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A B S T R A C T

It is well known that dislocation slip plays a major role in plastic deformation of polycrystals. Depending on the
crystal’s symmetry, only a limited number of Slip Systems (SSs) are possible, and their activities depend on the
crystal orientation with respect to the applied stress. High Resolution Digital Image Correlation (HR-DIC) can
be used to get the full-field measurements of displacement fields on the surface of the strained material during
an in situ tensile test, whereas the EBSD technique provides local crystallographic orientations. Therefore,
coupling them can lead to full description of the local slip activities. Recently, an algorithm (named SSLIP)
was proposed in the literature to automatically estimate the plastic activity from HR-DIC and EBSD data. The
aim of the present paper is first to improve this algorithm so that it works for incremental straining, and to
propose a way to take account for the anisotropic behaviour through a well-known set of Crystal Plasticity
(CP) constitutive laws. It is shown that slip identification, together with those CP laws, can be used to estimate
the tensile stress at grain scale. The influence of the DIC resolution is investigated and ‘‘correction rules’’ for
small grains are proposed. Finally, the experimental results are compared against those found using the CP
Finite Element Method (CPFEM), showing good consistency, specially in terms of active SSs and local stress.

1. Introduction

Understanding the mechanical behaviour of bulk materials requires
the investigation of phenomena occurring at microscopic scale. For
ductile polycrystalline materials, such as metals, it is well known
that the plastic deformation is mainly governed by dislocation slips
at grain scale. Studying such phenomena is usually referred to as
Crystal Plasticity (CP) analysis, whose most historical contribution is
due to Erich Schmid in 1935. At room temperature, slip can only
occur along certain directions and certain planes, depending on the
crystal symmetry. Each pair of possible direction/plane is referred to
as a slip system (SS). For Face Centred Cubic (FCC) materials, those
SSs are given by the combinations of {111}

⟨

1̄10
⟩

families, whereas
those for Body Centred Cubic (BCC) are combinations of {110}

⟨

1̄11
⟩

,
{211}

⟨

1̄11
⟩

and {321}
⟨

1̄11
⟩

families (Jackson, 2012, Chap. 7).
Analysing these SSs is of great importance for investigating the

plastic-induced phenomena. For instance, Salvini et al. (2024) evi-
denced a relationship between damage initiation and plastic incom-
patibilities near Grain Boundaries (GBs). Experimental analyses of SSs
require microstructural characterisation, usually made with Scanning
Electron Microscopy (SEM) imaging. In order to facilitate the investiga-
tion of slip activities at different strain levels, authors usually perform
in situ tensile tests within the chamber of SEMs. SEM images can then
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E-mail addresses: dorian.depriester@ensam.eu (D. Depriester), jean-patrick.goulmy@ensam.eu (J.-p. Goulmy), laurent.barrallier@ensam.eu (L. Barrallier).

be used to perform Digital Image Correlation (DIC) at grain scale, thus
allowing to measure the local strain in the apparent microstructure (Di
Gioacchino and Quinta da Fonseca, 2015; Mello et al., 2017; Guan
et al., 2017; Thomas et al., 2019; Sperry et al., 2020; Di Gioacchino
et al., 2020; Thiruselvam et al., 2021; Guan et al., 2021; Goulmy et al.,
2022; León-Cázares et al., 2023; Stinville et al., 2023, and references
therein). Di Gioacchino and Quinta da Fonseca (2015) demonstrated
that the localisation bands, evidenced by High Resolution DIC (HR-
DIC), were parallel to the trace of the slip planes (intersection of
slip planes with the imaged surface of the material). Therefore, by
analysing the orientations of those localisation bands, one can estimate
which plane family is active, but not the direction. León-Cázares et al.
(2023) recently proposed to perform Fast Fourier Transforms (FFTs)
on the DIC maps in order to automatically detect the localisation
bands and characterise their orientations; it allowed to detect and
process thousands of slip traces at once on FCC Ni-based superalloy.
Alternatively, some authors used the Radon (Sperry et al., 2020) or
the Hough (Charpagne et al., 2020) transforms to automatically detect
the localisation bands from DIC maps. Chen and Daly (2017) have
introduced the ‘‘Relative Displacement Ratio’’ (RDR) method, which
compares the ratio of displacement components, evidenced by HR-
DIC, with that of the Burger’s vector of each SS to determine which
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Notations

Mathematical conventions
In the present paper, the ISO 80000–2 font convention is

used: lowercased boldface denotes a vector (e.g.: 𝒔); uppercased
boldface denotes a matrix (e.g.: 𝑯); sans-serif boldface denotes a
tensor (e.g.: 𝙁 ) whereas light font denotes a scalar value (e.g.: 𝑎)
or the components of a tensor/matrix/vector (e.g.: 𝑆𝛼

𝑖𝑗). The
Einstein’s summation convention is used.

Nomenclature

𝙁 Displacement gradient
𝛥𝙁 Increment of displacement gradient
�̇�𝛼 Shear rate on slip system 𝛼
𝛥𝛾𝛼 Increment of shear (slip activity) in slip

system 𝛼
𝑯 Latent hardening matrix
𝙇 Plastic velocity gradient
𝑴 Matrix of crystallographic orientation
𝑁 Number of investigated slip systems
𝑝 Number of active slip systems
𝑠𝛼 CRSS of slip system 𝛼
𝙎 𝛼 Schmid tensor of slip system 𝛼
𝜏𝛼 Resolved shear stress on slip system 𝛼

SS may be active or not. Alternatively, Bourdin et al. (2018) have
proposed the Heaviside DIC method, which automatically detects the
discontinuities in the gradient field, thus allowing to detect the locali-
sation bands, hence the slip traces. Nevertheless, these methods only
work if the localisation bands are well defined. Therefore, Vermeij
et al. (2023) have proposed a method, named SSLIP, to automati-
cally identify the slip activity from in situ DIC coupled with Electron
Backscattered Diffraction (EBSD) technique. Given a single crystallo-
graphic orientation (at each datapoint of the EBSD map), the SSLIP
method consists in minimising the sum of absolute shears along each SS
such that the corresponding gradient is close to that given by DIC. This
allowed to successfully characterise the activity of each SS in FCC Ni-
based superalloy and BCC ferrite. More recently, Vermeij et al. (2024)
have proposed an updated version of SSLIP, named +SSLIP, which
only considers SSs that are compatible with the orientations of the
localisation bands, thus reducing the dimensions of the optimisation
problem. These orientations were characterised with the aid of the
Radon transform. Vermeij et al. showed that this approach was very
promising for materials with large number of SSs, such as Hexagonal
close-packed (HCP) materials. Nevertheless, the criterion used in SSLIP
and +SSLIP (sum of absolute values of shear strain on each SS) is only
valid if the strain hardening is neglected and if the Critical Resolved
Shear Stress (CRSS) of all SSs are the same. Therefore, it is not suitable
for more anisotropic materials, such as numerous HCP crystals. For
instance, Wang et al. (2017) reported that the CRSSs in commercially
pure titanium for basal ({0001}

⟨

12̄10
⟩

), prismatic (
{

101̄0
}⟨

12̄10
⟩

) and
pyramidal (

{

101̄1
}⟨

21̄1̄3̄
⟩

) SSs were 127MPa, 96MPa and >240MPa,
respectively. Hence the well-known ‘‘soft’’

⟨

12̄10
⟩

and ‘‘hard’’
⟨

21̄1̄3̄
⟩

directions of 𝛼 titanium. In addition, during plastic deformation, strain
hardening occurs while grains undergo crystallographic reorientation;
which in turn can change the plastic behaviour of crystals at subse-
quent straining increments. For instance, Zecevic et al. (2018) showed
that, at the early stages of extrusion of HCP Mg-4%Li, basal slip
was predominant, whereas prismatic became predominant at larger
deformation.

Today’s performances of computers have allowed the emergence
and the generalisation of CP Finite Element Method (CPFEM). It can

be used to simulate the plastic behaviour of polycrystals, taking into
account the CP constitutive laws and provides extensive data about
plastic activities at local scale. EBSD-based CPFEM is usually made
under the near-plane-stress assumption (Héripré et al., 2007; Guery
et al., 2016a; Kawano et al., 2019; Githens et al., 2020; Depriester
et al., 2023), which allows to consider only one element in thick-
ness (Héripré et al., 2007). Therefore, Depriester and Kubler (2020)
recently proposed a software to generate conforming meshes from
grains reconstructed with MTEX (Bachmann et al., 2011) in an au-
tomatic and flexible way, resulting in a one-element-thick mesh with
smooth and accurate descriptions of GBs. Under the aforementioned
near-plane-stress assumption, the effect of microstructure underneath
the EBSD-mapped surface is neglected. Githens et al. (2020) showed
that this assumption was reasonable in terms of strain calculations, but
that it can impair the apparent slip activities. However, the estimation
of CP parameters is usually challenging. In an earlier work, the present
authors (Depriester et al., 2023) calibrated a CP constitutive law on
pure copper by performing an inverse analysis based on CPFEM. They
showed that the most active SSs in CPFEM were consistent with the slip
traces evidenced by HR-DIC, although some discrepancy was reported
in terms of local strain. A coupled HR-DIC/CPFEM approach was also
used by Guery et al. (2016b) to study the slip activity in a 316LN
austenitic stainless steel; at local scale (i.e. for each Gauss point in
CPFEM), they showed that, on average, only four SSs were active at
once during the in situ tensile test according to CPFEM. They also
showed that some SSs were reported as active according to CPFEM,
whereas no evidence of such activity was made experimentally (no slip
trace).

On the basis of the preceding considerations, to the best authors’
knowledge, there is no tool available in the literature able to fully
unravel active SSs from coupled EBSD/HR-DIC data, which supports
the following requirements:

• incremental straining;
• strain hardening and crystallographic reorientations due to plastic

strain;
• slip anisotropies (different CRSS values).

Therefore, the aim of this work is first to propose and to assess such
an algorithm. In addition, since HR-DIC can be performed at different
resolutions, their influence on the results from this algorithm should be
investigated. As a result, this paper is divided as follows: the material
used as an application in this work is presented in Section 2 whereas
the fundamentals of CP are recalled in Section 3. Then, two different
approaches (namely the 𝐿1 and the Energy methods), derived from
the SSLIP method, are detailed in Section 4. The results of the two
different approaches are discussed and compared in Section 5 whereas
the fundamental difference between them is detailed in Section 6.1.
The influence of the image resolution on the quality of the results from
the proposed approaches is investigated in Section 6.2. The present
results are then compared against CPFEM simulations. Finally, the
computational performances of the proposed methods are discussed in
Section 6.4.

2. Materials and methods

2.1. Materials

In a previous work, Goulmy et al. (2022) performed an in situ
tensile test on commercially pure copper in the chamber of a SEM.
Thanks to the rough surface of the sample (because of slight chemical
etching), HR-DIC was performed from stitched SEM micrographs. In
the present paper, EBSD data of the initial microstructure and HR-
DIC measurements were taken from this prior work. The macroscopic
tensile curve (measured by the in situ tensile apparatus) and the EBSD
map of the Region of Interest (RoI) are provided in Fig. 1. The tensile
direction (denoted 𝒆1 below) is represented as horizontal in Fig. 1(b).

International Journal of Solids and Structures 305 (2024) 113077 



D. Depriester et al.

Fig. 1. Experimental data from in situ tensile test of pure copper. The colours in the EBSD map (b) relates to the crystallographic orientation with respect to the loading direction
(𝒆1). The grain highlighted in blue is used in Sections 5.1 and 6.3.

Table 1
CP parameters calibrated on commercially pure copper by Depriester et al. (2023).
𝑞 ℎ0 𝑠0 𝑠∞ 𝑎

1.702 309.5MPa 12.22MPa 121.8MPa 2.192

Table 2
DIC parameters used in this work.
Source: Taken from Goulmy et al. (2022).

Work. dist. Dwell time Acc. voltage Img. Resol. Img. integration

12.1mm 2.89 μs 10 kV 19 nmpx−1 8

All the CP-related parameters (see Section 3 for details) of the
aforementioned material were calibrated in a prior work (Depriester
et al., 2023), as recalled in Table 1.

2.2. DIC measurements

Let 𝑿 be the coordinate vector of a given point in reference state
(unstrained), and 𝒙 the vector position in deformed state. The gradient
tensor is defined as:

𝙁 = 𝜕𝒙
𝜕𝑿

(1)

Because DIC is performed in 2D on the visible (outer) surface only, only
𝐹11, 𝐹12, 𝐹21 and 𝐹22 can be computed from DIC.

In Goulmy et al. (2022), HR-DIC was performed at three straining
levels (called steps), as recalled in Fig. 1(a) (see solid blue dots). For
each step, high resolution imaging was achieved by stitching 48 SEM
images, obtained using the secondary electrons detector of a Field
Emission Gun (FEG) of a JEOL JSM-7001F in high vacuum (HV) mode.
This resulted in images of size 177 × 100 μm, containing 112 individual
grains. The speckle used for DIC was obtained with a slight chemical
etching of the imaged surface of the sample. SEM operating parameters
are provided in Table 2. Based on the stitched images, local DIC was
then performed with the Ncorr software (Blaber et al., 2015).

DIC comes with many parameters (displacement subset size, strain
subset size, etc.), but all of them can somehow be gathered in the
window size (Goulmy et al., 2022), denoted 𝜑 below. This parame-
ter represents the extent of a pixel value’s region of effect over the
measured strain at nearby places. It was shown in the latter work that
𝜑 = 1.3 μm was the best compromise between resolution and stability,
for it allowed to evidence localisation bands with reduced noises on
the strain values. Therefore, in this paper, we use DIC measurements

made with 𝜑 = 1.3 μm (except if mentioned); the corresponding values
for 𝙁 at each step are illustrated in Fig. 2. It is worth noticing the
vertical artefacts on 𝐹11 and the horizontal ones on 𝐹12, specially
at early stages of the deformation (see Fig. 2(a)). These artefacts
have been documented by Goulmy et al. (2022); the latter authors
concluded that they were due to a slight drift of the beam during
SEM imaging (rastering effect). They can easily be avoided in single
images (Goulmy et al., 2024) but avoiding them in stitched images
require more complex techniques (Maraghechi et al., 2019; Rouwane
et al., 2024). However, because these artefacts seem to vanish at larger
deformation (see Figs. 2(b) and 2(c)) they were neglected in the present
work, although a mask was used to remove them from certain analyses
(this will be mentioned in this case).

3. Theory

3.1. The Schmid theory

This section briefly recalls the Schmid theory for CP, which the
proposed paper is based on.

Let 𝝉 be the second-order Cauchy stress tensor. The resolved shear
stress on SS 𝛼 is:

𝜏𝛼 = 𝙎 𝛼 ∶ 𝝉 (2)

where 𝙎 𝛼 is the Schmid tensor for SS 𝛼, such that:

𝑆𝛼
𝑖𝑗 = 𝑏𝛼𝑖 𝑛

𝛼
𝑗

where 𝒃𝛼 and 𝒏𝛼 are the slip direction and slip plane normal for SS 𝛼,
respectively. In (2), ‘‘ ∶ ’’ denotes the inner product of tensors:

𝜏𝛼 = 𝑆𝛼
𝑖𝑗𝜏𝑖𝑗

Let 𝑠𝛼 be the CRSS of SS 𝛼. The latter is inactive if, and only if:

|𝜏𝛼| ≤ 𝑠𝛼

otherwise, slip occurs and the SS undergoes hardening (𝑠𝛼 increases);
in this case, we have:

𝜏𝛼 = sign (�̇�𝛼) 𝑠𝛼 (3)

where �̇�𝛼 denotes the shear rate on SS 𝛼.

International Journal of Solids and Structures 305 (2024) 113077 
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Fig. 2. Components of the gradient (𝙁 ) given by HR-DIC with 𝜑 = 1.3 μm at each step (blue dots in Fig. 1(a)). Grain boundaries are drawn in black.

3.2. Work hardening

This section presents the fundamental model of linear hardening,
introducing the so-called latent hardening factor. The evolution law
used in this paper for hardening moduli is also detailed.

A common hardening law, originally proposed by Peirce et al.
(1982), gives the time derivative for CRSS of SS 𝛼 as follows:

�̇�𝛼 =
∑

𝛽
𝐻𝛼𝛽

|

|

|

�̇�𝛽 ||
|

(4)

In (4), 𝐻𝛼𝛼 denotes the self-hardening modulus of SS 𝛼, whereas 𝐻𝛼𝛽
denotes the latent-hardening modulus of SS 𝛽 over SS 𝛼. Eq. (4) can be
written in a matricial way:

�̇� = 𝑯 |�̇�|

where 𝑯 is the latent hardening matrix and |�̇�| is a vector consisting
in each absolute value of �̇�𝛼 :

�̇� =
[

|

|

|

�̇�1||
|

, |

|

|

�̇�2||
|

, … , |

|

�̇�𝑁 |

|

]⊤

where 𝑁 denotes the number of SSs (e.g. 𝑁=12 for FCC). The plastic
velocity gradient is given by:

𝙇 =
∑

𝛼
�̇�𝛼𝙎 𝛼 (5)

In this paper, we assume that the hardening coefficients obey the
following exponential rule, as proposed by Kalidindi et al. (1992):

𝐻𝛼𝛽 =

⎧

⎪

⎨

⎪

⎩

ℎ0
(

1 − 𝑠𝛽

𝑠∞

)𝑎
if 𝒏𝛼 = 𝒏𝛽 ,

𝑞ℎ0
(

1 − 𝑠𝛽

𝑠∞

)𝑎
otherwise.

(6)

In (6), ℎ0, 𝑠∞ and 𝑎 are the initial hardening slope, the saturation stress
and the exponent, respectively. 𝑞 denotes the ratio of latent hardening

rates to self hardening rates for non coplanar SSs (Kocks, 1970). As a
reminder, the CP parameters for pure copper are provided in Table 1.

4. Calculation

4.1. Estimation of the plastic activity

In this section, two approaches are proposed to compute the slip
activities from coupled EBSD/HR-DIC data.

Let �̇� be the material derivative of the gradient tensor, as defined
in (1). We have (Nemat-Nasser, 2004, Chap. 5):

�̇� ⋅ 𝙁 −1 = 𝙇

where ‘‘⋅’’ denotes the tensor product contracted once. Eq. (5) reads:

�̇� d𝑡 ⋅ 𝙁 −1 =
∑

𝛼
�̇�𝛼d𝑡𝙎 𝛼

where d𝑡 stands for the infinitesimal increment of time. Let 𝙁 𝜃 be the
gradient tensor at time step 𝜃. It comes:

𝛥𝙁 ≈
∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ 𝙁 𝜃 (7)

where 𝛥𝛾𝛼 and 𝛥𝙁 denote the increments of 𝛾𝛼 and 𝙁 between two
subsequent time step 𝜃 and 𝜃+1, respectively. Eq. (7) is equivalent to:

𝛥𝙁 = 𝜿𝜃 ⋅ 𝛥𝜸 (8)

with

𝛥𝜸 =
[

𝛥𝛾1, 𝛥𝛾2, … , 𝛥𝛾𝑁
]⊤

and 𝜿𝜃 ∈ R2×2×𝑁 being a 3rd-order tensor such that:

𝜅𝜃
𝑖𝑗𝛼 = 𝑆𝛼

𝑖𝑘𝐹
𝜃
𝑘𝑗

International Journal of Solids and Structures 305 (2024) 113077 
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Alternatively, (8) can be vectorised as follows:

𝑲𝛥𝜸 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝐹11
𝛥𝐹21
𝛥𝐹12
𝛥𝐹22

⎤

⎥

⎥

⎥

⎥

⎦

(9)

where 𝑲 is a 4 ×𝑁 matrix such that:

𝑲 = Vec
(

𝜿𝜃) (10)

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑆1
11𝐹

𝜃
11 + 𝑆1

12𝐹
𝜃
21 𝑆2

11𝐹
𝜃
11 + 𝑆2

12𝐹
𝜃
21 … 𝑆𝑁

11𝐹
𝜃
11 + 𝑆𝑁

12𝐹
𝜃
21

𝑆1
21𝐹

𝜃
12 + 𝑆1

12𝐹
𝜃
21 𝑆2

21𝐹
𝜃
12 + 𝑆2

12𝐹
𝜃
21 … 𝑆𝑁

21𝐹
𝜃
12 + 𝑆𝑁

12𝐹
𝜃
21

𝑆1
11𝐹

𝜃
11 + 𝑆1

22𝐹
𝜃
22 𝑆2

11𝐹
𝜃
11 + 𝑆2

22𝐹
𝜃
22 … 𝑆𝑁

11𝐹
𝜃
11 + 𝑆𝑁

22𝐹
𝜃
22

𝑆1
21𝐹

𝜃
12 + 𝑆1

22𝐹
𝜃
22 𝑆2

21𝐹
𝜃
12 + 𝑆2

22𝐹
𝜃
22 … 𝑆𝑁

21𝐹
𝜃
12 + 𝑆𝑁

22𝐹
𝜃
22

⎤

⎥

⎥

⎥

⎥

⎦

(11)

As a reminder, out-of-plane components of 𝙁 cannot be measured by
DIC, hence the only four components in (9). It is worth mentioning
that Goulmy et al. (2022) have proposed a method to estimate 𝐹33
under the generalised plane-strain assumption, but its value is coupled
with other components (𝐹11, 𝐹12, 𝐹21 and 𝐹22); therefore, there is no
advantage in taking this value into account.

In the present paper, ‘‘slip activity’’ refers to 𝛥𝜸, although it some-
times relates to its time derivative (�̇�) in the literature (Iftikhar et al.,
2022, e.g.).

4.1.1. The 𝐿1 method
The first approach investigated in this paper (named 𝐿1 method

hereafter) is similar to that originally proposed by Vermeij et al. (2023):
one wants to minimise the total slip activity, keeping (9) true. This
problem can be formatted as:

𝛥𝜸 = Argmin
𝒈∈R𝑁

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖𝒈‖1 such that: 𝑲𝒈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝐹11
𝛥𝐹12
𝛥𝐹21
𝛥𝐹22

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(12)

where ‖𝒈‖1 is the 𝐿1-norm of 𝒈 (sum of absolute values). Solving (12)
is a non-linear minimisation with linear equality constraints. The main
difference with the proposed approach, compared to that of Vermeij
et al., is that the latter neglected 𝙁 𝜃 in (7). In addition, Vermeij et al.
used intervals instead of strict equality in the constraints (11), taking
into account measurement uncertainties on 𝙁 . This approach sounds
fair, but wrong estimates of the uncertainties could lead to unrealistic
results. Nonetheless, an extension of this approach is proposed in
Appendix A.

4.1.2. The Energy method
This section proposes an alternative to the 𝐿1 method, based on the

plastic dissipated energy. Between time steps 𝜃 and 𝜃 + 1, if SS 𝛼 is
active, its slip work is:

𝑤𝛼 = ∫

𝑡𝜃+1

𝑡𝜃
𝜏𝛼 �̇�𝛼d𝑡 (13)

whilst (3) holds. Let 𝑠𝛼𝜃 be the CRSS of SS 𝛼 at time step 𝜃. We
approximate 𝐻𝛼𝛽 as a constant between 𝜃 and 𝜃 + 1, and we assume
that 𝛾𝛽 evolves monotonously between these time steps.1 Therefore (4)
reads:

𝑠𝛼(𝑡) =
∑

𝛽
𝐻𝛼𝛽

|

|

|

𝛾𝛽 (𝑡)||
|

+ 𝑠𝛼𝜃 (14)

Eqs. (3), (13) and (14) give:

𝑤𝛼 = ∫

𝛥𝛾𝛼

0

(

∑

𝛽
𝐻𝛼𝛽

|

|

|

𝛾𝛽 ||
|

+ 𝑠𝛼0

)

sign (d𝛾𝛼) d𝛾𝛼 . (15)

1 This requires the time step to be small enough to avoid back and forth
shearing.

Because of the monotonous variation assumption above, we have:

sign (d𝛾𝛼) d𝛾𝛼 = |d𝛾𝛼| = d |𝛾𝛼|

Therefore, (15) becomes:

𝑤𝛼 = ∫

|𝛥𝛾𝛼 |

0

(

∑

𝛽
𝐻𝛼𝛽

|

|

|

𝛾𝛽 ||
|

+ 𝑠𝛼0

)

d |𝛾𝛼| (16)

It is worth noticing that (16) is also valid if SS 𝛼 is inactive (𝛥𝛾𝛼 =
0 ⟹ 𝑤𝛼 = 0). Hence, the dissipated plastic energy on all SSs is:

𝑤 =
∑

𝛼 ∫

|𝛥𝛾𝛼 |

0

(

∑

𝛽
𝐻𝛼𝛽

|

|

|

𝛾𝛽 ||
|

+ 𝑠𝛼0

)

d |𝛾𝛼|

= ∫

|𝛥𝜸|

0

(

𝑯 |𝜸| + 𝒔0
)

d |𝜸|

= |𝛥𝜸|⊤
(𝑯
2

|𝛥𝜸| + 𝒔0
)

(17)

According to the minimum work principle, the increment of shear on
each SS is so that 𝑤 is minimal. Hence the second proposed method
(named the Energy method hereafter) is based on minimising 𝑤, such
that (11) holds, that is:

𝛥𝜸 = Argmin
𝒈∈R𝑁

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝒈|⊤
(𝑯
2

|𝒈| + 𝒔
)

such that: 𝑲𝒈 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝐹11
𝛥𝐹12
𝛥𝐹21
𝛥𝐹22

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(18)

Again, (18) is a non-linear minimisation problem with linear equality
constraints.

4.2. Crystallographic reorientation

In this section, the crystallographic reorientation due to plastic
strain is developed.

Given the plastic velocity gradient 𝙇, the spin tensor is:

𝝎 = 1
2
(

𝙇 − 𝙇⊤) (19)

Let 𝑴𝜃+1 be the crystallographic orientation (represented as a rotation
matrix) at increment 𝜃 + 1. It can be inferred from that at the previous
increment (𝑴𝜃), taking into account the spin Hall (2013), Depriester
et al. (2023):

𝑴𝜃+1 = 𝑴𝜃 ⋅ exp (𝝎d𝑡) (20)

where exp denotes the matrix exponential operator. Eqs. (5), (19) and
(20) give:

𝑴𝜃+1 = 𝑴𝜃 ⋅ exp

(

∑

𝛼

(

𝙎 𝛼 −
(

𝙎 𝛼)⊤
)

𝛥𝛾𝛼
)

(21)

4.3. Evolution of the CRSSs

In order to take into account the hardening evolution law (6),
the harderning matrix should be updated at each step accordingly.
Therefore, this section provides a method to estimate the evolution of
CRSSs between two increments, based on the computed slip activities
(𝛥𝛾𝛼).

According to (14), we have2:

𝑯 (𝒔) = 𝜕𝒔
𝜕 |𝜸|

.

Therefore, the Runge–Kutta 4 (RK4) algorithm (Press, 2007) can be
used to estimate the CRSSs at time step 𝜃 + 1 as follows:

𝒔𝜃+1 ≈ 𝒔𝜃 + �̄� |𝛥𝜸| (22)

2 Recall that (14) is valid only if 𝛾𝛼 evolves monotonously.
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with

�̄� = 1
6
(

𝑯1 + 2𝑯2 + 2𝑯3 +𝑯4
)

(23)

and

𝑯1 = 𝑯
(

𝒔𝜃
)

(24a)

𝑯2 = 𝑯
(

𝒔𝜃 +𝑯1 |𝛥𝜸| ∕2
)

(24b)

𝑯3 = 𝑯
(

𝒔𝜃 +𝑯2 |𝛥𝜸| ∕2
)

(24c)

𝑯4 = 𝑯
(

𝒔𝜃 +𝑯3 |𝛥𝜸|
)

(24d)

In Eqs. (24), 𝑯 (𝒔) denotes the hardening matrix computed depending
on the CRSSs 𝒔, with respect to the power-law Eq. (6).

4.4. Estimation of the stresses

Numerous approaches have been proposed in the literature to es-
timate the local stresses from DIC, but they are more suited when
working with continuous relationship between strain rate and stress
rate, for instance on elasticity (Roux et al., 2009) or anisotropic plastic-
ity (Brosius et al., 2018). For more complex constitutive laws, such as
CP, one usually takes advantage of (CP)FEM. Unfortunately, one single
CPFEM simulation can take days to compute (Depriester et al., 2023,
e.g.). Therefore, given the estimated CRSSs and the active SSs, this
section provides a method to estimate the local stresses, thus allowing
to avoid CPFEM (meshless approach).

For every active SS, we know that the shear stress must equal the
corresponding CRSS. Hence, it is theoretically possible to infer the
stress components from the CRSS of all active SSs. As the imaged sur-
face is necessarily stress-free, we can use the plane-stress assumption:

𝝉 =
⎡

⎢

⎢

⎣

𝜎11 𝜎12 0
𝜎12 𝜎22 0
0 0 0

⎤

⎥

⎥

⎦

(25)

For each active SS 𝛼, (3) reads:

𝜏𝛼 = 𝙎 𝛼 ∶ 𝝉 = sign (𝛥𝛾𝛼) 𝑠𝛼 . (26)

Under the plane-stress assumption (25), we have:

𝜏𝛼 = 𝑆𝛼
11𝜎11 + 𝑆𝛼

22𝜎22 +
(

𝑆𝛼
12 + 𝑆𝛼

21
)

𝜎12 (27)

Let 𝛼1, 𝛼2, . . . , 𝛼𝑝 be the indices of the 𝑝 active SSs. Considering only
this set of SSs, combining (26) and (27) gives:

⎡

⎢

⎢

⎢

⎢

⎣

sign (𝛥𝛾𝛼1 ) 𝑠𝛼1
sign (𝛥𝛾𝛼2 ) 𝑠𝛼2

⋮
sign

(

𝛥𝛾𝛼𝑝
)

𝑠𝛼𝑝

⎤

⎥

⎥

⎥

⎥

⎦

= 𝑺act
⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

with 𝑺act =

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝛼1
11 𝑆𝛼1

22 𝑆𝛼1
12 + 𝑆𝛼1

21
𝑆𝛼2
11 𝑆𝛼2

22 𝑆𝛼2
12 + 𝑆𝛼2

21
⋮ ⋮ ⋮

𝑆
𝛼𝑝
11 𝑆

𝛼𝑝
22 𝑆

𝛼𝑝
12 + 𝑆

𝛼𝑝
21

⎤

⎥

⎥

⎥

⎥

⎦

(28)

Conversely, for each inactive SS 𝛽, we have:

−𝑠𝛽 < 𝜏𝛽 < 𝑠𝛽 (29)

Let 𝛽1, 𝛽2, . . . , 𝛽𝑞 be the indices of the 𝑞 inactive SSs (with 𝑝 + 𝑞 = 𝑁);
Eq. (29) reads:

⎡

⎢

⎢

⎢

⎢

⎣

−𝑠𝛽1
−𝑠𝛽2
⋮

−𝑠𝛽𝑞

⎤

⎥

⎥

⎥

⎥

⎦

< 𝑺 ina
⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

<

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝛽1
𝑠𝛽2
⋮
𝑠𝛽𝑞

⎤

⎥

⎥

⎥

⎥

⎦

with 𝑺 ina =

⎡

⎢

⎢

⎢

⎢

⎣

𝑆𝛽1
11 𝑆𝛽1

22 𝑆𝛽1
12 + 𝑆𝛽1

21
𝑆𝛽2
11 𝑆𝛽2

22 𝑆𝛽2
12 + 𝑆𝛽2

21
⋮ ⋮ ⋮

𝑆
𝛽𝑞
11 𝑆

𝛽𝑞
22 𝑆

𝛽𝑞
12 + 𝑆

𝛽𝑞
21

⎤

⎥

⎥

⎥

⎥

⎦

(30)

Hence, the components of the stress tensor can be estimated by invert-
ing (28) while keeping (30) true. There is obviously no exact solution
for this, but an approximate solution is given by the least-square
criterion:

⎡

⎢

⎢

⎣

𝜎11
𝜎22
𝜎12

⎤

⎥

⎥

⎦

≈ Argmin
𝒕∈R3

⎧

⎪

⎨

⎪

⎩

𝑝
∑

𝑖=1

( 3
∑

𝑗=1
𝑆act
𝑖𝑗 𝑡𝑗 − sign (𝛥𝛾𝛼𝑖 ) 𝑠𝛼𝑖

)2

Fig. 3. Schematic representation of the proposed algorithm: for each pixel in the
EBSD map and at each iteration (step), 𝛥𝜸 is computed first; then the crystallographic
orientation (𝑴) and the CRSSs (𝒔) are updated accordingly.

such that:

⎡

⎢

⎢

⎢

⎢

⎣

−𝑠𝛽1
−𝑠𝛽2
⋮

−𝑠𝛽𝑞

⎤

⎥

⎥

⎥

⎥

⎦

< 𝑺 ina𝒕 <

⎡

⎢

⎢

⎢

⎢

⎣

𝑠𝛽1
𝑠𝛽2
⋮
𝑠𝛽𝑞

⎤

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(31)

Eq. (31) is a non-linear minimisation problem with linear inequality
constraints.

If 𝑝 ≤ 3, 𝑺act can be singular, or close to be (ill-conditioned); in
this case, the stress cannot be estimated. It is worth mentioning that
numerical solving of (12) and (18) necessarily leads to all activities not
exactly equal to zero although the Schmid theory states that 𝛥𝛾𝛽 = 0 if
SS 𝛽 is inactive. Thus, we consider here that a SS is active if its relative
activity (see Section 5.2 for details) is greater than 5%, as suggested
by Guery et al. (2016b).

4.5. Implementation

As a summary, Fig. 3 outlines the subsequent steps used in this
paper to estimate the mechanical fields from DIC measurements, as
detailed above. This whole algorithm was implemented in MATLAB®;
the code is freely available online.3 The manipulation of SSs and other
crystallographic-related considerations were done with the aid of the
MTEX toolbox (Bachmann et al., 2010). The non-linear optimisations
with linear (in)equality constraints (12), (18) and (31) were solved with
the fmincon function in MATLAB®.

It is worth mentioning that numerical minimisers, such as fmin-
con, usually require a first guess. For the 𝐿1 method (12), the Moore–
Penrose pseudoinverse (Goodfellow et al., 2016, Chap. 2) of 𝑲 thus
provides a good candidate, for it minimises its 𝐿2-norm, whose solution
is by essence close to that of the 𝐿1 minimisation.4

5. Results

5.1. The 𝐿1 vs. the Energy methods

The 𝐿1 and the Energy methods, as detailed above, were applied on
the material introduced in Section 2. The current section presents the
results from both the methods.

3 https://github.com/DorianDepriester/SSLIP-CP/
4 This actually also applies for the Energy method (18) as both the methods

lead to almost the same results (see Section 5.1).
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Fig. 4. Slip activities (𝛥𝛾) computed with the 𝐿1 method: the straight lines illustrate the traces of the considered slip planes.

Fig. 4 illustrates the slip activity on each SS, using the gradient
values shown in Fig. 2 with the 𝐿1 method. Black lines illustrate the
grain boundaries, whereas the traces of the slip bands are represented
as grey lines in Fig. 4. This confirms that the intragranular shear bands,
evidenced by HR-DIC, are parallel to the corresponding slip traces (see
for instance the activity of [11̄0](1̄1̄1) SS). The vertical artefacts in DIC,
as reported in Section 2.2 (see Fig. 2(a)), result in the same kind of
artefacts at early stages of the deformation (Fig. 4(a)). A method is
proposed in Appendix A to reduce them.

Vermeij et al. (2023) reported the occurrence of cross slip in FCC
Ni-based superalloy, evidenced by ‘‘kinked’’ bands; conversely, no such
bands were evidenced here (see Fig. 4). This difference is probably due
to the absence of precipitates in pure copper, as opposed to the Ni-based
superalloy (Harte et al., 2020). It is also worth mentioning that slip can
occur as localisation bands, as mentioned above, but also in a diffuse
way (see for instance

[

1̄1̄0
] (

1̄11
)

in Fig. 4(c)); furthermore, localisation
bands can occur on one SS whilst diffuse slip occurs on another SS
(see for instance the slip activities for

[

11̄0
] (

1̄1̄1
)

and
[

1̄1̄0
] (

1̄11
)

in
the highlighted grain in Fig. 4(c)).

The Energy method, as detailed in Section 4.1.2, was applied on the
DIC data, as illustrated in Fig. 5. For the sake of brevity, only step 3 is
depicted in it. It appears that the results are very similar to those found
using the 𝐿1 method (See Fig. 4(c) for comparison). In order to provide
more details about the slip activities and highlight the similarities
between the two methods, Fig. 6 shows the slip activities at step 3 for
the grain highlighted in blue in Fig. 1(b) only, for both the methods.
This thus confirms that the differences between the two methods are
barely visible. In Fig. 6, the trace of the slip plane is not always
perfectly aligned with the apparent localisation band (see for instance
the activity for the

[

1̄1̄0
]

(1̄11̄) SS); this can be due to regular grid used
for EBSD indexing (rastering), which could be avoided using a finer
EBSD resolution. This small angle can also be due to a slight deviation
between SEM imaging and EBSD acquisition (because of sample tilting
for instance). Nevertheless, its seems that the misalignment here is
small enough not to impair the present analyses.

Fig. 6 also confirms that slip localisation and diffuse slip can occur
at once (see for instance

[

1̄1̄0
]

(1̄11̄) and
[

11̄0
]

(1̄1̄1) SSs), as reported
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Fig. 4. (continued).

Fig. 5. Slip activities (𝛥𝛾) computed with the Energy method (Step 3).

above. This suggests that the analysis of localisation bands is not
sufficient to fully describe the slip activity; hence the superiority of
the proposed methods (as well as that of the SSLIP algorithm (Vermeij
et al., 2023, 2024)) over slip trace-based methods.

In order to evidence the differences between the 𝐿1 and the Energy
methods, Fig. 7 shows the slip activities unravelled with the Energy
criterion against those found using the 𝐿1 method. In order to ensure
that the stitching artefacts do not impair this analysis, efforts have
been made to consider datapoints away from these artefacts only.
This confirms that both the 𝐿1 and the Energy methods are almost
equivalent here. It is worth noticing that, at least, they always lead to
consistent signs on 𝛥𝜸. Fundamental differences between the 𝐿1 and
the Energy criteria are further discussed in Section 6.1. The largest
difference between the 𝐿1 and the Energy method is reached at step
3, where work hardening plays a leading role.

In order to analyse the spatial distribution of differences between
the 𝐿1 and the Energy method, we define the 𝐿2-norm of the relative

error between the slip activity found with the 𝐿1 method and that found
with the Energy method:

𝜀 =
‖

‖

‖

𝛥𝜸𝐿1 − 𝛥𝜸Energy‖
‖

‖2
‖

‖

𝛥𝜸Energy‖
‖2

The spatial distribution of 𝜀 is illustrated in Fig. 8 for each step. It
appears that no clear relationship between the location and the error
can be raised, even in the stitching artefacts, as they are not visible in
this figure. This means that the difference between the two methods
is not related to the location (grain boundaries, twins etc.). Since the
results are almost the same with both the methods, but the energy
method is more realistic,5 only the latter will be used hereafter.

In order to check that the linear constraint (9) is always satisfied,
its residual, defined as the 𝐿2-norm of the difference between left- and

5 It will be demonstrated in Section 6.3 that it is indeed more accurate.
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Fig. 6. Details of the slip activities (𝛥𝛾) at step 3 within the grain highlighted in blue in Fig. 1(b), depending on the method.

Fig. 7. Comparison between the results obtained from the 𝐿1 and the Energy methods.

right-hand sides of (9) was computed.6 The values of the residual, as
depicted in Fig. 9, were below 1 × 10−16 for 99.9% of points. Taking
into account the round-off error, this thus confirms that the equality
constraint was almost always satisfied. The residual seems to increase
as the deformation increases; this is because the increment of gradient
(𝛥𝙁 ) is not constant between all the steps, as evidenced by the non-
evenly spaced steps in Fig. 1(a). Similarly, the residual is higher in
localisation bands because the components of 𝛥𝙁 are higher at these
locations (see Fig. 2).

5.2. Active slip systems

This section investigates the number of active slip systems for each
datapoint (pixel) at each step.

The relative slip activity of SS 𝛼, as introduced by Guery et al.
(2016b), is defined as:

𝐴𝛼 =
|𝛥𝛾𝛼|

∑

𝛽 |𝛥𝛾𝛽 |

𝐴𝛼 was computed for every datapoint away from the stitching artefact.
Fig. 10 shows the corresponding mean values of 𝐴𝛼 , once sorted in
descending order (see blue solid bars), whereas the minimal and maxi-
mal values are illustrated as error bars. On average, the most active SS
accounts for 34% of the total slip activity. At most, 10 SSs are active

6 This is consistent with the distance function used by Vermeij et al. (2023)
to define the inequality constraint.

(see upper error bars), whereas in some cases only 3 SSs are active (see
lower error bars). The orange curve in Fig. 10 illustrates the cumulative
sum of the sorted mean values. This shows that, on average, 6 SSs can
be considered active at once, for they account for 95% of total slip
activity. Considering that a SS 𝛼 is active if 𝐴𝛼 > 0.05, Fig. 11 shows the
histograms of the number of active SSs (denoted 𝑝 in Section 4.4). The
distribution of 𝑝 are almost the same for all steps. This also confirms
that, in most cases, 5 or 6 SSs are active at once. Conversely, Guery
et al. (2016b) reported that, using the same 95% criterion, only 4 SSs
were active at once in A316LN stainless steel on average. At this point,
it is impossible to conclude whether this discrepancy is because of the
materials (copper vs. austenitic steel) or the methods (DIC vs. CPFEM).
However, it will be shown in Section 6.3 that the method was identified
as the culprit. According to Fig. 11, conditions where 𝑝 = 1 or 𝑝 > 8
are very rarely met, since their frequencies are below 2.5 × 10−5 and
9.9 × 10−4, respectively. Anticipating the number of active SSs (𝑝) is
a valuable clue for the optimisation task, for this knowledge could be
used to reduce the size of the investigated space (denoted 𝑁 above),
similarly to what Vermeij et al. (2024) did.

5.3. Slip activity path

This section analyses the path followed by each SS, that is if the
shear strain on each SS changes monotonously or not.

For each datapoint, Fig. 12(a) (resp. 12(b)) shows the slip activities
at step 2 (resp. step 3), as functions of slip activities at step 1 (resp.
step 2). Again, only datapoints away from stitching artefacts were
considered here. It appears that, in general, the direction of an active
SS (sign of 𝛥𝛾) keeps constant at two subsequent steps. More precisely,
68.7% of slip activities keep the same sign between step 1 and step
2; this ratio goes to 73.7% between step 2 and step 3. This increase
suggests that the strain behaviour of the grains enters a steady-state
regime at step 3, as also suggested in Depriester et al. (2023). A possible
implication for this is that, at this stage, the local crystallographic
reorientations are sufficient to promote continuous slip activity. 55.5%
of slip activities keep the same sign between steps 1, 2 and 3.

In order to highlight the spatial distribution of the aforementioned
sign changes in slip activities, Fig. 13 shows, for each datapoint, the
number of SSs whose activity changed sign between step 1 (resp. 2)
and step 2 (resp. 3). As a result, it seems that datapoints near grain
boundaries are more likely to have consistent slip orientations between
successive steps.
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Fig. 8. Local values of the relative error in slip activities between the Energy and the 𝐿1 method (𝜀).

Fig. 9. Residuals of equality constraint (9), when using the Energy method.

Fig. 10. Histograms of mean relative slip activities (descending order) and corresponding cumulative value (orange curve). The error bars provide the recorded extrema.

Fig. 11. Histograms of the numbers of active slip systems (𝑝) for each step.

5.4. Validity of the Schmid theory

This section investigates if the Schmid theory, as detailed in Sec-
tion 3.1, is satisfied here. First, the shear stress on each SS was com-
puted with (2), assuming that the stress was homogeneously distributed
in the polycrystal, meaning that, at local scale, the stress was equal to
that applied at macroscopic level, as reported in Fig. 1(a). The reason

for this hypothesis is detailed elsewhere (Goulmy et al., 2022). Fig. 14
illustrates the slip activities as functions of the corresponding resolved
shear stress (𝜏𝛼). Globally, the slip activity seems to increase with the
resolved the shear stress, thus validating the Schmid theory. Neverthe-
less, these plots appear noisy, probably because the homogeneous stress
assumption mentioned above is not true everywhere. In 73.7% of cases,
the sign of the slip activity was consistent with that of the shear stress,
as stated in (3).

5.5. Stress estimation

The local stress was estimated through the Energy method, follow-
ing the procedure described in Section 4.4. The local values of the
tensile stress along the tensile direction (𝜎11) are depicted in Fig. 15(a).
These maps appear slightly noisy, specially in the stitching bands and
in the localisation bands. Some values even seem unrealistic (e.g. where
high compressive stress is recorded). Hence, Fig. 15(b) shows the grain-
wise median value of the tensile stress. In this map, the estimated stress
appears more uniformly distributed among all grains. This is consistent
with the results presented in earlier works on this material (Goulmy
et al., 2022; Depriester et al., 2023). The macroscopic stress was
computed as the overall median of the local stresses. Fig. 1(a) shows
the macroscopic tensile stress (𝜎11) estimated at each step, whereas
Table 3 provides all the components (𝜎11, 𝜎22 and 𝜎12). It is clear
that the estimated tensile stress is very close to the experimental one,
even though only 3 steps were used here. This accuracy is achieved
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Fig. 12. Slip activities at a given step vs. those at a previous step.

Fig. 13. Number of SSs whose activity changed mathematical sign between two
successive steps. Grain boundaries are shown as white lines.

thanks to the RK4 integration scheme (22). It also appears that the
estimation results in compressive stress along the transverse direction
(𝜎22 < 0) at step 3, which seems unrealistic here; although it cannot be
measured during the in situ tensile test, it should be close to zero.7 This
is probably because we neglect the elastic strain here; this means that
the material appears ‘‘stiffer’’ in the proposed approach than in reality,
hence an additional compressive stress to reach the same strain.

7 CPFEM simulations show that it is actually slightly positive; see
Section 6.3 for details.

Table 3
True macroscopic stress (MPa), depending on the estimation method: experimental (in
situ tensile test), from DIC measurements (Section 4.4), or from CPFEM simulations
(Section 6.3). Dot (⋅) indicates that the value cannot be estimated.

Step Experiment Estimated from DIC CPFEM simulation

1
⎡

⎢

⎢

⎣

42.8 ⋅ ⋅
⋅ ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

44.8 −1.13 ⋅
9.63 ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

38.2 −3.34 2 × 10−4

7.45 7 × 10−5

−6 × 10−3

⎤

⎥

⎥

⎦

2
⎡

⎢

⎢

⎣

96.0 ⋅ ⋅
⋅ ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

106.9 −2.32 ⋅
7.61 ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

95.8 1.41 5 × 10−3

17.1 4 × 10−3

−0.20

⎤

⎥

⎥

⎦

3
⎡

⎢

⎢

⎣

166.5 ⋅ ⋅
⋅ ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

169.9 −0.24 ⋅
−17.3 ⋅

⋅

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

171.0 2.11 −9 × 10−3

27.0 0.02
−1.34

⎤

⎥

⎥

⎦

It is worth mentioning that the method used in this paper to
estimate the local stress does not take advantage of the balance of linear
momentum equation. Therefore, a possible improvement is to regu-
larise the stress field so that the aforementioned equation is satisfied. In
addition, no neighbouring effect is considered here, although it is well
known that plastic incompatibilities can induce stress concentration
near GBs (Salvini et al., 2024, and references therein), potentially
resulting in elastic strain. The material used in the present work is
soft enough to neglect the elastic strain Depriester et al. (2023), but
a possible improvement of the proposed method is to take into account
the plastic incompatibilities.

6. Discussion

6.1. 3D representation of 𝐿1 and Energy methods

It was shown in Section 5.1 that the 𝐿1 and the Energy methods
lead to almost the same results on pure copper. Thus, this section aims
at evidencing the fundamental differences between those methods.

Fig. 16 schematically illustrates the 𝐿1-norm and the Energy func-
tion (17) in a virtual 3-dimensional space (𝛾1, 𝛾2, 𝛾3). The isovalue
surface of 𝐿1-norm is a regular octahedron (Fig. 16(a)), whereas that
for the energy function is a concave octahedron (Figs. 16(c) and 16(d)).
Minimising one of these functions such that (9) holds consists in
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Fig. 14. Slip activities of each SS, as functions of the corresponding shear stress (𝜏𝛼). Only datapoints away from the stitching artefacts were used.

Fig. 15. Estimated tensile stress (𝜎11, in MPa). White region indicates that the stress could not be estimated (𝑺act is ill-conditioned).

finding the smallest octahedron tangent to the subspace defined by (9)
(represented as a straight line in the 3D space of Fig. 16). It is clear that
in most cases, the minimum value will be reached at the edges of the
octahedrons, leading to very similar results, regardless of the function
to be minimised. However, in certain circumstances, the results can be
quite different, as evidenced by the location of the blue dots in Fig. 16.

As evidenced by Figs. 16(c) and 16(d), the larger 𝑞, the more
concave the octahedron; and the Energy method with 𝑞 = 1 (Fig. 16(b))
is equivalent to the 𝐿1. One can also demonstrate that 𝑠0 = 0 and
𝑞 = 0 leads to 𝐿2-minimisation (the octahedron becomes a sphere).
As a reminder, we used 𝑞 = 1.702, ℎ0 = 309.5MPa and 𝑠0 = 12.22MPa
here (see Table 1 for details); therefore, this explains why the 𝐿1 and
Energy methods lead to slight differences in the case of pure copper.
On a more anisotropic material (e.g. HCP material), one may expect
larger differences. For instance, different CRSSs correspond to different
scale factors of the concave octahedrons along the three directions of
Fig. 16.

6.2. Influence of the DIC window size

The aim of the section is to study the influence of the DIC resolu-
tion on the grain-wise mean and spread activities found through the
proposed method.

As recalled in Section 2.2, the DIC resolution is usually defined by
the window size 𝜑. As a reminder, all the results presented above were
obtained with 𝜑 = 1.3 μm. This value was demonstrated to be the best
compromise to evidence localisation bands with limited noise (Goulmy
et al., 2022); therefore, it will be considered as the reference value
hereafter.

Fig. 16. 3D representation of the minimised function: in 3D space (𝛾1 , 𝛾2 , 𝛾3), the
straight line illustrates the subspace defined by linear equality constraint (9). It is
coloured depending on the criterion (𝐿1 or Energy, see colourbars), whereas the blue
dots show the locations of minima. The green surfaces illustrate the corresponding
isovalue of this criterion in the 3D space. Figs. (b) to (d) were drawn with ℎ0 = 100
and 𝑠0 = 1.

International Journal of Solids and Structures 305 (2024) 113077 



D. Depriester et al.

Fig. 17. Slip activities, computed from DIC measurements made with 𝜑 = 9.6 μm.

The Energy method was applied with 𝜑 = 5.2, 9.6 and 25 μm. Fig. 17
illustrates the results with 𝜑 = 9.6 μm.

It appears that the distribution of slip activities is similar to that
found with 𝜑 = 1.3 μm (see Fig. 5 for comparison), although it is
more uniformly distributed within each grain. In order to study the
influence of the window size on the grain-wise distribution of slip
activities, let 𝐸 (𝜑) and 𝜎 (𝜑) be the grain-wise mean and the grain-wise
standard deviation of slip activities found for a given window size 𝜑,
respectively. Then, let 𝜖𝐸 (resp. 𝜖𝜎) be the relative error between 𝐸 (𝜑)
and 𝐸 (1.3 μm) (resp. 𝜎 (𝜑) and 𝜎 (1.3 μm)), so that:

𝜖𝐸 (𝜑) =
𝐸 (𝜑) − 𝐸 (1.3 μm)

𝐸 (1.3 μm)
(32a)

𝜖𝜎 (𝜑) =
𝜎 (𝜑) − 𝜎 (1.3 μm)

𝜎 (1.3 μm)
(32b)

Fig. 18 (top) illustrates 𝜖𝐸 for the three window sizes, as functions of
the inverse of grain size (equivalent diameter, denoted 𝑑 below). It
appears that, for a given window size, the spread increases roughly lin-
early as a function of 𝑑−1; and this spread also increases as the window

size increases. The dashed lines illustrates the envelope covering 68%
of values (±1std) of 𝜖𝐸 , defined as:
−𝑘
𝑑

≤ 𝜖𝐸 (𝜑) ≤ 𝑘
𝑑

The values of 𝑘 are provided in Fig. 19 as a function of 𝜑.
Fig. 18 (bottom) illustrates the relative error on the grain-wise

distribution spread (𝜖𝜎) as a function of 𝑑−1. It is clear that the standard
deviation is almost always underestimated, up to a factor of two (𝜖𝜎 =
−1). The mean values of 𝜖𝜎 (denoted 𝜖𝜎 below) are illustrated as dashed
lines in these plots, whereas they are drawn as functions of 𝜑 in Fig. 19.
Linear regressions of 𝑘 and 𝜖𝜎 , as depicted in Fig. 19, leads to:

𝑘 ≈ 0.164𝜑 (33a)

𝜖𝜎 ≈ −0.248𝜑 (33b)

Therefore, (33a) can be used to estimate the uncertainty on the grain-
wise mean slip activity at 68% significance level, based on the window
size and the grain size, whereas (33b) can be used to correct the grain-
wise spread (standard deviation). This allows to use larger window
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Fig. 17. (continued).

Fig. 18. Relative errors on the mean values and standard deviations of grain-wise distribution of slip activities (32), depending on the inverse of the grain size.

Fig. 19. Slopes of the envelope of 𝜖𝐸 (𝑘) and mean values of 𝜖𝜎 (𝜖𝜎 ) as functions of
the window size. The dashed and the dash-dotted line show the linear regressions (33)
on 𝑘 and 𝜖𝜎 , respectively.

sizes in DIC, thus a faster SEM acquisition, a reduced noise, and a
faster DIC computation. To conclude, if one wants the estimate the
slip activities at mesoscopic scale (e.g., to analyse which SSs are the

most active in a polycrystalline aggregate), larger window size would
be enough. Conversely, smaller window sizes are required if one wants
to investigate the slip activities at very local scales (e.g., for slip
transmission analysis or to study strain incompatibilities (Salvini et al.,
2024, e.g.)). Even though the localisation bands are not visible with
bare eyes when using larger window sizes, it was demonstrated in this
section that the proposed algorithm is able to provide valuable statistics
about the slip activities.

6.3. Comparison with CPFEM simulations

In this section, CPFEM is used to assess the 𝐿1 and the Energy meth-
ods, and results from DIC are compared against CPFEM simulations.

A CPFEM simulation of the in situ tensile test was performed with
the PRISMS-Plasticity software (Yaghoobi et al., 2019). Prior to this
simulation, the mesh conforming the grains was generated from EBSD
data (see Fig. 1(b)) using the MTEX2Gmsh software (Depriester and
Kubler, 2020). Experimental displacements, measured by DIC on the
border of the RoI, were used as boundary conditions on the outer edges
of the mesh. The material parameters were taken from Depriester et al.
(2023), as recalled in Table 1. The mesh was one-element thick, and
the bottom surface (in depth) and the top (imaged) were free, leading
to near-plane-stress condition.

The simulated tensile curve is illustrated in Fig. 1(a), whereas all
the simulated macroscopic stress components are provided in Table 3
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Fig. 20. Differences between the slip activities computed by CPFEM and those retrieved when applying the 𝐿1 method (a) or the Energy method (b) on the gradient provided by
CPFEM.

Fig. 21. Slip activities unravelled using the Energy method applied on the gradient tensor provided by CPFEM (a) or directly given by CPFEM (b). Step 1 in the grain highlighted
in blue in Fig. 1(b) only.

for each step. It is clear that the plane stress assumption (25) is almost
true in CPFEM, but the material also undergoes a tensile stress along
the transverse direction (𝜎22 > 0). This indicates that the meshed region
is smaller than the Representative Elementary Volume (REV) as it is
influenced by grains outside it; otherwise, the stress would be the same
as at macroscopic scale. This also confirms that 𝜎22 is not accurately
estimated from DIC (see Section 5.5).

In order to assess the 𝐿1 and the Energy methods and compare the
corresponding results against ground truth data, the 𝐿1 and the Energy
method were applied on the gradients given by CPFEM. The results are
illustrated in Fig. 20. This confirms that both the methods are almost
equivalent at steps 1 and 2, but the Energy method provides better
results at step 3. This may be because strain hardening can no longer be
neglected at larger strain. However, in some cases, both the methods
seem to fail to unfold the gradient and retrieve the slip activities. In
order to highlight such cases, Fig. 21(a) shows the results from the
Energy method, on one single grain only (that highlighted in blue in
Fig. 1(b)) at the first step. For the sake of comparison, the simulated slip
activity (directly given by CPFEM) is depicted in Fig. 21(b). This proves
that the proposed algorithm works well in this case for all SSs, except
[1̄01̄](1̄1̄1) and [101̄](1̄11̄), where the activity seems overestimated. This
may be because of a non-monotonous activity between the reference
state and step 1, which breaks the hypothesis made at (14). This is
consistent with the results presented in Section 5.3, where we showed

that the slip activity can change its sign. This can also be due to elastic
strain, which is neglected in the Energy method, but considered in
CPFEM.

Fig. 22 illustrates the grain-wise mean activity at each step, given
by the CPFEM results. Theses maps are very similar to the experimental
ones, specially those found with larger window size (𝜑 = 9.6 μm,
see Fig. 17). This suggests that the slip activity computed from DIC
with the proposed algorithm is consistent with that found by CPFEM.
It is worth reminding that CPFEM is usually enable to simulate slip
localisation, mainly because the element size is usually larger than
the band thickness (here, the thickness of the localisation bands was
100 nm to 200 nm (Goulmy et al., 2022) whereas the element size was
about 2 μm), but also because simulating such instability would require
special numerical techniques (Githens et al., 2020). Therefore, larger
window sizes may be sufficient if one wants to compare DIC-based slip
activity estimations against CPFEM. A possible application for this is to
calibrate CP parameters through an inverse analysis based on the slip
activity.

In order to help comparing CPFEM results with those found by DIC,
the grain-wise mean activities found by CPFEM are plotted against the
corresponding value found by DIC in Fig. 23. It is clear that the overall
trend is good (good consistency between CPFEM and the proposed al-
gorithm), specially about the sign of activities, although there are some
discrepancies. Indeed, for some grains, DIC measurements indicate that
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Fig. 22. Grain-wise mean slip activities, estimated from CPFEM simulations.

some plastic systems are active whereas CPFEM suggests that they are
not (see the nearly ‘‘horizontal trend’’ in Fig. 23). This can be because
of interferences with grains underneath the apparent surface, which
are not taken into account in the simulation (Githens et al., 2020;
Depriester et al., 2023). Conversely, Guery et al. (2016b) reported
that, is some cases, CPFEM suggested some activity on SSs that were
inactive according to DIC; they concluded that this error can be due
to inaccuracy of the constitutive laws. Nevertheless, Guery et al. used
the trace method to reach this conclusion, so they could have missed
diffuse slip, which can only be evidenced with approaches similar to
SSLIP, as proposed in this paper. The linear regression from the data
presented in Fig. 23, weighted by the grain area (see the dashed line in
this figure), demonstrates that, on average, the absolute value of slip
activity is 10% smaller in CPFEM than in experiments.

Fig. 24 shows the histograms of the number of active SSs in CPFEM
results (according to the 5% relative activity rule, as detailed in Sec-
tion 5.2). It appears that, in most cases, only 4 SSs are actives at once in
CPFEM results. This is consistent with the analysis performed by Guery

et al. (2016b) on austenitic stainless steel. Conversely, the distributions
illustrated in Fig. 24 are very different from the experimental ones (see
Fig. 11 for comparison). This suggests that CPFEM always underesti-
mates the number of active SSs. These differences are consistent with
the difference in stress estimation reported above.

Fig. 25 illustrates the grain-wise mean tensile stress (𝜎11), as given
by CPFEM. This figure shows that the grain-wise mean stresses are close
to those found from DIC (see Fig. 15(b) for comparison) for step 1 and
2. Conversely, the estimated stress seems quite different at step 3. This
is probably because the slip activity estimated from the Energy method
is too far from that simulated by CPFEM.

6.4. Computational performances

Vermeij et al. (2023) mentioned that 𝚏𝚖𝚒𝚗𝚌𝚘𝚗 was somehow slow
for solving (12). For all the methods proposed in this paper –𝐿1,
Energy and the Energy with noise reduction (not used in this paper, but
detailed in Appendix A)– one can estimate the analytical expressions for
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Fig. 22. (continued).

Fig. 23. Grain-wise mean activities computed from CPFEM vs. mean activities esti-
mated from DIC (through the Energy method with 𝜑 = 1.3 μm). The dot sizes are
proportional to the grain areas.

Fig. 24. Histograms of the numbers of active slip systems (𝑝) for each step, computed
from CPFEM.

Table 4
Average per-pixel running times for optimisations, depending whether the gradients
and the Hessian are provided to the minimiser or not.

Method 𝐿1 Energy Energy

Type of constraint Lin. eq.a Lin. eq.b Non lin. ineq.c

No gradient nor Hessian 0.219 s 0.237 s 8.87 s
Gradient provided, no Hessian 0.217 s 0.200 s 2.41 s
Gradient and Hessian provided 0.118 s 0.101 s 0.86 s

a Eq. (12).
b Eq. (18).
c Eq. (A.7).

the gradients and Hessians of the minimised functions (see Appendix B
for details). Providing them to the minimiser (fmincon here) avoids
using finite differences to estimate them, thus usually resulting in a
faster convergence. Table 4 gives the average per-pixel running time
for each method, depending on whether the gradient and the Hessian
are provided to the minimiser or not.8 It appears that for linear equality
constraints, providing the gradient and the Hessian roughly speeds
up the optimisation by a factor of two. For non linear inequality
constraints, as done in (A.7), the optimisation is about 10 times faster.
Note that all the proposed methods work per pixel, hence they can
easily be parallelised (e.g. using the parfor function in MATLAB®).

7. Conclusion

An algorithm, inspired by that proposed by Vermeij et al. (2023),
was used to estimate the plastic slip activity from in situ DIC measure-
ments. It takes into account the following phenomena:

• incremental straining,
• hardening evolution laws,
• crystallographic reorientation during straining.

Two methods were proposed, namely the 𝐿1 and the Energy meth-
ods. The former uses the same criterion as that proposed by Vermeij
et al., but the constraints were changed, and the implementation was

8 Tested on an Intel® Core™ i9-9880H CPU @ 2.30GHz.
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Fig. 25. Grain-wise mean values of the tensile stress (𝜎11, in MPa) computed by CPFEM.

improved to comply with the aforementioned requirements. The En-
ergy method is based on the dissipated plastic energy, with the same
constraints as for the 𝐿1 method. They successfully unravel the slip
activities, whether the latter are localised or diffuse. In this work,
both the methods almost lead to the same results, but they should
differ for more anisotropic materials (with non-cubic symmetry); work
in this direction is underway by the present authors and will be the
subject of another publication. The Energy method is more accurate,
specially at larger strain, as the optimisation criterion is more realistic.
Nevertheless, it requires to fully describe the hardening evolution laws,
which is usually not straightforward (Depriester et al., 2023).

Based on the aforementioned evolution laws and the records of slip
activities, it was shown that the tensile stress could be estimated at
macroscopic and grain scales with about 10% accuracy, even with a
limited number of increments.

The influence of DIC resolution was investigated. It was shown that
the larger the grain, the more accurate we are when characterising the
distribution of plastic activities within each grain. A set of ‘‘correction
equations’’ were provided for smaller grains.

The results were validated by CPFEM simulations, showing good
consistency in terms of active SS. However, it was shown that CPFEM
usually underestimates the number of active SSs: on average, 4 SSs were
active at once in CPFEM, whereas this number was evidenced to be 5
or 6 in HR-DIC.

In a future work, the elastic strain could be taken into account,
but this would require special numerical techniques, as the elastic
and plastic gradients are coupled in this case. Alternatively, High-
Resolution EBSD (HR-EBSD) could be used to estimate the stress at
grain scale.
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Appendix A. Toward a noise-independent criterion

The aim of this section is to propose a method to make the proposed
algorithm robust against noise, mainly in order to remove the stitching
artefacts (see Fig. 4(a) for instance). Although it is not used in this
present work, the section provides the mathematical developments for
future works.

We assume that when measuring the values of 𝙁 , a random noise 𝝐
adds, such that:

�̊� (𝑥, 𝑦) = 𝙁 (𝑥, 𝑦) + 𝝐(𝑥, 𝑦) (A.1)

where �̊� denotes the noised gradient tensor measure. We assume that
𝝐 follows a multivariate normal distribution of 2nd order random
tensors, whose mean (𝝁) and covariance (𝝈) may depend on the (𝑥, 𝑦)
coordinates, that is:

𝝐(𝑥, 𝑦) ∼  (𝝁(𝑥, 𝑦),𝝈(𝑥, 𝑦)) (A.2)

Let 𝙛 be a tensorial function, defined as follows:

𝙛 (𝒈) = 𝛥�̊� −
∑

𝛼
𝑔𝛼𝙎

𝛼 ⋅ �̊�
𝜃 (A.3)

According to (A.1) and (7), we have:

𝙛 (𝛥𝜸) = 𝛥𝙁 + 𝙕 −
∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ (𝙁 + 𝝐)

≈ 𝙕 −
∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ 𝝐 (A.4)

where 𝙕 ∼  (0, 4𝝈). Let �̃� (𝛥𝜸) be the vectorised form of 𝙛 (𝛥𝜸):

�̃� (𝛥𝜸) =
[

𝑓11 (𝛥𝜸) 𝑓21 (𝛥𝜸) 𝑓22 (𝛥𝜸) 𝑓12 (𝛥𝜸)
]⊤

Its expectation is:

�̄� (𝛥𝜸) = 𝐸
[

�̃� (𝛥𝜸)
]

= 𝐸 [Vec (𝙛 (𝛥𝜸))]

= −
∑

𝛼
𝛥𝛾𝛼�̃�𝛼�̃� (A.5)

with �̃� = Vec (𝝁) and �̃�𝛼 being the 4 × 4 block matrix so that:

Vec
(

𝙎 𝛼 ⋅ 𝝁
)

= �̃�𝛼�̃�

Let 𝞢 be the covariance on 𝙛 . Linear covariances algebra (Feller,
1957, Chap. 3) allows to infer 𝞢 from (A.4):

𝞢 = Cov [𝙕 ] + Cov

[

𝙕 ,
∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ 𝝐

]

+ Cov

[

∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ 𝝐,𝙕

]

9 https://fr.mathworks.com/matlabcentral/fileexchange/17555-light-
bartlein-color-maps (Retrieved September 3, 2024).
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+ Cov

[

∑

𝛼
𝛥𝛾𝛼𝙎 𝛼 ⋅ 𝝐

]

where Cov[𝙖, 𝙗] denotes the cross-covariance tensor between tensors 𝙖

and 𝙗 . Let �̃� be the 4 × 4 matrix corresponding to the vectorised form
of 𝞢 . It comes:

�̃� = Cov [Vec (𝙕 )] +𝑨 +𝑨⊤ + 𝑩 (A.6)

with:

Cov [Vec (𝙕 )] = Vec (Cov [𝙕 ]) = 4�̃�

𝑨 = Cov

[

Vec (𝙕 ) ,
∑

𝛼
𝛥𝛾𝛼Vec

(

𝙎 𝛼 ⋅ 𝝐
)

]

=
∑

𝛼
𝛥𝛾𝛼Cov

[

Vec (𝙕 ) ,Vec
(

𝙎 𝛼 ⋅ 𝝐
)]

=
∑

𝛼
𝛥𝛾𝛼Cov [Vec (𝙕 ) ,Vec (𝝐)]

(

�̃�𝛼)⊤

= 2�̃�
∑

𝛼
𝛥𝛾𝛼

(

�̃�𝛼)⊤

and

𝑩 = Cov

[

∑

𝛼
𝛥𝛾𝛼Vec

(

𝙎 𝛼 ⋅ 𝝐
)

]

=
∑

𝛼

∑

𝛽
Cov

[

𝛥𝛾𝛼Vec
(

𝙎 𝛼 ⋅ 𝝐
)

, 𝛥𝛾𝛽Vec
(

𝙎 𝛼 ⋅ 𝝐
)]

=
∑

𝛼

∑

𝛽
𝛥𝛾𝛼𝛥𝛾𝛽 �̃�𝛼 �̃�

(

�̃�𝛽
)⊤

To summarise, we have �̃� (𝛥𝜸) ∼ 
(

�̄� (𝛥𝜸) , �̃� (𝛥𝜸)
)

. The (squared)
Mahalanobis distance is defined as Mahalanobis (2018):

𝑑2 (𝒈) =
(

�̃� − �̄�
)⊤ �̃�−1 (�̃� − �̄�

)

According to (A.4) and (A.5), 𝑑2 (𝛥𝜸) = 0 if 𝙕 = 0 (no noise on 𝛥𝙁 ) and
𝝐 = 𝝁 (the noise on �̊� equals its mean value). In general, we want 𝑑2

to be less than a critical value 𝑑2max, which depends on a significance
level. Finally, the Energy method (18) can be changed to:

𝛥𝜸 = Argmin
𝒈

{

|𝒈|⊤
(𝑯
2

|𝒈| + 𝒔
)

such that: 𝑑2 (𝒈) < 𝑑2max

}

(A.7)

It is worth mentioning that 𝑨, and a fortiori 𝑩, can be neglected if 𝛥𝛾𝛼
are small enough.

The main difficulty here is to measure 𝝁(𝑥, 𝑦) and 𝝈(𝑥, 𝑦), as intro-
duced in (A.2). This can be done by acquiring multiple SEM images of
the same area, with no strain, then applying DIC on them. However,
this task can be very time-consuming in case of stitched images, as in
the current work.

Appendix B. Gradient and Hessian of the cost and constraint func-
tions

B.1. The 𝐿1-norm

By definition, the 𝐿1-norm is:

‖𝒈‖1 =
∑

𝛼

|

|

𝑔𝛼||

Hence, the gradient of the 𝐿1 norm is simply:

∇𝑖
(

‖𝒈‖1
)

= sign
(

𝑔𝑖
)

Therefore, the Hessian of the 𝐿1-norm is null.

B.2. The Energy function

The gradient of the Energy function, as defined in (17), is:

∇𝑖 (𝑤) =
𝜕𝑤 (𝒈)
𝜕𝑔𝑖

= 𝜕𝑤
𝜕 |
|

𝑔𝑖||

𝜕 |
|

𝑔𝑖||
𝜕𝑔𝑖

=
(

𝐻𝑖𝑘
|

|

𝑔𝑘|| + 𝑠𝑖
)

sign
(

𝑔𝑖
)

whereas its Hessian is:

∇2
𝑖𝑗 (𝑤) =

𝜕2𝑤 (𝒈)
𝜕𝑔𝑖𝜕𝑔𝑗

=
𝜕
(

𝐻𝑖𝑘
|

|

𝑔𝑘|| + 𝑠𝑖
)

𝜕𝑔𝑗
sign

(

𝑔𝑖
)

=
(

𝐻𝑖𝑘
𝜕 |
|

𝑔𝑘||
𝜕𝑔𝑗

)

sign
(

𝑔𝑖
)

= 𝐻𝑖𝑘𝛿𝑗𝑘sign
(

𝑔𝑘
)

sign
(

𝑔𝑖
)

= 𝐻𝑖𝑗sign
(

𝑔𝑖𝑔𝑗
)

.

B.3. The Mahalanobis distance

The gradient of the Mahalanobis distance is:

∇𝑖
(

𝑑2
)

=
𝜕
(

𝑑2 (𝒈)
)

𝜕𝑔𝑖

= 𝜕
𝜕𝑔𝑖

[(

𝑓𝑘 − 𝑓𝑘
)

�̃�−1
𝑘𝓁

(

𝑓𝓁 − 𝑓𝓁
)]

= 2𝛴−1
𝑘𝓁

(

𝑓𝑘 − 𝑓𝑘
) 𝜕
𝜕𝑔𝑖

(

𝑓𝓁 − 𝑓𝓁
)

+
(

𝑓𝑘 − 𝑓𝑘
)
𝜕�̃�−1

𝑘𝓁
𝜕𝑔𝑖

(

𝑓𝓁 − 𝑓𝓁
)

(B.1)

Eq. (A.3) gives:

𝜕�̃� (𝒈)
𝜕𝑔𝑖

= − 𝜕
𝜕𝑔𝑖

(

∑

𝛼
𝑔𝛼Vec

(

𝙎 𝛼 ⋅ 𝙁 𝜃)
)

= − 𝜕
𝜕𝑔𝑖

(

∑

𝛼
𝑔𝛼�̃�

𝛼�̃�

)

= −�̃� 𝑖�̃�

Similarly, (A.5) reads:

𝜕�̄� (𝒈)
𝜕𝑔𝑖

= −�̃� 𝑖�̃�

Therefore:
𝜕𝑓𝓁
𝜕𝑔𝑖

−
𝜕𝑓𝓁
𝜕𝑔𝑖

= −
[

�̃� 𝑖 (�̃� − �̃�
)

]

𝓁

= �̃� 𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

(B.2)

Analytical equation for
𝜕�̃�−1

𝑘𝓁
𝜕𝑔𝑗

in (B.1) is hard to estimate, but one can
neglect 𝑩 in (A.6), so that:

�̃� ≈ 4�̃�
(

𝜹 + 1
2
(

𝑫⊤ + �̃�−1𝑫�̃�
)

)

(B.3)

with

𝑫 (𝒈) =
∑

𝑖
𝑔𝑖�̃�

𝑖 (B.4)

and 𝜹 the 𝑁 ×𝑁 identity matrix. One can easily demonstrate that the
infinity norms of 𝑫 and �̃�−1𝑫�̃� are below unity; thus, the truncated
Neumann series of the inverse of (B.3) gives:

𝜮−1 ≈
(

𝜹 − 1
2
(

𝑫⊤ + �̃�−1𝑫�̃�
)

) �̃�−1

4

≈ �̃�−1

4
− 1

8
(

𝑫⊤�̃�−1 + �̃�−1𝑫
)

. (B.5)
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Therefore, (B.4) and (B.5) read:
𝜕�̃�−1

𝑘𝓁
𝜕𝑔𝑖

≈ −1
8

( 𝜕𝐷𝑞𝑘

𝜕𝑔𝑖
�̃�−1𝑞𝓁 + �̃�−1𝑘𝑞

𝜕𝐷𝑞𝓁

𝜕𝑔𝑖

)

≈ −1
8

(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

(B.6)

Combining (B.1), (B.2) and (B.6) gives:

∇𝑖
(

𝑑2) =
(

𝑓𝑘 − 𝑓𝑘
)

[

2�̃�−1
𝑘𝓁 �̃�

𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

− 1
8

(

�̃�−1
𝑞𝓁𝑆

𝑖
𝑞𝑘 + �̃�−1

𝑘𝑞 𝑆
𝑖
𝑞𝓁

)

(

𝑓𝓁 − 𝑓𝓁
)

]

(B.7)

=
(

�̃� − �̄�
)⊤

[

2�̃�−1𝑺 𝑖 (�̃� − �̃�
)

− 1
8

(

�̃�−1𝑺 𝑖 +
(

�̃�−1𝑺 𝑖)⊤
)

(

�̃� − �̄�
)

]

According to (B.7), the Hessian of the Mahalanobis distance is:

∇2
𝑖𝑗

(

𝑑2) =
𝜕
(

𝑓𝑘 − 𝑓𝑘
)

𝜕𝑔𝑗

[

2�̃�−1
𝑘𝓁 �̃�

𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

− 1
8

(

�̃�−1
𝑞𝓁 �̃�

𝑖
𝑞𝑘 + �̃�−1

𝑘𝑞 �̃�
𝑖
𝑞𝓁

)

(

𝑓𝓁 − 𝑓𝓁
)

]

+
(

𝑓𝑘 − 𝑓𝑘
)

[

2
𝜕�̃�−1

𝑘𝓁

𝜕𝑔𝑗
�̃� 𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

− 1
8

(

�̃�−1
𝑞𝓁 �̃�

𝑖
𝑞𝑘 + �̃�−1

𝑘𝑞 �̃�
𝑖
𝑞𝓁

) 𝜕
(

𝑓𝓁 − 𝑓𝓁
)

𝜕𝑔𝑗

]

Eqs. (B.2) and (B.6) give:

∇2
𝑖𝑗
(

𝑑2
)

= �̃�𝑗
𝑘𝑝

(

�̃�𝑝 − 𝐹𝑝
)

[

2�̃�−1
𝑘𝓁 �̃�

𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

− 1
8

(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

(

𝑓𝓁 − 𝑓𝓁
)

]

+
(

𝑓𝑘 − 𝑓𝑘
)

[−1
4

(

�̃�−1𝑞𝓁 �̃�
𝑗
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑗
𝑞𝓁

)

�̃� 𝑖
𝓁𝑞

−1
8

(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

�̃�𝑗
𝓁𝑞

]

(

�̃�𝑞 − 𝐹𝑞
)

(B.8)

Taking advantage of the symmetry of �̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘+ �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁 in (B.8), one can

recognise that:

�̃�𝑗
𝑘𝑝

(

�̃�𝑝 − 𝐹𝑝
)

(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

(

𝑓𝓁 − 𝑓𝓁
)

=
(

𝑓𝑘 − 𝑓𝑘
)

×
(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

�̃�𝑗
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

Therefore, the Hessian of the Mahalanobis distance is:

∇2
𝑖𝑗
(

𝑑2
)

=
(

�̃�𝑝 − 𝐹𝑝
)

[

2�̃�𝑗
𝑘𝑝�̃�

−1
𝑘𝓁 �̃�

𝑖
𝓁𝑞

(

�̃�𝑞 − 𝐹𝑞
)

− 1
4
𝑇 𝑖𝑗
𝑝𝓁

(

𝑓𝓁 − 𝑓𝓁
)

]

(B.9)

with

𝑇 𝑖𝑗
𝑝𝓁 = �̃�𝑗

𝑘𝑝

(

�̃�−1𝑞𝓁 �̃�
𝑖
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑖
𝑞𝓁

)

+ �̃� 𝑖
𝑘𝑝

(

�̃�−1𝑞𝓁 �̃�
𝑗
𝑞𝑘 + �̃�−1𝑘𝑞 �̃�

𝑗
𝑞𝓁

)

(B.10)

Eqs. (B.9) and (B.10) are equivalent to:

∇2
𝑖𝑗
(

𝑑2
)

=
(

�̃� − �̃�
)⊤

[

2
(

�̃�𝑗
)⊤

�̃�−1�̃� 𝑖 (𝑬 − 𝑭 ) − 1
4
𝑻 𝑖𝑗 (�̃� − �̄�

)

]

with

𝑻 𝑖𝑗 =
(

�̃�𝑗
)⊤

(

�̃�−1�̃� 𝑖 +
(

�̃�−1�̃� 𝑖
)⊤

)

+
(

�̃� 𝑖
)⊤

(

�̃�−1�̃�𝑗 +
(

�̃�−1�̃�𝑗
)⊤

)
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Ser. A (2008-) 80, S1–S7.

Maraghechi, S., Hoefnagels, J., Peerlings, R., Rokoš, O., Geers, M., 2019. Correction
of scanning electron microscope imaging artifacts in a novel digital image correla-
tion framework. Exp. Mech. 59, 489–516. http://dx.doi.org/10.1007/s11340-018-
00469-w.

Mello, A.W., Book, T.A., Nicolas, A., Otto, S.E., Gilpin, C.J., Sangid, M.D., 2017.
Distortion correction protocol for digital image correlation after scanning electron
microscopy: Emphasis on long duration and ex-situ experiments. Exp. Mech. (ISSN:
1741-2765) 57 (9), 1395–1409. http://dx.doi.org/10.1007/s11340-017-0303-1.

Nemat-Nasser, S., 2004. Plasticity: a Treatise on Finite Deformation of Heterogeneous
Inelastic Materials. Cambridge University Press.

Peirce, D., Asaro, R., Needleman, A., 1982. An analysis of nonuniform and localized
deformation in ductile single crystals. