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A B S T R A C T

Extensive studies on hexagonal honeycombs under in-plane compression have demonstrated
that the structure’s symmetry plays a decisive part in the emergence of deformation patterns
in post-bifurcated configurations. In this work, the aim is to take advantage of this property by
presenting a new group-theoretic approach to list the various attainable post-bifurcated patterns
of periodic architectured materials.

As of today, some group-theoretic approaches have been elaborated for determining the
post-bifurcated paths and thus patterns of a symmetric system submitted to specific loading
conditions. However, the application of these approaches requires knowledge of the system’s
governing equations. By making use of another group-theoretic tool, this work predicts the
various possible post-bifurcated configurations of a periodic architectured material a priori
of any non-linear computation by simply assessing the symmetry group of its undeformed
configuration.

This approach is applied, as an example, to the buckling of regular hexagonal honeycombs
but can be easily transferred to any periodic architectured material. This work is a first step
towards the elaboration of a more general process for the design of architectured materials
when harnessing post-bifurcated behaviour is essential.

1. Introduction

For the past 30 years, theoretical, numerical and experimental studies of regular hexagonal honeycombs under in-plane
compression have been of particular interest. Indeed, the increasing challenges in material science for modern engineering
applications have generated unprecedented enthusiasm in the study of a new class of materials, architectured materials (Ashby, 2013;
Fleck et al., 2010), and for which 2D hexagonal structures have been a case study.

The pioneering studies that mechanically characterised the behaviour of a 2D regular hexagonal arrangement subject to in-plane
compression were conducted by Papka and Kyriakides (1994, 1999a,b). Through experiments and simulation, they observed the
generation of three distinct patterns caused by buckling of the cell walls and involving multiple cells for given biaxiality ratios.
Later on, other studies of honeycombs attached to rigid substrates (Kang et al., 2013) and honeycombs where voids are filled with
gels (Gao et al., 2018) were shown to exhibit new bifurcated patterns that had not yet been observed for the regular honeycomb
composed of trusses and voids.
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For design purposes, works on these materials then focused on theoretically and numerically determining the onset of buckling
and the post-buckling behaviour of these structures. Indeed, studies on finding the onset of buckling for various load directions were
carried out (Triantafyllidis and Schraad, 1998; Okumura et al., 2002) which coincided with previous experimental observations and
showed that the patterns formed may occur at a larger wavelength than the primitive unit cell. An extensive review of the various
methods for determining patterns stemming from instabilities in architectured materials is presented in Azulay et al. (2023a).

Of particular interest in this work is the study carried out by Ohno et al. (2002). Indeed, their numerical investigation of the post-
buckling response of hexagonal honeycombs was the first to establish the relationship between the initial symmetry of the structure
and the symmetry in the patterns generated after the bifurcation point. As observed in previous experimental studies, a bifurcation
phenomenon induces a loss of symmetry in the bifurcated path resulting in the change in shape and size of the representative
periodic unit cell used to describe the pattern before and after the bifurcation point. Indeed, a periodic primitive unit cell composed
of a single hexagon is enough to represent the geometry of the deformed configuration up to the bifurcation point, while a larger
unit cell of 2 × 2 hexagonal primitive cells seems to be necessary to capture the observable patterns after buckling. Such bifurcation
is referred to as a symmetry-breaking bifurcation, as the symmetry of the bifurcated path is generically lower than the symmetry of
the original structure. In the case of periodic architectured materials such as hexagonal honeycombs, both point-group symmetries
(referring to rotational, inversions and mirror symmetries) and translation symmetries can be broken when the patterns are formed.

The mechanisms of such pattern changes are subject to group-theoretic rules as thoroughly described by Golubitsky et al. (1988).
Two main tools are described in this book: (i) a symmetric treatment of the Lyapunov–Schmidt decomposition of the bifurcation
equation near the bifurcation point and (ii) the Equivariant Branching Lemma which gives a result on the existence of bifurcated
branches at the bifurcation point based on group theoretic considerations. The first tool was used for studying the flower-like mode
in Saiki et al. (2005) and Ikeda and Murota (2010) to solve the post-bifurcated branches. This method was further developed
and used by Combescure et al. (2016, 2020) for studying all three modes of various types of hexagonal honeycombs subject to
in-plane compressive loads. Even if the group-theoretic Lyapunov–Schmidt decomposition has proven to be a very useful tool for
determining the post-bifurcated behaviour of the structure, its application requires knowledge of the system’s governing equations
and needs to be performed for each boundary condition applied to the specimen. Taking a step back, the bifurcated path being
directly linked to the symmetry of the structure, an appropriate group-theoretic tool should be able to predict at least some part of
the post-bifurcated behaviour in architectured materials a priori to any non-linear computation. This is the role of the Equivariant
Branching Lemma as first described by Vanderbauwhede (1980). To the authors’ knowledge, this method has only been used for
simple point groups (Ikeda and Murota, 2010; Healey, 1988; Combescure et al., 2023) and has never been applied neither for groups
including some translation symmetries nor in this field of material science. However, the interested reader could start their journey
into these types of methods by reading the following papers determining the various vibration modes of space grid and symmetric
structures based on symmetry point groups arguments (Zingoni, 2005, 2014) and then direct towards symmetry breaking bifurcation
classifications with Kiyohiro et al. (1991) and Chen et al. (2023). Additionally, most applications of the EBL stop at predicting the
possible bifurcation subgroups (Gatermann, 1993) but nothing has been done to predict the bifurcated deformation patterns.

In this paper, a new group-theoretic-based method is presented. It makes use of the EBL to predict attainable post-bifurcated
patterns of architectured materials. Using the presented method, the paradigm is switched from a mechanical standpoint well suited
for analysis to a mathematical standpoint more adapted for design purposes. Indeed, the first standpoint relies on a complex non-
linear computational step that can be numerically costly, whereas the new proposed mathematical standpoint is based only on linear
computations using the system symmetry and elastic strain energy only. Both the traditional and the newly proposed methods for
predicting bifurcated deformation modes of architectured materials are presented in Fig. 1. In these schematics, gear symbols indicate
design parameters that can be modified to attain different bifurcated patterns. As a consequence, a design step, represented by a black
back-loop, would need to modify these design parameters to obtain suitable bifurcated patterns. The attentive reader would notice
that the new proposed method separates the geometric design parameters from the material ones. This results in the generation
of two short design loops as opposed to just one long loop in the conventional approach. Moreover, neither of these design loops
depends on costly (represented by an hourglass symbol) non-linear computation in the newly suggested method, thereby expediting
the entire design procedure. As such, the new design process is perfectly suited to be part of an optimisation process such as topology
optimisation.

The layout of this paper is the following. Firstly, the appropriate group-theoretic background necessary to understand and apply
the EBL in Section 2 is presented. Then in Section 3, the new proposed method for predicting the post-bifurcated deformation modes
is detailed. This method is then applied to the regular hexagonal honeycomb subject to uniaxial and equibiaxial in-plane loads in
Section 4. Finally, a discussion and conclusion on this method and the presented results is proposed in Section 5.

In the remaining of this paper, scalars, vectors and matrices will be respectively written with normal typesetting 𝐴, bold text 𝐁
and underlined bold text 𝐂.

2. Group-theoretic preliminaries

As discussed in the introduction, the symmetry of an architectured material strongly determines its post-bifurcated patterns. As
a preliminary to the proposed method, this first section presents the group-theoretical background necessary for applying the tool
that allows us to assess the post-bifurcated symmetry groups of the considered architectured material: the Equivariant Branching
Lemma.



Fig. 1. (a) Traditional Mechanical based and (b) New Mathematical based methods for predicting bifurcated deformation modes of architectured materials. Gear
symbols indicate design parameters that can be modified to attain different bifurcated patterns while an hourglass symbol emphasises a computationally heavy
step.

2.1. Symmetry of the problem: Equivariance property

2.1.1. Problem setting
Let us consider a standard problem in mechanics: an elastic body  in equilibrium occupying the region 𝛺 ∈ R3 with surface

area 𝛤 . The current state of the body  is represented by a state vector 𝐮 ∈ V, where V is the representation vector space (also
called carrier space) of the problem. In the framework of finite element, the body is discretised into a finite number 𝑁 of points so
that its current state is described by the discrete displacement vector 𝐮 = (𝑢1,… , 𝑢𝑛)𝑇 ∈ V ≡ R𝑁 , where 𝑢𝑖, 𝑖 = 1..𝑁 is the degree of
freedom vector of point 𝑖. In this framework, the state vector is then the discrete displacement vector of the finite elements.

If the mechanical system is conservative, the body’s state can be described by a system of nonlinear equations that derive from
its potential energy which is a twice differentiable function defined as:

 ∶ (V × R) ⟶ R

(𝐮, 𝜆) ⟼ (𝐮, 𝜆)
(1)

with 𝜆 ∈ R the load parameter which acts as a multiplier of the problem’s loading condition.



