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dArts et Métiers Institute of Technology, LAMPA, HESAM Université

Abstract

Climate events are increasingly affecting supply chains, leading to frequent and costly impacts. Managers lack a systematic approach
to evaluate risks to individual facilities and employees. We propose a decision support methodology to help quantify the exposure of
both to ten most common climate hazards. Using both historical and scenario-based climate data, the methodology distinguishes three
dimensions for understanding climate risk: anomaly, extreme variability, and acceleration, applied to each peril from historical to
projected data. This approach allows for the isolation of the components of climate change by peril, facilitating a better understanding
of each component. Furthermore, it enables the development of adaptative responses tailored to each of the climate dimensions.
A case study of a logistics group with more than 200 warehouses across 181 locations in eight European countries illustrates the
approach, demonstrating its practicality and effectiveness. Our methodology offers firms, large and small, the opportunity to reinforce
their resilience in the face of multiple physical risks. The metrics and scores presented in this paper can be extended to assess the
growing issues of climate risks as they apply to occupational health and safety as well as natural resources management.
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Identifying assets exposed to physical climate risk: a
decision-support methodology

Abstract

Climate events are increasingly affecting supply chains, leading to frequent

and costly impacts. Managers lack a systematic approach to evaluate risks to

individual facilities and employees. We propose a decision support method-

ology to help quantify the exposure of both to ten most common climate

hazards. Using both historical and scenario-based climate data, the method-

ology distinguishes three dimensions for understanding climate risk: anomaly,

extreme variability, and acceleration, applied to each peril from historical

to projected data. This approach allows for the isolation of the components

of climate change by peril, facilitating a better understanding of each com-

ponent. Furthermore, it enables the development of adaptative responses

tailored to each of the climate dimensions. A case study of a logistics group

with more than 200 warehouses across 181 locations in eight European coun-

tries illustrates the approach, demonstrating its practicality and effectiveness.

Our methodology offers firms, large and small, the opportunity to reinforce

their resilience in the face of multiple physical risks. The metrics and scores

presented in this paper can be extended to assess the growing issues of

climate risks as they apply to occupational health and safety as well as

natural resources management.
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1. Introduction

Climate change is a reality. It is global and accelerating (IPCC, 2021).

Climate change and global warming are causing more frequent and intense

climatic anomalies, with increasing tangible effects on businesses and supply

chains (Somarin et al., 2023). Physical climate risks, i.e., the physical

consequences of climate change for people and businesses (Carney, 2015),

are multiplying across the globe. Physical climate risks, also known simply

as physical risks, can be event-driven (acute) or associated with longer-

term shifts in climate patterns (chronic). They directly or indirectly affect

organizations’ premises, operations, supply chains, transport needs, and

employee safety, and may have financial implications for organizations, such

as direct damage to assets and indirect impacts from supply chain disruption.

For example, the floods in West Germany in July 2021 had a severe impact

on infrastructure and industrial activities. The automotive manufacturers

faced disruptions due to damaged facilities and supply chain interruptions

(Koks et al., 2022). In 2022, one of the worst droughts in decades in Europe

severely affected agricultural production, particularly cereals and vegetables

(?). Food and beverage companies such as Danone, Mutti, Barilla, Nestlé,

InBev, and Unilever all experienced supply shortages and cost increases.

Flooding in China in 2022 impacted local and global food supply chains (Ali

et al., 2023). Additionally, droughts and wildfires in Canada deprived French

processing companies of mustard seeds, as Canada accounts for 80% of their

supply (Raux, 2022).

For managers, adapting operations to climate risks is a new and complex

challenge. It is complex because, by their very nature, physical risks involve a

multitude of perils: heat waves, cold snaps, river and coastal flooding, storms,
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wildfires, and flash floods. Processes and metrics to measure or monitor their

exposure are lacking (Lawrence et al., 2020; Ali and Golgeci, 2021). It is also

complex because each peril evolves at its own pace, and this evolution over

time depends both on a global scenario of greenhouse gas emissions and on

the specific location to which it applies. The speed of climate change is not

uniform across the world. Europe, for example, is warming more than twice

as fast as the global average, and the number of severe and extreme weather

events has increased by 35%, causing economic and financial losses to rise by

60% over the past two decades (Monasterolo, 2020; European Environment

Agency, 2022). Only a third of executive boards have discussed the physical

risk affecting their own operations, and even less have seen an analysis of

the physical risks affecting their counterparties (Paisley, 2022).

Physical risks have become macro supply chain risks that pose significant

threats to the global supply chain (Shu and Fan, 2024; Liang et al., 2024).

They can cause disruptions, asset1 damage, production setbacks, and drops in

productivity, resulting in potential operational and financial losses (Pankratz

and Schiller, 2022). In 2021, 432 events including heatwaves, droughts,

floods and other climate events resulted in $252 billion in economic losses,

with 2022 recording damages of $313 billion, marking a 25% increase in

catastrophic events and a 64% surge in economic losses compared to the

2001-2020 averages. Half of these losses were uninsured (Aon, 2023).

Managers need to acquire new knowledge to understand climate-related

disruption, select suitable suppliers, design adapted mitigation strategies,

and enhance resilience across the supply chain (Ali and Golgeci, 2021; Ali

1In this paper, the term asset is used interchangeably in reference to production,
distribution, supplier facilities or products.
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et al., 2023; Ivanov, 2023).

This leads us to the following research questions: How can operations and

supply chain managers measure climate risks to subsequently adopt suitable

strategic and operational decisions? To what extent assets in a supply chain

are exposed to disruptive events, and to what climate risk? Which critical

suppliers are most at risk? Few methods and metrics address the multiple

dimensions of physical risks and their evolution over time, applied at the

granular level of each asset and its supply chain (Ghadge et al., 2020; Sodhi

and Tang, 2021).

This is the knowledge gap we address in this paper. We present a blueprint

with two major contributions. The first is a managerial one: (a) to help

managers understand the current and projected risks affecting each element

of the value chain in a way that facilitates decision-making on adaptation

strategies. The second is a scientific one: (b) to provide scholars with a

framework and new methods to broaden the study of supply chain risk by

including both the short and long-term effects of climate-related disruptive

events and patterns.

The methodology we present is based on meteorological risk calculation

methods (Walsh et al., 2020). It involves different Global Climate Models

(GCM) to mitigate potential biases and the fifth generation of atmospheric

European ReAnalysis (ERA5) data (Hersbach et al., 2020). We introduce

three innovative quantitative measures of climate risk for each peril: (i) the

average level of risk (climate anomaly), (ii) the risk of a significant deviation

from the average (climate extreme variability), and (iii) the speed of risk

evolution (climate change acceleration).

Thanks to its open-source and granular nature, the methodology can be

applied both to small and medium-sized firms (particularly at risk because
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they are generally highly dependent on a small number of assets and suppliers)

and to multinational supply networks and their critical Tier 1 and Tier 2

suppliers. In the latter case, the metrics are used primarily to classify

the elements of the value chain most at risk. Managers report that the

measures helped understand the risks involved and that the corresponding

precautionary managerial decisions are easy to identify.

In this paper, we apply the methodology to the network of a logistics

service provider with 181 temperature-controlled warehouses spread across

Western Europe, either directly owned or owned by a critical supplier. We

evaluated the vulnerability of each warehouse to ten climate-related risks,

enabling the company to identify the sites most exposed to each hazard.

Managers then characterized the importance and degree of urgency associated

with each peril and each site, providing the necessary decision support to

enhance the resilience of the supply network with appropriate mitigation

strategies.

The paper is organized as follows. In the next section, we review the

related three streams of literature: climate risk and transmission channels,

existing climate risk scores, and climate risk assessment in operations man-

agement. We describe the methodology and data in section 3. In section 4,

we discuss its effectiveness and present the case of a logistics network. We

provide the implications for practice and for research in section 5.

2. Related Literature

The literature on physical climate risks in operations management is

sparse. Therefore, we reference relevant research from adjacent fields, focusing

on three key aspects. In subsection 2.1, we define physical risks, analyze
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how they affect business activity, and review how they interact with financial

performance. In §2.2, we examine existing aggregate physical risk scores

and their inability to provide operational managers with useful, granular,

and actionable information necessary to identify a supply chain’s weaknesses

and strengthen its resilience. In §2.3, we discuss how physical risk has

been assessed in the operations management literature and draw on its

contributions and limitations to identify the gaps that need to be filled in

order to build the methodology presented in this paper.

2.1. Physical Risks: Definition, Transmission Channels, and Risk Assess-

ment

Physical risks fall into two main categories: chronic, including slow-

evolving perils like sea-level rise and gradual temperature and precipitation

shifts; and acute, encompassing events such as floods, droughts, heatwaves,

wildfires, and storms, whose frequency and severity climate change amplifies

(Carney, 2015). Physical risks influence business through revenues, operating

costs, and asset values (TCFD, 2017). Reduced sales, increased production

costs, and interruptions caused by these risks directly impact firms’ loan

repayment abilities, indirectly affecting the financing banks and institutions

(Ivanov et al., 2022). Chronic risks mostly shape demand and sales across

numerous industries (Bertrand et al., 2015; Parnaudeau and Bertrand, 2018),

while acute risks disrupt working conditions and productivity (Schuldt et al.,

2021), causing damage to assets, infrastructure, and supply chains (Brusset

and Bertrand, 2018; Ghadge et al., 2020).

