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Abstract. This work deals with a numerical investigation of the onset of inelas-
tic instability in cruciform columns using the limit-point method. In this aim, a
nonlinear buckling analysis was developed to determine the limit-point stress and
the structure response during the post-buckling stage. Both total deformation and
flow theories are used to describe the mechanical behavior. The numerical sim-
ulations were carried out considering cruciform columns with different material
and geometric parameters. The obtained results were compared with experimental
data from existing literature focused on the influence of the plasticity theory. The
influences of the slenderness ratio and material parameters are discussed.

Keywords: Inelastic instability - Cruciform columns - Nonlinear FE analysis -
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1 Introduction

Buckling is a common instability phenomenon in engineering applications, where the
structure suddenly collapses involving very large displacements and deflections. It is
well known that straight and slender thin-walled structures, such as plates and closed
section columns subjected to compression loads, are likely to exhibit elastic buckling
in bending mode. However, the cruciform column, which is an open thin-walled col-
umn, tends to buckle in the torsion mode according to its aspect ratio (length/section
dimension) and slenderness ratio (section dimension/shell thickness) (Behzadi-Sofiani,
Gardner, & Wadee, 2023). Buckling analyses of thick-walled and/or compact columns
are more challenging, as plasticity may occur before buckling, referred to as plastic buck-
ling. Research on plastic buckling dates back to 1889 with Engesser study (Engesser,
1889) that substitutes the Young modulus in the Euler buckling load formula with the
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tangent modulus, then with the reduced modulus, which was validated by several contri-
butions (see, e.g., Hutchinson, 1974 and Gerard, 1962). More recently, several analytical
and numerical studies have been carried out to model the plastic buckling of thin and
thick-walled structures using different plasticity theories, in particular classical flow and
deformation theories (Shamass, Alfano, & Guarracino, 2014). These investigations have
again confirmed that the flow theory of plasticity fails to provide accurate buckling pre-
dictions. In contrast, the deformation theory shows good agreement with experimental
results, albeit with weaker physical robustness than flow theory. The cruciform column
is widely considered in the literature to discuss the discrepancy between the two plas-
ticity theories (Guarracino & Simonelli, 2017). The authors of the latter reference have
conducted an accurate analysis of the inelastic torsional buckling of a cruciform column
by proposing numerical and analytical procedures. Their approach is based on the intro-
duction of a small initial geometric imperfection, which is widely adopted in numerical
buckling analyses (Hutchinson & Budiansky, 1976, Zhoua, et al., 2021 and Shamass,
Alfano, & Guarracino, 2015).

In this work, our aim is to shed further light on the inelastic instability of cruciform
columns using a nonlinear Finite Element (FE) model based on the Riks method. The
buckling behavior of specimens with different slenderness ratios and various harden-
ing parameters is then investigated using the flow and deformation plasticity theories.
Numerical results are compared with experimental findings conducted by Hopperstad
et al. (Hopperstad et al., 1999).

2 Finite Element Modeling

The buckling behavior of cruciform columns was numerically analyzed using
Abaqus/Standard. For comparison, we consider specimens experimentally tested in the
literature (Hopperstad et al., 1999). The simulated columns have a length [, a cross-
section dimension b and a thickness #, as shown in Fig. 1. Table 1 presents the geo-
metric parameters, aspect ratios, and slenderness ratios considered in the different sim-
ulations. In order to meet the kinematics of the experimental test, the end sections
z = 0 and z = [ have free displacements along x and y axes, but constrained rotations
(px = ¢y = @; = 0). The cruciform column is subjected to axial compression by
imposing a uniform displacement u, = u on the end section z = [, as shown in Fig. 1.
A four-node shell element (S4) was used to mesh the specimen. The optimum element
number was determined on the basis of a mesh sensitivity study.
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Fig. 1. Geometry and boundary conditions of the FE model.

Two series of cruciform columns (S1 and S2) were simulated to evaluate the effect of
the slenderness ratio b/t. This ratio takes the values 10.5 and 30.5 to represent compact
and slender columns, respectively. For each value of b/t, , two tempers of alloy AA6082
(T4 and T6) with various material parameters were examined. The Ramberg—Osgood
law (Ramberg & Osgood, 1943), which is commonly used to analytically describe the
nonlinear constitutive behavior of aluminum alloys, is used to model the stress-strain
relationship o — ¢ (Kollnera, Gardnerb, & Wadee, 2023), thus:

o +k00 o \° o
e=—+k—=(—),
E E \og

where E is the Young modulus, oy is a nominal yield stress, ¢ and k are the hardening
parameters. The used values of theses parameters are displayed in Table 1.

Table 1. Characteristics of the simulated columns.

Series | Temper | b (mm) |l (mm) |t (mm) |b/t |1/b E (GPa) | og (MPa) |k c

S1 T4 262.5 | 1500 |25 10.5 |5.714 | 69.7 131 1.064 |23
T6 262.5 1500 |25 10.5 |5.714 | 67.9 267 0.509 |45

S2 T4 762.5 4500 |25 30.5 [5.902 | 69.7 131 1.064 | 23
T6 762.5 4500 |25 30.5 |5.902 | 67.9 267 0.509 |45

FE analyses were performed to detect the onset of inelastic instability for these
columns. It was assumed that columns present unavoidable geometric imperfections
that may influence the critical stress and the post-buckling behavior (Hutchinson &
Budiansky, 1976). This analysis was carried out in two stages:

(1) In the first stage, a linear eigenvalue buckling analysis was performed using the
Buckle Module in Abaqus/Standard, assuming linear material and geometric behav-
ior. The results obtained from these simulations are mainly the elastic buckling
stresses and eigenmodes of the columns.



(2) In the second stage, a nonlinear analysis was conducted using the Riks method,
accounting for geometric and material nonlinearities and considering an initial geo-
metric imperfection. This imperfection was introduced by scaling and adding the
first buckling eigenmode, which was obtained in the initial stage, to the straight
column. Our simulations were achieved with a scaling factor equal to 10% of the
flange thickness (7).

3 Results and Discussion

3.1 Linear FE Analysis: Elastic Buckling

In order to validate the applied boundary conditions, the buckling mode shape was
determined and compared to the deformed shape observed in the experimental test (See
Fig. 2). As the simulated columns have similar aspect ratios / /b and boundary conditions,
they exhibit the same buckling mode shape. It is clear that the numerically predicted
buckling mode aligns with the experimental one, thus validating the modeled boundary
conditions.

U, Magnitude
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+6.667e-01
+5.833e-01
+5.000e-01
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+3.333e-01
+2.500e-01
+1.667e-01
+8.333e-02
+0.000e+00
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Fig. 2. First buckling mode of the column with b/t = 30.5 in T6 from: (a) Linear FE model (b)
Experimental test.

The critical buckling stresses (ICI;,F E evaluated by the linear FE model are compared

to the theoretical predictions obtained by the Stowell theory denoted o "¢ (Gerard &

cr
Becker, 1957) as well as to the experimental measurements (ocb;x” ), as presented in
Table 2. The relative deviation is given between parentheses. The numerical results are
in good agreement with the theoretical outcomes. Regarding the experimental results,
it is evident that the slender columns (b/¢t = 30.5) exhibit buckling at critical stresses,



which closely correspond to the estimated elastic values, with little effect of material
properties. However, for the compact columns (b/¢t = 10.5), the experimental buckling
stresses are much lower than their elastic counterparts. It is worth noting here that the
material behavior has a significant effect on the experimental results. Indeed, temper T4,
known for its notably greater strain hardening characteristics compared to temper T6,
demonstrates a more pronounced deviation from the elastic predictions. These obser-
vations substantiate the possibility of inelastic instability manifesting in the cruciform
column due to variations in material and geometric parameters. We will address the
inelastic buckling of these specimens in the following section.

Table 2. Comparison of elastic critical stresses and experimental results.

