, Eq. (63)) was computed for each case with the results
obtained with Cast3 m in Sciumè (2021), Table 6.

NRMSE(𝑥, 𝑥ref) =

√

1
𝑁

∑

𝑖∈[1,𝑁](𝑥 − 𝑥ref)2

mean(𝑥ref)
(63)

The NRMSE was found lower than 10% for all unknowns. The
differences are assumed to result from the method of resolution which
differs between Cast3 m and FEniCSx. Indeed, the Cast3 m procedure
relies on a staggered solver whereas our results were obtained using
a monolithic solver. The order of magnitudes of the NRMSE made us
however consider our solution as trustworthy.

5. Conclusion

The objective of this paper was to propose a step-by-step explana-
tion of how to implement several poro-mechanical models in FEniCSx
with special attention to parallel computation. Several benchmark cases

for a mixed formulation were evaluated. First, a confined column was
simulated under compression. Accurate results according to the L2-
norm were found compared to the analytical solution. Furthermore,
the code was computed 3 times faster than in the legacy FEniCS
environment. Then, a possible implementation of a hyper-elastic for-
mulation was proposed. The model was validated using (Selvadurai and
Suvorov, 2016) values. Finally, a confined bi-compartment sample was
simulated. The results were compared to Sciumè (2021) data. Small
differences were observed due to the choice of the solver (staggered or
monolithic) but remained acceptable. The authors hope that this paper
will contribute to facilitate the use of poro-elasticity in the biomechani-
cal engineering community. This article and its supplementary material
constitute a starting point to implement their own material models at
a preferred level of complexity.

CRediT authorship contribution statement

Thomas Lavigne: Writing – review & editing, Writing – original
draft, Visualization, Validation, Software, Methodology, Investigation,
Data curation, Conceptualization. Stéphane Urcun: Writing – review &
editing, Writing – original draft, Supervision, Software, Methodology,
Investigation, Data curation, Conceptualization. Pierre-Yves Rohan:
Writing – review & editing, Writing – original draft, Supervision, In-
vestigation, Conceptualization. Giuseppe Sciumè: Writing – review
& editing, Writing – original draft, Supervision, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Davide Baroli: Writing
– review & editing, Writing – original draft, Supervision, Software,
Investigation, Conceptualization. Stéphane P.A. Bordas: Writing –
original draft, Supervision, Investigation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was funded in whole, or in part, by the Luxembourg
National Research Fund (FNR), grant reference No. 17013182. For the
purpose of open access, the author has applied a Creative Commons At-
tribution 4.0 International (CC BY 4.0) license to any Author Accepted
Manuscript version arising from this submission. The present project
is also supported by the National Research Fund, Luxembourg, under
grant No. C20/MS/14782078/QuaC.

Appendix A. 3D Terzaghi example

Here-after is proposed a minimal working code corresponding to the
2D case included within the text.

import numpy as np
import csv
from petsc4py import PETSc
import dolfinx
from dolfinx import nls
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType , create_box ,

locate_entities_boundary , locate_entities , meshtags
from dolfinx.fem import (Constant , dirichletbc ,

Function , FunctionSpace , locate_dofs_topological ,
form, assemble_scalar)

from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.geometry import BoundingBoxTree ,

compute_collisions , compute_colliding_cells
from petsc4py.PETSc import ScalarType
from mpi4py import MPI
from ufl import (FacetNormal , Identity ,

Measure, TestFunctions , TrialFunction ,
VectorElement , FiniteElement , dot, dx, inner, grad,
nabla_div , div, sym, MixedElement , derivative ,

split)
#
def epsilon(u):

return sym(grad(u))
#
def teff(u):

return lambda_m * nabla_div(u) * Identity(u.
geometric_dimension()) + 2*mu*epsilon(u)

#
kmax=1e3
def terzaghi_p(x):

p0,L=pinit,Height
cv = permeability.value/viscosity.value*(lambda_m.
value+2*mu.value)
pression=0
for k in range(1,int(kmax)):

pression+=p0*4/np.pi*(-1)**(k-1)/(2*k-1)*np.cos
((2*k-1)*0.5*np.pi*(x[1]/L))*np.exp(-(2*k-1)
2*0.25*np.pi2*cv*t/L**2)
pl=pression
return pl

#
def L2_error_p(mesh,pressure_element ,__p):

V2 = FunctionSpace(mesh, pressure_element)
pex = Function(V2)
pex.interpolate(terzaghi_p)
L2_errorp , L2_normp = form(inner(__p - pex, __p -
pex) * dx), form(inner(pex, pex) * dx)
error_localp = assemble_scalar(L2_errorp)/
assemble_scalar(L2_normp)
error_L2p = np.sqrt(mesh.comm.allreduce(error_localp
, op=MPI.SUM))
return error_L2p

#
Create the domain / mesh
Height = 1e-4 #[m]
Width = 1e-5 #[m]
Length = 1e-5 #[m]

mesh = create_box(MPI.COMM_WORLD , np.array
([[0.0,0.0,0.0],[Length, Width, Height]]), [8, 8,
20], cell_type=CellType.tetrahedron)

#
Define the boundaries:
1 = bottom, 2 = right, 3=top, 4=left, 5=back, 6=front
boundaries = [(1, lambda x: np.isclose(x[2], 0)),

(2, lambda x: np.isclose(x[0], Length)),
(3, lambda x: np.isclose(x[2], Height)),
(4, lambda x: np.isclose(x[0], 0)),
(5, lambda x: np.isclose(x[1], Width)),
(6, lambda x: np.isclose(x[1], 0))]

#
facet_indices , facet_markers = [], []
fdim = mesh.topology.dim - 1
for (marker, locator) in boundaries:

facets = locate_entities(mesh, fdim, locator)
facet_indices.append(facets)
facet_markers.append(np.full_like(facets, marker))

facet_indices = np.hstack(facet_indices).astype(np.int32
)

facet_markers = np.hstack(facet_markers).astype(np.int32
)

sorted_facets = np.argsort(facet_indices)
facet_tag = meshtags(mesh, fdim, facet_indices[

sorted_facets], facet_markers[sorted_facets])
#
Time parametrization
t = 0 # Start time
Tf = 6 # End time
num_steps = 1000 # Number of time steps
dt = (Tf-t)/num_steps # Time step size
#
Material parameters
E = Constant(mesh, ScalarType(5000))
nu = Constant(mesh, ScalarType(0.4))
lambda_m = Constant(mesh, ScalarType(E.value*nu.

value/((1+nu.value)*(1-2*nu.value))))
mu = Constant(mesh, ScalarType(E.value/(2*(1+

nu.value))))
rhos = Constant(mesh, ScalarType(1))
permeability = Constant(mesh, ScalarType(1.8e-15))
viscosity = Constant(mesh, ScalarType(1e-2))
rhol = Constant(mesh, ScalarType(1))
beta = Constant(mesh, ScalarType(1))
porosity = Constant(mesh, ScalarType(0.2))
Kf = Constant(mesh, ScalarType(2.2e9))
Ks = Constant(mesh, ScalarType(1e10))
S = (porosity/Kf)+(1-porosity)/Ks
#
Mechanical loading
pinit = 100 #[Pa]
T = Constant(mesh,ScalarType(-pinit))
#
Create the surfacic element
ds = Measure(" ds " , domain=mesh, subdomain_data=facet_tag

)
normal = FacetNormal(mesh)
#
Define Mixed Space (R2,R) -> (u,p)
displacement_element = VectorElement(" CG " , mesh.

ufl_cell(), 2)
pressure_element = FiniteElement(" CG " , mesh.

ufl_cell(), 1)
MS = FunctionSpace(mesh, MixedElement

([displacement_element ,pressure_element]))
#
Define the Dirichlet condition
1 = bottom: uy=0, 2 = right: ux=0, 3=top: pl=0

drainage , 4=left: ux=0
bcs = []
uz=0
facets = facet_tag.find(1)
dofs = locate_dofs_topological(MS.sub(0).sub(2), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(2)))
ux=0
facets = facet_tag.find(2)
dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(0)))
ux=0
facets = facet_tag.find(4)

dofs = locate_dofs_topological(MS.sub(0).sub(0), fdim,
facets)

bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).
sub(0)))

uy=0
facets = facet_tag.find(5)
dofs = locate_dofs_topological(MS.sub(0).sub(1), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(1)))
uy=0
facets = facet_tag.find(6)
dofs = locate_dofs_topological(MS.sub(0).sub(1), fdim,

facets)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(0).

sub(1)))
drainage p=0
facets = facet_tag.find(3)
dofs = locate_dofs_topological(MS.sub(1), fdim, facets

)
bcs.append(dirichletbc(ScalarType(0), dofs, MS.sub(1)))
#
Create the initial and solution spaces
X0 = Function(MS)
Xn = Function(MS)
#
Initial values
#
Un_, Un_to_MS = MS.sub(0).collapse()
FUn_ = Function(Un_)
with FUn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(0.0))
#
Update Xn
Xn.x.array[Un_to_MS] = FUn_.x.array
Xn.x.scatter_forward()
#
Pn_, Pn_to_MS = MS.sub(1).collapse()
FPn_ = Function(Pn_)
with FPn_.vector.localForm() as initial_local:

initial_local.set(ScalarType(pinit))
#
Update Xn
Xn.x.array[Pn_to_MS] = FPn_.x.array
Xn.x.scatter_forward()
#
Variational form
Identify the unknowns from the function
u,p =split(X0)
u_n,p_n=split(Xn)
Set up the test functions
v,q = TestFunctions(MS)
Equation 17
F = (1/dt)*nabla_div(u-u_n)*q*dx + (permeability/

viscosity)*dot(grad(p),grad(q))*dx + (S/dt)*(p-
p_n)*q*dx

Equation 18
F += inner(grad(v),teff(u))*dx - beta * p * nabla_div(v)

*dx - T*inner(v,normal)*ds(3)
Non linear problem definition
dX0 = TrialFunction(MS)
J = derivative(F, X0, dX0)
Problem = NonlinearProblem(F, X0, bcs = bcs, J = J)
set up the non-linear solver
solver = nls.petsc.NewtonSolver(mesh.comm, Problem)
Absolute tolerance
solver.atol = 5e-10
relative tolerance
solver.rtol = 1e-11
solver.convergence_criterion = " incremental "
#
t = 0
L2_p = np.zeros(num_steps , dtype=PETSc.ScalarType)
for n in range(num_steps):

t += dt
num_its, converged = solver.solve(X0)
X0.x.scatter_forward()
Update Value
Xn.x.array[:] = X0.x.array
Xn.x.scatter_forward()
__u, __p = X0.split()
Compute L2 norm for pressure
error_L2p = L2_error_p(mesh,pressure_element ,__p
)
L2_p[n] = error_L2p
Solve tracking

if mesh.comm.rank == 0:
print(f " Time step {n}, Number of iterations {

num_its}, Load {T.value}, L2-error p {error_L2p:.2e
} ")

if mesh.comm.rank == 0:
print(f " L2 error p, min {np.min(L2_p):.2e}, mean {np
.mean(L2_p):.2e}, max {np.max(L2_p):.2e}, std {np.
std(L2_p):.2e} ")

Appendix B. Local refinement

A 3D geometry can be meshed using the GMSH API of python
(Geuzaine and Remacle, 2018). This allows to represent complex ge-
ometries including circle arcs. An optimized and locally refined mesh
can be therefore obtained. This example uses the method proposed in
the FEniCS project tutorial1 provided by J. Dokken and G. Wells. An al-
ternative procedure in the FEniCSx environment with local refinement
is then proposed in Appendix B.2.

B.1. Meshing using GMSH API

First, the environment is initialized and the physical variables re-
quired for the box/cylinder creation are defined.
import gmsh
import numpy as np
#
gmsh.initialize()
#
box parameters
[Length, Width, Height] = [6e-4, 2.5e-4, 4e-5]
cylinder parameters
xc,yc,zc,dx,dy,dz, r = 6e-4/2, 0, 0, 0, 0, 4e-5, 1.5e-4
expected dimension of the mesh
gdim = 3

The geometries are created using built-in functions of GMSH; poten-
tial duplicates are removed.
create the geometry
box = gmsh.model.occ.addBox(0, 0, 0, Length, Width,

Height)
cylinder = gmsh.model.occ.addCylinder(xc,yc,zc,dx,dy,dz,

r,tag=1000,angle=np.pi)
gmsh.model.occ.synchronize()
Remove duplicate entities and synchronize
gmsh.model.occ.removeAllDuplicates()
gmsh.model.occ.synchronize()

Physical groups are defined: the volumes for the 3D meshing and
the surfaces for tagging. Surface groups were identified based on the
coordinates of the center of mass of each surface.
surfaces , volumes = [gmsh.model.getEntities(d) for d in

[gdim-1, gdim]]
print(volumes)
Volumes
gmsh.model.addPhysicalGroup(volumes[0][0], [volumes

[0][1]], -1)
gmsh.model.setPhysicalName(volumes[0][0], -1, ’

Half_Cylinder’)
gmsh.model.addPhysicalGroup(volumes[1][0], [volumes

[1][1]], -1)
gmsh.model.setPhysicalName(volumes[1][0], -1, ’Box’)
1 = loading, 2 = top minus loading, 3 = bottom, 4 =

left, 5 = right, 6 = Front, 7 = back
bottom_marker , front_marker , back_marker , left_marker ,

right_marker , top_marker , indenter_marker = 3, 6,
7, 4, 5, 2, 1

bottom, front, back, left, right, top, indenter =
[],[],[],[],[],[],[]

boundaries = gmsh.model.getBoundary(volumes, oriented=
False)

for boundary in boundaries:
center_of_mass = gmsh.model.occ.getCenterOfMass(
boundary[0], boundary[1])

1 See https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_
gmsh.html.

https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_gmsh.html
https://docs.fenicsproject.org/dolfinx/main/python/demos/demo_gmsh.html

if np.isclose(center_of_mass[1], Width):
back.append(boundary[1])

elif np.isclose(center_of_mass[1], 0):
front.append(boundary[1])

elif np.isclose(center_of_mass[0], 0):
left.append(boundary[1])

elif np.isclose(center_of_mass[0], Length):
right.append(boundary[1])

elif np.isclose(center_of_mass[2], 0):
bottom.append(boundary[1])

elif np.isclose(center_of_mass[2], Height) and
center_of_mass[1]>Width/3:

top.append(boundary[1])
else:

indenter.append(boundary[1])
mark the surfaces
gmsh.model.addPhysicalGroup(boundaries[0][0], bottom,

bottom_marker)
gmsh.model.setPhysicalName(boundaries[0][0],

bottom_marker , ’bottom’)
gmsh.model.addPhysicalGroup(boundaries[0][0], front,

front_marker)
gmsh.model.setPhysicalName(boundaries[0][0],

front_marker , ’front’)
gmsh.model.addPhysicalGroup(boundaries[0][0], back,

back_marker)
gmsh.model.setPhysicalName(boundaries[0][0], back_marker

, ’back’)
gmsh.model.addPhysicalGroup(boundaries[0][0], left,

left_marker)
gmsh.model.setPhysicalName(boundaries[0][0], left_marker

, ’left’)
gmsh.model.addPhysicalGroup(boundaries[0][0], right,

right_marker)
gmsh.model.setPhysicalName(boundaries[0][0],

right_marker , ’right’)
gmsh.model.addPhysicalGroup(boundaries[0][0], top,

top_marker)
gmsh.model.setPhysicalName(boundaries[0][0], top_marker ,

’top’)
gmsh.model.addPhysicalGroup(boundaries[0][0], indenter ,

indenter_marker)
gmsh.model.setPhysicalName(boundaries[0][0],

indenter_marker , ’indenter’)
gmsh.model.occ.synchronize()
Write a geo file for verification in the GMSH GUI
gmsh.write(’Geom_2reelle_8EP.geo_unrolled’)

Then, a threshold function is defined over a distance field to mesh
the circular area. This allows for creating an adaptive mesh: coarse far
from the circular area, refine close to it.
indenter_interface = surfaces[0][1]
distance = gmsh.model.mesh.field.add(" Distance ")
gmsh.model.mesh.field.setNumbers(distance , " FacesList " ,

[indenter_interface])
A threshold function is defined:
resolution = r/10
threshold = gmsh.model.mesh.field.add(" Threshold ")
gmsh.model.mesh.field.setNumber(threshold , " IField " ,

distance)
gmsh.model.mesh.field.setNumber(threshold , " LcMin " ,

resolution)
gmsh.model.mesh.field.setNumber(threshold , " LcMax " , 5*

resolution)
gmsh.model.mesh.field.setNumber(threshold , " DistMin " ,

0.6*r)
gmsh.model.mesh.field.setNumber(threshold , " DistMax " , r)
If several fields are defined:
minimum = gmsh.model.mesh.field.add(" Min ")
gmsh.model.mesh.field.setNumbers(minimum, " FieldsList " ,

[threshold]) # add other fields in the list if
needed

gmsh.model.mesh.field.setAsBackgroundMesh(minimum)

Finally, the options of the mesher are defined and the mesh is
created.
gmsh.model.occ.synchronize()
gmsh.option.setNumber(" General.Terminal " ,1)
gmsh.option.setNumber(" Mesh.Optimize " , True)
gmsh.option.setNumber(" Mesh.OptimizeNetgen " , True)
gmsh.model.occ.synchronize()
gmsh.option.setNumber (" Mesh.MshFileVersion " , 2.0)
gmsh.option.setNumber(" Mesh.MeshSizeExtendFromBoundary " ,

0)

gmsh.option.setNumber(" Mesh.MeshSizeFromPoints " , 0)
gmsh.option.setNumber(" Mesh.MeshSizeFromCurvature " , 0)
#
gmsh.model.mesh.generate(gdim)
gmsh.write(" Mesh.msh ")
gmsh.finalize()

B.2. Local refinement within fenicsx

Using GMSH API, an exact circular interface is generated. However,
a similar mesh could have been obtained within FEniCSx through the
approximation of the circular interface around the indenter by local
refining. Here-after is proposed a minimal code for local refinement
inside the circular area.

First, the required libraries are imported and a box mesh is created.

Librairies
import dolfinx
import numpy as np
from dolfinx.mesh import create_box , CellType , refine,

locate_entities , meshtags
from dolfinx.io import XDMFFile
from mpi4py import MPI
#
Box
Dimensions of the sample
[Length, Width, Height] = [6e-4, 2.5e-4, 4e-5]
Discretization
[nx,ny,nz] = [30,15,8]
mesh = create_box(MPI.COMM_WORLD ,np.array

([[0.0,0.0,0.0],[Length, Width, Height]]), [nx,ny,
nz], cell_type=CellType.tetrahedron)

Then a locator is introduced to identify all the edges (fdim = 1)
which are part of the region we aim to refine.

def test_on_boundary(x):
return (np.sqrt(np.power(x[0]-3e-4,2)+np.power(x
[1],2))<=1.5e-4)

#
refine_boudaries = [(11, lambda x: test_on_boundary(x))]

Finally, a loop is performed to compute several times the refinement
(np.arange(N)), using the existing refine() function.

for _ in np.arange(2):
Refinement
refine_indices , refine_markers = [], []
fdim = mesh.topology.dim-2
for (marker, locator) in refine_boudaries:

facets = locate_entities(mesh, fdim, locator)
refine_indices.append(facets)
refine_markers.append(np.full_like(facets,

marker))
refine_indices = np.hstack(refine_indices).astype(np
.int32)
refine_markers = np.hstack(refine_markers).astype(np
.int32)
indices in meshtag must be sorted
sorted_facets_refine = np.argsort(refine_indices)
refine_tag = meshtags(mesh, fdim, refine_indices[
sorted_facets_refine], refine_markers[
sorted_facets_refine])
mesh.topology.create_entities(fdim)
mesh = refine(mesh, refine_indices[
sorted_facets_refine])

The facets are tagged to apply boundary conditions and the mesh is
written as a .xdmf file.

def Omega_top(x):
return np.logical_and((x[2] == Height), (np.sqrt(np.
power(x[0]-3e-4,2)+np.power(x[1],2))<=1.5e-4))

#
def Omega_loading(x):

return np.logical_and((x[2] == Height), (np.sqrt(np.
power(x[0]-3e-4,2)+np.power(x[1],2))>=1.2e-4))

#
Create the facet tags (identify the boundaries)
1 = loading, 2 = top minus loading, 3 = bottom, 4 =

left, 5 = right, 6 = Front, 7 = back
boundaries = [(1, lambda x: Omega_loading(x)),

Fig. B.6. GMSH (a) and FEniCSx (b) generated meshes.

(2, lambda x: Omega_top(x)),
(3, lambda x: np.isclose(x[2], 0.0)),
(4, lambda x: np.isclose(x[0], 0.0)),
(5, lambda x: np.isclose(x[0], Length)),
(6, lambda x: np.isclose(x[1], 0.0)),
(7, lambda x: np.isclose(x[1], Width))]

Mark them
facet_indices , facet_markers = [], []
fdim = mesh.topology.dim - 1
for (marker, locator) in boundaries:

facets = locate_entities(mesh, fdim, locator)
facet_indices.append(facets)
facet_markers.append(np.full_like(facets, marker))

facet_indices = np.hstack(facet_indices).astype(np.int32
)

facet_markers = np.hstack(facet_markers).astype(np.int32
)

sorted_facets = np.argsort(facet_indices)
facet_tag = meshtags(mesh, fdim, facet_indices[

sorted_facets], facet_markers[sorted_facets])
facet_tag.name = " facets "
Write XDMF
mesh.topology.create_connectivity(mesh.topology.dim-1,

mesh.topology.dim)
with XDMFFile(mesh.comm, " facet_tags.xdmf " , " w ") as

xdmftag:
xdmftag.write_mesh(mesh)
xdmftag.write_meshtags(facet_tag)

xdmftag.close()

Fig. B.6 gives the comparison of the mesh obtained using GMSH and
the one using local refinement.

B.3. Import an external mesh (XDMF or MSH)

Once the mesh is generated as a tagged .msh or .xdmf file, one
can consider directly read them to compile the domain and read the
markers using:
from dolfinx.io.gmshio import read_from_msh
from dolfinx.io import XDMFFile
set value to 0 if .xdmf, set it to 1 if .msh
mesher = 1
#
if mesher == 0:

##########################
Read XDMF mesh
##########################
filename = " filename.xdmf "
with XDMFFile(MPI.COMM_WORLD , filename , " r ") as file
:

mesh = file.read_mesh()
mesh.topology.create_connectivity(mesh.topology.

dim-1, mesh.topology.dim)
facet_tag = file.read_meshtags(mesh, " tag.name ")

#
elif mesher == 1:

##########################
Read gmsh mesh
##########################
mesh, cell_tag , facet_tag = read_from_msh(" filename.
msh " , MPI.COMM_WORLD , 0, gdim=3)

#
else:

print(’The mesh type is wrongly defined. mesher
should equal 0 for xdmf and 1 for msh files.’)
exit()

Appendix C. Evaluate the function at a physical point

One strength of using FEniCSx is its ability to evaluate the solution
at given points, summing the contribution of the neighbor cells of the
mesh.2 The following code allowed to compute the figures presented for
the results of Section 3 and ref 4. First, one need to define the points
where to evaluate the solution.
import numpy as np
num_points = 11
y_check = np.linspace(0,Height,num_points)
points_for_time = np.array([[Width/2, 0., 0.], [Width/2,

Height/2, 0.]])
points_for_space = np.zeros((num_points ,3))
for ii in range(num_points):

points_for_space[ii,0]=Width/2
points_for_space[ii,1]=y_check[ii]

points = np.concatenate((points_for_time ,
points_for_space))

The following step is to identify the cells contributing to the points.
from dolfinx.geometry import BoundingBoxTree ,

compute_collisions , compute_colliding_cells
tree = BoundingBoxTree(mesh, mesh.geometry.dim)
cell_candidates = compute_collisions(tree, points)
colliding_cells = compute_colliding_cells(mesh,

cell_candidates , points)
Here is an example to select cells contributing to the

first and second points.
cells_y_0 = colliding_cells.links(0)
cells_y_H_over_2 = colliding_cells.links(1)

Knowing the shape of the functions to evaluate, lists are created
and will be updated during the resolution procedure. Regarding parallel
computation, these lists are only created on the first kernel.
from mpi4py import MPI
if MPI.COMM_WORLD.rank == 0:

pressure_y_0 = np.zeros(num_steps , dtype=PETSc.
ScalarType)
pressure_y_Height_over_2 = np.zeros(num_steps , dtype
=PETSc.ScalarType)
pressure_space0 = np.zeros(num_points , dtype=PETSc.
ScalarType)
pressure_space1 = np.zeros(num_points , dtype=PETSc.
ScalarType)
pressure_space2 = np.zeros(num_points , dtype=PETSc.
ScalarType)

A function is created to evaluate a function given the mesh, the
function, the contributing cells to the point and the list with its index
to store the evaluated value in.
def evaluate_point(mesh, function, contributing_cells ,

point, output_list , index):
from mpi4py import MPI
function_eval = None
if len(contributing_cells) > 0:

function_eval = function.eval(point,
contributing_cells[:1])

2 See https://jorgensd.github.io/dolfinx-tutorial/chapter2/ns_code2.html?
highlight=eval.

https://jorgensd.github.io/dolfinx-tutorial/chapter2/ns_code2.html?highlight=eval
https://jorgensd.github.io/dolfinx-tutorial/chapter2/ns_code2.html?highlight=eval

function_eval = mesh.comm.gather(function_eval , root
=0)
Choose first pressure that is found from the
different processors
if MPI.COMM_WORLD.rank == 0:

for element in function_eval:
if element is not None:

output_list[index]=element[0]
break

pass

Finally, the problem is solved for each time steps. The functions
are evaluated for all kernels and gathered on the first one where the
first pressure found by the different processors will be uploaded in the
here-above lists.

time steps to evaluate the pressure in space:
n0, n1, n2 = 200,400,800
#
t = 0
L2_p = np.zeros(num_steps , dtype=PETSc.ScalarType)
for n in range(num_steps):

t += dt
try:

num_its, converged = solver.solve(X0)
except:

if MPI.COMM_WORLD.rank == 0:
print(" ************* ")
print(" Solver failed ")
print(" ************* ")
pass

X0.x.scatter_forward()
Update Value
Xn.x.array[:] = X0.x.array
Xn.x.scatter_forward()

__u, __p = X0.split()
#
Export the results
__u.name = " Displacement "
__p.name = " Pressure "
xdmf.write_function(__u,t)
xdmf.write_function(__p,t)
#
Compute L2 norm for pressure
error_L2p = L2_error_p(mesh,pressure_element ,__p
)
L2_p[n] = error_L2p
#
Solve tracking
if MPI.COMM_WORLD.rank == 0:

print(f " Time step {n}/{num_steps}, Load {T.value
}, L2-error p {error_L2p:.2e} ")
Evaluate the functions
in time
if n == n0:

for ii in range(num_points):
evaluate_point(mesh, __p, colliding_cells.

links(ii+2), points[ii+2], pressure_space0 , ii)
t0 = t

elif n==n1:
evaluate_point(mesh, __p, colliding_cells.

links(ii+2), points[ii+2], pressure_space1 , ii)
t1 = t

elif n==n2:
evaluate_point(mesh, __p, colliding_cells.

links(ii+2), points[ii+2], pressure_space2 , ii)
t2 = t

#
xdmf.close()

Fig. D.7. Full vertical displacement field and pressure field at given time points.

Fig. D.8. Full vertical displacement field and pressure field at given time points.

Fig. E.9. Convergence curves for (a,b) a single compartment column with a hyper-elastic scaffold; (c,d) a bi-compartment column. 𝑢𝑧 stands for the vertical displacement at the
top points, 𝑝𝑙 denotes the fluid pressure at the bottom points and 𝑛𝑧 is the number of elements in the vertical direction.

Appendix D. Full field FE solutions

D.1. Single compartment column with an elastic scaffold

The vertical displacement and pressure fields for a single compart-
ment model column with an elastic scaffold are given at different time
steps Fig. D.7.

D.2. Single compartment column with a hyper-elastic scaffold

The vertical displacement and pressure fields for a single compart-
ment model column with a hyper-elastic scaffold Equation (27) are
given at different time steps Fig. D.8.

Appendix E. Convergence curves for sections 3.6 and 4

The normalized root mean square error (NRMSE) was computed
between the solution obtained given a vertical discretization (𝑛𝑧) and
one obtained with a refined discretization (𝑛𝑧 = 300) which was deemed
to approximate the exact solution. In the case of the hyper-elastic
scaffold, Eq. (27) was considered. For the bi-compartment model, the
2% vacularization case was computed. In every cases, the error to the
refined solution reached a plateau with 𝑛𝑧 = 40. This results support
the choice of a vertical discretization of 40 which has been considered
in the article (see Fig. E.9).

Appendix F. Supplementary material

The python codes corresponding to the workflows and the docker
file of this article are made available for 2D and 3D cases on the follow-
ing link: https://github.com/Th0masLavigne/Dolfinx_Porous_Media.git.

References

Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C.,
Ring, J., Rognes, M.E., Wells, G.N., 2015. The FEniCS project version 1.5. Arch.
Numer. Softw. 3, http://dx.doi.org/10.11588/ANS.2015.100.20553, Starting Point
and Frequency:Year: 2013, URL: http://journals.ub.uni-heidelberg.de/index.php/
ans/article/view/20553.

Alnæs, M.S., Logg, A., Ølgaard, K.B., Rognes, M.E., Wells, G.N., 2014. Unified form
language: A domain-specific language for weak formulations of partial differential
equations. ACM Trans. Math. Software 40 (2), http://dx.doi.org/10.1145/2566630.

Argoubi, M., Shirazi-Adl, A., 1996. Poroelastic creep response analysis of a lumbar
motion segment in compression. J. Biomech. 29 (10), 1331–1339. http://dx.doi.
org/10.1016/0021-9290(96)00035-8.

Ateshian, G.A., 2009. The role of interstitial fluid pressurization in articular car-
tilage lubrication. J. Biomech. 42 (9), 1163–1176. http://dx.doi.org/10.1016/j.
jbiomech.2009.04.040, URL: https://www.sciencedirect.com/science/article/pii/
S0021929009002565.

Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12
(2), 155–164.

Budday, S., Ovaert, T.C., Holzapfel, G.A., Steinmann, P., Kuhl, E., 2019. Fifty shades
of brain: A review on the mechanical testing and modeling of brain tissue. Arch.
Comput. Methods Eng. 27 (4), 1187–1230. http://dx.doi.org/10.1007/s11831-019-
09352-w.

Bulle, R., 2022. A Posteriori Error Estimation for Finite Element Approximations of
Fractional Laplacian Problems and Applications to Poro-Elasticity (Ph.D. thesis).
University of Luxembourg ; Université de Bourgogne Franche-Comté, URL: https:
//tel.archives-ouvertes.fr/tel-03652547.

Detournay, E., Cheng, A.H.-D., 1993. Fundamentals of Poroelasticity. Elsevier, pp.
113–171.

Doll, S., Schweizerhof, K., 2000. On the development of volumetric strain energy
functions. J. Appl. Mech. 67 (1), 17–21.

Fehervary, H., Maes, L., Vastmans, J., Kloosterman, G., Famaey, N., 2020. How to
implement user-defined fiber-reinforced hyperelastic materials in finite element
software. J. Mech. Behav. Biomed. Mater. 110, 103737. http://dx.doi.org/10.
1016/j.jmbbm.2020.103737, URL: https://www.sciencedirect.com/science/article/
pii/S1751616120302915.

Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G., 2006. Brain tissue deforms
similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids
54 (12), 2592–2620. http://dx.doi.org/10.1016/j.jmps.2006.05.004.

Geuzaine, C., Remacle, J.-F., (2018). Gmsh, URL: http://http://gmsh.info/.

Gimnich, O.A., Singh, J., Bismuth, J., Shah, D.J., Brunner, G., 2019. Magnetic resonance
imaging based modeling of microvascular perfusion in patients with peripheral
artery disease. J. Biomech. 93, 147–158. http://dx.doi.org/10.1016/j.jbiomech.
2019.06.025.

Gray, W.G., Miller, C.T., 2014. Introduction To the Thermodynamically Constrained
Averaging Theory for Porous Medium Systems. Springer International Publishing,
http://dx.doi.org/10.1007/978-3-319-04010-3.

Haagenson, R., Rajaram, H., Allen, J., 2020. A generalized poroelastic model using
FEniCS with insights into the Noordbergum effect. Comput. Methods Appl. Mech.
Engrg. 135, 104399. http://dx.doi.org/10.1016/j.cageo.2019.104399.

Horgan, C.O., Saccomandi, G., 2004. Constitutive models for compressible nonlinearly
elastic materials with limiting chain extensibility. J. Elasticity 77 (2), 123–138.
http://dx.doi.org/10.1007/s10659-005-4408-x.

Hosseini-Farid, M., Ramzanpour, M., McLean, J., Ziejewski, M., Karami, G., 2020. A
poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of
brain tissues. J. Mech. Behav. Biomed. Mater. 102, 103475. http://dx.doi.org/10.
1016/j.jmbbm.2019.103475.

Joodat, S., Nakshatrala, K., Ballarini, R., 2018. Modeling flow in porous media with
double porosity/permeability: A stabilized mixed formulation, error analysis, and
numerical solutions. Comput. Methods Appl. Mech. Engrg. 337, 632–676. http:
//dx.doi.org/10.1016/j.cma.2018.04.004, URL: https://www.sciencedirect.com/
science/article/pii/S0045782518301749.

Lavigne, T., Sciumè, G., Laporte, S., Pillet, H., Urcun, S., Wheatley, B., Rohan, P.-
Y., 2022. Société de Biomécanique Young Investigator Award 2021: Numerical
investigation of the time-dependent stress–strain mechanical behaviour of skele-
tal muscle tissue in the context of pressure ulcer prevention. Clin. Biomech.
93, 105592. http://dx.doi.org/10.1016/j.clinbiomech.2022.105592, URL: https:
//www.sciencedirect.com/science/article/pii/S0268003322000225.

Marino, M., 2018. Constitutive modeling of soft tissues. pp. 81–110. http://dx.doi.org/
10.1016/B978-0-12-801238-3.99926-4.

Mascheroni, P., Stigliano, C., Carfagna, M., Boso, D.P., Preziosi, L., Decuzzi, P.,
Schrefler, B.A., 2016. Predicting the growth of glioblastoma multiforme spheroids
using a multiphase porous media model. Biomech. Model. Mechanobiol. 15 (5),
1215–1228. http://dx.doi.org/10.1007/s10237-015-0755-0.

Mazier, A., Hadramy, S.E., Brunet, J.-N., Hale, J.S., Cotin, S., Bordas, S.P.A., 2022.
SOniCS: Develop intuition on biomechanical systems through interactive error con-
trolled simulations. http://dx.doi.org/10.48550/ARXIV.2208.11676, URL: https:
//arxiv.org/abs/2208.11676.

Mazier, A., Ribes, S., Gilles, B., Bordas, S.P., 2021. A rigged model of the breast
for preoperative surgical planning. J. Biomech. 128, 110645. http://dx.doi.org/
10.1016/j.jbiomech.2021.110645, URL: https://www.sciencedirect.com/science/
article/pii/S0021929021004140.

Oftadeh, R., Connizzo, B.K., Nia, H.T., Ortiz, C., Grodzinsky, A.J., 2018. Biological con-
nective tissues exhibit viscoelastic and poroelastic behavior at different frequency
regimes: Application to tendon and skin biophysics. Acta Biomater. 70, 249–259.
http://dx.doi.org/10.1016/j.actbio.2018.01.041, URL: https://www.sciencedirect.
com/science/article/pii/S1742706118300527.

Pence, T.J., Gou, K., 2014. On compressible versions of the incompressible neo-
Hookean material. Math. Mech. Solids 20 (2), 157–182. http://dx.doi.org/10.1177/
1081286514544258.

Peyrounette, M., Davit, Y., Quintard, M., Lorthois, S., 2018. Multiscale modelling of
blood flow in cerebral microcirculation: Details at capillary scale control accuracy
at the level of the cortex. In: Boltze, J. (Ed.), PLOS ONE 13 (1), e0189474.
http://dx.doi.org/10.1371/journal.pone.0189474.

Sciumè, G., 2021. Mechanistic modeling of vascular tumor growth: an extension of
Biot’s theory to hierarchical bi-compartment porous medium systems. Acta Mech.
232 (4), 1445–1478. http://dx.doi.org/10.1007/s00707-020-02908-z.

Sciumè, G., Shelton, S., Gray, W.G., Miller, C.T., Hussain, F., Ferrari, M., Decuzzi, P.,
Schrefler, B.A., 2013. A multiphase model for three-dimensional tumor growth. New
J. Phys. 15 (1), 015005. http://dx.doi.org/10.1088/1367-2630/15/1/015005.

Scroggs, M.W., Baratta, I.A., Richardson, C.N., Wells, G.N., 2022a. Basix: a runtime
finite element basis evaluation library. J. Open Source Softw. 7 (73), 3982. http:
//dx.doi.org/10.21105/joss.03982.

Scroggs, M.W., Dokken, J.S., Richardson, C.N., Wells, G.N., 2022b. Construction of arbi-
trary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Trans. Math. Software 48 (2), http://dx.doi.org/10.1145/3524456.

Selvadurai, A., Suvorov, A., 2016. Coupled hydro-mechanical effects in a poro-
hyperelastic material. J. Mech. Phys. Solids 91, 311–333. http://dx.doi.org/
10.1016/j.jmps.2016.03.005, URL: https://www.sciencedirect.com/science/article/
pii/S0022509615303574.

Siddique, J., Ahmed, A., Aziz, A., Khalique, C., 2017. A review of mixture theory for
deformable porous media and applications. Appl. Sci. 7 (9), 917. http://dx.doi.org/
10.3390/app7090917.

Simms, C.K., Loocke, M.V., Lyons, C.G., 2012. Skeletal muscle in compression: Modeling
approaches for the passive muscle bulk. Int. J. Multiscale Comput. Eng. 10 (2),
143–154. http://dx.doi.org/10.1615/intjmultcompeng.2011002419.

Simo, J., 1988. A framework for finite strain elastoplasticity based on maximum plastic
dissipation and the multiplicative decomposition: Part I. Continuum formulation.
Comput. Methods Appl. Mech. Engrg. 66 (2), 199–219. http://dx.doi.org/10.1016/
0045-7825(88)90076-X, URL: https://www.sciencedirect.com/science/article/pii/
004578258890076X.

https://github.com/Th0masLavigne/Dolfinx_Porous_Media.git
http://dx.doi.org/10.11588/ANS.2015.100.20553
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/20553
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1016/0021-9290(96)00035-8
http://dx.doi.org/10.1016/0021-9290(96)00035-8
http://dx.doi.org/10.1016/0021-9290(96)00035-8
http://dx.doi.org/10.1016/j.jbiomech.2009.04.040
http://dx.doi.org/10.1016/j.jbiomech.2009.04.040
http://dx.doi.org/10.1016/j.jbiomech.2009.04.040
https://www.sciencedirect.com/science/article/pii/S0021929009002565
https://www.sciencedirect.com/science/article/pii/S0021929009002565
https://www.sciencedirect.com/science/article/pii/S0021929009002565
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb5
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb5
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb5
http://dx.doi.org/10.1007/s11831-019-09352-w
http://dx.doi.org/10.1007/s11831-019-09352-w
http://dx.doi.org/10.1007/s11831-019-09352-w
https://tel.archives-ouvertes.fr/tel-03652547
https://tel.archives-ouvertes.fr/tel-03652547
https://tel.archives-ouvertes.fr/tel-03652547
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb8
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb8
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb8
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb9
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb9
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb9
http://dx.doi.org/10.1016/j.jmbbm.2020.103737
http://dx.doi.org/10.1016/j.jmbbm.2020.103737
http://dx.doi.org/10.1016/j.jmbbm.2020.103737
https://www.sciencedirect.com/science/article/pii/S1751616120302915
https://www.sciencedirect.com/science/article/pii/S1751616120302915
https://www.sciencedirect.com/science/article/pii/S1751616120302915
http://dx.doi.org/10.1016/j.jmps.2006.05.004
http://http://gmsh.info/
http://dx.doi.org/10.1016/j.jbiomech.2019.06.025
http://dx.doi.org/10.1016/j.jbiomech.2019.06.025
http://dx.doi.org/10.1016/j.jbiomech.2019.06.025
http://dx.doi.org/10.1007/978-3-319-04010-3
http://dx.doi.org/10.1016/j.cageo.2019.104399
http://dx.doi.org/10.1007/s10659-005-4408-x
http://dx.doi.org/10.1016/j.jmbbm.2019.103475
http://dx.doi.org/10.1016/j.jmbbm.2019.103475
http://dx.doi.org/10.1016/j.jmbbm.2019.103475
http://dx.doi.org/10.1016/j.cma.2018.04.004
http://dx.doi.org/10.1016/j.cma.2018.04.004
http://dx.doi.org/10.1016/j.cma.2018.04.004
https://www.sciencedirect.com/science/article/pii/S0045782518301749
https://www.sciencedirect.com/science/article/pii/S0045782518301749
https://www.sciencedirect.com/science/article/pii/S0045782518301749
http://dx.doi.org/10.1016/j.clinbiomech.2022.105592
https://www.sciencedirect.com/science/article/pii/S0268003322000225
https://www.sciencedirect.com/science/article/pii/S0268003322000225
https://www.sciencedirect.com/science/article/pii/S0268003322000225
http://dx.doi.org/10.1016/B978-0-12-801238-3.99926-4
http://dx.doi.org/10.1016/B978-0-12-801238-3.99926-4
http://dx.doi.org/10.1016/B978-0-12-801238-3.99926-4
http://dx.doi.org/10.1007/s10237-015-0755-0
http://dx.doi.org/10.48550/ARXIV.2208.11676
https://arxiv.org/abs/2208.11676
https://arxiv.org/abs/2208.11676
https://arxiv.org/abs/2208.11676
http://dx.doi.org/10.1016/j.jbiomech.2021.110645
http://dx.doi.org/10.1016/j.jbiomech.2021.110645
http://dx.doi.org/10.1016/j.jbiomech.2021.110645
https://www.sciencedirect.com/science/article/pii/S0021929021004140
https://www.sciencedirect.com/science/article/pii/S0021929021004140
https://www.sciencedirect.com/science/article/pii/S0021929021004140
http://dx.doi.org/10.1016/j.actbio.2018.01.041
https://www.sciencedirect.com/science/article/pii/S1742706118300527
https://www.sciencedirect.com/science/article/pii/S1742706118300527
https://www.sciencedirect.com/science/article/pii/S1742706118300527
http://dx.doi.org/10.1177/1081286514544258
http://dx.doi.org/10.1177/1081286514544258
http://dx.doi.org/10.1177/1081286514544258
http://dx.doi.org/10.1371/journal.pone.0189474
http://dx.doi.org/10.1007/s00707-020-02908-z
http://dx.doi.org/10.1088/1367-2630/15/1/015005
http://dx.doi.org/10.21105/joss.03982
http://dx.doi.org/10.21105/joss.03982
http://dx.doi.org/10.21105/joss.03982
http://dx.doi.org/10.1145/3524456
http://dx.doi.org/10.1016/j.jmps.2016.03.005
http://dx.doi.org/10.1016/j.jmps.2016.03.005
http://dx.doi.org/10.1016/j.jmps.2016.03.005
https://www.sciencedirect.com/science/article/pii/S0022509615303574
https://www.sciencedirect.com/science/article/pii/S0022509615303574
https://www.sciencedirect.com/science/article/pii/S0022509615303574
http://dx.doi.org/10.3390/app7090917
http://dx.doi.org/10.3390/app7090917
http://dx.doi.org/10.3390/app7090917
http://dx.doi.org/10.1615/intjmultcompeng.2011002419
http://dx.doi.org/10.1016/0045-7825(88)90076-X
http://dx.doi.org/10.1016/0045-7825(88)90076-X
http://dx.doi.org/10.1016/0045-7825(88)90076-X
https://www.sciencedirect.com/science/article/pii/004578258890076X
https://www.sciencedirect.com/science/article/pii/004578258890076X
https://www.sciencedirect.com/science/article/pii/004578258890076X

Treloar, L.G., 1975. The Physics of Rubber Elasticity. OUP Oxford.
Urcun, S., Baroli, D., Rohan, P.-Y., Skalli, W., Lubrano, V., Bordas, S.P., Sciume, G.,

2023. Non-operable glioblastoma: proposition of patient-specific forecasting by
image-informed poromechanical model. Brain Multiph. 100067.

Urcun, S., Rohan, P.-Y., Sciumè, G., Bordas, S.P., 2022. Cortex tissue relaxation and
slow to medium load rates dependency can be captured by a two-phase flow
poroelastic model. J. Mech. Behav. Biomed. Mater. 126, 104952. http://dx.doi.
org/10.1016/j.jmbbm.2021.104952, URL: https://www.sciencedirect.com/science/
article/pii/S175161612100583X.

Urcun, S., Rohan, P.-Y., Skalli, W., Nassoy, P., Bordas, S.P.A., Sciumè, G., 2021. Digital
twinning of Cellular Capsule Technology: Emerging outcomes from the perspective
of porous media mechanics. PLOS ONE 16 (7), 1–30. http://dx.doi.org/10.1371/
journal.pone.0254512.

Vaidya, A.J., Wheatley, B.B., 2020. An experimental and computational investigation
of the effects of volumetric boundary conditions on the compressive mechanics
of passive skeletal muscle. J. Mech. Behav. Biomed. Mater. 102, 103526. http:
//dx.doi.org/10.1016/j.jmbbm.2019.103526.

Van Loocke, M., Simms, C., Lyons, C., 2009. Viscoelastic properties of passive skeletal
muscle in compression—Cyclic behaviour. J. Biomech. 42 (8), 1038–1048. http:
//dx.doi.org/10.1016/j.jbiomech.2009.02.022.

Verruijt, A., 2013. Theory and Problems of Poroelasticity, Vol. 71. Delft University of
Technology.

Wheatley, B.B., Pietsch, R.B., Donahue, T.L.H., Williams, L.N., 2015. Fully non-linear
hyper-viscoelastic modeling of skeletal muscle in compression. Comput. Methods
Biomech. Biomed. Eng. 19 (11), 1181–1189. http://dx.doi.org/10.1080/10255842.
2015.1118468.

Zulian, P., Kopaničáková, A., Nestola, M.G.C., Fadel, N., Fink, A., VandeVondele, J.,
Krause, R., 2021. Large scale simulation of pressure induced phase-field fracture
propagation using Utopia. CCF Trans. High Perform. Comput. http://dx.doi.org/10.
1007/s42514-021-00069-6, arXiv:https://doi.org/10.1007/s42514-021-00069-6.

Zulian, P., Kopaničáková, A., Nestola, M.C.G., Fink, A., Fadel, N., Rigazzi, A., Magri, V.,
Schneider, T., Botter, E., Mankau, J., Krause, R., 2016. Utopia: A performance
portable C++ library for parallel linear and nonlinear algebra. Git repository. URL:
https://bitbucket.org/zulianp/utopia.

http://refhub.elsevier.com/S1751-6161(23)00255-2/sb35
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb36
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb36
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb36
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb36
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb36
http://dx.doi.org/10.1016/j.jmbbm.2021.104952
http://dx.doi.org/10.1016/j.jmbbm.2021.104952
http://dx.doi.org/10.1016/j.jmbbm.2021.104952
https://www.sciencedirect.com/science/article/pii/S175161612100583X
https://www.sciencedirect.com/science/article/pii/S175161612100583X
https://www.sciencedirect.com/science/article/pii/S175161612100583X
http://dx.doi.org/10.1371/journal.pone.0254512
http://dx.doi.org/10.1371/journal.pone.0254512
http://dx.doi.org/10.1371/journal.pone.0254512
http://dx.doi.org/10.1016/j.jmbbm.2019.103526
http://dx.doi.org/10.1016/j.jmbbm.2019.103526
http://dx.doi.org/10.1016/j.jmbbm.2019.103526
http://dx.doi.org/10.1016/j.jbiomech.2009.02.022
http://dx.doi.org/10.1016/j.jbiomech.2009.02.022
http://dx.doi.org/10.1016/j.jbiomech.2009.02.022
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb41
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb41
http://refhub.elsevier.com/S1751-6161(23)00255-2/sb41
http://dx.doi.org/10.1080/10255842.2015.1118468
http://dx.doi.org/10.1080/10255842.2015.1118468
http://dx.doi.org/10.1080/10255842.2015.1118468
http://dx.doi.org/10.1007/s42514-021-00069-6
http://dx.doi.org/10.1007/s42514-021-00069-6
http://dx.doi.org/10.1007/s42514-021-00069-6
https://doi.org/10.1007/s42514-021-00069-6
https://bitbucket.org/zulianp/utopia

	Single and bi-compartment poro-elastic model of perfused biological soft tissues: FEniCSx implementation and tutorial
	Introduction
	Confined compression of a column: geometrical definition
	2D mesh
	3D mesh

	Single-compartment porous medium
	Terzaghi's Analytical solution
	Governing equations
	Effective stress
	Linear elasticity
	Hyper-elasticity

	Variational formulation
	2D linear elastic solid scaffold
	FEniCSx implementation
	Solving and results

	3D hyper-elastic scaffold
	FEniCSx implementation
	Results

	Confined bi-compartment porous-elastic medium
	Governing Equations
	Variational Form
	FEniCSx Implementation
	Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	Appendix A. 3D Terzaghi example
	Appendix B. Local refinement
	Meshing using GMSH API
	Local refinement within FEniCSx
	Import an external mesh (XDMF or MSH)

	Appendix C. Evaluate the function at a physical point
	Appendix D. Full field FE solutions
	Single compartment column with an elastic scaffold
	Single compartment column with a hyper-elastic scaffold

	Appendix E. Convergence curves for Sections ?? and ??
	Appendix F. Supplementary material
	References