An extensive body of literature has demonstrated that climate conditions

significantly impact demand and therefore revenues, production costs, and

earnings across various economic sectors. These sectors include agriculture,
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tourism, mining, food, beverage, apparel, outdoor activities, transportation,

construction, and online shopping, among others (Fergus, 1999; Dutton,

2002; Deschênes and Greenstone, 2007; Murray et al., 2010; Musshoff et al.,

2011; Steinker et al., 2017; Stulec et al., 2019). Chronic and acute risks

together are estimated to cost the global economy from USD 2 trillion

per year (-0.9% of GDP) in an optimistic GHG reduction Representative

Concentration Pathway (RCP) scenario (RCP 2.6), to USD 15.45 trillion per

year (-6.4% of GDP) under a ’business as usual’ scenario (RCP 8.5) (Lepore

and Fernando, 2023). While seven out of ten businesses are considered to

be exposed to weather risks (Larsen, 2006; Lazo et al., 2011), small and

medium-sized enterprises (SMEs) are particularly vulnerable due to their

lesser diversification. A UK business survey conducted by Federation of

Small Businesses (2015) revealed that 93% of small business owners perceive

bad weather as a threat to the survival of their businesses.

The initial studies linking climate and financial performance focused on

the influence of weather conditions on mood, and indirectly attempted to

demonstrate that the mood of market participants could affect the rise or

fall of stock markets (Hirshleifer and Shumway, 2003; Cao and Wei, 2005;

Chang et al., 2006; Chen et al., 2018). As the understanding of transmission

mechanisms progressed and climatic anomalies increased, a second stream

of literature shifted its focus to fundamentals, examining the influence of

temperature anomalies on the performance of sectoral stock market indices

and, subsequently, on individual stocks (Boudoukh et al., 2007; Bertrand and

Chabot, 2020; Lemoine and Kapnik, 2024). The financial impact of physical

risks is estimated by extending traditional econometric and risk assessment

methods to investigate the influence of one or more climatic variables on one

or more financial variables. It is calculated as the potential financial loss that

7
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each climatic risk can generate over a given period. This calculation is known

as Climate Value-at-Risk (Climate-VaR), a concept initially introduced by

Toeglhofer et al. (2012), and developed in Prettenthaler et al. (2015), and

Dietz et al. (2016). Climate-VaR offers a probabilistic estimate of potential

maximum losses, incorporating both historical and projected climate data

distributions and factoring in the asset’s sensitivity to selected climate

hazards. The cumulative Climate-VaR, when applied to the assets most at

risk, provides the content for mandatory financial disclosure reporting2.

The financial and insurance literature has extensively described methods

for estimating the financial impact of a climatic hazard on an firm or an

activity sector (Burke and Hsiang, 2015; Newell et al., 2021). For chronic

risks, Pres (2009) reviews the most commonly used methods for estimating

the evolution of financial losses as a function of the evolution of each climate

hazard. From agricultural yields to clothing sales, from agri-food to energy

consumption, from tourism to cultural events, and from consumer goods to

seasonal products, most sectors of activity have been studied3 to determine

the level of sensitivity, thresholds, and probabilities of occurrence to be

translated into economic impact (volume) or financial impact (Value at Risk).

Most methods are empirical, leading to models that provide information

2From a regulatory standpoint, starting in 2024, companies with more than 250 em-
ployees, above €50m turnover and/or €20m total assets are required to comply with new
accounting and sustainability regulations. These companies will need to disclose informa-
tion about climate-related risks and opportunities that could reasonably be expected to
affect the entity’s cash flows, its access to finance or cost of capital over the short, medium
or long term.

3see for instance Starr-McCluer (2000), Pres (2009), Auffhammer et al. (2013), Dell
et al. (2014), Toeglhofer et al. (2012), Dietz et al. (2016), Dellink et al. (2017), Hsiang
et al. (2017), Brusset and Bertrand (2018), Parnaudeau and Bertrand (2018), Bertrand
and Brusset (2018), Surminski et al. (2018), Dellink et al. (2019), Bertrand et al. (2021),
Zhao et al. (2021), and Dawkins et al. (2023)

8
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on the sensitivity of a company, sector or product to changes in climate

risk. Risk managers and academics now have access to a comprehensive

repository of sensitivity and damage functions that can be used to determine

the average and maximum financial impact of variations in climate risk

parameters, and price climate insurance, also known as parametric insurance,

whose applicability has been widely illustrated in the operational research

literature (see for instance Bertrand et al., 2015; Bertrand and Parnaudeau,

2017; Prettenthaler et al., 2018).

In the case of acute risks, impact estimation methods rely on insurers’

databases to determine the financial impact resulting either from the average

number of days of business interruption or the average amount of damage

based on indemnities paid by insurers (Nobanee et al., 2022). For over 20

years, insurers, reinsurers, and research institutes have been methodically

recording all climatic events, their locations, extents, intensities, and the

associated damage in financial and human terms. These databases are used

to establish the damage functions utilized to price multi-peril or parametric

climate insurance policies. The most widely used databases are managed by

Munich Re and Swiss Re (reinsurance companies), and CRED (maintained

by the University of Leuven in Belgium). Other providers of extreme event

databases include BD Catnat in France, the Asian Disaster Reduction Center,

EMA (Australia), the Federal Emergency Management Agency (USA), and

ReliefWeb. In both cases, the academic literature abounds with empirical

studies linking the intensity of an anomaly or one-off climatic event to its

economic and financial consequences.

While global warming is commonly measured by the average temperature

increase over pre-industrial levels, the primary financial risk concern lies in

the associated rise in the frequency and intensity of extreme temperatures

9
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(Cohen, 2023). A 2021 survey of finance academics, professionals, and

public sector economists identifies physical risk as the top concern (Stroebel

and Wurgler, 2021). Although there is some evidence of acute risks being

factored into credit and equity markets, findings are preliminary, scarce,

and mixed (Eren et al., 2022). In sovereign debt markets, Mallucci (2022)

demonstrates deteriorating borrowing conditions in the Caribbean post-

extreme events. Announcements of Corporate Environmental Initiatives

that provide information about self-reported corporate efforts to avoid,

mitigate, or offset environmental effects have limited or no impact on the

financial value assessment of the announcers (Jacobs et al., 2010; Chen et al.,

2020). The municipal bond market presents conflicting research results

(Goldsmith-Pinkham et al., 2022), while the corporate bond market shows

investors paying premiums for companies benefiting from natural disaster

announcements (Huynh and Xia, 2021). Cevik and Miryugin (2022) found

credit access challenges in high climate variability regions. In both academia

and industry, the consensus is that physical risk impacts are under-studied

and under-evaluated (Rising et al., 2022).

To date, most of the studies that demonstrate a link between climatic

conditions and financial performance, although producing conclusive and

significant empirical results, suffer from the same bias. The climatic data

used are often highly aggregated both geographically and temporally (e.g.,

national average temperatures on a monthly or annual time scale) and are

applied to financial data that are themselves aggregated (e.g., sales, stock

market value). Additionally, these studies generally lack the ability to weight

the climatic data according to the geographical distribution of the company’s

business volume due to the unavailability of detailed data. Identifying the

vulnerabilities of a company’s production assets and suppliers requires the use

10
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of granular, geolocalized climate data. While an operational manager may be

able to list key sites and suppliers according to their degree of criticality for

the company, they often lack the methodology and expertise to construct the

risk metrics necessary to diagnose physical risks. Our methodology bridges

this gap.

2.2. Physical Climate Risk Scores: Background and Limitations

The field of physical climate risk measurement is relatively new. Investors

and asset managers were among the first to seek climate risk measures for

their investment portfolios or loans (Calabrese et al., 2024). Faced with the

urgency of climate change, investment advisors and asset managers have

taken the lead in looking for ways to assess the extent to which physical

risks affect investment portfolios (GARI, 2016). Rating agencies and vendors

developed proprietary methodologies to produce climate scores (Hubert

et al., 2021; UNEP FI, 2023). Chronic risks most commonly covered are

sea level rise, heat and cold stress, drought, and flash flood. Acute risks

are storms, floods, and wildfires (UNEP FI, 2023). In essence, investors

expect an overall single aggregated rating or score, similar to what exists

for credit or ESG ratings, taking into account vulnerability to each of the

aforementioned climatic hazards. Four Twenty Seven, a California based

vendor acquired by Moody’s was one of the first to provide physical climate

scores on about 2,000 listed companies (Mazzacuratti et al., 2017). Today,

UNEP FI (2023) lists over ten vendors, some providing physical climate risk

scores only, others providing both physical and transition scores. Using these

scores, investors can compare potential investments with each other and rate

exposure levels for asset portfolios on a 1-to-5 or colour-shaded scale, from

low to catastrophic risk based on probability of occurrence.

11
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Due to the commercial nature of scoring services, information regard-

ing methodologies and underlying data used by climate score providers is

restricted. In particular, this applies to how each peril is measured, and the

way an overall climate risk score is aggregated. The same opacity extends to

scores that encompass risk assessment and loss evaluation, whether relying

on estimations at regional or sector levels, proprietary asset-level data, or

satellite images. Hain et al. (2022) explored whether existing climate scores

are sufficiently reliable to improve financial decision-making. They compared

six score providers on a sample of listed US corporations. They observed

significant divergences in scores at company level, and suggest that the

choice of score provider alters the results of climate risk assessments. Several

explanations account for discrepancies in climate risk assessments. Firstly,

the granularity of metrics is often too broad to be pertinent at the asset level.

Secondly, the lack of transparency in methodologies and risk metrics can

result in varying outcomes. More critically, assets subjected to climate risks

are derived from databases informed by satellite data and diverse sources

about Tier 1 and Tier 2 suppliers. Asset criticality is frequently gauged

by site size, whereas operations managers prioritize criticality based on the

volume of activity managed by the supplier or its irreplaceability in the value

chain. While site size and supplier rank can approximate business volume,

they fail to capture the supplier’s unique value proposition. Managers, who

are best positioned to identify key suppliers and production sites, must be

involved in determining which sites to apply climate risk metrics to, thereby

ensuring an objective risk assessment. Hain et al. (2022)’s findings emphasize

that existing physical risk scores, while scientifically rigorous and adequate

for financial asset managers, are inadequate for tactical and operational

decisions. For the latter detailed exposure information for each climate peril

12
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are required at the facility and supplier level to make informed decisions.

This paper addresses this gap by offering a more actionable climate risk

assessment methodology.

2.3. Climate Risk Assessment in Operations Management Literature

Physical risks are related to the operational or disruption risks identified

in the SCRM literature (Tang, 2006). They can be classified in both of

two primary identified risk categories: (1) risks stemming from coordination

challenges between supply and demand, influenced by chronic climate risks,

and (2) risks related to disruptions in normal operations, which include

acute climate risks. The pioneering work of Kleindorfer and Saad (2005)

and Tang (2006) highlighted natural disasters as significant supply chain

risks, emphasizing their more substantial impact on business compared to

operational risks. Tang (2006) acknowledged that while most companies

recognize the importance of risk assessment programs and employ various

methods, from quantitative models to qualitative plans, for evaluating supply

chain risks, the scarcity of reliable data poses a significant challenge. This

lack of data makes it difficult to accurately estimate the probability of specific

disruptions and assess the potential impact of each disaster.

Subsequent works have been analyzed in a literature review with the

purpose of answering the question: ‘How can climate change risks be managed

in global supply chains?’ (Ghadge et al., 2020). However, in that work,

the mitigation strategies identified centre on sustainable practices (Pagell

and Shevchenko, 2014) rather than actionable measures to assess or protect

operations against physical risk. As early as 2014, Prof. Howard-Grenville,

Simon Buckle, and Sir Brian Hoskins highlighted the high uncertainty of

climate change outcomes in an editorial, urging scholars to explore shifts

13
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in supply networks, relationships, and risk-mitigation strategies (Howard-

Grenville et al., 2014). To date, this appeal appears to remain largely

unaddressed.

Er Kara et al. (2020) emphasizes the necessity of modeling the influence

of climate change risk on supply chain performance and the need for estab-

lished approaches to capture the complex interaction between these factors.

In line with this study, Ghadge et al. (2020) discuss the management of

climate change risks in global supply chains, highlighting the importance

of understanding the complex behavior of risk and its cascading impact on

the network. They emphasize the need for designing and managing unique

supply chain networks to effectively address climate change risks. However,

neither work proposes a methodology to measure such risk.

The questions operations decision-makers must address involve resilience

enhancement and regulatory obligations. They need to identify the physical

risks impacting their assets, pinpoint the assets with the highest vulnerability,

and determine which assets demand immediate focus. However, existing cli-

mate score methodologies generally lack the necessary analytical capabilities

(Saunders and Skinner, 2023).

We observe that the literature predominantly relies on empirical methods

that involve a comparative analysis of historical data series to assess the

impact of the weather on operational costs and performance (Cachon et al.,

2012; Dell et al., 2014; Kahn et al., 2021). Typically, operational managers

utilize assessments of weather conditions’ impact on sales and operating

costs to manage short-term challenges (Badorf and Hoberg, 2020). Steinker

et al. (2017) showed that integrating climate variables into sales forecasts

a week ahead can effectively align workforce allocation with expected sales,

thereby leading to cost savings. Brusset and Bertrand (2018) demonstrated

14
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how understanding the relationship between climate conditions and sales

facilitates the development of financial protection strategies for manufacturers

of seasonal products. These strategies enable firms in the supply chain to

manage risks of lost sales and overstocking due to adverse climate conditions,

specifically targeting protection for the upcoming season or, at most, two

consecutive seasons.

Studies modeling climate change impacts on organizations and facilities

often face challenges due to high uncertainty and the lack of suitable data,

typically relying on limited data sets or focusing on restricted geographical

areas. For instance, Wang et al. (2019) proposed a real-options model for

infrastructure investments to mitigate rainstorm disasters in urban areas.

Er Kara et al. (2020) adopted a three-phase mixed-method approach to

identify how various climate risks affect supply chain performance, including

resource availability and stockouts. Bertrand et al. (2015) found a relationship

between apparel sales in France and unseasonal temperatures to lay the

ground for specific climate insurance mechanisms. Bertrand and Brusset

(2018) developed a methodology for supply chain managers to manage risks

of unseasonal weather through financial insurance policies, and Bertrand

et al. (2021) focused on protecting franchises from unseasonal weather in

specific territories by hedging against identified weather variable fluctuations.

Scott et al. (2020) asks the rhetorical question of whether we should resist

climate change induced disruption or “retreat” by moving or relocating

assets which could be subject to such risk. Liang et al. (2024) propose a

method to evaluate the loss of labor productivity due to heat and other

extreme weather shocks in China. No mitigation or other strategy is proposed

except that firms should take a full inventory of their entire infrastructure

to ensure security of both physical and digital infrastructure. Lai et al.
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(2023) review recent economic literature and find that the negative effects of

extreme temperatures are widespread, and that in addition to lower physical

outputs, extreme temperatures impair mental productivity. The effect of

heat stress is corroborated by Song et al. (2023). They note that however

an initial improvement on labor and energy efficiency between 2007 and

2016 as temperature progressively increased in their panel of cities mostly

situated in temperate areas. This is consistent with the concept of an

optimal temperature identified by Burke and Hsiang (2015), above which

productivity falls rapidly. Caputo et al. (2023) estimate resilience to physical

disruptions including both accidents and weather-induced ones in supply

chain. They measure the damage impact and recovery using a software which

models the recovery of production buildings. Besides the limitation due to a

computer model, the authors do not propose a measure of climate risk nor

managerial recovery measures beyond suggesting that systems be constructed

in a resilient and robust way. Shu and Fan (2024) propose an analysis of

supply flexibility in US firms exposed to extreme weather risk and propose

that flexibility in supply chains requires that sourcing take into account such

risks when choosing suppliers. Yang et al. (2024) study the impact of heavy

haze as a weather disruption on operational efficiency on firms in China.

Saura et al. (2023) developed a data-driven model to identify the main

impacts of extreme weather on economic production using the user-generated

content from the social network Twitter as a source of information, but

there is no suggestion as to how managers could operationally deal with such

risks. Li (2023) review the adaptation of listed companies through the lens of

self-disclosed information and find that improving firms’ adaptive capabilities

and extending their time horizons can be considered. The measurement of

different adaptation strategies can also be informative for managers seeking
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to identify best practices.

However, the methodologies are often applied to a restricted number

of assets or area and do not encompass a comprehensive list of risks, both

chronic and acute, that typically affect a whole supply chain. None aim at

addressing the complexities of managing hundreds of facilities and assets

across multiple countries with the need to produce granular risk metrics

that can easily be used to make adaptation decisions. Furthermore, they

focus mainly on protecting short-term sales or profits, but do not integrate

physical risks in longer-term strategic decisions regarding the location of a

new production asset, the choice of a supplier, or the need to adapt or close

a facility. To address this, current risks must be projected over longer-term

time horizons. The methodology we present closes these gaps.

3. Methodology and Data

Conceptually, climate risk assessment combines three dimensions: the

climatic hazard, the probability of occurrence, and the criticality of the asset

to which the risk applies (UNEP FI, 2023). These three dimensions are

covered in steps 1 to 3 of our methodology (Figure 1). Step 4 converts the

climate risk into economic and financial impact. The economic and financial

impacts of chronic and acute risks is reflected in lower productivity or higher

operating costs (see section 2.1 on climate sensitivity, value at risk, and

damage functions). Hence, the challenge for an operational manager is not

merely to estimate the financial impact on the asset, but to understand

the type of peril, determine how to measure it, and estimate its intensity

and probability distribution. This observation was corroborated by the
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feedback from one hundred company representatives4 consulted prior to

the development of this methodology. Recognizing that existing aggregated

climate risk scores do not help improve the resilience of the supply chain,

their foremost objective was to identify the physical risks affecting each

element of the supply chain, assess their significance, prioritize the sites most

at risk, and obtain the risk metrics necessary to estimate potential losses

and determine the appropriate investment in adaptation solutions.

In developing our methodology to address these needs, we engaged both

collectively and individually with the delegates to draft a comprehensive

specification of the expected deliverables. The climate data had to be certified

and open-source. The methodology had to be designed to elucidate the multi-

dimensional aspects of climate risk, and to enable the comparison of assets

through precise risk measurements. Additionally, the list of perils had to

adhere to the recommendations of accounting and sustainability standards,

thus serving as a foundational basis for the preparation of various reports.

These are the challenge to which our methodology contributes.

The methodology presented in this paper builds upon the limitations

observed in existing solutions while preserving transparency, data accessibility,

practicality, and actionability (see an overview in Figure 1). Following the

steps of the methodology, this section is divided into five subsections. In §3.1

we first present the scope and objectives that drive data requirement. In

4The delegates were part of “The Great Challenge of Businesses for the Planet”, which is
a collective intelligence initiative to select 100 proposals aimed at accelerating the ecological
transition (https://www.legranddefi.org/). Participating firms were selected from a pool of
120,000 firms. From an initial list of 65,000 suggestions and contributions made by these
firms, the ability to assess the exposure of the supply chain to physical risks was selected as
part of the final 100 proposals. It is part of the operations and production tools category
(proposition number OP5, page 36 of the summary report (Raisson-Victor et al., 2023).
The final 100 proposals were presented to the Prime Minister of France in February 2023.
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Figure 1: Methodology to build physical climate risk metrics

The methodology to design actionable climate risk metrics and rank assets most at risk is
composed of step 1 and step 3, and leads to the priority action list. The step ’4: Financial’
is not in the scope of this paper. The adaptation strategy decision tree is detailed in
subsection 4.2

§3.2, we describe how data is collected and climate metrics are calculated.

In §3.3, the assets most at risk are ranked. Finally, in §3.4, we present the

decision-making process based on climate-related exposures.

3.1. Business Input : Asset-level data and Strategic Objectives Data

As we worked with operational managers over several sessions, we identi-

fied three climate risk maturity profiles. The first profile, which we termed

Beginners, aims for minimal compliance with accounting and sustainability

reporting standards. Implementing a resilience strategy is not a priority

for these entities. They are typically small to medium-sized entities lacking

integrated climate risk management systems. The second profile we termed

Mature, is in active transition toward formal climate management. These

entities are aware of the risks and are seeking solutions to manage them

and adapt their supply chains to enhance resilience. They generally have

robust risk management processes in place and aim to integrate climate
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risks into their decision-making and adaptation strategies. The third profile,

termed Experts, demonstrates a high level of expertise and recognizes the

value of climate risk assessment. These entities deploy sophisticated risk

management practices and aspire to extend climate risk evaluation to their

supply networks.

Hence, the profile of the firm determines the objectives and the required

level of information on assets. Geolocation is sufficient for ’beginners’ whose

objectives are limited to identifying assets at risk. Asset-level characteristics

(asset type, book value, number of employees, contribution to financial results,

etc.) are required for ’mature” and ’expert’ firms looking to make operational

decisions on adaptation and resilience improvement. Asset-level data are

any type of quantitative or qualitative information regarding physical assets

(i.e., tangible assets of economic value). Whereas the geolocation may be

relatively easy to obtain, the characteristics of each asset, such as book value,

market value, production methods or throughput, number of employees,

are generally hard to obtain, even within companies. In step 1, the list of

hazards is selected. While reporting initiatives like the TCFD suggest a list

of standard hazards, additional specific hazards may be added depending on

the asset considered. Climate scenarios are also selected in step 1. For risk

management purposes, managers are interested in making decisions based

on the most unfavorable climate scenario. This is often scenario RCP 8.5,

also referred to as ’business as usual’ or ’hot house scenario’. Finally, risk

managers choose the time horizon on which to project climate change which

conditions the ranking of assets most at risk. In practice, the time horizon

is aligned with that of the financial resources available to firms to invest

in transformations aimed at improving resilience. This time horizon rarely

exceeds ten years.
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3.2. Building the Physical Climate Risk Metrics

In step 2, we collect geolocated climate data for each asset and transform

it into hazard indicators.The methodology requires transforming hourly

worldwide climate data into actionable climate measurements scaled down

at the level of each location.For each asset, we collect a minimum of thirty

years of hourly weather data. For projection data, we collect 5 daily data

sets for four scenarios, 11 global climate models, and two values (median

and max). In the case study used to illustrate the methodology, the data

required to produce climate risk metrics on 181 locations represents just over

one billion data points.

While a set of standard hazards are defined by regulators (see Table A.5),

asset-level characteristics may require adjustments in climate metrics. Typi-

cally, this involves adjusting a trigger threshold of an existing metric. For

instance, if an asset is insulated against cold or heat, the threshold for

measuring vulnerability to extreme temperatures can be modified, either

lowered or raised, to more accurately represent the actual risk faced by the

asset. Similarly, the nature of a supplier, or the material supplied may entail

evaluating specific climate risk metrics. For instance, a food company sourc-

ing wheat, sunflower, and rapeseed may need to evaluate the risk of supply

shortages. This evaluation requires information on the geographical area

of sourcing and tailored risk indicators. These agro-climatic risk indicators

might include temperature sums ’base 0’ or ’base 6’ (depending on the crop),

cumulative rainfall, dates of the first and last frost, number of scalding days,

etc. (Walsh et al., 2020).

One major contribution of this paper lies in steps 2 and 3 of the method-

ology. Historical climate data used to produce risk metrics are hourly

data on single level representing the fifth generation atmospheric European
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ReAnalysis (ERA5) provided by Copernicus at the European Centre for

Medium-Range Weather Forecasts (Hersbach et al., 2020). Copernicus is the

Earth observation component of the European Union’s Space programme. It

offers free, open access information services that draw from satellite Earth

Observation and in situ (non-space) data. For the purpose of this paper,

historical data covers the period 1993-2022.5 A minimum of 30 years of

data is required to calculate normal climatic conditions and deviations from

these conditions at each site under consideration (WMO, 2017). As the raw

data are provided in one-hour time steps, this entails downloading a large

volume of data, as well as the metadata associated with each data point

(i.e., longitude, latitude, altitude, and time). The file format commonly used

by corporate managers, namely Excel, is unsuitable for collecting data or

working on worksheets in this context. The maximum memory or file size

allowable for any site and hazard metric would quickly be exceeded. The

same applies to projected data. Copernicus climatic data are available in

the NetCDF (Network Common Data Form) format. NetCDF, a file format

designed to facilitate the creation, access, and sharing of scientific data,

is widely used in oceanographic and atmospheric communities. It stores

variables like temperature, pressure, precipitation, and wind speed. NetCDF

files can contain large arrays of multi-dimensional data. Constructing climate

indicators requires a High-Performance Computing (HPC) platform to con-

vert NetCDF data into Python-compatible data structures, like Xarray. The

5We construct all metrics from hourly data except for the Fire Weather Index and
Sea Level Rise that are directly collected from Copernicus. The calculation of the Fire
Weather index (FWI) follows Van Wagner (1987) and Vitolo et al. (2020). FWI ranges
from 0 to 100, with values above 30 indicating high fire danger conditions. Sea level rise
(SLR) is measured against sea level of the reference period 1986-2005. ERA 5 Data can
be downloaded on : https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels?tab=form
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code we designed was run on a high performance computing (HPC) system,

which featured dual Intel Xeon Platinum processors (2.60 GHz) and 512

GB of RAM. Python packages used in this work are provided in Table A.3.

User-friendly Excel files are generated so that corporate managers can use

them to calculate risk metrics M1, M2, and M3 for each assets.

Measuring exposure to climate hazards requires taking several dimensions

into account: the nature of each hazard, the current average and projected

level of risk applied to each location, the intensity of deviations from the

current and projected average, and the speed at which the climate is changing

applied to each location. The metrics we have developed reflect these

dimensions. Risk metrics M1, M2, and M3 are estimated on annual bases

(e.g., number of days > 25°C in a year). The first metric M1 aims to identify

and rank the company’s assets for each risk in relation to the indicator’s

current and projected anomaly. For each indicator i and each site, M1 is

defined as the difference between the average value of the indicator for site

and the average value of the same indicator when all assets are considered.

Let sites be the set of asset j ∈ {1, . . . , N}, clim the set of possible climate

indicators with i ∈ {1, . . . , n}, and the calculation period t ∈ {1, . . . , T}
covering the period from 1993 to 2022. The site average Mj,i for all values

taken by each indicator over the period is

Avgj,i =
1

T

T∑

t=1

xij,t, ∀i ∈ clim, j ∈ sites (1)

where xij,t is the average value taken for an indicator i, on site j over T .

We use 10 hazard indicators (see the list in Table A.5). This calculation

is iterated for the N assets in the study set. We introduce the standard

deviation calculation for each climate indicator over the specified period.

23



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

The standard deviation σj,i for each indicator on site j is given by:

σj,i =

√√√√ 1

T

T∑

t=1

(xij,t −Avgj,i)
2, ∀i ∈ clim, j ∈ sites (2)

We then use the mean and the standard deviation to calculate the z-Score

for an indicator i, on site j over T , represented as:

M1j,i =
1

T

T∑

t=1

xij,t −Avgj,i
σj,i

, ∀i ∈ clim, j ∈ sites (3)

The value of M1 determines the associated level of risk. The risk is low

if M1 is less than 1.5 (green), moderate if M1 is between 1.5 and 2 (orange),

and high if M1 is greater than 2 (red). This classification follows McKee et al.

(1993) and the recommendations of the National Center for Atmospheric

Research6.

For the development of projected data, we adopted a multi-model ap-

proach. This involves generating a set of projected values for hazard indicators

fro each Global Climate Model (GCM). The list of GCMs is in Table A.4.

The models and time periods used are part of the sixth phase of the Coupled

Model Intercomparison Project (CMIP6), which forms the basis of the Inter-

governmental Panel on Climate Change’s 6th Assessment Report (Eyring

et al., 2016; IPCC, 2021). With this multi-model approach, we mitigate

potential biases associated with using a single model, thereby enhancing

the robustness of our analysis. We use the trend-preserving Quantile Delta

Mapping (QDM) bias correction (Cannon et al., 2015) and apply the down-

6See example of the Standardised Precipitation Index (SPI) on
https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-index-spi
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scaling method called Quantile-Preserving Localized Analog Downscaling

(QPLAD) developed by Gergel et al. (2023), which also preserves trends in

the distribution tails.

The projected value of each metric M1, M2, and M3 is the average

over all GCM of each M1, M2, and M3 over a planning horizon (usually

several years). We projected data according to IPCC RCP 4.5 and RCP

8.5 scenarios, i.e., respectively the median and worst case scenarios in terms

of expected rise in global temperature. Let µ be the projection period. In

the empirical application for the logistics group, which is discussed in the

following section, µ is equal to 10 years. This aligns with the group’s time

horizon for adaptation investments and return calculations. We denote M1p

the projected value of M1. Equation 3 on projected data becomes:

M1pj,i =
1

T + µ

T+µ∑

t=T

xi1,t −Mj,i

σj,i
. (4)

The second metric, M2, measures the indicator’s probability of a signifi-

cant deviation from the mean. To calculate deviations from the mean, we

rely on the mean calculation defined using Equation 1 and the standard

deviation with Equation 2. Based on this, we calculate the number of days

where indicator i at site j deviates from the mean by more than two standard

deviations:

M2cj,i =
1

T

T∑

t=1

θ{xij,t>Avgj,i+2σj,i}. (5)

where θ{xij,t>Avgj,i+2σj,i} is the indicator function, with θ = 1 if the condition

xij,t > Avgj,i + 2σj,i is true, and 0 otherwise. The choice of a trigger set

at two standard deviations reflects the non-linear nature of the empirical

damage caused by severe climatic events and is consistent with Alfieri et al.
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(2015), Nordhaus and Moffat (2017), Gosling et al. (2018), and Vousdoukas

et al. (2019). The projected metric follows the same logic but is calculated on

projected data from 2023 to 2032. As for M1, the value of M2 determines the

level of risk. The risk is low (green) for M2 equal to 0. The risk is moderate

(orange) if M2 is less than 0.3. The risk is high (red) if M2 is greater than

0.3. In practice, M3 over 0.3 means that the asset is not insurable.

M3 measures the extent to which the risk is increasing. Based on the

values obtained per site from the two previous metrics, the objective is to

select assets that require priority attention. To identify priority action areas,

we first calculate, for temperature-related indices, the following averages:

Mj,i(1993−2012) =

2012∑

1993

xi1,t
(2012− 1993 + 1)

(6)

Mj,i(2013−2022) =

2022∑

2013

xi1,t
(2022− 2013 + 1)

(7)

We calculate the growth rate risk per site for each indicator:

M3j,i =

∣∣∣∣
Mj,i(2013−2022) −Mj,i(1993−2012)

Mj,i(1993−2012)

∣∣∣∣× 100 (8)

We proceed with the same calculations for wind and precipitation indices.

Finally, we replicate the same calculation with projected data, relying on

the IPCC RCP 4.5 and RCP 8.5 scenarios.

3.3. Ranking Assets and Creating the Priority List

In step 3, assets are classified according to their exposure to each hazard.

The R1 ranking, based on M1 metrics, identifies the assets most exposed to

each hazard over the chosen time horizon. The R2 ranking, based on M2

metrics, classifies assets according to the climatic variability that applies to
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each hazard and location. This variability and the associated probability

distribution are synonymous with a high risk of deviation from normal, in

other words, a high risk of loss or damage. The R3 classification, based

on M3 metrics, ranks the assets selected as most at risk by the R1 and R2

classifications. The interest of such a ranking is because the speed of change

varies according to hazard and location.

Assets that simultaneously meet the risk criteria of classifications R1,

R2, and R3, constitute a priority list of assets for which mitigation decisions

must be taken. Such mitigation strategies include either insuring the asset

against the consequences of a specific hazard (if still insurable), carrying out

preventive work to reinforce the asset’s resilience and lower insurance cost,

or selling or relocating the asset.

3.4. Operational and Strategic Adaptation Decisions

Our methodology (step 1 to 3) enables the identification of assets where

physical risks have a significant impact over the chosen time horizon due to

their abnormal situation (M1), extreme variability (M2), and the speed at

which these risks evolve (M3). In step 4, managers can translate physical risk

into monetary impacts. When the potential loss is significant on a company-

wide scale, the options are to implement insurance where possible, select one

or more adaptation actions, or relocate the site or change suppliers (Figure 2).

The final step is to identify and prioritize adaptation measures. In some

cases, few measures may seem feasible due to implementation challenges or

cost constraints. In such instances, adaptation may not be possible, making

relocation the most viable option. Conversely, in other cases, multiple

measures are feasible. For instance, to mitigate the impact of heat waves on

employees, a company can insulate its premises, install air-conditioning units,
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repaint roofs white, plant vegetation, adopt heat-appropriate workwear, or

introduce staggered working hours.

Adaptation solutions can be categorized into two types: no-regrets solu-

tions, which are beneficial regardless of future climate change (e.g., reducing

water dependency), and evolutionary solutions, which allow for the inte-

gration of feedback and the combination of multiple measures. To support

operational managers in their adaptation efforts, the European Commission

has published a technical guide on adapting buildings to climate change.

This guide consolidates existing methods, specifications, best practices, and

guidelines for climate-resilient buildings, providing practical advice to profes-

sionals and serving as a reference in various EU policy documents (European

Commission, 2023). Furthermore, a collaborative initiative of experts7 has

produced a comprehensive inventory of adaptation solutions. Each solution

is detailed in a data sheet, which, for a given level of exposure determined by

our methodology, allows for the selection of one or more solutions based on

an index of technical implementation difficulty, a cost index, and an index of

effectiveness for the specific climate peril under consideration (OID, 2024).

4. Application of the Methodology to a Case Study

The methodology can be applied to any type of supply or distribution

network spanning any number of regions in the world. For illustrative

purposes and without loss of generality, we present the case of a large pan-

European group in temperature-controlled logistics, managing directly and

7The European Sustainable Real Estate Initiative is a collaboration between the United
Nations Environment Programme, the Global Alliance for Buildings and Construction, the
Agence de la Transition Écologique, and is supported by approximately twenty international
technical partners.
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Figure 2: Operational and Strategic Decision Tree

*: The guide of adaptation measures per hazard type can be downloaded from https://r4re.resilience-
for-real-estate.com/documentation. The guide makes it possible to combine several adaptation
actions according to the level of risk involved. Each action is assigned a score for technical difficulty
and financial investment, and a score for effectiveness in relation to the risk incurred.

indirectly a network of over 200 warehouses spanning eight different countries,

and whose profile in terms of knowledge and climate risk management

objectives is that of a mature company. The first subsection details the

application of the methodology and the second shows its effectiveness in

providing managers with sufficient information for the ensuing strategic and

operational decisions.

4.1. Assessing and Identifying Sites Most Vulnerable to Physical Risks

The critical assets consist of warehouses located in 181 sites across eight

countries in Europe (Figure 3). Warehouses are temperature-controlled, with

temperatures ranging from −25 ◦C to 15 ◦C. Warehouses are located on

the city outskirts, along freeways or expressways, and some in port areas.

The outside temperature and its fluctuations are significant factors, as they

influence energy consumption and impact productivity. Severe weather events,

such as heavy rain or storms, can also cause disruptions. The group aims

to assess the current climate risks, project them onto a timeline that aligns

with the investment horizon for adaptation, and identify which warehouses
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need close monitoring and may require decisions regarding refurbishment

or relocation. Furthermore, due to its scale, the company is mindful of the

new IFRS and CSRD directives pertaining to the disclosure of physical risks

and is committed to fulfilling its reporting obligations. Existing high-level

climate risk scores, which mirror credit and ESG risk scores, fall short of

meeting the group’s specific operational needs and strategic objectives. We

therefore apply our methodology to identify the warehouses most at risk on

10 climate hazards. We consider two scenarios (RCP 4.5 and RCP 8.5), and

a 10-year projection time horizon, which is aligned with the strategic time

horizon of the company.

Figure 3: Location of 181 Sites in Europe

First, we collect raw hourly data such as temperature, wind, precipitation

from Copernicus in NetCDF format. Using HPC, we extract the data for

all 181 sites based on GPS coordinates. We calculate the historical values

of the 10 climate metrics for the period 1991-2022. We project the climate

metrics using 11 different Global Climate Models and calculate the median

value for each year up to 2032. We construct M1, M2, and M3 for each site,

we assign the corresponding risk levels (green, orange, red). Sites are then

ranked according to their level of risk, from highest to lowest, based on the

risk metrics M1 (anomaly), M2 (extreme variability), and M3 (acceleration).

Sites that are simultaneously at the top of the ranking for all three risk
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metrics constitute the list of sites for which a decision must be made. This

decision is either to relocate the site or to implement one or more adaptation

actions.

Thanks to this methodology, the operational managers at each site have

access to all changes in each risk metric for the ten identified perils from 1991

to 2033, provided in Excel format. Additionally, they can access the values

of the M1, M2, and M3 metrics for each peril. This comprehensive data

enables managers to fully understand the nature of the risks they face and

make informed adaptation decisions based on the risk level associated with

each metric. Moreover, the head of operations management can view the

same information by site and access the M1, M2, and M3 metric rankings for

all 181 sites by peril. To facilitate ease of use, we have created a dedicated

website where all this information can be readily viewed and downloaded in

Excel format by any authorized manager.

Figure 4 illustrates the data collection process and the output delivery

of the physical risk assessment via the dedicated website, which enables all

the information (data and associated risk probabilities) to be downloaded in

Excel format for easy integration into the company’s mapping software.

Figure 4: Data Collection, Risk Assessment, and Output Delivery
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4.2. Identification of Sites Most at Risk and Adaptation Decisions

To save space, we focus only on the priority list of the 10% of sites most

at risk, based on the worst-case yet currently most realistic scenario, i.e.,

RCP 8.5. In appendix, we have included a screenshot of heat stress from the

interactive maps of the web site, to illustrate the dynamic visualization of the

evolution of each peril for all sites (Figure A.5). We produce M1, M2 and M3

metrics for all sites and all perils. While M1 sorts the sites already at risk,

M2 differentiates assets between insurable and non-insurable without prior

adaptation measures. Assets with a high M2 (i.e., which frequently exceed

two standard deviations) are deemed economically non-insurable. For such

asset, one option is to adapt and improve the site’s vulnerability attributes,

provided risk reduction is cost-efficient. When the cost of adapting the asset

exceeds the potential benefit in risk reduction, a decision to relocate the

asset is taken.

Table 1 lists the sites where anomaly (M1), extreme variability (M2),

and accelerating climate change (M3) rank among the highest risks8. These

comprise a total of 74 sites out of 181 that require one or more adaptation

actions. Temperature is the most frequent hazard (52 sites). Heat, either

episodically or in waves, is present at 32 sites, while cold represents a risk at

only 20 sites. The risks associated with flooding, flash floods and sea level

rise are on the priority list 35 times. However, the economic and financial

consequences of flooding (business interruption and property damage) are

greater than those associated with temperature changes (lower profitability,

higher operating costs). Therefore, we have prioritized sites exposed to

8The complete set of results including M1, M2, and M3 individual rankings, can be
obtained upon request from the authors, subject to authorization by the company on which
the case study is based.
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fluvial and pluvial flooding, as well as flash floods, at the top of the table. A

total of 17 sites are at high risk of flooding, 3 of which are exposed to both

flooding from water accumulation and rising groundwater, and flooding from

runoff. In addition to this list of flood-prone sites, 14 others are at risk from

sea level rise. For each of these sites, remediation strategies identified and

evaluated by the European Sustainable Real Estate Initiative are considered

in relation to the required investment, their effectiveness for the peril under

consideration (Table 2). The choices to be made depend on the company’s

financial capabilities. Adaptation often involves multiple measures, which

can be combined. Some strategies are mutually exclusive, while others can be

implemented concurrently. Additionally, certain actions are considered ”no-

regrets” measures, meaning their implementation will be beneficial regardless

of future climate developments, particularly when the required investment is

low. An evolutionary approach is also possible, initially reducing risk until

funds can be secured for a more transformational measure.

Our methodology is particularly effective for assessing the risk of very

large supply chains, as it enables centralized operations management to

compare sites on a granular and comprehensive basis. Due to its granularity,

it can also be applied locally to small and medium-sized businesses, providing

them with a comprehensive assessment of the climatic risks they face. Some

of the sites on the priority list, such as La Rochelle, Marseille, Quimperlé,

and Vigo, simultaneously have to manage four climatic perils with a very

high probability of occurrence. Additionally, six other sites face three major

perils. This matrix and granular approach illuminates the strategic choices

that need to be made, particularly in assessing the relevance of relocation

versus adaptation to the identified perils. In addition, for the purpose of

regulatory reporting, the assets our methodology identifies to be at risk of
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material damage (the priority list), in particular those exposed to floods,

wildfires, and storms, are to be accounted for in the proportion of assets at

risk, which is to date the figure on which companies over 250 employees, and

sales in excess of 50 million sales, or total assets in excess of 20 million euros,

will have to report (CSRD E1 and IFRS S2).
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Table 1: R4 - Priority List (M1+M2+M3) - Standard Hazards - Scenario RCP 8.5 - 10
Years
Site Heat Heat Cold Cold Flash Flood Wildfires Sea Level Storms Total

Stress Wave Stress Wave Flood Rise
Benavente 1 1 2
Ludres 1 1 2
Marcilla 1 1 2
Dover 1 1 2
St-Brieux 1 1 2
Burnhaupt le bas 1 1
Castellanos de Moriscos 1 1
Metz 1 1
St Martin des Champs 1 1
Vannes 1 1
Atton 1 1
Custines 1 1
Duppigheim 1 1
Reichstett 1 1
Rivalta di Torino 1 1
Valladolid 1 1
Villadangos del Paramo 1 1
La Rochelle 1 1 1 1 4
Marseille 1 1 1 1 4
Quimperlé 1 1 1 1 4
Vigo 1 1 1 1 4
Alicante 1 1 1 3
Branderion 1 1 1 3
Frontignan 1 1 1 3
Genova 1 1 1 3
Monteprandone 1 1 1 3
Tiriolo 1 1 1 3
Girona 1 1 2
Marcianise 1 1 2
Plouenan 1 1 2
Santa Iria 1 1 2
Santa Palomba 1 1 2
St-Sever 1 1 2
Aix en Provence 1 1
Albeda de Iregua 1 1
Amorebieta 1 1
Ascoli Piceno 1 1
Barnsley 1 1
Bodegraven 1 1
Boulogne 1 1
Bridgwater 1 1
Carros 1 1
Catania 1 1
Coruna 1 1
Eindhoven 1 1
Fontanil-Cornillon 1 1
Gardolo 1 1
Givers 1 1
Gorizia 1 1
Herminal les Vaux 1 1
Ibos 1 1
Ifs 1 1
Irun 1 1
La Garde 1 1
Langres 1 1
Lardier et Valenca 1 1
Liverpool 1 1
Llissa de Val 1 1
Mesagne 1 1
Miramas 1 1
Modugno 1 1
Motherwell 1 1
Olbia 1 1
Porrino 1 1
Povoa de Santa Iria 1 1
Redditch 1 1
Replonges 1 1
San Giovanu 1 1
Sestu 1 1
Sorgues 1 1
St Lo 1 1
Tombolo 1 1
Valencia 1 1
Verson 1 1
Total 14 18 4 16 10 10 9 15 13 109
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Table 2: Remediation Strategies for Flood Risks
Remediation Strategy Benefits Investment
Designing a sponge plot 10 10
Creating a courtyard oasis 10 7
Creating a rain garden 10 3
Planting around the building 10 1
Raising structural elements 9 10
Installing rainwater management basins 8 7
Installing flood defence 8 5
Fixing outdoor furniture 8 1
Protecting networks 6 7
Organizing a temporary withdrawal strategy 4 7
Setting up emergency warning systems 4 4
Concentrating essential equipment and activities on upper floors 4 1
Setting up autonomous power generation 1 10

Source: European Sustainable Real Estate Initiative. Investment relates to the technical difficulty
and cost of a remediation action. Benefits relates to the efficiency of the action for the peril
considered. Both scores are normalized on a 1 to 10 scale to allow comparisons.

Based on the methodology presented in this paper, the logistics group

reached the following decisions. The ten assets identified as priority assets

for wildfire risk underwent preventive improvements, including the creation

of water retention reservoirs, autonomous electric generators for emergencies,

and land clearing to establish safety zones to delay the spread of fire. This

allowed the group to improve resilience and revise insurance costs down.

Taking budget constraints into account, not all assets will undergo adaptation

work in the first year. Due to their current level of exposure and ten-year

risk projections, the two assets most exposed to flood risk and the site

most vulnerable to flash floods are likely to become non-insurable in the

near future. Since the cost of refitting these assets and protecting them

against flooding consequences is economically unjustifiable, all three assets

are currently being relocated. Finally, significant improvements in energy

efficiency have been agreed upon for the seven assets most exposed to heat

stress and the eight assets with the highest heat wave risk score. Thanks

to these operational decisions, managers estimate a reduction of nearly 60%
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in the value-at-risk for assets identified in the priority list. This strategy

reinforces the viability and resilience of their network. A next phase will be

considered to include Tier 2 critical suppliers.

In the case study, the overarching issue stems from the need for decision

makers’ to quantitatively assess the exposure to physical risks for each site

in a way that allows them to make informed and cost-effective strategic or

operational decisions. The methodology we propose capitalizes on readily

accessible open-source climate data and predictive global climate models to

deliver actionable insights. The M1, M2 and M3 metrics resulting from this

iterative work are transparent, as their definition and calculation are known

to all stakeholders. By construction, they are replicable, comparable and

auditable, and apply to all types of organizations. They are also flexible:

additional bespoke risk metrics and thresholds can be chosen to best fit each

activity or business sector. With our methodology, managers can identify

climate risks and priority actions based on objective and systematic criteria,

using data they own and control.

5. Conclusion and Implications for Practice and Research

Climate change and related physical risks challenge business resilience

and profitability. From 2024, European regulatory requirements mandate

disclosure of risk exposure to encourage proactive adaptation. We observe

that existing risk assessment tools lack transparency and practicality, failing

managers.

The research question asked in introduction, namely: How can operations

and supply chain managers measure climate risks to then be able to adopt

suitable strategic and operational decisions? is answered in the present
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article. The methodology provides the necessary metrics to back strategic

and operational decisions. Our approach aligns with the Global Adaptation

& Resilience Investment Working Group’s objectives, in terms of using

uniform data sets, disclosing data sets and calculations, and projecting data

within widely accepted scenarios with available references (GARI, 2016).

The resulting metrics are comparable across assets, and can be integrated

with financial measures to assess the financial implications for operations,

revenues, and capital expenditure. It is important to note that such metrics

can be dynamically updated to reflect both new data as well as the evolution

of a network.

The growing impact of climate change on supply networks underscores

the necessity of the present research. Increasingly frequent climatic events

are impacting supply chain performance, asset values (including those of

suppliers), and delivery capabilities.

5.1. Implications for Practice

The methodology presented in this paper meets the specifications of a col-

lective intelligence effort involving a large group of operational managers and

academics for the construction of a comprehensive physical risk assessment

tool. The aim is to provide an actionable risk assessment tool to accelerate

the adaptation and enhance the viability and resilience of value chains. Nine

additional companies, which participated in the initial design of the metrics,

are in various stages of applying the methodology we present in this paper.

Our methodology has a broad scope of application, benefiting a wide range

of users and data types. Banks and financial institutions can employ it when

requesting asset information from the firms they finance, while accounting

firms can use it to validate the risk reports of the firms they audit.
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Our research opens up new perspectives for operations and supply chain

managers by providing a cost-effective, transparent, independent, and efficient

way to address forthcoming regulations and adapt firms while safeguarding

employees from climate impacts. The climate scores we developed can be

integrated into existing risk management models and applied to assets by

firms based on asset-level information they control or with whom they operate,

over a time horizon in line with their strategic re-evaluation periods.

Measuring a company’s exposure to physical risk involves quantifying

known unknowns, a task that is challenging in most circumstances. It

also means quantifying the cost of climate inaction, a cost which many

companies are still unaware of. The ability to measure physical risks as

outlined here offers a new perspective for operational managers. It enables

the assessment of potential losses under current or planned supply chain

networks, thereby revealing hidden costs and benefits. This endeavor was

extended to their main suppliers in identifying assets at risk, often prompting

a physical reorganization of the supply chain to decrease dependency on

distant suppliers, despite their cost advantages. The ability to measure

physical risks as described here provides operational managers with a new

perspective.

As our approach is based on open-access climate data and models, it is

also cost effective. It significantly benefits small firms often overlooked by

rating agencies and regulatory frameworks. Paradoxically, small businesses,

reliant on fewer assets, less diversified, and with fewer resources dedicated

to risk management, are also the most vulnerable. These firms can now

perform internal risk measurement and adopt adaptive strategies to increase

resilience and seize opportunities arising from climate change. Thanks to the

calculation algorithms, the methodology we developed result in climate scores
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that can be seamlessly integrated into existing risk management models.

Operational managers can apply these scores to their assets, using asset-

level information under their own control and aligning with their investment

horizons.

We contribute to the literature by shifting the discussion from the inad-

equacy of existing climate risk measures and the lack of data to providing

an operational evaluation of physical risks. This approach has significant

implications particularly for small firms, overlooked by rating agencies and

regulatory frameworks, which can now self-evaluate their supply networks or

respond to the request of upstream partners on their resilience to physical

risks. By applying our methodology, companies can upgrade their internal

risk management skills to boost resilience and capitalize on opportunities

arising from climate change. The approach we propose reduces their depen-

dence on costly, opaque proprietary global climate scores, which lack the

granularity required to implement adaptation strategies. Instead, they are

empowered to determine the necessary actions for each component of the

supply chain, thereby enhancing its overall resilience.

5.2. Implications for Research on climate risk

The field of physical climate risk measurement has historically been

overshadowed by research predominantly focused on managing risks and

uncertainties on product, supply, demand, and information (Tang, 2006).

When considering wider networks, most contributions in the field of supply

chain risk management deal with such risk at the margin or only for certain

weather variables. Much fewer research deals with climate change induced

risks. This research answers the call for a “better understanding of climate

change risks in SCM” as it is “critical for future managers” (Ghadge et al.,
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2020, p. 44).

One of the most innovative aspects of this paper is the introduction of

three dimensions for understanding climate risk: anomaly, extreme variability,

and acceleration, applied to each peril from historical to projected data. This

approach allows for the isolation of the components of climate change by

peril, facilitating a better understanding of each component. Furthermore,

it enables the development of adaptation responses tailored to each of the

climate dimensions. The research presented is also innovative in the granu-

larity of the climatic data used, measuring each peril as closely as possible

to the provided GPS coordinates, and in the comprehensiveness of the perils

considered.

The measurement of each climate risk is transparent, as we explicitly

define the calculation of each metric. It is based on certified, up-to-date,

open-access data, ensuring replicability. Our methodology can be extended to

measure the exposure of supply chains to air quality, pollution, biodiversity,

and clean water availability. Another direction for research could involve

integrating this methodology with the flow dynamics of a supply network.

By considering climate change risk probabilities when assessing potential

throughput at a node and evaluating alternative flow scenarios in the event of

a disruption, a more comprehensive understanding of supply chain resilience

can be achieved.

5.3. Limitations and Future Research Directions

As with all research, this work is subject to several limitations, and

presents promising opportunities for future work. The first limitation is the

imperative need for access to a supercomputer to open and read the data files

and produce the historical and projected geolocated risk metrics. While the
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computation time involved is not prohibitive for a large group, it represents an

obstacle for small or medium-sized businesses. However, this limitation also

presents an opportunity for the academic world to collaborate more closely

with companies and validate the relevance and usefulness of their research.

Increasingly, researchers have access to supercomputers or sandboxes on

hyperscalers such as AWS (Amazon) or Azure (Microsoft), which they

can share with companies as part of preliminary empirical validations that

companies can then adopt.

The second limitation concerns risk metrics and the notion of local

adaptation. To illustrate this, consider vulnerability to heat stress, which

is currently measured according to regulators’ recommendations by the

number of days above 25°C (summer days) and above 35°C (hot days). The

uniformity of measurements across a geographical area with a relatively

homogeneous climate facilitates the comparison of vulnerability between two

sites or two suppliers. However, as early as 1971, Burton demonstrated that

heat tolerance can vary greatly from one place to another, such as from

the north to the south of Europe. This tolerance is referred to as adaptive

capacity or coping range (Hewitt and Burton, 1971), defined as the ability of

systems to adapt to variations in local climatic conditions (Smithers and Smit,

1997; Smit and Wandel, 2006). Future research could benefit from applying

different temperature thresholds to define hot days, thereby accounting for

this coping range.

The third limitation concerns the metrics used in the context of workers’

health and well-being, whether indoors or outdoors. The metrics as defined

by the TCFD, then endorsed by accounting and sustainable development

regulations, are essentially “purely climatic” metrics that apply more to

buildings than to people. For example, a hot day is defined in relation to the
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crossing of a temperature threshold. However, the human body reacts very

differently to the same temperature, depending on whether the humidity level

is low or high (Saura et al., 2023). Other heat indices linked to occupational

health are currently being developed, such as the Standard Wet-Bulb Globe

Temperature (WBGT) index (ISO 7243), and the first comparative studies

are appearing (Barzegar et al., 2024). Similarly, additional metrics should be

developed that take into account air pollution and the nature of the products

handled by workers. Some gases become highly volatile and dangerous

to humans above certain thresholds. The metrics we have used do not

incorporate these elements. The gradual availability of geolocalized air

quality data from Copernicus should enable researchers to supplement our

work, especially as health and safety in the workplace is one of the key

elements of an ESG rating.
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Raux, M. (2022). Mustard shortage: ’an opportunity’ to revive the french industry.

Le Monde. July 14, 2022.

Rising, J., tedesco, M., Piontek, F., and Stainforth, D. (2022). The missing risks of

climate change. Nature, 610:643–651.

Saunders, A. and Skinner, R. (2023). Smart innovators : Climate risk digital

solutions. Verdantix. Technical Report.

Saura, J. R., Ribeiro-Navarrete, S., Palacios-Marqués, D., and Mardani, A. (2023).

Impact of extreme weather in production economics: Extracting evidence

from user-generated content. International Journal of Production Economics,

260:108861.

Schuldt, S., Nicholson, M., Adams, Y., and Delorit, J. (2021). Weather-related

construction delays in a changing climate: A systematic state-of-the-art review.

Sustainability, 13:2861.

Scott, M., Lennon, M., Tubridy, F., Marchman, P., Siders, A., Main, K. L., Her-

rmann, V., Butler, D., Frank, K., Bosomworth, K., Blanchi, R., and Johnson,

C. (2020). Climate disruption and planning: Resistance or retreat? Planning

Theory & Practice, 21(1):125–154.

Shu, W. and Fan, D. (2024). How do firms perceive and react to extreme weather

risk in their supply bases? International Journal of Production Economics,

268:109125.

Smit, B. and Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability.

Global Environmental Change, 16:282–292.

Smithers, J. and Smit, B. (1997). Human adaptation to climatic variability and

change. Global Environmental Change, 7(2):129–146.

Sodhi, M. S. and Tang, C. S. (2021). Supply chain management for extreme

conditions: Research opportunities. Journal of Supply Chain Management, 57(1):7–

16.

Somarin, A., Sharma, P., Tiwari, S., and Chen, S. (2023). Stock reallocation policy

for repairable service parts in case of supply disruptions due to extreme weather

50



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

events. International Journal of Production Economics, 256:108743.

Song, M., Wang, J., and Zhao, J. (2023). Effects of rising and extreme temperatures

on production factor efficiency: Evidence from china’s cities. International Journal

of Production Economics, 260:108847.

Starr-McCluer, M. (2000). The effect of weather on retail sales. Technical Report.

Washington, DC: Federal Reserve board of Governors, SSRN: 221728.

Steinker, S., Hoberg, K., and Thonemann, U. (2017). The value of weather in-

formation for e-commerce operations. Production and Operations Management,

26(10):1854–1874.

Stroebel, J. and Wurgler, J. (2021). What do you think about climate finance?

Journal of Financial Economics, 142(2):487–498.

Stulec, I., Petljak, K., and Naletina, D. (2019). Weather impact on retail sales:

How can weather derivatives help with adverse weather deviations? Journal of

Retailing and Consumer Services, 49:1–10.

Surminski, S., Mauro, M. D., Baglee, J., Connell, R., Hankinson, J., Haworth, A.,

and Proverbs, B. I. D. (2018). Assessing climate risks across different business

sectors and industries: an investigation of methodological challenges at national

scale for the UK. Philosophical Transactions Royal Society A, 376:20170307.

Tang, C. S. (2006). Perspectives in supply chain risk management. International

Journal of Production Economics, 103(2):451–488.

TCFD (2017). Recommendations of the task force on climate-related disclosures.

Technical Report.

Toeglhofer, C., Mestel, R., and Prettenthaler, F. (2012). Weather value at risk:

on the measurement of non-catastrophic weather risk. Climate, and Society,

4(3):190–199.

UNEP FI (2023). The 2023 climate risk landscape. United Nations Environment

Programme Finance Initiative.

Van Wagner, C. (1987). Development and structure of the Canadian forest fire

weather index system. Canadian Forestry Service. Technical Report 35.

Vitolo, C., Di Giuseppe, F., Barnard, C., Coughlan, R., San-Miguel-Ayanz, J.,
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Appendix A.

Table A.3: Python Packages and Versions used in the code

Python packages Version Online Documentation

Python version 3.10.11 https://docs.python.org/3.10/library/os.html

Jupyter Notebook 6.5.4 https://jupyter-
notebook.readthedocs.io/en/v6.5.4/

pandas 2.0.1 http://pandas.pydata.org/docs/

folium 0.14.0 https://pypi.org/project/folium/

xarray 2023.8.0 https://docs.xarray.dev/en/stable/

openpyxl 3.1.2 https://openpyxl.readthedocs.io/en/stable/

planetary-computer 1.0.0 https://planetarycomputer.micro-
soft.com/docs/overview/about

pystac-client 0.7.5 https://pystac-
client.readthedocs.io/en/stable/

tqdm 4.65.0 https://tqdm.github.io/

plotly express 0.4.1 https://plotly.com/python/plotly-express/

numpy 1.24.3 https://numpy.org/doc/1.24/
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Table A.4: Global Climate Models
Modeling institution Source model Reference (doi)

CAS FGOALS-g3 10.22033/ESGF/CMIP6.1783

INM INM-CM5-0 10.22033/ESGF/CMIP6.1423

BCC BCC-CSM2-MR 10.22033/ESGF/CMIP6.1725

CMCC CMCC-ESM2 10.22033/ESGF/CMIP6.13164

MIROC MIROC6 10.22033/ESGF/CMIP6.881

MOHC UKESM1-0-LL 10.22033/ESGF/CMIP6.1569

MPI-M MPI-ESM1-2-LR 10.22033/ESGF/CMIP6.742

NCC NorESM2-MM 10.22033/ESGF/CMIP6.506

NOAA-GFDL GFDL-ESM4 10.22033/ESGF/CMIP6.1407

NUIST NESM3 10.22033/ESGF/CMIP6.2021

EC-Earth-Consortium EC-Earth3 10.22033/ESGF/CMIP6.181

Table A.5: Standard Hazard Indicators
Hazard Indicator Description

Heat stress HD25 Number of Hot Days with temperature in excess
of 25°C

Cold stress ID Nb of Ice Days, days for which temperature does
not exceed 0°C

Heat wave WSDI Warm Spell Duration Index

Cold vave CSDI Cold Spell Duration Index

Flash flood R20mm Nb of days with daily rain in excess of 20mm

See level rise SLR Sea Level Rise index

Floods CWD Consecutive number of Wet Days

Storm WMax Number of days with wind above storm level (>
20 m/s)

Wildfires FWI Fire Weather index

Drought CDD Consecutive number of Dry Days

Detailed explanations of each hazard indicator and the calculation formulas are available
at https://www.ecad.eu/indicesextremes/indicesdictionary.php.
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Figure A.5: Interactive Maps - Heat Stress Evolution

From left to right: 2022; Scenario RCP4.5 2032; Scenario RCP 8.5 2032. Green: insurable at
reasonable cost; Orange: Insurable provided adaptation investments are made; Red and Dark red:
Relocation to be considered.
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Highlights

Identifying assets exposed to physical climate risk: 
a decision-support methodology

 Climate change causes increasingly damaging disruptions 
to production sites

 A new methodology provides risk metrics for the 10 
climate hazards

 Metrics are built on prospective variance of hazards over 
10 years

 All existing Global Climate Models are used
 A case study illustrates the application with 181 sites over 

8 countries