Series Temper UCL,,F E(MPa) crcTrhw(MPa) UCE,XP (MPa)

S1 T4 298.39 309.15 (3.5%) 124 (82.6%)
T6 290.57 301.16 (3.6%) 218 (28.5%)

S2 T4 35.59 36.11 (1.5%) 40 (11.7%)
T6 34.66 35.18 (1.5%) 38 (9.2%)

3.2 Nonlinear FE Analysis: Inelastic Buckling

In order to evaluate the inelastic buckling behavior of cruciform columns, nonlinear
analysis was conducted using both theories of plasticity, namely, the flow theory and the
deformation theory. As the Riks method is a limit-point method, the instability behavior
can be investigated by evaluating the limit-point buckling (i.e. the maximum load) in
the stress-displacement curves presented in Fig. 3 and 4. Hopperstad et al. (Hopperstad
et al., 1999) determined the bifurcation critical stress ogxP , which is defined as the stress
level at which lateral deflections were visually observed during testing, as well as the
ultimate strength GME P The ultimate strength is the maximum stress that a column can
reach prior to the drop of its load-carrying capacity. To achieve a realistic and accurate
comparison, the limit-point stress should be compared with the ultimate strength of the
structure. Numerical results obtained with the flow and the deformation theories were
compared with the experimental results, as shown in Table 3. The relative error between
the numerical results obtained using the two plasticity theories and the experimental
ultimate strength is provided between parentheses. For compact columns, the bifurcation
stress and the ultimate strength are very close. In this case, the numerical predictions
using the flow o7 and the deformation theory 627 agree well with the experimental
results. Nevertheless, the slender column exhibits a large difference between the critical
bifurcation point and the ultimate strength (limit point in the numerical results). The
estimated limit point closely aligns with the experimental ultimate strength for both
theories of plasticity.



Table 3. Numerical and experimental results.

Series | Temper | Nonlinear FE Experiments
o T (MPa) o2 (MPa) B MPa) | oEP MPa)
S1 T4 133.60 (7.74 %) 127.72 (3%) 124 124
T6 248.17 (7.4%) 239.69 (10.56%) |218 268
S2 T4 79.70 (17.21%) 76.18 (12.03%) 40 68
T6 137.82 (12.97%) |135.64 (11.18%) |38 122

In order to gain further insight into the column instability problem and the effect of
geometric and material parameters, we have plotted the stress evolution against axial
displacement for slenderness ratios 10.5 and 30.5 in Fig. 3 and 4, respectively. It can be
seen that although the deformation theory predicts lower critical stresses than the flow
theory, both theories display approximately the same trends of the stress evolution. The
deformed columns inserted in these figures display the distribution of the equivalent
plastic deformation PEEQ.

For low slenderness ratio b/t = 10.5 (Fig. 3), it can be seen from inserts that the
column remains straight and elastic until the limit point, which coincides with the critical
point in the experimental test. At this point, buckling occurs and the column undergoes
plastic deformation. This observation aligns well with the results of (Hopperstad et al.,
1999).

When the slenderness ratio takes higher value (b/t = 30.5), the limit point is signifi-
cantly higher than the critical stress. Looking at the deformed shape, it is relevant to note
that the column buckles elastically before the limit point, indicating that this point is
attained in the post-buckling stage. For temper T6 with low strain hardening, the column
undergoes more deformation than temper T4 prior to the limit point, which explains the
great difference between the critical and the limit point (or the ultimate strength). This
is in good agreement with results in literature (Hopperstad et al., 1999). Comparing the
deformed shapes of the column at the limit point with the experimental test, it is clear
that the nonlinear FE model predicts the same post-buckling shape.
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Fig. 3. Stress vs. axial displacement with flow and deformation theories (a) b/t = 10.5 & T4 (b)
b/t =10.5 & T6.
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Fig. 4. Stress vs. axial displacement with flow and deformation theories (a) b/t = 30.5 & T4 (b)
b/t =30.5 & T6.



4 Conclusion

In the present study, a nonlinear FE analysis of the inelastic buckling behavior of cru-
ciform columns was carried out using the flow and deformation plasticity theories.
Columns were considered imperfect by introducing geometric initial imperfection. The
effects of the column geometry and material characteristics are studied by simulating
different slenderness ratios (b/¢) and different strain-hardening parameters. As the Riks
method is used assuming a geometric imperfection, the flow and deformation theories
provide comparable results. By comparing the numerical predictions to experimental
results taken from the literature, good agreement was observed. Results reveal that the
difference between critical bifurcation point and limit point increases for slender column
with low strain hardening material. In this case the column buckles elastically. When the
columns buckle in the plastic range, the limit point (ultimate strength) coincides with
the critical bifurcation point mainly for high strain-hardening material.
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