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A B S T R A C T

Automatic control of a workpiece being manufactured is a requirement to ensure in-line correction and thus
move towards a more intelligent manufacturing system. There is therefore a need to develop control strategies
which are capable of taking precise account of real working conditions and enabling first-time-right control.
As part of such a smart-control strategy, this paper introduces a machine learning-based approach capable
of accurately predicting a priori the 3D coverage of a part according to a scan configuration given as input,
i.e. predicting before scanning it which areas of the part will be acquired for real. This corresponds to a
paradigm shift, where coverage estimation no longer relies on theoretical visibility criteria, but on rules learned
from a large amount of data acquired in real-life conditions. The proposed 3D Scan Coverage Prediction
Network (3DSCP-Net) is based on a 3D feature encoding and decoding module, which is capable of taking
into account the specifics of the scan configuration whose impact on the 3D coverage is to be predicted. To
take account of real working conditions, features are extracted at various levels, including geometric ones, but
also features characterising the way structured-light projection behaves. The method is thus able to incorporate
inter-reflection and overexposure issues into the prediction process. The database used for the training was
built using an ad-hoc platform specially designed to enable the automatic acquisition and labelling of numerous
point clouds from a wide variety of scan configurations. Experiments on several parts show that the method
can efficiently predict the scan coverage, and that it outperforms conventional approaches based on purely
theoretical visibility criteria.

1. Introduction

The automatic control of a workpiece being manufactured, the
analysis of deviations between the manufactured geometry and the
theoretical one, and the subsequent correction of the machining pa-
rameters have attracted much attention within the smart control and
manufacturing community over the last few decades [1]. Today, in
the context of the Industry 4.0, many attempts are being made to
meet these challenges by means of complex digital twins developed
to be able to capture the state of a physical system, understand its
behaviour and take decisions to improve it [2]. Unfortunately, not
all stages of the workflow described above have yet benefited from
these digitisation improvements, and this is particularly true for the
measurement step of the manufactured shapes, which is essential for
controlling the deviations between the theory and real world. This
paper focuses on the first stage of this workflow, the control of the
workpiece.

∗ Corresponding author.
E-mail address: jean-philippe.pernot@ensam.eu (J.-P. Pernot).

Actually, measurement devices can be divided into two main cate-
gories: contact and contactless depending on how they interact with the
object [3], or alternatively, active and passive depending on the under-
lying measurement principles [4]. Within the first category, coordinate
measuring machines are certainly the most accurate ones [5], but they
suffer from practical implementation difficulties when used for in-line
inspection [6], i.e. with a workpiece still in place on the production
line, and are therefore more adapted for off-line control. Among con-
tactless technologies, optical-based measurements have become pop-
ular in a variety of applications, such as the use of lidar sensors
for autonomous driving [7], three dimensional (3D) scanners for part
surface inspection [8], or total stations for building modelling [9]. Pho-
togrammetry techniques can also fall into this category, but do not
reach performance levels compatible with the requirements of smart
control and manufacturing [10]. The optical-based surface measure-
ment scanners are now commonly used in the industry and allow fast
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Fig. 1. Comparison and discrepancies between the theoretical coverage of a point cloud
virtually generated using simple visibility criteria (a), and a real one obtained using a
structured-light scanner (b), both obtained from the same viewpoint.

3D acquisitions of dense point clouds [1]. They can be divided into
three types depending on the adopted underlying principles: (1) time-
of-flight; (2) stereo vision; (3) structured-light [11]. While the first
principle is useful to reconstruct large 3D areas such as urban scenes,
the latter two are more suited to metrological applications, as it has
been demonstrated in recent years [1,12,13]. A major advantage of
structured-light is that it can achieve relatively high spatial resolution
by using off-the-shelf DLP projectors and HD colour cameras, making
this technology a good candidate for automatic in-line inspection and
control.

However, when integrated within an automatic inspection line, the
real behaviour of a structured-light scanner often deviates from the
theoretical one. This is particularly true when computing both the field
of view and the areas that can be covered, i.e. the so-called coverage,
from a given viewpoint and configuration of the scanner. Fig. 1 clearly
shows that, in comparison to a virtually-generated one, the point cloud
obtained using a real acquisition device covers a slightly less important
area of the scanned object, here represented by its CAD model. These
discrepancies are due to the many external parameters that influence
the way light patterns are projected, reflected and measured, as well
as to the fact that the simple visibility criteria often used to solve
such a problem are based on theoretical principles that do not take
real phenomena into account. Indeed, the material of the object, the
intensity of the ambient light in the acquisition room, the local shapes
that can affect inter-reflections during the acquisition, the camera
exposure, are examples of influencing parameters that are not yet
considered by the current approaches. Consequently, it is risky to use
simple visibility criteria to assess the extent to which an area of a
workpiece will actually be covered by points acquired by a scanner,
without considering real phenomena. The promised information may
simply not be available, with incomplete point clouds that may also be
of poor quality, with an obvious impact on the targeted control.

Being able to accurately predict a priori, i.e. before scanning, what a
structured-light scanner will actually acquire from a specific scanning
configuration is therefore crucial for optimising in-line part inspec-
tion. This is indeed important when solving the view planning problem,
and thus to accurately determine the position(s) and configuration(s) of
the scanner for a specific control. This is not an easy task, however,
as it not only requires the access to the current and up-to-date real
status of the system, process and workpiece, but also the development
of an approach that makes it possible to establish potentially complex
relationships between the many influencing parameters and their im-
pact on the scan coverage. Unfortunately, conventional heuristic-based
approaches are hardly applicable to solve such an open challenge,
where there are many couplings between the different phenomena and
parameters.

This paper introduces a machine learning-based approach trained
on a database containing numerous point clouds obtained from widely
varying scanning configurations, and capable of accurately predicting a
priori the coverage of a part, i.e. predicting before scanning it which ar-
eas of the part will be acquired for real. This corresponds to a paradigm

shift, where coverage estimation no longer relies on theoretical visibil-
ity criteria, but on rules learned from a large amount of data acquired
in real-life conditions. To achieve this, several questions are here
addressed: how to define the coverage of a part to be scanned, what factors
influence the coverage, and how to determine the relationships between the
coverage and the influencing parameters ? From these analyses, a novel 3D
scan coverage prediction network (3DSCP-Net) is proposed. It is based
on a 3D feature encoding and decoding module coupled to a channel
attention mechanism, which are able to consider and emphasise the
specifics of the scan configuration whose impact on the 3D coverage is
to be predicted. To take account of real working conditions, features
are extracted at various levels, including geometric ones, but also
features characterising the way structured-light projection behaves. The
method is thus able to incorporate inter-reflection and overexposure
issues into the prediction process, which has never been done in this
way before. Experiments on various parts show that the method can
efficiently predict the scan coverage, which is particularly useful to
prepare the scanning sequences and allow first-time-right control of
parts in a smart control context. Results using the proposed a priori
coverage prediction approach are compared to the ones obtained with
approaches based on conventional theoretical visibility criteria. The
way in which these results could be used to solve the view planning
problem is also discussed, in order to move towards more intelligent
manufacturing system.

To sum up, the contribution is threefold: (i) a novel prediction
framework based on machine learning capable of predicting a priori
the coverage of scan configurations on unknown models with the help
of a semantic segmentation network; (ii) a method to simulate the pro-
jection of patterns in structured-light acquisition, in order to integrate
the inter-reflection and overexposure issues that can occur during a
real scan; (iii) the formalisation of a methodological framework for
the definition of a physical platform and its digital twin capable to
semi-automatically acquire many point clouds from different scanning
configurations. The complete database is 13.3 GB and is made publicly
available for future benchmarking of other algorithms at the following
URL: https://doi.org/10.5281/zenodo.10807742.

The paper is organised as follows. Section 2 reviews work related
to the three questions raised in the introduction. Section 3 details
the proposed machine learning-based 3D scan coverage prediction
approach, and notably: the way the data are preprocessed and labelled
in a semi-automatic manner, how features are extracted at different
levels, in particular how the inter-reflection and overexposure issues
have been taken into account by simulating the way structured-light
devices project patterns, the architecture of the newly developed 3D
Scan Coverage Prediction Network (3DSCP-Net). Section 4 details the
methodological framework set up to automatically acquire and label
many point clouds from widely varying scan configurations, the exper-
iments and results obtained to validate the proposed model, including
a comparison to results obtained with state-of-the-art approaches based
on conventional theoretical visibility criteria. The final section con-
cludes this paper, discusses the limits of the model as well as the future
works.

2. Related works

A priori predicting 3D scan coverage is of major interest for the
development of smart-control applications. Indeed, the precise iden-
tification, prior to the scan, of the areas of an object that will re-
ally be acquired can be crucial in solving the view planning prob-
lem (VPP) [1]. This section successively details the works undertaken to
solve the VPP problem, the metrics usually adopted to qualify the point
clouds, the parameters that can influence the quality of the results,
and the machine learning-based techniques developed to learn from 3D
geometric models.

https://doi.org/10.5281/zenodo.10807742


View planning problem and smart control. In the context of part control,
solving the view planning problem (VPP) consists in automatically
determining the optimal positions and/or trajectories of the acquisition
devices to ensure complete coverage of the part to be inspected [1]. To
do so, a 3D representation of the object may or may not be avail-
able. When available, CAD models or meshes are usually used to
optimise the number and location of the scanning viewpoints in order
to fully cover a given region of interest (ROI). Scott et al. [14] pro-
posed a method to transpose the VPP into the set covering problem
(SCP). This problem can be formulated as follows: If 𝑃 is a set of
elements {1, 2, 3,… , 𝑛}, and 𝑃𝑠 is a list of subsets whose union is
equal to 𝑃 , solving the SCP is equivalent to finding the smallest list
of subsets in 𝑃𝑠 such that the union of this list is equal to 𝑃 . The SCP
is demonstrated as NP complete, so the problem cannot be solved in
polynomial time [15]. From this formalisation, methods can be divided
into: (1) methods using optimisation algorithms to solve the SCP in
a practical time; (2) methods on covering optimisation; (3) methods
seeking next-best-scan, where the prior information is not required. As
an output, the surface of the part is segmented, usually using a mesh to
reduce the complexity of the algorithm. Many efforts have been made
to improve and speed up problem resolution. Scott [16] determines
simplification level of the decimating mesh manually, and bobble mesh
algorithm is applied to subdivide the surface [17]. Several objective
functions have also been imagined and minimised/maximised, such
as coverage, scanner orientation, overlap between scans [18–20]. The
approaches based on coverage maximisation firstly segment the outer
skin of the part into patches, then propose a set of possible positions,
and finally identify the right ones while optimising the acquisition
times.

The main issue with these works is that they are mainly based
on theoretical and perfect models, and do not take into account
the limitations of current acquisition devices, and in particular the
fact that acquired point clouds often deviate from the theoretical
ones (Fig. 1). To move towards smart-control applications, and better
consider real working conditions, further efforts are needed. Thus, in
this paper, the objective is to develop a method capable of learning
how the acquisition behaves under real scanning conditions, in order
to obtain a more realistic prediction of what the system is really able to
acquire, and therefore a more accurate resolution of the VPP problem.

Quality metrics and coverage. To assess the quality of acquired point
clouds, and possibly related scan configurations, several metrics have
been proposed and can be of interest when solving the VPP prob-
lem. First of all, indicators intrinsic to the point clouds can be com-
puted, for example density, noise, accuracy and completeness as pro-
posed in [21,22]. Other metrics try to evaluate the measured area, the
surface accessibility, the number of directional measurements, the digi-
tisation time, the total positioning distance, or the surface coverage, for
the purpose of comparing several acquisition devices [23,24]. Catalucci
et al. [13] also suggested new indicators such as the acquisition time,
or the standard and expanded uncertainty on feature size, and they
compared their values for different configurations and devices includ-
ing photogrammetry and use of structured light-based scanners. Based
on these studies, Li et al. [25] have evaluated the sensitivity of these
indicators when using structured light-based sensors. As a result, it
appears that the coverage indicator is sensitive to the scanning config-
urations when using structured light-based inspection, and that it can
therefore have an impact on optimising the VPP problem resolution. In
this context, the coverage is defined on the known CAD model to
specify whether a region is acquired/covered or not. To do so, the point
cloud needs to be registered with the CAD model, and then depending
on the density of points located in a region of the CAD model, the
region is considered as covered or not. Based on this definition, the
coverage prediction problem comes down to assessing which areas of a
CAD model are really covered by an acquisition, and this prior to the
effective scan of the part and keeping in mind that the extend of these
areas may be affected by influencing parameters, as discussed in the
next paragraph.

Fig. 2. Extrinsic parameters of a binocular configuration used in structured light-based
scanners, with baseline length 𝐵 and angle 𝜃 between left and right cameras influencing
the reconstruction accuracy, and field of view (FOV) identifying areas where points
should be acquired.

Influencing parameters. Several parameters may influence the real cov-
erage of a scanned part, and can be split into four categories, depending
on whether they are related to: (a) the reconstruction method, i.e. struc-
tured light-based method in the context of this work; (b) the properties
of the measured object, including the manufacturing and material
characteristics that can also significantly affect the real coverage; (c)
the environment parameters, e.g. the ambient light, which also plays
a key role on the quality of the acquired point cloud; (d) the scanner
configuration, e.g. the position and orientation of the device, as well
as all settings, including the exposure. Previous studies have mainly
focused on the first category (a), while analysing the influencing pa-
rameters in terms of their impact on the precision and accuracy of
the reconstruction. In addition to the scan path or multiple viewpoints
adopted, the influence of factors related to the lens distortion, as well
as to the intrinsic and extrinsic parameters of the hardware have been
studied [26] on binocular-based vision devices as shown on Fig. 2. First,
the lens together with the physical size of the pixel unit of the im-
age sensor chip determine the minimum value of the reconstruction
error (i.e. its lower-bound), which is a theoretical value that cannot,
however, be reached during real scanning session. Secondly, the ex-
trinsic parameters such as the baseline length 𝐵 and the angle between
the cameras 𝜃 (Fig. 2) determine the reconstruction accuracy [27]. The
field of view (FOV) also has an impact by limiting the areas in which
points are acquired. Here as well, there are discrepancies between
the theoretical values and those actually observed in practice. Then,
studies on lens distortion revealed that traditional tangential and radial
distortion models can be simplified by keeping only the second-order
term for radial distortion [27–29]. However, such simplification cannot
be applied for accurate applications, as exact parameters are needed
to minimise the deviations between the theoretical and real observed
distortions. Lastly, the effective lens focal length, image centre and the
pixel cell size taken as intrinsic parameters have slightly larger impact
on the reconstruction accuracy with linear correlation [27].

As a conclusion, the influencing parameters in (a) clearly affect
the quality of the results, and their potential impact on the deviations
between the theoretical and practical acquisitions have been widely
studied. Unfortunately, this is not the case for the other three categories
(b), (c) and (d), which have received much less attention in the liter-
ature. This paper aims at better understanding how these influencing
parameters affect the quality of an acquisition, and how they can be
used to efficiently model what is happening during real acquisition. In
fine, some of these parameters are considered as input of the coverage
prediction model developed in this paper, and that uses an ad-hoc
machine learning-based approach to discover the intricate relationships
involved in the 3D acquisition process.



Fig. 3. Structured and unstructured 3D representations, traditionally used as input data
for current machine learning techniques and influencing the choice of architecture to
be implemented.

Machine learning techniques. Learning methods are becoming increas-
ingly popular in many application areas, and in particular in manufac-
turing and measurement where they have proved effective in solving
complex tasks that were previously difficult to achieve in a reasonable
time using traditional approaches. This is for instance the case for
roughness prediction, for which several attempts have been made to
understand the complex underlying phenomena [30–33], while first
analysing the influencing parameters and then introducing the vari-
ables into a network for prediction. More recently, Suiyang et al. [33]
applied an extreme machine learning method to predict the surface
roughness in ultra-precision milling. All these achievements confirm the
potential of machine learning-based methods for discovering complex
patterns in measurements.

Throughout the recent decades, neural network-based approaches
have demonstrated their efficacy in establishing implicit functions that
model the complex relationships among numerous influencing parame-
ters, using a series of samples as input during the training phase. They
have acquired a great reputation in two dimensional (2D) tasks such
as classification and semantic segmentation. Convolution Neural Net-
work (CNN) is widely used for unstructured data, and Recurrent Neural
Network (RNN) for sequence data, while Graph Neural Network (GNN)
have become popular for structured data. Researchers have also shifted
their focus from the 2D to the 3D domain, and they experimented
with different ways of organising the 3D data input to these learning
models. Depending on the context, different geometric representations
can be considered: 2D projections, point clouds, voxels, meshes and B-
Rep models are among the most commonly adopted ones (Fig. 3). The
choice of the representation used as input generally determines the
choice of the learning architecture to be implemented. Multi-view
convolutional neural network (MVCNN) tries converting 3D data into
2D images by projection and applies 2D feature extractors for 3D
shape classification. To deal with the problem that the projection loses
spatial depth information, SnapNet [34] and SnapNet-R [35] use a
virtual camera to generate RGB photos and depth-maps. However, these
methods still suffer from a loss of information due to dimensional com-
pression and fine grain changes. Regarding point clouds, Guo et al. [36]
reviewed and compared the state-of-the-art methods on deep learning
for 3D point clouds. PointNet [37] is a pioneering work in applying ma-
chine learning on point clouds, while using a max-pooling symmetric
function to solve the problem of disordered point clouds. Addressing
its limitation in local feature extraction, PointNet has then undergone
enhancements, including the implementation of a multi-layer sampling
and grouping technique in PointNet++ [38], along with various other
improvements [39,40]. Regarding voxels, the voxel grid representation
is linked to the pixel representation in the 2D domain, allowing it to
leverage models similar to those used in 2D. VV-Net [41] is based
on an interpolation variational autoencoder (VAE) and proposed to
address the problem of missing local geometry within voxels. First, the
distribution features of points are obtained for each voxel, and then
the distribution of points within each voxel is mapped to the latent
space using VAE. But it uses a dense representation that consumes
substantial memory. To address this issue, SparseNet introduced sparse
convolution as a solution [42]. Overall, volumetric representations

preserve the local structural features, however, voxelisation inherently
leads to discretisation and a loss of information. High resolution means
high memory and computing costs, while low resolution leads to loss of
details. Therefore, it is essential to strike a well-balanced trade-off be-
tween computational costs and the level of geometric detail. Regarding
meshes, SubdivNet [43], a recent work on 3D mesh representations, has
defined a general mesh convolutional operation and shown that it can
achieve excellent results for 3D tasks. The work is groundbreaking and
other applications have yet to be explored. Besides, with regard to the
direct use of CAD models, B-Rep representations are increasingly con-
sidered as inputs of neural networks for a variety 3D tasks. DeepCAD
proposes a deep generative network to extract the core features of the
B-Rep model and output a sequence of operations used in CAD modeller
to reconstruct a 3D shape [44]. BRepNet [45] is also able to work
directly on B-Rep data structures by means of a specific neural network
architecture that encodes the boundary curves and surfaces. SolidGen
is an autoregressive neural network that models the B-Rep directly by
predicting the vertices, edges, and faces using transformer-based and
pointer neural networks [46].