The behaviour of the mechanical problem is therefore governed by the nonlinear equilibrium equations:

 ,𝐮 𝛿𝐮 = 0, ∀ 𝛿𝐮 ∈ V (2)

with  ,𝐮 the Gateaux derivative of the potential energy function.
Note that if the problem is not conservative, its behaviour is still described by a system of nonlinear equations that does not

necessarily derive from a potential energy.
A solution of the nonlinear equilibrium equations is called an equilibrium solution. Equilibrium solutions depend on the load

parameter 𝜆 and can be plotted on a graph as functions of that load parameter. All together, the equilibrium solutions for varying
load parameters form a continuous line in that graph, called the equilibrium path. The particular equilibrium path that passes
through the point in the graph of zero load parameter and null displacement vector is called the principal path and denoted as
(0𝐮 (𝜆), 𝜆), often simplified as (0𝐮, 𝜆)

2.1.2. Symmetry of the problem and equivariance
The symmetry of a problem corresponds to the operations that leave the problem invariant. All these operations are gathered in

a set called a symmetry group and denoted 𝐺 in this article. A group is a set of elements 𝐺 = {𝑔1,… , 𝑔𝑛} together with an operation
(∗) that maps the set to itself. In a mechanical system, the symmetry of a problem is mathematically described by the equivariance
of its governing equations (here the equilibrium Eq. (2)) with respect to the symmetry group 𝐺 of the system which is expressed
as:

𝐓(𝑔)  ,𝐮 (𝐮, 𝜆) =  ,𝐮 (𝐓(𝑔)𝐮, 𝜆), ∀𝑔 ∈ 𝐺, ∀𝐮 ∈ V (3)

where 𝑔 is an element of the group 𝐺 and 𝐓(𝑔) is a matrix representation of the action of this symmetry element on the vector space
V. For example, if one considers the action of a rotation 𝑟𝜃 of angle 𝜃 on the vector space V = R2, then 𝐓(𝑟𝜃) would simply be the
well-known rotation matrix:

𝐓(𝑟𝜃) =
[

cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

]

The set of all matrices {𝐓(𝑔)|𝑔 ∈ 𝐺} form a faithful representation of the symmetry group 𝐺 acting on the vector space V meaning
that distinct elements 𝑔 of 𝐺 are represented by distinct matrices 𝐓(𝑔). These matrices can generally be broken into smaller matrices
called irreducible representations of the action of 𝐺 and denoted 𝐓𝜇 . These irreducible representations represent the action of group
𝐺 on irreducible subspaces E𝜇 . The irreducible representations for finite groups are in a finite number and can be obtained through
numerical procedures (Cracknell, 1980).

The equivariance property Eq. (3) shows that transforming the governing equations is equivalent to writing them on the
transformed vector. For instance, if 𝑟𝜃 , the rotation by an angle 𝜃, is one of the system’s symmetry, rotating the governing equations
of the state vector 𝐮 by an angle 𝜃 is equal to writing the governing equations for the rotated state vector 𝐓(𝑟𝜃)𝐮.

On a side note, the equivariance property is established directly on the governing equations and, as a consequence, does not
require the system to be conservative. When working with a conservative system, the equivariance property of the governing
equations is a direct consequence of the invariance of the potential energy due to the symmetry group 𝐺 which writes:

(𝐓(𝑔)𝐮, 𝜆) = (𝐮, 𝜆), ∀𝑔 ∈ 𝐺, ∀𝐮 ∈ V

2.1.3. Critical points and stability operators
When following an equilibrium path by increasing the loading, critical points may arise that would lead to significant changes in

the system’s behaviour. A critical point on the principal equilibrium path is formally defined as an equilibrium state (0𝐮𝑐 , 𝜆𝑐) where
the stability operator becomes singular. Most of the time, this operator corresponds to the Jacobian matrix of the system. In this
formalism, a critical point (0𝐮𝑐 , 𝜆𝑐 ) arises when there exists at least one unit vector 1𝐮∈ V such that:

( ,𝐮𝐮 (
0𝐮𝑐 , 𝜆𝑐 )

1𝐮) 𝛿𝐮 = 0, ‖

1𝐮 ‖ = 1, ∀ 𝛿𝐮 ∈ V (4)

Eq. (4) merely states that a critical point is the state when at least one of the eigenvalues of the Jacobian matrix becomes null.
The unit vectors 1𝐮∈ V of Eq. (4) then correspond to the eigenvectors associated with the null eigenvalues of the Jacobian matrix.
They are usually called critical eigenvectors. The set of all the critical eigenvectors 1𝐮∈ V spans the kernel space of the Jacobian matrix
 ,𝐮𝐮. Therefore, at a critical point, this kernel space has a dimension at least equal to 1. The kernel space of the Jacobian matrix is
of interest because the bifurcated solutions exist in this space.

Critical points can be either limit points, where the solution to the non-linear governing equations remains unique or bifurcation
points where this solution loses its uniqueness and a bifurcated path emerges from the critical point. In the remainder of this article,
a distinction is made between pre and post-critical solutions by noting them 𝑖𝐮 and 𝑖+1𝐮 , 𝑖 ∈ N, respectively.

The stability operator  ,𝐮𝐮 in the case of discretised mechanical systems corresponds to the tangent stiffness matrix. Differenti-
ating the equivariance condition gives the commutation condition for the tangent stiffness matrix  ,𝐮𝐮 (𝐮, 𝜆):

𝐓(𝑔)  ,𝐮𝐮 (𝐮, 𝜆) =  ,𝐮𝐮 (𝐮, 𝜆)𝐓(𝑔), ∀𝑔 ∈ 𝐺, ∀𝐮 equilibrium solution (5)

which can be written equivalently as:

 ,𝐮𝐮 (𝐮, 𝜆) = 𝐓−1(𝑔)  ,𝐮𝐮 (𝐮, 𝜆)𝐓(𝑔), ∀𝑔 ∈ 𝐺, ∀𝐮 equilibrium solution (6)



This latter form of the commutation condition corresponds to a change of basis for the tangent stiffness matrix. Essentially, the
equivariance condition, implies that the kernel space can be determined by operating within a basis for the vector space V that is
distinct from the inherent basis arising from a finite element mesh. This basis, adapted to the symmetries of the system, will bring
the stiffness matrix into a block-diagonal form. The matrices that bring about this block-diagonalisation are special representation
matrices 𝐓. This is presented in detail in the coming section.

2.2. Bifurcation and symmetry group of solutions

2.2.1. Symmetry group of the solutions
The symmetry group of an equilibrium solution 𝐮 is defined as the set of operations that map this vector to itself. It is formally

defined as the group 𝐺𝐮 such that

𝐺𝐮 = {𝑔 ∈ 𝐺| 𝐓(𝑔)𝐮 = 𝐮} (7)

where 𝐺 is the symmetry group of the system.
The attentive reader would then notice that the symmetry group of an equilibrium solution is a subgroup of the symmetry group

of the system. This implies that it may possess a lower number of symmetry elements.
In the previous section two types of critical points were introduced: the bifurcation point where the solution loses its uniqueness

and the limit point where it remains unique. Generically, in the presence of a bifurcation point, a bifurcated solution 𝑖+1𝐮 will possess
a lower symmetry than the pre-bifurcated solution 𝑖𝐮 whereas in the presence of a limit point, the post-critical solution has the
same symmetry as the pre-critical one. The symmetries of a bifurcated solution form a subgroup of 𝐺 called the isotropy subgroup
of 𝑖+1𝐮 ∈ V. By definition, an isotropy subgroup is the largest set of elements 𝑔 ∈ 𝐺 which leaves the displacement vector solution to
the equilibrium equations invariant.

The symmetry group of equilibrium states on the principal path is then 𝐺0𝐮 = 𝐺, while 𝐺 𝑖𝐮 ⊂ 𝐺, 𝑖 ∈ N∗ is the symmetry group
of any post-bifurcated solution. More generally speaking, at a symmetry-breaking bifurcation point one has 𝐺𝑖+1𝐮 ⊂ 𝐺 𝑖𝐮, ∀𝑖 ∈ N∗.
This can be rephrased as follows: some symmetries have been lost at the bifurcation point and thus, the symmetry group of the
post-bifurcated solution is a subgroup of that of the pre-bifurcated solution.

As stated in the previous section, at a bifurcation point (𝐮𝑐 , 𝜆𝑐), the Jacobian matrix 𝐽 (𝐮𝑐 , 𝜆𝑐 ) of the system becomes singular
and the dimension of its kernel space is at least equal to 1. It is possible to define the symmetry group of the kernel space of the
Jacobian matrix 𝐽𝑐 (𝐮𝑐 , 𝜆𝑐) as:

𝐺ker( ,𝐮𝐮(𝐮𝑐 ,𝜆𝑐 )) = {𝑔 ∈ 𝐺 | 𝐓(𝑔)𝐮 = 𝐮, ∀ 𝐮 ∈ ker( ,𝐮𝐮 (𝐮𝑐 , 𝜆𝑐 ))} (8)

Furthermore, the symmetry of the post-bifurcated solution 1𝐮 is at least as high as the symmetry of the kernel space, which leads to
the following inclusions:

𝐺ker( ,𝐮𝐮(
0𝐮,𝜆)) ⊆ 𝐺1𝐮 ⊆ 𝐺0𝐮 = 𝐺 (9)

As a conclusion, it is possible to frame the symmetry group of the post-bifurcated solution in between the symmetry group of the
system 𝐺 and the symmetry group of the kernel space of the Jacobian matrix 𝐺ker( ,𝐮𝐮(

0𝐮,𝜆)).

2.2.2. Isotypic decomposition and block diagonalisation
Now let us direct our attention to the various vector spaces in which it is possible to express our solutions. Recall from

Section 2.1.2 that the action of the group on a vector space is represented by representation matrices 𝐓 and that it is possible
to break these representation matrices into smaller matrices called irreducible representations of the action of 𝐺 and denoted 𝐓𝜇 .
This decomposition formally writes as a direct sum:

𝐓 =
𝑚

⨁

𝜇=1
𝑚𝜇𝐓𝜇 (10)

with 𝑚 the number of irreducible representations of the symmetry group 𝐺 and 𝑚𝜇 is the multiplicity of the irreducible representation
𝐓𝜇 in the decomposition. The blocks 𝑚𝜇𝐓𝜇 are called isotypic components of the representation 𝐓.

Each irreducible representation 𝐓𝜇 represents the action of the group 𝐺 on an irreducible subspace E𝜇 . As a consequence, the
support of the isotypic component 𝑚𝜇𝐓𝜇 is a subspace V𝜇 of the full vector space V called the isotypic subspace. This subspace
decomposes itself as a direct sum of 𝑚𝜇 times the same vector space E𝜇 :

V𝜇 = 𝑚𝜇E𝜇 = E𝜇 ⊕⋯⊕ E𝜇
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝑚𝜇 terms

(11)

Since in Eq. (10), 𝐓 is a representation of the action of the group 𝐺 on the full vector space V and since the support of the
isotypic component 𝑚𝜇𝐓𝜇 is the vector subspace V𝜇 , one thus have:

V =
𝑚

⨁

𝜇=1
V𝜇 =

𝑚
⨁

𝜇=1
𝑚𝜇E𝜇 (12)



The decomposition on the left-hand side of Eq. (12) is called the isotypic decomposition and is unique. On the contrary, the
decomposition on the right-hand side is not unique since the choice of the subspace E𝜇 , which carries the irreducible representation
𝐓𝜇 , is not unique.

Using the isotypic decomposition, a symmetry-adapted basis of vector space V can be built (McWeeny, 2002). Then, using the
change of basis presented in Eq. (6), the stability operator may be block-diagonalised, each block being associated with one of the
subspaces V𝜇 :

 ,𝐮𝐮 (𝐮, 𝜆) =

⎡

⎢

⎢

⎢

⎢

⎣

V1
V2

⋱
V𝑚

⎤

⎥

⎥

⎥

⎥

⎦

(13)

One special subspace V1 corresponds to the trivial irreducible representation and solutions belonging to this subspace have the
full symmetry 𝐺 of the system. When the stability operator becomes singular, in its block-diagonalised form, it corresponds to
only one block related to one isotypic subspace V𝜇 that becomes singular. If this block corresponds to the special subspace V1,
the post-critical solution will have the same symmetry group as the pre-critical solution and the critical point is generically a limit
point. On another hand, when a symmetry-breaking bifurcation point arises, the unstable block corresponds to any other subspace
V𝜇 , 𝜇 ∈ [[2, 𝑚]]. Then, since the subspace V𝜇 is support of 𝑚𝜇-times the irreducible representations 𝐓𝜇 , the bifurcation point is
said to be associated with the irreducible representation 𝐓𝜇 . To be more precise, it is only one sub-block, that corresponds to one
of the 𝐺-irreducible subspace E𝜇 , that uniformly goes to 0 at the symmetry breaking bifurcation point. Consequently, the kernel
space of the Jacobian matrix corresponds to that subspace E𝜇 . Therefore, the symmetry of the kernel space of the Jacobian matrix
𝐺ker(𝐽𝑐 (𝐮𝑐 ,𝜆𝑐 )) coincides with the group 𝐺𝜇 , called the kernel of the irreducible representation 𝐓𝜇 , and defined as:

𝐺𝜇 = {𝑔 ∈ 𝐺 | 𝐓𝜇(𝑔) = 𝐼𝑛𝜇} (14)

where 𝐼𝑛𝜇 is the square identity matrix of dimension 𝑛𝜇 , 𝑛𝜇 being the dimension of the 𝐺-irreducible subspace E𝜇 . This kernel is
nothing more than the set of all the operations of the irreducible representation that are represented by identity matrices. It is
directly determined from group-theoretic considerations and does not require any prior knowledge of the Jacobian matrix.

Finally, using this information and putting it into the framing relation stated in Eq. (9), lower and upper bounds are obtained
for the symmetry group of the bifurcated solution as follows:

𝐺𝜇 ⊆ 𝐺1𝐮 ⊆ 𝐺 (15)

2.3. Predicting possible symmetry groups of the bifurcated solution: the equivariant branching lemma

The question is now how to determine the symmetry group 𝐺1𝐮 of the bifurcated solution 1𝐮. This is done using to the Equivariant
Branching Lemma (EBL) as stated by Vanderbauwhede (1980) which concludes on the existence and symmetry of a bifurcated
solution.

The EBL makes use of the dimension of the fixed-point subspace of the isotropy subgroups 𝐺1𝐮. The fixed-point subspace of a
subgroup 𝐻 is defined as the set of vectors 𝐮 ∈ V which are invariant under the actions of the group:

FixV(𝐻) = {𝐮 ∈ V| 𝐓(𝑔)𝐮 = 𝐮, ∀ 𝑔 ∈ 𝐻} (16)

Its dimension can be found using the trace formula:

dim FixV(𝐻) = 1
|𝐻|

∑

ℎ∈𝐻
tr(𝐓(ℎ)) (17)

where 𝐓(ℎ) is the matrix group representation of the action of group element ℎ ∈ 𝐻 on the vector space V.
In Eq. (17), tr(𝐓(ℎ)) is the trace of the matrix group representation 𝐓(ℎ) for the group element ℎ. This is also known, in

representation theory, as the character of this representation usually denoted 𝜒𝐓(ℎ). Characters of the most common finite group
irreducible representations are tabulated in standard textbooks.

The Equivariant Branching Lemma states:
Consider (𝐮𝑐 , 𝜆𝑐 ), a symmetry breaking bifurcation point associated with the irreducible representation 𝐓𝜇 . If 𝐻 ⊂ 𝐺 is an isotropy

subgroup of 𝐺 for 𝐮 ∈ E𝜇 satisfying dim FixE𝜇
(𝐻) = 1, then a bifurcating path with 𝐻-symmetry exists.

In other terms, bifurcation problems with symmetry group 𝐺 generically exhibit solutions corresponding to isotropy subgroups
with one-dimensional fixed-point subspaces.

By definition, an isotropy subgroup is the largest set of elements 𝑔 ∈ 𝐺 which leaves the displacement vector solution to the
equilibrium equations invariant. As a consequence, an isotropy subgroup 𝐻 is maximal (Ihrig and Golubitsky, 1984), meaning that
no subgroup 𝐾 of 𝐺 can be found so that 𝐻 ⊂ 𝐾 ⊂ 𝐺. The idea behind this lemma is that, since the symmetry group 𝐻 = 𝐺𝜇 is
a lower bound for the symmetry group of the bifurcated solution 𝐺1𝐮, if 𝐺𝜇 is maximal, then it has to be equal to 𝐺1𝐮. Otherwise, a
supergroup 𝐾 of 𝐺𝜇 is maximal and is then equal to 𝐺1𝐮.

In practice, the list of all the isotropy subgroups with one-dimensional fixed-point subspaces gives the symmetry groups of the
bifurcated solution of the problem satisfying the initial symmetry. Note that the given list is not exhaustive since the EBL gives a
sufficient but not necessary condition for a bifurcating branch to emerge from the principal path.



3. Proposed group theoretic method

In this section, the new group theoretic method used for determining the post-bifurcated patterns of a periodic architectured
material is detailed. In the first step, the symmetry groups of the bifurcated solutions are determined using the EBL, and then the
associated post-bifurcated patterns are identified. In this section, it is assumed that the symmetry group 𝐺 of the system is finite.

3.1. Symmetry analysis: determining symmetry groups of the bifurcated solutions

The determination of the symmetry groups of the bifurcated solutions is based on the EBL. The EBL states that the symmetry
group of a bifurcated solution belonging to an irreducible subspace E𝜇 is an isotropy subgroup of the symmetry group of the problem
with a one-dimensional fixed-point space. It is therefore necessary to first establish the decomposition of the representation space
V into irreducible subspaces E𝜇 in order to determine if the subspace E𝜇 appears in this decomposition. Once this decomposition is
determined, the isotropy subgroups can be listed for each irreducible subspace E𝜇 appearing in the isotypic decomposition. Indeed,
these isotropy subgroups are candidates for the symmetry groups of the solutions that satisfy the equilibrium equations (Gatermann,
1993). In the last step, the dimension of the fixed-point space of these isotropy subgroups for the irreducible subspace E𝜇 can be
computed in order to conclude on the existence of a bifurcated solution having this symmetry using the EBL.

The symmetry group of the problem 𝐺 is supposed to be finite. As a consequence, it has a finite number of irreducible
representations 𝐓𝜇 , 𝜇 ∈ [[1, 𝑚]] and a finite number of associated irreducible subspaces E𝜇 . Since the EBL applies to fixed-point
subspaces computed for the subspaces E𝜇 of the decomposition presented in Eq. (12), this decomposition has to be determined. In
the right-hand side of Eq. (12), the subspace multiplicity 𝑚𝜇 appears. This multiplicity can be computed using the following formula:

𝑚𝜇 = 1
|𝐺|

∑

𝑔∈𝐺
𝜒𝐓𝜇 (𝑔)𝜒𝐓(𝑔) (18)

where it is reminded that 𝜒𝐓(𝑔) corresponds to the trace of the matrix representation 𝐓(𝑔).
If the multiplicity 𝑚𝜇 , computed by Eq. (18), appears to be null then the irreducible subspace E𝜇 does not appear in the

decomposition and will not be considered for the rest of the procedure.
Once the decomposition into irreducible subspaces is determined, the EBL works on isotropy subgroups 𝐻 of 𝐺 for an irreducible

subspace E𝜇 . The isotropy subgroups then have to be determined for each irreducible subspace E𝜇 appearing in the decomposition,
except for the isotypic subspace V1 related to the trivial irreducible representation and which corresponds to limit points preserving
the symmetry of the system and not symmetry breaking bifurcation points. The determination of the isotropy subgroups for each
irreducible subspace E𝜇 is done using the following algorithm:

Algorithm 1 Computation of isotropy subgroups of group 𝐺 of a given irreducible subspace E𝜇

Input: Subgroups of 𝐺, irreducible representation 𝐓𝜇 associated with irreducible subspace E𝜇
for each subgroup 𝐻 ⊂ 𝐺 do

for each subgroup 𝐾 of 𝐺 such that 𝐻 ⊂ 𝐾 ⊂ 𝐺 do
if dim FixE𝜇

(𝐾) = dim FixE𝜇
(𝐻) or dim FixE𝜇

(𝐻) = 0 then
𝐻 is not an isotropy group for E𝜇

end if
end for

end for
Output: list of isotropy subgroups

This algorithm is based on two criteria:

1. for a subgroup to be an isotropy subgroup, the dimension of its fixed-point space cannot be equal to zero. Indeed, according
to the definition of a fixed-point space given in Eq. (16), if the dimension of this space is equal to zero then there is no vector
𝐮 ∈ E𝜇 that is invariant under the action of the group and thus no action of the group leaves a vector 𝐮 ∈ E𝜇 invariant and
the isotropy subgroup would be empty ;

2. the definition of an isotropy subgroup is the largest set of elements 𝑔 ∈ 𝐺 which leaves the displacement vector 𝐮 ∈ E𝜇
invariant. As such, if 𝐾 is an isotropy supergroup of 𝐻 and the dimensions of the fixed-point spaces of both groups are equal,
𝐻 cannot be an isotropy subgroup of 𝐺 as 𝐮 is invariant by not only the elements of 𝐻 but also those of 𝐾.

Authors point out that this algorithm is the same as the one proposed in Gatermann (2007).
The last step for applying the EBL is to check which isotropy subgroups have one-dimensional fixed-point space using the trace

formula stated in Eq. (17). The list computed via the previous algorithm is then reduced using the EBL: the isotropy subgroups
whose fixed-point space dimension is not equal to one cannot be considered as possible post-bifurcated subgroups.

Therefore, at the end of this step, a list of the 𝑁 possible post-bifurcated subgroups {𝐺1
1𝐮
,… , 𝐺𝑘

1𝐮
}, 𝑘 ∈ N∗ is obtained, for a

problem with symmetry group 𝐺. In other terms, this first step provides a list of predicted post-bifurcated subgroups. Each of these
subgroups contains a set of symmetry operations that would leave a post-bifurcated equilibrium solution invariant. If the subgroup
has a high symmetry, i.e. it contains a large number of elements, then this subgroup may define uniquely, up to an amplification
factor, the state vector 𝐮 ∈ V. However, in most cases, an additional step is required to determine the post-bifurcation patterns.



3.2. Determining patterns knowing symmetry groups of bifurcated solutions

Having computed the list of possible post-bifurcated symmetry groups, the question is now to determine the corresponding
post-bifurcated deformation patterns. The procedure described in this section first consists in reducing the number of unknowns in
the displacement vector 𝐮 = (𝑢1,… , 𝑢𝑛)𝑇 ∈ V using the post-bifurcated symmetry groups found previously along with the knowledge
of the associate isotypic subspace V𝜇 to which this vector should belong to. Indeed, the symmetry elements contained in the post-
bifurcated symmetry groups will impose relationships between the independent degrees of freedom of the displacement vector 𝐮 thus
leading to the definition of a reduced displacement vector. And that vector should be in the isotypic vector space V𝜇 corresponding
to the irreducible representation associated with the bifurcation point of interest. Then an energy argument is used to uniquely
determine the pattern.

3.2.1. Reduction of DOF space
The reduction of the Degrees of Freedom (DOF) space is carried on in two steps. First using the possible symmetry groups,

a reduced vector defined by a reduced number of independent DOF is defined for each symmetry group. Then, knowing that a
bifurcation point is associated with a given irreducible representation, the reduced vector is projected into the corresponding isotypic
subspace. Thus ensuring that this vector might belong to the null space of the (undefined) non-linear stiffness matrix.

Let start with the definition of the reduced vector. For each post-bifurcated symmetry group predicted at the end of the former
state, the symmetry operations of the groups impose relationships between the various degrees of freedom of the displacement
vector. Indeed, the symmetry operations are the operations that leave the displacement vector invariant. The action of a symmetry
operation 𝑔 on the vector space V of the displacement vector is represented by the matrix 𝐓(𝑔). As such, the relationships between
the DOF of the displacement vector can be determined by solving the following system of linear equations:

{𝐓(𝑔) 1𝐮=1𝐮} ∀𝑔 ∈ 𝐺𝑖
1𝐮
, 𝑖 ∈ [[1, 𝑘]] (19)

Solving Eq. (19) results in a reduced number of degrees of freedom for the displacement vector 1𝐮 that is symmetric under the
action of the post-bifurcated subgroup 𝐺𝑖

1𝐮
. This actually corresponds to projecting the vector 1𝐮 that was in the vector space V into

the fixed-point space FixV(𝐺𝑖
1𝐮
) of the post-bifurcated subgroup 𝐺𝑖

1𝐮
with respect to the vector space V. Using only these independent

degrees of freedom, a reduced displacement vector
1
�̃� can be defined.

In order to be a possible post-bifurcated mode, the reduced displacement vector
1
�̃�, which is defined on the full mesh vector space

V has to belong to the null space of the non-linear stiffness matrix. Without prior knowledge of the loading, the non-linear stiffness
matrix cannot be defined. However, recall from Section 2.2.2 that when the stiffness matrix becomes singular, it corresponds to only
one isotypic subspace V𝜇 that becomes singular. Therefore, the next step is to project the reduced displacement vector

1
�̃� from the full

vector space V to the unstable isotypic subspace V𝜇 . This projection is done using the projection operators, which are represented
by matrices, into the symmetry adapted basis defined in McWeeny (2002):

𝐏𝜇 = 1
|𝐺|

∑

𝑔∈𝐺
𝜒𝐓𝜇 (𝑔)𝐓(𝑔) (20)

These projection matrices are then used to project the reduced vector
1
�̃� into the appropriate vector space V𝜇 as follows:

1
�̂�= 𝐏𝜇

1
�̃�

All these operations can be carried out formally using symbolic computation tools.
In some rare cases, the projected reduced displacement vector only depends on one independent degree of freedom and the

post-bifurcated pattern can then be uniquely defined from that information only. This would correspond to the case when the
fixed-point space of the post-bifurcated subgroup 𝐺𝑖

1𝐮
with respect to the vector space V is the same as the fixed-point space of the

same post-bifurcated subgroup but with respect to the vector subspace E𝜇 . In that case, the only degree of freedom serves as a mode
amplitude parameter. In most cases, several independent degrees of freedom are involved which could lead to several patterns
depending on the chosen linear combination of these degrees of freedom. Then, an additional step is necessary at this point to
uniquely determine the post-bifurcated pattern. This is done using the total potential energy of the system.

3.2.2. Elastic energy minimisation
The total potential energy of the system is generically given by:

 = 1
2 ∫

𝝈 ∶ 𝜺 𝑑𝛺 −
[

∫
𝐟 ⋅ 𝐮 𝑑𝛺 + ∮𝜕

𝐭 ⋅ 𝐮 𝑑𝛤
]

(21)

It is assumed that the system is free of body forces 𝐟 = 𝟎. Moreover, in the periodic cell, the rightmost term of Eq. (21) is cancelled
out by the periodic boundary conditions:

∮𝜕
𝐭 ⋅ 𝐮 𝑑𝛤 = 0 (22)

Therefore, the total potential energy simply corresponds to the strain energy of the unit cell:

 = 1
2 ∫

𝝈 ∶ 𝜺 (23)



If one considers a finite element description of the problem. The strain energy corresponds to the sum of the energies for all the
finite elements inside the cell which can be expressed in terms of the total stiffness matrix of the unit cell 𝐊:

 = 1
2
𝐮𝑇𝐊𝐮 (24)

From now on consider that some undetermined loading will bring the system to a bifurcation point associated with irreducible
representation 𝐓𝜇 . At that bifurcation point, as explained in Section 2.2.2, the total stiffness matrix of the unit cell 𝐊 becomes singular
and its kernel space corresponds to one of the irreducible subspaces E𝜇 . Then the post-bifurcated equilibrium solution is sought in
the intersection between this irreducible subspace and the fixed-point space of one of the possible post-bifurcated symmetry groups
associated with this irreducible representation. In fact, from the end of the previous state, the projected reduced displacement vector
belongs to the isotypic space V𝜇 since the irreducible E𝜇 is unknown without non-linear computation. Then the following conjecture
is assumed: the null space of the stiffness matrix, for some loading, corresponds to the vector subspace in the isotypic space 𝑉𝜇 . This
subspace also corresponds to the smallest eigenvalue of the elastic stiffness matrix 𝐊𝑒.

In practice, looking for an equilibrium solution comes back to minimising the total energy. At the bifurcation point, the principal
branch and all the possible bifurcated branches have the same energy which means that looking for a post-bifurcated energy comes
back to looking for the minimum of the incremental energy from the bifurcation point on the bifurcated branch. In our case, using
the previous conjecture, an equilibrium state on the bifurcated branch will belong to the previously described intersection between
the fixed-point space of the post-bifurcated symmetry group and the kernel of the total stiffness matrix.

Consider an increment of displacement in this intersection 𝛿�̂� ∈ E𝜇 ∩ FixV(𝐺𝑖
1𝐮
) due to an increment of loading 𝛿𝜆. Then, the

incremental energy computes as

𝛿 =
1
2
(𝛿�̂�)𝑇

(

�̂�𝑒 + (𝜆𝑐 + 𝛿𝜆)�̂�𝑔

)

(𝛿�̂�) (25)

where 𝜆𝑐 is the critical buckling load and the hat sign stands for the projection of the stiffness matrices in the vector space of 𝛿�̂�. In
the former equation, the total stiffness matrix which is, in general, non-linear with respect to the equilibrium state, is decomposed
as a sum of the elastic stiffness matrix �̂�𝑒 and a non-linear geometric matrix �̂�𝑔 depending linearly on the load. This hypothesis is
also known as linear buckling analysis and is applicable to systems composed of structural elements such as beams, plates or shells.

Given that 𝛿�̂� ∈ E𝜇 , it is in the kernel of the non-linear stiffness matrix at the bifurcation point: �̂�𝛿�̂� = 𝟎 ⇔ (�̂�𝑒 + 𝜆𝑐�̂�𝑔)𝛿�̂� = 𝟎.
Consequently, the incremental energy can be reduced to

𝛿 =
1
2
𝛿𝜆𝛿�̂��̂�𝑔𝛿�̂� = −𝛿𝜆

2𝜆𝑐
𝛿�̂��̂�𝑒𝛿�̂� (26)

Finally, the increment of displacement 𝛿�̂� on the post-bifurcated branch has to be an equilibrium solution for the incremental
energy ̂𝛿 , meaning that it must minimise this energy. This corresponds to finding the smallest eigenvalue of the elastic stiffness
matrix in the reduced space �̂�𝑒.

The energy minimisation uses the fact that the energy can then be re-written in terms of eigenvectors �̂�𝐼 and eigenvalues 𝛼𝐼 of
the reduced elastic stiffness matrix �̂�𝑒. Indeed, the increment of displacement 𝛿�̂� on the post-bifurcated branch can be projected
into the eigenspace of the elastic stiffness matrix as follows: 𝛿�̂� =

∑

𝐼 𝑏𝐼 �̂�𝐼 which induces:

̂𝛿 =
1
2
∑

𝐼
𝑏2𝐼 �̂�

𝑇
𝐼 �̂�𝑒�̂�𝐼 =

∑

𝐼
𝑏2𝐼

1
2
𝛼𝐼 �̂�𝑇𝐼 �̂�𝐼 =

∑

𝐼
𝑏2𝐼

𝛼𝐼
2

(27)

under the assumption of normalised eigenvectors �̂�𝐼 .
Therefore the increment of displacement that minimises the energy from the bifurcation point corresponds to the eigenvector �̂�0

associated with the smallest eigenvalue 𝛼0 of �̂�𝑒.
The computation of the smallest eigenvalue of the elastic stiffness matrix, reduced to the fixed-point space of 𝐺𝑖

1𝐮
, cannot be

realised analytically and requires numerical computation. Additionally, this requires information on the material parameters that
constitute the geometry of the architectured material. At this stage only, the material parameters and inputted into the method.

The framework in which this method is proposed to be applied below uses beam elements which are suitable for linear buckling
hypothesis. The method could use plate and shell elements as well. It is less clear if such an argument would hold in the case of
solid 2D or 3D elements composed of soft materials, for instance.

As a summary, in the newly proposed method, the possible post-bifurcated deformation modes are predicted by an eigenvalue
analysis of the reduced elastic stiffness matrix �̂�𝑒 conducted for each possible symmetry groups of bifurcated solutions. 𝐺𝑖

1𝐮
. This

eigenvalue analysis provides, in a unique way, the post-bifurcated deformation patterns (or modes) that could emerge from a
bifurcation point.

3.3. Summary of the method

Fig. 1 (b) presents a graphic summary of the newly proposed method for determining the post-bifurcated patterns of architectured
materials. In this schematic, the gear symbols indicate design parameters that can be modified to attain different bifurcated patterns.
It appears obvious that the new proposed method separates the geometric design parameters from the material ones. Indeed, up
to the reduction of the DOF space, the only information necessary for the computation is the specification of the geometry of the
architectured material periodic cell and the computations can be done analytically. The material parameters are only inputted for
the elastic energy minimisation step. This creates two separate design loops that are available to the designer or an optimisation



Fig. 2. Difference between primitive and unit cells when considering the bifurcation of an infinite 2D honeycomb medium.

process. These two steps are represented by two dashed boxes on Fig. 1 (b). Moreover, the method does not perform any non-linear
computation. As such, it is fast and perfectly suited for design applications as part of a topology optimisation process, for instance.

Finally, the mechanical load design parameter is removed from the proposed method. This prevents the load from selecting
a given post-bifurcated pattern and allows our method to predict all the post-bifurcated patterns that could appear for a given
architectured material. It is then left to the designer or to an optimisation algorithm, in a final step, to find the appropriate loading
that will select one or another target pattern.

4. Application on the regular hexagonal honeycomb

The new method presented in the previous section is now applied to the regular hexagonal honeycomb structure. This example
has been chosen because, as presented in the introduction, it is a well-studied example that will allow us to validate the method and
also to show its interest since the proposed method will predict new possible bifurcated patterns. Two loading conditions will be
considered for this application: an equibiaxial loading and a uniaxial or biaxial loading. These loadings will be taken into account
by only considering their symmetry groups and their intersection with that of the initial geometry of the honeycomb.

4.1. Symmetry analysis of the initial geometry

The infinite honeycomb can be described by a tessellation in the plane of the regular hexagon. The regular hexagon has symmetry
group 𝐷6. This symmetry group possesses 12 symmetry elements and can be generated by a rotation of order 6 (i.e. by the angle 2𝜋

6 ),
noted 𝑟6 around the out-of-plane axis passing through the centre of the hexagon and a mirror symmetry 𝑠 with respect to a vertical
plane passing through that same centre. From these two generators, the whole set of 12 symmetry elements of the symmetry group
𝐷6 can be constructed using the Cayley table of this group. The chosen notation for the name of the group follows the classical
notation from crystallography (McWeeny, 2002). It uses the letter 𝐷 when a mirror symmetry is one of the group elements (letter
𝐶 would be used otherwise) and the number 6 to indicate the rotational order of the rotational generator element 𝑟6. This group is
also named 𝐶6𝑣 in the Schoenflies notation. Such a group which contains only point-wise operations is called a point-group.

As presented in the introduction, it has been shown in the literature that the post-bifurcated patterns require more than one
hexagonal tile, also called primitive cell, to be captured (Papka and Kyriakides, 1994, 1999b,a; Combescure et al., 2016). Indeed,
at least 2 × 2 primitive cells are necessary to show the diversity of the modes observed experimentally (see Fig. 2). Consequently,
it is chosen to work with the symmetry group: 𝐷6 ⋉ (𝑍2 ×𝑍2) for the regular hexagonal honeycomb. In this notation, a semi-direct
product ⋉ is used to combine the point group 𝐷6 of the regular hexagon with the cyclic group (𝑍2 × 𝑍2). The reader is directed
to standard mathematical textbooks for the definition of the semi-direct product (Kosmann-Scharzbach, 2010). The cyclic group
(𝑍2 × 𝑍2) represents the inner translation symmetries along with the 2 × 2 periodicity of the chosen unit cell. This unit cell is
presented on the right-hand side of Fig. 2. It is periodic along the periodicity vectors 𝛼1 and 𝛼2 and composed of 4 primitive cells:
2 primitive cells along the first lattice vector 𝑝1 and 2 primitive cells along the second lattice vector 𝑝2. As a consequence, it has
inner translation symmetries that allow it to go from one primitive cell to another along both lattice vectors 𝑝1 and 𝑝2 and along
the vector built from the sum of these two vectors. After two such translations in each direction, the unit cell has been brought
back to itself by periodicity. This means that the symmetry group of the inner translations of this unit cell is (𝑍2 × 𝑍2), a group
composed of 4 elements {𝑒, 𝑝1, 𝑝2, 𝑝1 ∗ 𝑝2}, where 𝑒 represents the identity element. The generators of this group are noted 𝑝1 and 𝑝2
and represented Fig. 2. These generators correspond to the periodicity vectors of the primitive cell. The symmetry group (𝑍2 ×𝑍2)
has 4 symmetry elements and, as such, combined with point group 𝐷6 of 12 elements, the resulting symmetry group: 𝐷6⋉ (𝑍2 ×𝑍2)
is composed of 48 elements and generated by four symmetry elements chosen to be 𝑟6, 𝑠, 𝑝1 and 𝑝2.

The reader’s attention is drawn to the fact that a modelling choice has to be made at that point on the size of the unit cell
leading to the cyclic group (𝑍2 ×𝑍2). Indeed, contrary to other studies (Combescure et al., 2016; Zhang et al., 2021) that make use
of specific analysis known as Bloch-wave analysis to determine that size during the non-linear computation, the proposed method
does not have such a tool implemented. This is a limitation of the method but authors believe that its numerical efficiency will



Table 1
Table summarising the beam parameters.
Beam parameters

𝐿 0.5 cm Strut length
ℎ 0.05 cm Strut thickness
𝑏 1 cm Strut depth
𝑆 0.05 cm2 Strut cross-sectional area
𝐼 1.041667 × 10−5 cm4 Strut moment of inertia
𝐸 69 MPa Material’s Young modulus

Fig. 3. Mesh of the honeycomb unit cell. The isolated points at the centre of each hexagon are only reference points introduced to track the inner translations
and are not attached to any matter. As a consequence, they do not correspond to any finite element node.

make it possible to overcome that limitation by scanning rapidly using for instance parallelisation methods for the various unit-cell
sizes.

Finally, the irreducible representations for the symmetry group 𝐷6 ⋉ (𝑍2 × 𝑍2) have to be determined. The irreducible
representations for finite groups are in a finite number and can be obtained through numerical procedures (Cracknell, 1980). In
the present case, they have been obtained using the Groups, Algorithms, Programming (GAP) software (The GAP Group, 2022).
Symmetry group 𝐷6⋉ (𝑍2 ×𝑍2) has 10 irreducible representations: 4 one-dimensional denominated with symbols 𝐴1, 𝐴2, 𝐵1, 𝐵2 and
2 two-dimensional, named 𝐸1 and 𝐸2. Together, all these 6 irreducible representations are identical to the irreducible representations
of the point group 𝐷6. The 4 additional three-dimensional irreducible representations, named 𝑇1, 𝑇2, 𝑇3 and 𝑇4, are due to the semi-
direct product with the translation group. GAP also tells us that group 𝐷6⋉ (𝑍2 ×𝑍2) can be decomposed into 33 subgroups classes.
Inside a subgroup class, groups are related by conjugacy relations, meaning that they only differ by the orientation of their generator
elements. They are, in a sense, the same groups but expressed in a different basis. As a consequence, the subsequent analysis will
be conducted in terms of symmetry classes more than in terms of symmetry groups. In order to help the reader understand the
meaning of the various groups belonging to the same symmetry class, the symmetry patterns for the three groups of the symmetry
class 𝐷2 ⋉ (𝑍2 ×𝑍2) are presented in Table 4 on the line corresponding to the irreducible representation 𝐸1.

4.2. Modelling

The unit cell is modelled using standard Euler–Bernoulli beam finite elements, the parameters of which are summarised in
Table 1.

Employing linear interpolation for the axial displacement and cubic interpolation for the transverse displacement, the conven-
tional shape functions from finite element beam theory are applied. These shape functions link the beam’s end nodal displacements
𝑢𝑖, 𝑣𝑖 and rotations 𝜃𝑖 (referred to as degrees of freedom or DOFs) with the displacement of any point and rotation of the cross-
section located inside the beam 𝑢(𝑥), 𝑣(𝑥), 𝜃(𝑥). The three DOFs for each node are gathered into the displacement vector 𝐮 =
[𝑢1, 𝑣1, 𝜃1,… , 𝑢𝑁 , 𝑣𝑁 , 𝜃𝑁 ], where 𝑁 is the number of finite elements nodes in the mesh. As a consequence, the representation vector
space of consideration is thus V = R3𝑁 .

The mesh used to apply the method is presented in Fig. 3. A mesh convergence study has been performed and the selected mesh
provides converged results in terms of predicted bifurcated deformation patterns. The isolated points at the centre of each hexagon
are only reference points introduced to track the inner translations and are not attached to any matter. As a consequence, they do
not correspond to any finite element node.

The mesh and the choice of the Euler–Bernoulli beam element modelling impose a representation vector space. Given this
representation vector space, the action of the symmetry group on this representation space has to be defined. It consists of defining
the representation matrices 𝐓(𝑔) for each symmetry element 𝑔 in the symmetry group of the initial geometry 𝐷6⋉(𝑍2×𝑍2). Since all



Fig. 4. Example of the action of rotational group generator 𝑟6 on the finite element mesh and degrees of freedom. The rotated unit cell is surrounded by purple
lines while the initial unit cell, reproduced by periodicity is represented surrounded by grey lines. The cyan arrows represent the degrees of freedom of each
node modified by the action of the group generator 𝑟6.

the 48 elements of this symmetry group are generated by only four elements, it is enough to define the representation matrices 𝐓(𝑔)
only for the four chosen generators 𝑟6, 𝑠, 𝑝1 and 𝑝2. The representation matrices carry information on both node permutations under
the action of the symmetry element on the mesh and changes in displacement directions after applying a group action to the three
degrees of freedom of a node. In particular, the group actions are first applied to the nodes of the unit cell and a nodal permutation
matrix 𝐏(𝑔) is generated by checking the finite element nodes which coincide with each other before and after the group action. This
nodal permutation matrix is then combined with a 3 × 3 matrix describing how the nodal degrees of freedom are affected by the
group actions. As an example, the action of the rotational group generator 𝑟6 on the mesh is presented in Fig. 4 where the rotated
unit cell is surrounded by purple lines while the initial unit cell, reproduced by periodicity is represented delimited by grey lines.
The purple-to-grey identification leads to the nodal permutation matrix 𝐏(𝑟6). The cyan arrows represent the degrees of freedom of
each node modified by the action of the group generator 𝑟6. These rotated degrees of freedom can be deduced from the initial ones
using the following 3 × 3 matrix:

𝐭(𝑟6) =
⎡

⎢

⎢

⎢

⎣

𝑐𝑜𝑠( 𝜋3 ) −𝑠𝑖𝑛( 𝜋3 ) 0

𝑠𝑖𝑛( 𝜋3 ) 𝑐𝑜𝑠( 𝜋3 ) 0

0 0 1

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

1
2 −

√

3
2 0

√

3
2

1
2 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(28)

4.3. Equibiaxial loading

The symmetry group of the problem is the intersection between the symmetry group of the architectured material and the
symmetry group of its loading conditions. For equibiaxial loading, the boundary condition’s symmetry group is very symmetric
since the macroscopic loading is isotropic. As a consequence, the boundary conditions are 𝑂(2)-symmetric. Therefore the symmetry
group of the problem is 𝐷6 ⋉ (𝑍2 ×𝑍2) ∩ 𝑂(2) = 𝐷6 ⋉ (𝑍2 ×𝑍2) (see Fig. 5).

As stated in the symmetry analysis section along with the group-theoretic preliminaries, 𝐷6 ⋉ (𝑍2 × 𝑍2) has 10 irreducible
representations, but only one subspace E𝜇 associated with one irreducible representation will contain the singularity of the stability
operator on the principal equilibrium path. The computation of the isotypic decomposition Eq. (12) states that all of the isotypic
subspaces appear in the decomposition. The Equivariant Branching Lemma will thus be applied to all of these subspaces since
bifurcation is susceptible to happen in any of them.

Out of the 33 possible subgroup classes, only 23 are isotropy subgroup classes (counting the initial group) among which only 17
have one-dimensional fixed-point subspaces. These possible post-bifurcated subgroup classes for each irreducible representation are
presented in Table 3. They are named using the name of one of the groups in the class. The superscripts 𝑠 or ℎ are used to identify
whether the mirror symmetry generator corresponds to a vertical or a horizontal mirror whereas superscripts 𝑔, 𝑔2 and 𝑔3 indicate
various types of glide generators combining a mirror symmetry element with a translation. The number of groups in the class is
given in parenthesis and the generators of the representative group are indicated in braces. In order to help the reader understanding



Fig. 5. Schematic representation of a biaxial macroscopic load (𝑂(2) symmetry) on the honeycomb lattice.

Table 2
Table presenting shapes illustrating the signification of the names for the symmetry groups used
later in the chapter.

Table 3
Table of isotropy subgroup classes for each irreducible representation of 𝐷6 ⋉ (𝑍2 × 𝑍2). A dashed line separates irreducible representations
inherited from the point group 𝐷6 from the ones that are due to the semi-direct product with the translation group.

the signification of the various names for the groups present in Table 3, a table presenting these names along with various shapes
illustrating the symmetry groups is proposed Table 2. Indeed, the symmetry groups presented correspond to symmetry groups of
well-known polygons except for symmetry group 𝐶6, which corresponds to the symmetry of a hexagon that would have lost its
mirror symmetries. The proposed shape for this group could be called a chiral hexagon. Moreover, note that the two groups 𝐷𝑠

3 and
𝐷ℎ

3 are both groups of an equilateral triangle but that triangle is standing up in the first case and rotated in the second, meaning
that the mirror symmetry of 𝐷𝑠

3 is vertical, whereas it is horizontal for 𝐷ℎ
3 . The same happens for groups 𝐷𝑠

1 and 𝐷ℎ
1 . These shapes

will be used at several places in the remaining of this article as a visual reminder of the meaning of the group theoretic names.
At this point, results presented in Table 3 are difficult to interpret. However, one can still extract information from this table based

on understanding of its group-theoretic content. For instance, if a subgroup class includes the translations 𝑝1 and 𝑝2 as generators
(or equivalently if their subgroup class name is composed with a semi-direct product with the group 𝑍2×𝑍2), then all four primitive
cells inside the 2 × 2 cell will deform in a similar manner. This is the case for the first six irreducible representations inherited from
the point group 𝐷6 and located above the dashed line in Table 3. For the remaining four irreducible representations, the deformed
pattern will be expected to have all four cells deformed in a different manner, except when a one of the translation remains in the
generator (or equivalently when a semi-direct product with 𝑍2 is present in the name of the subgroup class. Moreover, if a class has



Fig. 6. Visualisation of post-bifurcated pattern with symmetry group 𝐷𝑠
3 ⋉ (𝑍2 ×𝑍2). Dots correspond to finite element nodes.

the symmetry element 𝑠 as a generator, then the deformation pattern presents a vertical mirror symmetry. The integer 𝑛 associated
with the symmetry element 𝑐𝑛 represents the order of the generating rotation. For example, a 𝑟6 symmetry is a rotation by an angle
of 2𝜋

6 whereas a 𝑟3 symmetry is a rotation by an angle of 2𝜋
3 . Further comments can be made on the number of subgroup classes,

i.e. the number of possible patterns, available for a given irreducible representation. The first five irreducible representations provide
only one available deformation pattern, while the irreducible representations 𝐸2 and 𝑇1 provide two patterns each and the last three
irreducible representations generate three patterns each.

Among these isotropy subgroup classes, three are of particular interest to us since they have already been reported in the
literature. Indeed, Combescure et al. (2020) computed, from a non-linear finite element simulation, the post-bifurcated patterns
of a hexagonal honeycomb subjected to equibiaxial loading. They provided the symmetry elements of their three computed post-
bifurcated patterns for the regular honeycomb with circular cells under equibiaxial loading. By comparing the symmetry elements of
these non-linearly predicted post-bifurcated patterns and the symmetry elements of the various predicted possible symmetry groups,
it is possible to conclude that these predicted post-bifurcated groups are also found in the list of isotropy subgroup class of Table 3
for irreducible representation 𝑇2: Mode I (also called alternating band mode) is group 𝐷𝑔

2⋉𝑍2, Mode II (butterfly mode) corresponds
to group 𝐷2 and finally Mode III (flower mode) is group 𝐶6. It is then possible to quantitatively confirm that both the post-bifurcated
groups of the patterns from the literature, stemming from a non-linear finite element simulation, and from the new proposed method
are exactly the same even though the processes for obtaining them are completely different since the present study is conducted
without any non-linear buckling analysis.

The second step of the method allows us to determine the possible post-bifurcated patterns of the regular hexagonal honeycomb
subjected to equibiaxial loading. These patterns are presented in Table 4. In order to help the reader understand the meaning of the
various groups belonging to the same symmetry class, the three symmetry groups belonging to the same symmetry class 𝐷2⋉(𝑍2×𝑍2)
are presented for the irreducible representation 𝐸1 whereas only one group representative per class has been chosen for the other
irreducible representations.

Some preliminary observations are possible when studying results presented in Table 4. As expected, the pattern predicted for
irreducible representation 𝐴1 is undeformed. Indeed, the symmetry group of that pattern is the same as the one of the undeformed
hexagon and it has already been assessed that irreducible representation 𝐴1 is associated with a symmetry-preserving limit point
and not a bifurcation point. However, it can also be observed that irreducible representation 𝐵1 associated with symmetry class
𝐷𝑠

3 ⋉ (𝑍2 × 𝑍2) seems to produce the same undeformed pattern that the one of irreducible representation 𝐴1. This is confusing
because this symmetry group corresponds to the one of an upright equilateral triangle ( ) repeated twice along both lattice
vectors and a deformation pattern could be expected to appear for this group. This post-bifurcation pattern actually corresponds to
the axial displacement of the central node of each beam along the beam direction as presented in Fig. 6. It cannot be observed on
the nodeless representation proposed in Table 4.

Furthermore, a thorough observation of Table 4 allows us to confirm that some predicted post-bifurcation patterns are the same
as patterns already reported in the literature but obtained through non-linear numerical simulations or experiments. The three
post-bifurcated patterns (alternating band Mode I, butterfly Mode II and flower Mode III) corresponding to the equibiaxial loading
first symmetry-breaking bifurcation point reported in Saiki et al. (2005), Combescure et al. (2016) and Ikeda and Murota (2010)
and obtained by various numerical methods in these articles, are retrieved for the irreducible representation 𝑇2 using the new
proposed method. Additionally, the groups 𝐷ℎ

3 ⋉ (𝑍2×𝑍2), belonging to irreducible representation 𝐵2, and 𝐶6⋉ (𝑍2×𝑍2), belonging
to irreducible representation 𝐴2, both produce post-bifurcated patterns qualitatively similar to those found by Kang et al. (2013).



Table 4
Post-bifurcated patterns predicted for the equibiaxial loading of the regular hexagonal
honeycomb.



Fig. 7. Side by side comparison of modes presented in the literature (left-hand side) and modes predicted by the present method (right-hand side). (a) alternating
band mode I from Combescure et al. (2016), (b) butterfly mode II from Combescure et al. (2016), (c) flower mode III from Combescure et al. (2016) (d) triangle
mode from Kang et al. (2013) (e) chiral mode from Kang et al. (2013) (f) three unnamed modes top from higher bifurcation point in Combescure et al. (2016)
and bottom predicted by the new method for irrep 𝑇4.

Finally, the three modes presented in Combescure et al. (2016) Fig. 22 corresponding to the deformation patterns after the fifth
bifurcation point along the principal path are retrieved by the new proposed method and all three belong to the last irreducible
representation 𝑇4. On this note, this computation invalidates the analysis proposed in Combescure et al. (2016) to see these modes
as higher versions of the alternating band Mode I, butterfly Mode II and flower Mode III. Indeed these modes belong to a different
irreducible representation and to different groups. A side-by-side comparison of the modes obtained in the literature and the ones
predicted by the present method is proposed in Fig. 7. Note that the modes predicted by the new method may be plotted with a
larger amplification factor resulting in more deformed patterns than the ones proposed in the literature. Nevertheless, the qualitative
agreement is satisfying.

The yellow dotted lines in the experimental images taken from Kang et al. (2013) visible on Fig. 7(d) and (e) represent phase
shifts where the deformed mode shifts from one group to another one of the same class. Recall that groups belonging to the same
class correspond to rotated or mirrored versions of the same deformation pattern. This is visible on the experimental image where



Fig. 8. Comparison of (a) the post-bifurcated patterns corresponding to the second lowest eigenvalue of the stiffness matrix for the three symmetry groups of
the irreducible representation 𝑇2 and (b) the computed post-bifurcated deformation modes belonging to the fourth bifurcation point along the principal path
from Combescure et al. (2016).

the mode on the left of the yellow dotted line in Fig. 7(d) corresponds to the mode predicted by the new method and the one on
the right of the yellow dotted line is the same pattern but rotated by 2𝜋

3 . The same happens on Fig. 7(e) where the two groups from
the same class are mirror images of each other due to the fact that these groups are chiral. These phase shifts cannot be predicted
by the present method.

Finally, thanks to the eigenvalue analysis of the stiffness matrix, higher-order post-bifurcation patterns are accessible by plotting
eigenvectors corresponding to non-minimal eigenvalues. The modes corresponding to the second lowest eigenvalue for irreducible
representation 𝑇2 are plotted in Fig. 8. These modes are in perfect accordance with the modes presented in Combescure et al. (2016)
Fig.22 for the fourth bifurcation point along the principal path. As a consequence, these modes are indeed higher-order versions of
the alternating band Mode I, butterfly Mode II and flower Mode III. This hypothesis raised from Combescure et al. (2016) is thus
confirmed for the modes of the fourth bifurcation point but not those stemming from the fifth bifurcation point. This additional
information results from the use of the present method.

As a conclusion for this analysis of equibiaxial loading conditions , for the minimum eigenvalue a total of seventeen possible
post-bifurcation patterns are predicted by the method. Eight post-bifurcated patterns, already reported in the literature and obtained
through non-linear finite element simulations or experimental realisations, have been retrieved by the new proposed method thus
serving as a validation for our method. Nine additional new patterns are predicted. The presented method also gives access to higher
energy patterns that may correspond to higher-order bifurcation points happening further away along the principal path. Indeed,
three of such patterns, all associated with the same irreducible representation, have been reported to happen further along the
principal path in non-linear numerical simulations in the literature.

4.4. Uniaxial and biaxial loadings

The attention is now focused on uniaxial or biaxial loadings. For both these cases, The symmetry group of the boundary conditions
is 𝐷2, the symmetry group of the rectangle. This group is composed of four elements: two reflections and two rotations which leave
the boundary conditions invariant (Fig. 9). The symmetry group to study is again the intersection between the symmetry group of
the geometry and that of the loading. In this case it corresponds to 𝐷6 ⋉ (𝑍2 ×𝑍2) ∩𝐷2 ≡ 𝐷2 ⋉ (𝑍2 ×𝑍2). The reader’s attention is
drawn to the fact that, if the mirror axes of symmetry for the loading are not aligned with those of the initial geometry, the resulting
intersection symmetry group might be lower. This case will not be considered here.

According to the GAP software, the symmetry group 𝐷2 ⋉ (𝑍2 × 𝑍2) possesses 10 irreducible representations: eight one-
dimensional, named 𝐴𝑖 or 𝐵𝑖 for 𝑖 ∈ 1..4, and two two-dimensional named 𝐸1 and 𝐸2. For this group, the new method predicts only
12 possible post-bifurcated symmetry classes. For the first 8 irreducible representations, only one post-bifurcated subgroup class
may exist, whereas two classes compete for the 9th and 10th irreducible representations. These classes along with the associated
predicted post-bifurcated patterns are presented in Table 5. Most of these symmetry classes have the symmetry of a rectangle except
for group 𝐶2 which is a chiral group i.e. it does not have any mirror symmetry but only the half-turn rotational symmetry. It could

be represented by the symmetry group of a rectangular helix as presented in Table 2.
From observing results presented in Table 5, the first observation is that the deformed mode predicted for the trivial irreducible

representation 𝐴1 is not a bifurcation mode, it simply corresponds to the deformed configuration of a regular hexagonal honeycomb
loaded along its mirror symmetry axes. A more interesting phenomenon is observed for irreducible representations 𝐴2 and 𝐴4.



Fig. 9. 𝐷2 (rectangular ) loading conditions.

Fig. 10. Side by side comparison of modes presented in the literature (left-hand side) and modes predicted by the present method (right-hand side). (a) alternating
band mode I obtained experimentally under uniaxial compression from Ashby (2013), (b) butterfly mode II obtained experimentally under biaxial compression
from Ashby (2013).

Indeed for these irreducible representations, the predicted pattern belongs to a symmetry group that has more symmetries than
the predicted symmetry group. See for instance the post-bifurcated deformed pattern arising from irreducible representation 𝐴2
that appears to be 𝐶6 ⋉ (𝑍2 × 𝑍2) which is a supergroup (i.e. it has more symmetry elements) of its predicted symmetry group
𝐶2 ⋉ (𝑍2 ×𝑍2). Indeed, 𝐶6 group encompasses symmetry elements corresponding to rotations by 2𝑘𝜋

6 , 𝑘 ∈ [1,… , 6] where 𝐶2 group
only has the rotation by 2𝜋

2 = 𝜋. This interesting phenomenon is explained by the fact that the energy minimisation argument cannot
prevent the solution from having more symmetry than its symmetry class.

For validation purposes, the results are now compared to previously obtained patterns from the literature. The alternating band
mode I has been obtained both experimentally and numerically in previous literature studies (Ashby, 2013; Combescure et al.,
2020) using uniaxial compression loading. It appears when the structure is loaded parallel to the struts and arises from a one-
dimensional irreducible representation. Using the new proposed method, this mode appears as the post-bifurcated pattern related
to irreducible representation 𝐵2 which is indeed one-dimensional. This mode seems to be also identified in the two-dimensional
irreducible representation 𝐸1 but with a different orientation. It is important to note that, even if alternating band modes from
irreducible representations 𝐵2 and 𝐸1 seem identical they are in fact not since tilted ovals of the 𝐸1 mode are different in sizes from
one orientation to another. For this irreducible representation two possible post-bifurcated patterns are identified which correspond
quantitatively to the two modes presented in Combescure et al. (2020) since they share the same generators. The 𝐷2 butterfly
mode has also been observed experimentally by Ashby (2013) using biaxial loading. Fig. 10 presents side-by-side comparisons of
the experimental observations by Ashby (2013) and the predicted modes using the new method. The qualitative comparison shows
a good agreement. Finally, the new proposed method predicts 8 new possible bifurcation patterns for uniaxial or biaxial loadings.

5. Conclusion

In this work, a new method for predicting the post-bifurcated patterns of architectured material is presented. This method is
based on group-theoretic tools. It predicts a larger number of possible post-bifurcated patterns than other proposed methods in the
literature without performing any nonlinear computation thus making it suitable for integration into design processes. Additionally,
the method is carried out entirely independently of any imperfection parameter or any asymptotic method. Obtaining the post-
bifurcated patterns is easily achieved by a simple eigenvalue analysis of the stiffness matrix once the degrees of freedom have been
reduced.



Table 5
Symmetry classes and associated Post-bifurcated patterns predicted for the uniaxial or biaxial loading of the
regular hexagonal honeycomb.



The method still admits some limitations that are listed now. The periodicity of the post-bifurcated patterns has to be postulated
at the beginning of the study when the unit cell is chosen. Authors believe that this limitation could be lifted using some additional
group-theoretic tools to represent the unit-cell periodicity. However, in the current state, authors advise taking advantage of the
speed of the method along with its possible parallelisation to assess various unit-cell sizes iteratively. Another limitation of this
method is that it is not exhaustive since it relies on the application of the Equivariant Branching Lemma which is only a sufficient
condition for the existence of an emerging bifurcated path with a given symmetry group. To the authors’ knowledge, this limitation
cannot be lifted yet since the most generalised version of the Equivariant Branching Lemma has already been used in the present
method. A last limitation is the fact that the present method cannot discriminate between the various post-bifurcated patterns
appearing for multiple-dimensional irreducible representations nor can predict which invariant subspace will become unstable first
along the principal path. Authors are currently working on energy arguments to uniquely determine the effective post-bifurcated
pattern arising at the multiple bifurcation points corresponding to these multiple-dimensional irreducible representations. The first
limitation is easily lifted by any linear or non-linear bifurcation analysis and will require precisely defining the loading. This can
be done in an additional step of the process after using this method. This process has been already tested and will be presented in
a coming companion article.

Furthermore, the authors are emphasising that, even if the method has been presented in the application using finite beam
elements, it is not limited to these elements and can be implemented using any other type of finite element keeping in mind that the
energy minimisation argument is mostly justified when linear buckling analysis is applicable. Similarly, the considered application
is on 2D architectured materials but the method is applicable without modification to any 3D architectured material. Finally, the
presented post-bifurcated patterns only correspond to the periodic part of the real pattern and are predicted close to the bifurcation
point. Their evolution along the bifurcated path is not predicted and, if localisation phenomenon or phase shifts appears this cannot
be captured by this method.

The method has been implemented in Python and is coupled with the Group, Algorithms, Programming software for handling the
group-theoretic computations. With its current state of implementation, the method only requires from the user the basic knowledge
of group theory that consists in being able to identify the symmetry group of the working unit-cell provided at the first step of the
method. The method then automatically takes care of the remaining group theoretical computations and analysis and provides the
possible post-buckling patterns as an output. The Python program is available on the Zenodo plateform (Azulay et al., 2023b).

A validation of the method by application to the regular hexagonal honeycomb has been presented. Observed patterns from
experimental and numerical studies of the literature are retrieved along with nine new post-bifurcated patterns for this type of
honeycomb. The method can adequately take into account the loading by considering the intersection of its symmetry group with
the one of the initial geometry at the beginning of the process. Authors believe that the predicted post-bifurcated buckling modes
of a given architectured material can be used as an input to homogenisation methods in order to predict the behaviour of a full
structure composed of such material. A first step in this direction has been attempted in Combescure (2022) where it has been found
that a micromorphic model should be preferred over strain-gradient models in order to take into account periodic bifurcation in the
equivalent homogenised model. Using the three modes of equibiaxial loading, a numerical micromorphic homogenisation process
has been implemented and successfully captured the appropriate buckling modes (Rokoš et al., 2020).

Finally, in view of designing architectured material in a Material-by-design approach, the proposed method introduces the design
parameters at two separate stages as presented in Fig. 1 (b). As a consequence, a specific design loop can assess material parameters
at an intermediate stage of the process thus making the new method perfectly suited for design applications. The loading being an
additional design parameter of its own to induce a given post-bifurcated pattern in an architectured material, its precise definition
is not needed in the current method and can be added as a separate third stage in order to determine the first bifurcation point
along the principal path.
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