As a conclusion, machine learning-based approaches are good can-
didates to meet the challenge of scan coverage prediction considered
in this paper, and for which there are strong correlations between the
influencing parameters. The way it has been done is developed in the
next section.

3. Machine learning-based coverage prediction framework

This section introduces the components of the machine learning-
based coverage prediction framework, including the pre-processing and
prediction steps. The way in which the database used for training has
been built is explained in the results section.

3.1. Overall framework

The proposed machine learning-based 3D scan coverage prediction
framework is illustrated on Fig. 4. It is composed of both pre-processing
and prediction steps capable of predicting how an object, represented
by its input CAD model, can actually be covered by the point cloud
acquired from an input scan configuration, and this prior to its real
scan.

During the pre-processing steps, the CAD model undergoes a first
module that extracts the theoretically visible points from a given scan
configuration. Points are defined from a mesh of the CAD model, and
only those theoretically visible in the field of view (FOV) of the acqui-
sition device are retained (Section 3.2). In order to take into account
local geometric configurations that can influence the inter-reflections
of the emitted light patterns, geometric features are extracted on one
side (Section 3.3). And, on the other side, the way the structured-light
is projected onto the object is simulated and the features obtained
from the generated images are mapped to the set of theoretically
visible points (Section 3.4). The cloud of theoretically visible points,
thus enriched with information characterising the scan configuration,
then enters the voxelisation step that is used to prepare the use of
convolutional kernels. During the voxelisation process, the features as-
sociated with the many points are merged and mapped to the voxels in
which points are found (Section 3.5). Spare voxel representation is used
considering the large amount of empty voxels. This enriched represen-
tation then enter 3DSCP-Net, the newly developed 3D scan coverage
prediction model, that is trained to output the real coverage associated
to the input CAD model and scan configuration (Section 3.6). In fine,
the predicted coverage allows filtering the point cloud of theoretically
visible points to retain only the ones that will actually be acquired by
the device during the real scan.

The deployment of this complete framework is performed in two
successive stages:



Fig. 4. Overall machine learning-based 3D scan coverage prediction framework, composed of pre-processing and ML-based prediction steps, and capable of predicting a
priori (i.e. before doing the scan) the areas of an object that will actually be covered by the point cloud acquired from a given scan configuration.

Fig. 5. Details of the first pre-processing steps to extract the list 𝑖,𝑗 of theoretically visible points and normals from a CAD model 𝑖 and scan configuration 𝑗 (top row). When
preparing the training, the label of each points is also computed from a real scan 𝑖,𝑗 obtained from the same scan configuration (bottom row).

• Training stage. First, 3DSCP-Net needs to be trained on many
samples characterising widely varying scan configurations, for
which a real acquisition has been performed and for which a
real coverage has been computed. Those real acquisitions and
corresponding coverage will also be used as a ground truth to
assess the performance of the model in accurately predicting the
coverage on unknown scan configurations. The way in which
the coverage is computed from a real acquisition and used to
label each of the extracted theoretically visible points is explained
in Section 3.2, while how the labelled database was built and
populated with many scans is explained in the results section.

• Exploitation stage. Then, the complete framework, which includes
the trained and fine-tuned 3DSCP-Net, can be used to predict the
coverage of an object from an unknown scan configuration. As
this is performed a priori, i.e. before scanning, there is no need to
input a point cloud in this stage, and the prediction is performed
on the basis of both an input CAD model and scan configuration as
depicted in Fig. 4. 3DSCP-Net can be used on its own, or inserted
within an optimisation loop and called up several times to identify
best scan configurations when solving the VPP, for example.

The way this framework has been validated and the obtained results
are discussed in Section 4.

3.2. Extraction and labelling of theoretically visible points

This is the very first module of the pre-processing steps, which con-
sists in identifying the areas of a CAD model 𝑖 that are theoretically
visible for a given scan configuration 𝑗 , and extracting the first batch
of associated features. During the training stage, an additional labelling
step is carried out.

Adopted network-friendly formalism. As the coverage prediction model
needs to be trained using real point clouds obtained from many scan
configurations, the CAD model 𝑖 is first transformed into a point
cloud formalism suitable for learning. Indeed, point clouds are particu-
larly well adapted to being processed through an architecture based on
convolutional neural networks (CNN) which are capable of extracting
features at multiple levels. Thus, the CAD model is first meshed by
means of a Delaunay triangulation, with 𝜖𝓁 as the edge length, and
𝜖𝑐 as the chord error, both of which depend on the characteristics of
the acquisition device and scan configuration 𝑗 (see Section 4 for
more details on the technology adopted in this paper). The resulting
mesh serves as an intermediate representation used to characterise the
coverage of the CAD model by means of its connected triangles. Then,
barycentre points and normals are extracted from each triangle of the
mesh thus generating a raw point cloud. These transformations are
illustrated on the example of Fig. 5.

Extraction of theoretically visible points. Once all points have been ob-
tained, a filtering allows only the theoretically visible points to be
retained. This is necessary to speed up both training and prediction
in the areas known to be clearly invisible to the acquisition device,
mainly due to the occlusion phenomenon. These points could also have
been labelled as uncovered during the labelling process, but this would
have created unbalance dataset where there would have been many
more uncovered than covered areas. The filtering is performed in two
successive steps (top row of Fig. 5):

• Use of the hidden point removal (HPR) algorithm [47] with
camera position computed from the scan configuration 𝑗 , and
with a search radius 𝑅𝐻𝑃𝑅 computed with a formula obtained
from [48];

• Use of the field of view (FOV) of the scanner, obtained from the
scan configuration 𝑗 , to retain only the points located within the



field of view, which has previously been scaled by the factor 𝑆𝐹𝑂𝑉
to take account of positioning errors.

In the end, given both a CAD model 𝑖 and a scan configuration 𝑗 ,
the remaining points are appended to the list 𝑖,𝑗 of theoretically
visible points. At this stage, each point 𝒑𝑘 in the list is characterised
by six scalar values, i.e. its 3D coordinates (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) and its normal
(𝑛𝑥𝑘 , 𝑛𝑦𝑘 , 𝑛𝑧𝑘 ), forming a first feature vector:

𝑭 𝑘
𝑝𝑜𝑖𝑛𝑡 =

[

𝑥𝑘, 𝑦𝑘, 𝑧𝑘, 𝑛𝑥𝑘 , 𝑛𝑦𝑘 , 𝑛𝑧𝑘
]

(1)

The next two subsections detail how additional features need to be
computed to further characterise each point and enable the network to
accurately predict whether the areas they represent are covered or not.

Labelling of theoretically visible points. This step is only necessary to
prepare for training and is not followed when exploiting a pre-trained
model to predict the scan coverage for unknown objects and/or con-
figurations. Here, it is assumed that a real acquisition of the object
represented by its CAD model 𝑖 has been obtained from the scan
configuration 𝑗 , resulting in a list of real points 𝑖,𝑗 (bottom row of
Fig. 5). The point cloud is then calibrated so as to fit to the mesh of the
CAD model, using ICP algorithm as detailed in the result section. The
coverage of the virtually generated point cloud 𝑖,𝑗 defers from the real
one 𝑖,𝑗 and it is therefore needed to apply a mask to get the label 𝑐𝑘𝑝𝑜𝑖𝑛𝑡
for each theoretically visible point:

𝑐𝑘𝑝𝑜𝑖𝑛𝑡 = I
[

∃𝒑′𝑘 ∈ 𝑖,𝑗 ∣ 𝑑
(

𝒑′𝑘, 𝑇 (𝒑𝑘)
)

< 𝜖𝑑
]

, ∀𝒑𝑘 ∈ 𝑖,𝑗 (2)

where I[⋅] is the indicator function, i.e. it is equal to 1 or 0 following the
test, which means Covered or Uncovered in this context. Function 𝑇 (⋅)
returns the triangle whose barycentre is given as a parameter, function
𝑑(⋅, ⋅) computes the distance between a point and a triangle, and 𝜖𝑑 is
the maximum distance beyond which a point is too far away and cannot
be considered as covering the scanned object. This threshold allows
artefacts and outliers to be ignored. Here, point-to-triangle distance
has been preferred to point-to-point distance, as it allows a better
characterisation of the coverage. Indeed, together with the adopted
threshold 𝜖𝑑 , the former distance identifies points lying on the surface
of the object, while the second distance would identify points located
at a certain distance from other points on the surface, thus more as a
distance measured onto the surface, which does not correspond to the
notion of coverage adopted here [25].

3.3. Geometric features extraction

In order to give the network a good insight of the local geometric
configurations that can influence the inter-reflections of the emit-
ted light patterns, additional geometric features are extracted. These
features depend on the relative positioning of the cameras and pro-
jector with respect to the acquired area. Fig. 6 shows how they are
computed for a theoretically visible point, with respect to the con-
sidered scan configuration 𝑗 . For each camera/projector, 5 features
are extracted: the norm of the vector between 𝒑𝑘 and the centre
of the camera/projector, the 3 coordinates of this vector, and the
cosine of the angle between this vector and the normal to the point
𝒏𝑘. Distance features are used to characterise the proximity of the
projector/camera to the surface, and therefore the intensity with which
the light is projected/acquired. Vectors are used to characterise the
projection/acquisition directions, which is important while considering
the inter-reflection issues. Cosines are used to take into account the
normal to the theoretically visible point under consideration, which is
also an important factor influencing inter-reflections. All these features
affect the image quality according to the bidirectional reflectance dis-
tribution function (BRDF) in physically based rendering theory [49],
which is also consistent with practical experience [1]. In the end, the

Fig. 6. Extraction of the additional 15 geometric features characterising the local geo-
metric configuration of each theoretically visible point, with respect to the considered
scan configuration 𝑗 .

15 additional geometric features of a point that relates to the scan
configuration are gathered together in another feature vector:

𝑭 𝑘
𝑠𝑐𝑎𝑛 =

[

‖𝑫𝑅𝑘
‖, 𝐷𝑅𝑘𝑥

, 𝐷𝑅𝑘𝑦
, 𝐷𝑅𝑘𝑧

, cos(𝛼𝑘),
‖𝑫𝑃𝑘‖, 𝐷𝑃𝑘𝑥 , 𝐷𝑃𝑘𝑦 , 𝐷𝑃𝑘𝑧 , cos(𝛽𝑘),

‖𝑫𝐿𝑘
‖, 𝐷𝐿𝑘𝑥

, 𝐷𝐿𝑘𝑦
, 𝐷𝐿𝑘𝑧

, cos(𝛾𝑘)
]

(3)

3.4. Structured-light simulation and features mapping

This module aims at further enriching the list of features collected
for each theoretically visible point, by extracting new ones from the
results of structured-light projection simulations. The objective is to
take real account, during a priori prediction, of the way light reflects
when scanning a real object, in particular the inter-reflection and
overexposure issues that can arise. To achieve this, three aspects need
to be detailed: how to move from the 3D coordinates of the theoretically
visible points to the pixel coordinates in the local reference frame of
the projector/camera images, how structured-light patterns are defined,
and how the projection of the pattern sequences can be simulated to get
realistic physics-based images of what the cameras see. Features can
then be inferred from the images resulting from the simulations and
mapped to the theoretically visible points in 3D space.

It should be emphasised that these simulations are carried out on the
whole object in order to take into account all possible inter-reflections,
and not only those in the FOV. However, in the end, the extracted
features are mapped to the only theoretically visible points obtained
in the previous step. This is illustrated on Fig. 7.

From 3D coordinates to projector/camera images. In order to match the
features extracted from the simulated realistic images with each of
the theoretically visible point in 3D space, the relationships between
the different spaces need to be established. This is obtained using the
following projection equation:

⎡

⎢

⎢

⎣

𝑥
𝑦
1

⎤

⎥

⎥

⎦

= 1
𝑧𝑐

⋅𝐊 ⋅𝐇 ⋅ 𝒑 (4)

where vector 𝒑 contains the 4 × 1 homogeneous coordinates of a point
in the global reference frame, and (𝑥, 𝑦) the corresponding pixel coor-
dinates in the reference frame of either the cameras or projector. 𝐇 is a
4 × 4 matrix to transform the 3D coordinates into the camera/projector
coordinate system. Here, there are three matrices of this type: 𝐇𝐿,
𝐇𝑅 and 𝐇𝑃 for the left and right cameras and for the projector. 𝐊
is a 3 × 4 intrinsic matrix, projecting 3D coordinates into 2D image
coordinates. 𝐊𝐶 is the same for the two cameras, and differs from 𝐊𝑃



Fig. 7. Structured-light physics-based simulation. Pattern sequences are projected onto
the object to be scanned, and observed by two cameras capturing two images of the way
patterns reflect. Each 3D point on the object has corresponding pixels in the cameras
and projector reference frames.

Fig. 8. Examples of patterns generated with different frequencies and steps.

for the projector. These matrices are the result of a calibration step that
follows Zhang’s approach [50]. Finally, 𝑧𝑐 is a scale factor, which is
the depth value of a 3D point in the camera/projector reference frame,
i.e. the third coordinate of the vector 𝐇 ⋅ 𝒑.

Definition of the structured-light patterns. The definition of the patterns
is based on the multi-frequency heterodyne method [51,52]. First, the
intensity of a pixel (𝑥, 𝑦) is defined by the following equation:

⎧

⎪

⎨

⎪

⎩

𝐼𝑘,𝑖(𝑥, 𝑦) = 𝐼0 + 𝐼𝑏 cos
(

𝜑𝑘(𝑥, 𝑦) + 𝛿𝑖
)

with 𝜑𝑘(𝑥, 𝑦) =
2𝜋
𝑇𝑘

× 𝑥, 𝑇𝑘 = 𝐶
𝑓𝑘

and 𝛿𝑖 =
2𝜋(𝑖 − 1)

𝑁𝑘

(5)

where 𝐼0 and 𝐼𝑏 are respectively the mean and amplitude of the inten-
sity, generally defined so that it evolves in the interval [0, 255]. How-
ever, here 𝐼0 = 125 and 𝐼𝑏 = 115, so that the intensity varies from 10
to 240 to prevent over-brightness or darkness due to material charac-
teristics. 𝜑𝑘(𝑥, 𝑦) is the phase principal, 𝐶 is the number of columns
of the image, 𝑇𝑘 is the phase cycle determined by the frequency 𝑓𝑘,
and 𝑁𝑘 is the number of the phase shift steps for the frequency
𝑓𝑘. Fig. 8 illustrates how sequences of patterns can be obtained by
varying frequencies and steps. This intensity is constant along the
𝑦-axis.

Following the four-step phase-shifting method, 3D point cloud can
be reconstructed from 2D images [51]. During this process, additional

Fig. 9. Rendering simulations organised in three different categories and producing
30 images from which a total of 30 intensity functions and 3 phase functions can be
defined.

phases 𝛷𝑘(𝑥, 𝑦) are computed for the different frequencies 𝑓𝑘:

𝛷𝑘(𝑥, 𝑦) = − arctan
⎛

⎜

⎜

⎝

∑𝑁𝑘
𝑖=1 𝐼𝑘,𝑖(𝑥, 𝑦) sin(𝛿𝑖)

∑𝑁𝑘
𝑖=1 𝐼𝑘,𝑖(𝑥, 𝑦) cos(𝛿𝑖)

⎞

⎟

⎟

⎠

(6)

where 𝐼𝑘,𝑖(𝑥, 𝑦) corresponds to the intensity of the pixel (𝑥, 𝑦) in the
image generated with a frequency 𝑓𝑘 and at step 𝑖. But more phases can
be encoded while combining two frequencies 𝑓𝑘 and 𝑓𝑘′ . For instance,
the frequency 𝑓𝑘𝑘′ = 𝑓𝑘′ −𝑓𝑘 gives rise to the following phase encoding:

𝛷𝑘𝑘′ (𝑥, 𝑦) = 𝛷𝑘′ (𝑥, 𝑦) −𝛷𝑘(𝑥, 𝑦) (7)

Recursively, with three frequencies 𝑓𝑘, 𝑓𝑘′′ and 𝑓𝑘′′ , the frequency
𝑓𝑘𝑘′𝑘′′ = 𝑓𝑘′𝑘′′ − 𝑓𝑘𝑘′ gives rise to the following phase encoding:

𝛷𝑘𝑘′𝑘′′ (𝑥, 𝑦) = 𝛷𝑘′𝑘′′ (𝑥, 𝑦) −𝛷𝑘𝑘′ (𝑥, 𝑦) (8)

Thanks to this encoding strategy, each column of pixels in the differ-
ent images has a unique phase, and this is much important for the 3D
reconstruction. In fact, the encoding can have countless combinations,
and can even be combined with other methods, such as Moiré fringe
encoding. In this paper, three frequencies 𝑓𝑘 (with 𝑘 ∈ {1, 2, 3}) have
been adopted with common values of 90, 116 and 143, and with a
number of steps 𝑁𝑘 respectively equal to 3, 4 and 6, thus producing
13 patterns in the end (Fig. 8). This provides access to the recursively
defined phase 𝛷123(𝑥, 𝑦), which will be used to extract features once the
patterns have been projected.

Pattern projection simulation and features mapping. The projection of
the pattern sequences is simulated in Blender with Cycles as ray-trace
based rendering engine [53,54]. To do so, the 3D scene is configured
in the same way as in reality, i.e. by applying all parameters charac-
terising the scan configuration 𝐶𝑗 to be simulated. The base colour
of the different materials is the one of Unreal Engine [55]. Such a
physics-based engine is particularly well suited to simulating the inter-
reflections that occur. In order to maximise the extent to which real
phenomena are taken into account, three types of simulation are carried
out, each producing different images from which several features can
be extracted (Fig. 9):

• Pattern projection with PBR material. This simulation exploits the
metallic PBR (Physically Based Rendering) workflow of Blender,
that is based on the use of the Principled BSDF shader [56], to
project the 13 patterns defined above (Fig. 8). For each pattern
projected, 2 images are formed in the left and right cameras, thus



Fig. 10. Examples of the three types of simulation using the Cycles engine in
Blender: (a) pattern projection with PBR material, (b) light source projection with PBR
material, (c) light source projection with HR material.

generating a total of 26 projected images and as many intensity
functions, 𝐼𝐿1 (𝑥, 𝑦) to 𝐼𝐿13(𝑥, 𝑦) for the left camera, and 𝐼𝑅1 (𝑥, 𝑦)
to 𝐼𝑅13(𝑥, 𝑦) for the right one. In addition, the 2 phase functions
𝛷𝐿

123(𝑥, 𝑦) and 𝛷𝑅
123(𝑥, 𝑦) can be computed from the left and right

images. Finally, the 13 initial patterns are also exploited directly
(i.e. without projection) to define the phase function 𝛷𝐺𝑇

123(𝑥, 𝑦)
that serves as a ground-truth.

• Light projection with PBR material. This simulation projects directly
the light source without using the patterns, and still with PBR
material. The results can be seen in the 2 images formed in the
left and right cameras, giving access to the intensity functions
𝐼𝐿𝑃𝐵𝑅(𝑥, 𝑦) and 𝐼𝑅𝑃𝐵𝑅(𝑥, 𝑦). These additional images are used to
explore the light sensitivity of the geometry and material of the
part being scanned.

• Light projection with HR material. This simulation is similar to the
previous one. It projects the light source, but this time with HR
(High Reflection) material, giving access to the intensity functions
𝐼𝐿𝐻𝑅(𝑥, 𝑦) and 𝐼𝑅𝐻𝑅(𝑥, 𝑦). This material has a fairly low roughness
value (i.e. 0.1 in our implementation), so specular reflection
appears more easily. Such settings lead to overexposure and inter-
reflection phenomena, in a similar way to what happens during
a real scan, which is particularly interesting to take into account
when predicting coverage a priori.

Fig. 10 shows examples of the three types of simulation resulting
from the Cycles engine in Blender. From all the 30 images generated,
features can be extracted and mapped to each of the theoretically
visible points whose coverage needs to be predicted. To do so, for each
theoretically visible point 𝒑𝑘, Eq. (4) is used to get the (𝑥𝑘, 𝑦𝑘) coor-
dinates of the matching pixels in the different images. Here, matrices
change depending on whether the matching is to be performed with the
projector or with the left/right cameras. Once the (𝑥𝑘, 𝑦𝑘) coordinates
obtained, the functions summarised in Fig. 9 can be evaluated to obtain
the complete list of 33 features for each theoretically visible points. To
simplify notations, the pixel coordinates (𝑥𝑘, 𝑦𝑘) corresponding to the
point 𝑘 are replaced by an index 𝑘 in the following feature vector:

𝑭 𝑘
𝑙𝑖𝑔ℎ𝑡 =

[

𝐼𝐿𝑘,1,… , 𝐼𝐿𝑘,13, 𝐼
𝑅
𝑘,1,… , 𝐼𝑅𝑘,13, 𝛷

𝐿
𝑘,123, 𝛷

𝑅
𝑘,123,

𝛷𝐺𝑇
𝑘,123, 𝐼

𝐿
𝑘,𝑃𝐵𝑅, 𝐼

𝐿
𝑘,𝐻𝑅, 𝐼

𝑅
𝑘,𝑃𝐵𝑅, 𝐼

𝑅
𝑘,𝐻𝑅

] (9)

The intensity features vary from 0 to 255, and are obtained directly
from the left and right images by reading the blue channel of the RGB
colours. Phase features are in the interval [0, 2𝜋].

3.5. Voxelisation and features fusion

This is the final stage in the preparation for coverage prediction. It
consists in voxelising all the theoretically visible points at a voxel size
𝑉𝑠, in order to obtain a sparse voxelisation ready for downstream con-
volutions. Each voxel contains a set of theoretically visible points, and

each of these points is assigned a complete feature vector concatenating
the three vectors computed in the previous steps:

𝑭 𝑘 = 𝑭 𝑘
𝑝𝑜𝑖𝑛𝑡 ⊕ 𝑭 𝑘

𝑠𝑐𝑎𝑛 ⊕ 𝑭 𝑘
𝑙𝑖𝑔ℎ𝑡 (10)

Features of points in a voxel are then averaged to come out with
a single 1 × 54 feature vector per voxel, and normalised to get all
of them in a range [0, 1]. For training, each voxel is also assigned
a unique label corresponding to the most frequent label among the
points included in it. In case of strict equality between the covered
and uncovered points of a voxel, the covered label is preferred. Of
course, no labels are assigned here during the exploitation stage, as it
is up to the prediction model to predict the coverage for each of the
theoretically visible points.

3.6. 3D Scan Coverage Prediction Network (3DSCP-Net)

The overall architecture of the coverage prediction model is similar
to the one used in U-Net [57], but with several important differ-
ences to make 3DSCP-Net specifically dedicated and more efficient in
the coverage prediction tasks. Indeed, such an architecture has been
proven effective due to its ability to capture both local and global
features, by exploiting a sparse representation and sparse convolution
mechanisms. Good results have been achieved on semantic segmen-
tation tasks, in particular for 3D reconstruction [58,59]. Thus, the
3D scan coverage prediction network (3DSCP-Net) has been specif-
ically designed and trained to meet the need for coverage predic-
tion (Fig. 11). The input is the list of theoretically visible points
for a given scan configuration, points that are embedded in a spare
grid of voxels each containing a normalised 1 × 54 feature vector
extracted during the pre-processing steps (Fig. 4). This is the first
important difference with the classical U-Net architecture, for which
the feature vectors are conventionally limited to the 𝑥, 𝑦 and 𝑧 co-
ordinates of the points. The output of 3DSCP-Net is the predicted
coverage of each theoretically visible point, obtained by predicting
the coverage of each voxel in the grid in which the points lie. Dif-
ferently from the classical architecture, the convolutional layers are
here adapted to perform convolutions on all the features, and not only
on 3D coordinates. Pooling operations are also replaced by convolu-
tion operations used to downsample and upsample the feature maps
at each layer. Differently from the classical U-Net architecture, this
helps in capturing more hierarchical features at different scales. Skip
connections retain spatial information and gradients during training,
enabling more precise prediction. More precisely, two components can
be distinguished (Fig. 11):

• Voxel-based multi-scale feature extractor consists in an encoder–
decoder network trained end-to-end. All the convolutions refer
to submanifold sparse convolutions [60,61] with batch normal-
isation and ReLu activation function. For each layer in the en-
coder, features are first processed by the channel attention mech-
anism (CAM), and then sparsely convoluted by 3 × 3 × 3 kernel
without stride to get the output of the layer. The channel attention
mechanism emphasises informative features across different chan-
nels, and this clearly helps improving model performance when
compared to the classical U-Net architecture. Next, a 2 × 2 × 2
convolution kernel with stride 2 is used for subsampling to get the
new feature map as input of the next layer. This reduces the size
of the feature map and extends feature receptive field [62]. In the
decoder, the input of each layer consists of both the up-sampling
result of the previous layer, as well as the output of the encoder
obtained thanks to the skip connection at the same depth. Each
layer in the decoder does like the encoder, applying the channel
attention mechanism and submanifold sparse convolution with
3 × 3 × 3 kernel without stride. The up-sampling is lastly done
by 2 × 2 × 2 deconvolution kernel to prepare the input for the
next layer. The number of layer is set to 𝐷, and for each layer the
layout of the convolution is [𝑚, 2𝑚, 4𝑚,… , 2𝐷𝑚] with 𝑚 = 80.



Fig. 11. 3DSCP-Net model with a depth of 5 layers and skip connections between encoder and decoder, capable of predicting the coverage of each theoretically visible point, and
exploiting a channel attention mechanism (CAM) to selectively emphasise informative features across different channels.

Fig. 12. Acquisition platform (a) for automatically collecting and labelling numerous scan data obtained from widely varying scan configurations, and its digital twin (b). Once
3DSCP-Net trained, the digital twin can then predict the coverage for unknown workpieces and/or scan configurations for first-time-right control and smart-manufacturing
applications.

• Channel attention mechanism (CAM) has been designed to selec-
tively emphasise informative features across different channels,
enhancing the capabilities of the traditional U-Net architecture. It
aims to improve model performance by dynamically recalibrating
the importance of channels based on their relevance to the task
at hand. The input features pass through a ResBlock made up of a
MLP block and concatenation of channels. The MLP block consists
of several 1 × 1 × 1 convolution kernels with BatchNorm and
ReLu. Then, 3 × 3 × 3 sparse convolutions are applied on the
concatenated features. This module is used at each layer, and for
both the encoding and decoding phases.

In the end, once trained end-to-end using the cross-entropy loss
function, 3DSCP-Net predicts the coverage of a new cloud of theoret-
ically visible points, while predicting the class (covered or not) of the
voxels that embed it. As a result, all the points belonging to a voxel are
assigned the predicted status of that voxel. Back to Fig. 4, the complete
framework allows predicting the coverage status of each point in the
list 𝑖,𝑗 of theoretically visible points generated from a CAD model 𝑖
and scan configuration 𝑗 . Hyper-parameters include voxel edge size 𝑉𝑠
and depth 𝐷 of the model, both of which are fine-tuned in Section 4
where an ablation study was also carried out.

4. Results and discussion

This section discusses the results obtained from using the newly
developed 3DSCP-Net model to predict a priori, i.e. before scanning
it, the coverage of an unknown part 𝑖 scanned from a given scan
configuration 𝑗 . The first section presents the platform set up to
automate and record the acquisition of numerous point clouds from
different scan configurations. The next section details how this platform
was exploited to build the database of automatically labelled point
clouds used for training the prediction model. Then, the results of
various experiments are presented and discussed in order to fine-tune
the prediction model and validate the proposed approach.

4.1. Acquisition platform for collecting real scan data

One of the challenges of implementing such a machine learning
approach is the access to a labelled database. To save time and avoid
the tedious and error-prone labelling of numerous point clouds, an
ad hoc acquisition platform has been set up. The idea is to use a
robot to automate the acquisition from numerous positions and orien-
tations of a scanner, while also varying the values of the influencing



Fig. 13. Coordinate systems associated to the acquisition platform and used to locate
the point clouds, acquired in the reference frame of the Gocator 3210, onto the CAD
model of the workpiece being scanned (DMU50 is not visualised).

parameters. Fig. 12 presents the acquisition platform composed of a
CNC machine DMU50 by DMG MORI, a UR5e robot by Universal
Robots, a Gocator 3210 structured-light scanner by LMI installed at
the end of the robot. A luminometer and thermometer are also used
to control the environmental conditions. The physical platform comes
up with its digital twin counterpart, and the whole set up allows the
automatic acquisition and labelling of numerous point clouds from
widely varying scan configurations 𝑗 . This platform will also be used
to validate the proposed approach, and in particular to enable first-
time-right control of a workpiece in its manufacturing environment for
smart-manufacturing applications.

As explained in Section 3.2, the labelling of the theoretically visible
points requires the acquired point cloud to be correctly located with
respect to the CAD model of the workpiece being scanned. To this
aim, four coordinate systems are introduced (Fig. 13): robot base
(𝑂𝑏, 𝑥𝑏, 𝑦𝑏, 𝑧𝑏), robot end (𝑂𝑒, 𝑥𝑒, 𝑦𝑒, 𝑧𝑒), scanner (𝑂𝑠, 𝑥𝑠, 𝑦𝑠, 𝑧𝑠), and work-
piece (𝑂𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝) coordinate systems. Then, different transformation
matrices are to be computed to be able to link acquired points with
points on the workpiece. Firstly, the transformation 𝑯𝑠𝑒 (i.e. scanner
to robot end) can be obtained by eye-in-hand calibration [63]. This
matrix does not change and remains constant when the robot’s poses
are varied. The transformation 𝑯 (𝑖)

𝑒𝑏 (i.e. robot end to robot base) can
be directly obtained for each pose 𝑖 of the robot. The transformation
𝑯 (𝑖)

𝑝𝑠 (i.e. workpiece to scanner) is obtained while performing an ac-
quisition for a given pose 𝑖 = 0 of the robot, and then doing an ICP
registration between the obtained point cloud and CAD model. Once
these three matrices obtained, the constant transformation matrix 𝑯𝑝𝑏
(i.e. workpiece to robot base) is obtained with the following equation:

𝑯𝑝𝑏 = 𝑯 (0)
𝑒𝑏 ⋅𝑯𝑠𝑒 ⋅𝑯 (0)

𝑝𝑠 (11)

Finally, for each new pose 𝑖 characterised by the transformation
𝑯 (𝑖)

𝑒𝑏 that is easily available from the robot, the registration matrix 𝑯 (𝑖)
𝑝𝑠

between point cloud and CAD model of the workpiece is calculated as
follows:

𝑯 (𝑖)
𝑝𝑠 =

(

𝑯 (𝑖)
𝑒𝑏 ⋅𝑯𝑠𝑒

)−1
⋅𝑯𝑝𝑏 (12)

This calibration method allows the acquired point cloud to be first
coarsely located on the CAD model for any scan configuration 𝑗 , and
then fine-calibrated using the ICP algorithm between the point cloud
and CAD model.

Fig. 14. Flowchart of the acquisition protocol with two nested loops, one on the
successive robot scan poses, and the other for the various scan configurations to be
applied for each pose.

4.2. Data collection and labelling

The database used to train 3DSCP-Net was built following the
acquisition protocol depicted on Fig. 14. The very first step consists
in eye-in-hand calibration [63] that is done only once, to compute
the transformation matrices needed for coverage computation and
labelling. Then, for a given workpiece, two nested loops are followed:

• Loop on the scan poses to be adopted by the robot and Gocator
3210 scanner. In this paper, a simple strategy was adopted to
generate many poses of the robot end from a uniform sampling
of a sphere cap centred on the barycentre of the workpiece and
with a radius so that the centre of the sphere matches the middle
of the scanner’s FOV. Naturally, the digital twin is exploited to
check each pose so as to avoid collision as the robot moves, and
inaccessible poses are simply removed from the list. Fig. 15 shows
the scan poses generated for a given location of a part to be
scanned.

• Loop on the scan configurations to be applied for each robot pose,
while varying the scanner exposure time. For each scan, the
acquired point cloud is then registered on the CAD model of the
workpiece, using Eq. (12) and ICP to fine-tune the calibration,
and the coverage is computed from Eq. (2). As a result, each
theoretically visible point 𝒑𝑘 of a scan configuration 𝑗 is labelled
as Covered (1) or Uncovered (0), and its feature vector is ex-
tracted following Eq. (10). Here, theoretically visible points result
from a mesh of the CAD model generated with an edge length
𝜖𝓁 = 0.5 mm and a chord length 𝜖𝑐 = 5%, in accordance with the
0.08 mm XY resolution of the scanner. These points are filtered
using HPR algorithm with a radius resulting from [47,48], and the
Gocator’s FOV scaled with a factor 𝑆𝐹𝑂𝑉 = 105%. The labelling
is computed with 𝜖𝑑 = 0.3 mm to manage outliers (three-sigma
rule). Each configuration is added to the database, with all of its
labelled theoretically visible points and associated feature vectors.

For the experiments, four workpieces have been used, and cor-
respond to the so-called ‘Pocket’, ‘Stair-like’, ‘Car’ and ‘Cylinder-like’
parts as illustrated on Fig. 16. The first was used to train 3DSCP-Net,
and the others to test it on an unknown workpiece. These parts were
chosen because of their level of complexity, highlighting possible inter-
reflection and overexposure issues when scanned with structured-light.

To set the exposure, the Gocator’s automatic exposure mode is first
used to determine the value considered to be close to ideal, from which



Fig. 15. Map of the scan poses generated from a sphere cap centred on the barycentre of the workpiece to be scanned.

Fig. 16. Workpieces used for training (a) and testing (b,c,d) 3DSCP-Net.

a wider range is defined. At the time of the acquisitions, the light
intensity was 3.45 Lux and the ambient temperature was 20.5 ◦C,
values measured with a luxometer and thermometer placed close to the
workpieces. In the end, a total of 143 acquisitions were made for the
Pocket, including 119 acquisitions for training and 24 for testing. In
addition, multiple acquisitions have been performed on the Stair-like,
Car and Cylinder-like to test 3DSCP-Net on parts never seen during the
training. The complete dataset is 13.3 GB and is made publicly available
at URL: https://doi.org/10.5281/zenodo.10807742.

4.3. Evaluation metrics

To evaluate the performance of 3DSCP-Net, the conventional recall,
precision and accuracy metrics are used for each scan configuration,
taking into account the binary classification (Covered/Uncovered) of
each theoretically visible point, and then averaged over the whole
dataset with all scan configurations. The 𝐹𝛽-score is then used to sum-
marise precision and recall in a single weighted measure and facilitate
the validation task:

𝐹𝛽-score =
(1 + 𝛽2) × Precision × Recall

𝛽2 × Precision + Recall
(13)

When 𝛽 = 1, this metric gives equal weight to precision and
recall, and therefore to false positives and false negatives. However,
considering coverage prediction, precision is more important as the
areas labelled as Covered are used to optimise the resolution of the view
planning problem [1]. Thus, more weight will be given to precision
with 𝛽 = 1∕

√

2 for all experiments.

4.4. Experimental results and validation

The proposed approach has been implemented in Python language,
and the networks are developed in Pytorch. The experiments were
conducted with 32 GB NVIDIA Tesla V100-SXM2 GPU with CUDA. The
training process uses the Adam optimiser with an initial learning rate of
10−4, and the networks are trained with early stopping, and mini-batch
size of 8 for all experiments. The training, validation and test sets are
those presented above, so are the metrics used to validate the approach.

Various experiments were conducted to evaluate the performance
of 3DSCP-Net in accurately predicting a priori the coverage of a part to
be scanned, i.e. before scanning it. They are presented in the following
paragraphs. First, several experiments were carried out to fine-tune
some of the hyper-parameters, in particular the size 𝑉𝑠 of the voxel grid,
and the depth 𝐷 of the multi-scale feature extractor. Then, an ablation
study allows to evaluate the contribution of the different blocks, and
compare the results to the ones obtained with the conventional U-Net
architecture. Finally, the proposed approach is validated on unknown
scan configurations, for which a sensitivity analysis is also proposed to
study the impact of the robot positioning errors on the performance
of 3DSCP-Net, and for first-time-right control in the context of VPP
resolution.

Fine-tuning of the hyper-parameters. The first experiment consists in
identifying the optimal size 𝑉𝑠 of the voxel grid embedding the theoret-
ically visible points whose coverage is to be predicted by 3DSCP-Net. It
is important to remember that these points come from the mesh of the
CAD model with an edge length of 𝜖𝓁 = 0.5 mm. Therefore, considering
equilateral triangles, the theoretical distance between the barycentres
of two adjacent triangles is 𝜖𝓁 × sin(𝜋∕3) × 1∕3 × 2 ≃ 0.2887 mm. The
various experiments carried out by varying the voxel size slightly
around this theoretical value show that the value 𝑉𝑠 = 0.28 mm is the
best when considering 𝐹𝛽-score. This is visible from Table 1 obtained
on the Stair-like dataset. In the end, this corresponds to having more

https://doi.org/10.5281/zenodo.10807742


Table 1
Experiment on voxel size (metrics averaged on Stair-like dataset).
𝑉𝑠 (mm) Recall Precision Accuracy 𝐹𝛽-score

0.35 0.756 0.868 0.787 0.803
0.30 0.804 0.862 0.801 0.826
0.29 0.881 0.827 0.805 0.830
0.28 0.834 0.854 0.798 0.835
0.27 0.868 0.817 0.788 0.822

Table 2
Experiment on model depth (metrics averaged on Stair-like dataset).

Depth 𝐷 Recall Precision Accuracy 𝐹𝛽-score

4 0.638 0.794 0.678 0.737
5 0.834 0.854 0.798 0.835
6 0.645 0.794 0.683 0.734

Table 3
Results of the ablation study involving groups (1) to (5), and comparison with the
conventional U-Net (metrics averaged on Stair-like dataset).

3DSCP-Net Recall Precision Accuracy 𝐹𝛽-score

1 0.889 0.751 0.727 0.779
1+2 0.839 0.824 0.761 0.807
1+2+3 0.782 0.829 0.733 0.784
1+2+4 0.851 0.839 0.795 0.827
1+2+3+4 0.884 0.822 0.793 0.830
1+2+3+4+5 0.834 0.854 0.798 0.835

U-Net 0.531 0.524 0.644 0.486

or less one theoretically visible point per voxel, thus limiting the effect
of averaging the feature vectors within a voxel.

Similarly, different depths 𝐷 of the model have been compared
and the results obtained on the Stair-like dataset are highlighted in
Table 2. These tests clearly show that the deepest networks are not nec-
essarily the most effective. Indeed, each downsampling means that the
receptive field of the convolution kernel is expanded by 2 times. Since
the voxel size is 𝑉𝑠 = 0.28 mm, when depth 𝐷 = 6 the size of the kernel’s
receptive field for the last layer is 4.48 mm. This value seems too large,
as the resolution of the scanner is 0.08 mm. In conclusion, depth 𝐷 = 5
is a good trade-off.

Ablation study and comparison. The contribution of each block of
3DSCP-Net is then evaluated through an ablation study, with 𝑉𝑠 =
0.28 mm and 𝐷 = 5 from the previous experiments. For this purpose,
various characteristics of the model are grouped together, and the value
of combining them is assessed on the Stair-like dataset. Group (1) corre-
sponds to the use of all the geometric features 𝑭 𝑘

𝑝𝑜𝑖𝑛𝑡 ⊕𝑭 𝑘
𝑠𝑐𝑎𝑛 associated

with each theoretically visible point 𝒑𝑘. Groups (2) to (4) refer to the
use of more or less features in the feature vector 𝑭 𝑘

𝑙𝑖𝑔ℎ𝑡 of Eq. (9). More
precisely, Group (2) uses the first 26 intensity values, Group (3) the
following 3 phase values, and Group (4) the last 4 intensity values with
PBR and HR materials. Finally, Group (5) corresponds to the use of the
channel attention mechanism (CAM).

The results of the ablation study involving groups (1) to (5) are
available in Table 3, together with the results obtained with the con-
ventional U-Net architecture that only rely on the 3D coordinates of
the points. They clearly show that each block of 3DSCP-Net brings
an improvement in terms of 𝐹𝛽-score. Only when considering the
geometric features (Group 1), the first 26 intensity values (Group 2)
and following 3 phase values (Group 3), the 𝐹𝛽-score decreases. But
this reduction vanishes by adding the other groups, thus demonstrating
the interest of all the components of the proposed machine learning-
based 3D coverage prediction framework. Furthermore, the results
clearly demonstrate that 3DSCP-Net performs much better than the
conventional U-Net on coverage prediction tasks, thus validating the
network architecture, the feature vectors selection as well as the use of
the channel attention mechanism to selectively emphasise them.

Fig. 17. Poses used to validate 3DSCP-Net on unknown scan configurations for the
Stair-like (a), Pocket (b), Car (c) and Cylinder-like (d) workpieces.

Table 4
Extract of results obtained for unknown poses and scan configurations and averaged
over the 24 poses for each workpiece.

Part Pose Recall Precision Accuracy 𝐹𝛽-score

Stair-like

#1 0.855 0.731 0.770 0.768
#2 0.966 0.935 0.932 0.946
#3 0.790 0.886 0.800 0.852
#4 0.729 0.830 0.709 0.793

Avg. 0.854 0.893 0.824 0.873

Pocket

#1 0.946 0.939 0.935 0.940
#2 0.933 0.930 0.923 0.931
#3 0.877 0.929 0.901 0.911
#4 0.918 0.884 0.880 0.895

Avg. 0.942 0.898 0.889 0.912

Car

#1 0.878 0.947 0.877 0.899
#2 0.929 0.914 0.873 0.919
#3 0.855 0.902 0.878 0.886
#4 0.817 0.961 0.801 0.848

Avg. 0.916 0.844 0.801 0.866

Cylinder-like

#1 0.794 0.884 0.784 0.842
#2 0.872 0.819 0.781 0.800
#3 0.796 0.797 0.704 0.780
#4 0.866 0.812 0.776 0.795

Avg. 0.874 0.836 0.784 0.846

Validation on unknown scan configurations. The proposed approach was
validated on the four workpieces, and according to 24 viewpoints and
scan configurations that had never been seen when training 3DSCP-
Net. The metric values are gathered in Table 4. For each workpiece,



Fig. 18. Examples obtained from Stair-like (𝑎1), Pocket (𝑏1), Car (𝑐1) and Cylinder-like (𝑑1) unknown poses: (𝑎3 , 𝑏3 , 𝑐3 , 𝑑3) are the theoretical point clouds obtained only using a
filter based on the FOV of the Gocator, (𝑎2 , 𝑏2 , 𝑐2 , 𝑑2) are the comparisons between the coverage predicted by 3DSCP-Net and the coverage computed from the real acquisition,
clearly highlighting that most of the points are well-predicted (TP in green and TN in blue) with a 𝐹𝛽-score of respectively 94.6%, 94.0%, 91.9% and 84.2% for the four
workpieces (Table 4). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the results of 4 poses are highlighted, and the corresponding poses
are shown in Fig. 17. These poses where selected among the 24 poses
of each workpiece, in order to show the possible variations of the
metrics. Overall, results are very good, with highest values close to
95% on 𝐹𝛽-score, and average values around 85% for the workpieces
that have never been seen during the training. One of the unknown
poses are depicted in Fig. 18 for each workpiece. The comparison
between the theoretical point cloud and the one predicted by 3DSCP-
Net clearly shows that the prediction model performs better than a
purely theoretical approach based only on the FOV. This is visible
from the many points that the theoretical approach sees, and that are
finally not acquired by the scanner. When comparing the predicted
point clouds to the ground truth obtained by scanning the workpieces
for real, most of the points belong to true-positive (TP in green, with
both the ground truth and prediction as Covered) or true-negative (TN
in blue, with both the ground truth and prediction as Uncovered). This
is very good. Then, there are few false-negative (FN in yellow) for
which the model predicts points as Uncovered although they appear as
Covered in the ground truth. This is not so bad, as the model somehow
underestimates what is really acquired in the end. Finally, there are
also few false-positive (FP in red) for which the model predicts points
as Covered although they are not in real, thus overestimating what the
scanner can obtained in real conditions. This last case is certainly the

worst when considering the overall objective of optimising the scanner
position before scanning the manufactured part. Indeed, if the optimiser
uses points predicted to be Covered and which are finally not after
scanning, there is a risk of not obtaining a good scan in real. However,
there are very few red dots, and it should be borne in mind that a check
is generally based on several overlapping scans, whose deficits can
compensate for each other. This is evaluated with the last experiment
on first-time-right control.

However, from Table 4, it also appears that the performance of
3DSCP-Net can slightly vary depending on the considered poses. This
can be analysed as follows:

• First, depending on the considered poses, some manufacturing
defaults may affect the results of the acquisitions to a greater or
lesser extent, thus creating larger deviations between the ground-
truth and predicted coverage, and in the end reducing the value
of 𝐹𝛽-score. This is visible from Fig. 19 which shows that bad
predictions (in red) can appear in areas where manufacturing
defaults are visible. Indeed, 3DSCP-Net does not yet take into
account manufacturing parameters, and is therefore unable to
accurately predict how the structured-light will be projected in
those areas. This behaviour is strongly affected by the adopted
pose. To solve this problem, it is planned to incorporate more
features related to the way the workpieces are manufactured.



Fig. 19. Examples showing that 3DSCP-Net performs less well in areas where there
are manufacturing default that the model is not yet able to take into account, or at
the boundary of the FOV, which is fully considered despite the uncertainties in these
areas.

• Second, the performance of 3DSCP-Net is poorer in areas closed to
the boundary of the FOV, which can also be seen in Fig. 19. In-
deed, the results of the real acquisitions in these areas are not
always reliable, and the FOV could be scaled down to avoid taking
into account these areas both when training and exploiting the
prediction model.

Furthermore, the Car and Cylinder-like exhibit some specific shapes
that have never been seen when training on the Pocket, i.e. curved
and free-form surfaces. Thus, the prediction model naturally performs
less well here with an 𝐹𝛽-score around 85%. However, this is quite
good considering the complexity of the prediction task, and these
experiments still demonstrate that the model has good generalisation
performance, and is able to accurately predict the coverage on un-
known workpieces and scan configurations. In the future, more work-
pieces, incorporating more different feature types, will be considered
for training.

Analysis of the prediction sensitivity. This analysis and associated exper-
iments aim at characterising the impact of robot positioning errors on
the performance of 3DSCP-Net in accurately predicting the coverage
on unknown parts. This means assessing the model’s sensitivity to
positioning errors. The literature shows that after motion error com-
pensation, the pose error of the robot’s end-effector can obtain good
quality [64,65]. Thus, this analysis only focuses on the impact of the
robot positioning error (i.e. only the error on the (x,y,z) coordinates
of the end-effector) on the sensitivity of the predictions, and does not
take into account pose error, which would also include rotations. To
do so, starting from several reference poses (error of 0.0 mm), various
positioning errors are introduced (i.e. 0.1 mm [66], 0.5 mm [67] and
1.0 mm [68,69]) and used to randomly affect the position of the end-
effector. Then, the coverage predicted by 3DSCP-Net for the perturbed
positions are compared to the reference ones, and the results are
summarised in Table 5. 𝑅𝑀𝑆𝐷 refers to the root mean square deviation
between the prediction results with the positioning errors introduced,

Table 5
Analysis of the sensitivity of the prediction model to positioning errors of the robot’s
end-effector ranging from 0.1 mm to 1.0 mm on four reference poses (error 0.0 mm)
of the Stair-like workpiece.

Pose Positioning
error (mm)

0.0 0.1 0.5 1.0 𝑅𝑀𝑆𝐷

#1

Recall 0.643 0.646 0.637 0.638 0.005
Precision 0.893 0.891 0.884 0.887 0.006
Accuracy 0.774 0.774 0.768 0.769 0.004
𝐹𝛽-score 0.791 0.791 0.783 0.785 0.004

#2

Recall 0.760 0.758 0.757 0.758 0.003
Precision 0.976 0.974 0.972 0.966 0.006
Accuracy 0.817 0.815 0.813 0.811 0.004
𝐹𝛽-score 0.892 0.890 0.888 0.885 0.004

#3

Recall 0.839 0.840 0.841 0.841 0.002
Precision 0.985 0.984 0.982 0.982 0.002
Accuracy 0.835 0.836 0.836 0.836 0.001
𝐹𝛽-score 0.931 0.931 0.930 0.930 0.000

#4

Recall 0.942 0.944 0.946 0.951 0.005
Precision 0.937 0.938 0.934 0.933 0.003
Accuracy 0.906 0.908 0.907 0.910 0.002
𝐹𝛽-score 0.939 0.940 0.938 0.939 0.001

Fig. 20. Identification of the region of interest (ROI) and surfaces to be scanned
on the Stair-like part (b) in order to be able to control several geometrical product
specifications (a).

and the reference ones. It reveals that the coverage prediction frame-
work is not sensitive to small errors in the positioning of the robot’s
end-effector, with a max of 0.006 on 𝑅𝑀𝑆𝐷, which is good.

First-time-right control. This last experiment aims at evaluating how
3DSCP-Net can help better anticipating points that are not acquired for
real when compared to the theoretically visible ones traditionally used
to solve the VPP problem. Indeed, accurately predicting missing points
in the acquired point clouds can avoid time-consuming additional ac-
quisitions that would be needed to complete the point clouds and fully
cover the region of interest (ROI). Fig. 20 illustrates a scenario where
several geometrical product specifications (GPS) need to be checked. To
do this, the surfaces involved must be scanned, and the grouping of
these surfaces defines the ROI used as input of the VPP resolution. The
way the VPP can be solved is not part of this paper, and the reader
can refer to the extended survey of Jubert et al. [1] for more details
on the existing approaches. However, solutions to this problem have
been explored manually, using solely the FOV to define the points
theoretically visible from a viewpoint, and one of these solutions is
illustrated by the set of 3 poses depicted on Fig. 21. These 3 poses are
therefore theoretically sufficient to cover the entire ROI. Unfortunately,
and as explained all along this paper, the theoretically visible points
will not be all acquired for each of the pose. This is visible from Fig. 21
where the points predicted to be acquired (green) cover slightly smaller
areas than the theoretically visible ones (cyan). As a consequence, when
overlapping the three point clouds all together on Fig. 22, it appears
that even though the 3 poses have been manually chosen so as to
cover perfectly the ROI (cyan), the points that will be acquired for
real, and which have been predicted by 3DSCP-Net, cover much smaller



Fig. 21. Results of the simulation of several acquisitions obtained from 3 poses (a) considered as one of the solution to the VPP defined from the control scenario of Fig. 20 and
manually located using the FOV and corresponding theoretical visibility criterion. For each of the 3 poses (b1 to b3), the coverage is predicted using either the FOV (cyan points),
or using 3DSCP-Net to predict the real coverage (green points). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 22. Comparison between the overlap of the areas theoretically covered by the
3 poses of Fig. 21 (cyan and green points), and the ones predicted as covered by
3DSCP-Net (green points) with a focus on the ROI, except for 3DSCP-Net for which
points predicted as covered outside of the ROI are also displayed. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

areas (green). This clearly demonstrates that relying on FOV and simple
visibility criteria, as many approaches do, does not allow an accurate
resolution of the VPP, even manually, with a high risk of having to
carry out additional and time-consuming unpredictable acquisitions
from several other poses to complete the point clouds. On the contrary,
solving the VPP using 3DSCP-Net to predict the areas that will be
acquired for real allows more realistic and accurate predictions. This
is because these predictions are based on a large number of previous
acquisitions with a wide variety of scan configurations, and which have
been used to train the network end-to-end.

As a conclusion, the results of these experiments validate the model
and its capacity to predict a priori the coverage, i.e. before scan-
ning. 3DSCP-Net clearly outperforms traditional approaches based on

simple visibility criteria, taking into account local configurations such
as inter-reflection issues and other complex phenomena occurring dur-
ing real scans (e.g. occlusion, overexposure). It has a good ability to fit
the learned dataset, and a good generalisation ability to unseen parts
𝑖 and/or scan configurations 𝑗 . This model can thus be used to
better plan the control of manufactured parts, ushering in a new era
of first-time-right smart control.

5. Conclusion and future works

This paper introduced a new machine learning-based framework
capable of accurately and a priori predicting the scan coverage of a
workpiece from a given scan configuration. Such a model is particularly
useful for optimising VPP resolution and optimising poses and scan
configurations before scanning. The approach exploits an architecture
capable of extracting features at different levels. Features relate to
the geometry, to the acquisition devices as well as from simulating
the projection of patterns in structured-light acquisition. These last
features are capable of incorporating inter-reflection and overexposure
issues during the prediction. The database used for training has been
built thanks to the development of an acquisition platform capable
of automatically acquiring and labelling point clouds from widely
varying scan configurations. Results demonstrated the performance of
the approach, which outperforms what a theoretical approach based on
simple visibility criteria can do.

It is important to stress that the method developed in this paper
is generic, even though 3DSCP-Net was trained using point clouds
obtained from a specific scanner, namely the GOCATOR 3210, which
was used in this work. The approach remains valid for any other
binocular structured-light-based scanners (i.e. GOCATOR 3520, GOM
Scan 1, GOM ATOS Q, GOM ATOS Compact Scan, HEXAGON PrimeS-
can). Thus, if a new scanner is to be used, the model must be trained
again, following the methodology developed in this paper, but using
a new database of point clouds obtained from this new scanner. How
3DSCP-Net could directly adapt to other binocular structured-light-
based scanners needs to be studied in more detail. This would need
training on a larger database obtained from various scanners, and using



one more feature as input of the network to characterise which scanner
has been used for a particular sample. In this way, 3DSCP-Net could
directly estimate the coverage obtained from various scanners.

However, there is still room for other improvements. First, although
the proposed approach already integrates important factors related
to the light and surface roughness when simulating the projection of
patterns with structured-light, the addition of new features related to
the machining should be investigated. For example, the depth of cut,
the tool rotation speed, but also the tool wear are all parameters that
can influence the quality of the surface of the part being manufactured,
and therefore the quality of the scan. Taking these additional features
into account requires the database to be populated with many other
acquisitions obtained from even more varied manufacturing and scan
configurations. The proposed acquisition platform is ready for this and,
thanks to the digital twin developed, it can easily be used to carry out
on-line acquisitions directly within a machining centre.. Second, smart-
control applications need to be further developed, and in particular
the integration and use of the proposed prediction model when solving
the VPP. This would definitively ease decision-making by relying on
information that the system can actually obtained, rather than on
theoretical information that do not take into account real working
conditions, thus limiting the risks for not being able to aggregate the
scans obtained from the different viewpoints. Finally, with the growth
of developments in machine learning, there is a need for an increasing
number of labelled datasets, which can be difficult to obtain in a reason-
able time-frame and with sufficient quality. The proposed approach can
definitively contribute to this task, while automatically generating large
datasets of as-scanned point clouds, incorporating artefacts that would
appear with real acquisition devices, and in particular by accurately
predicting the areas covered.
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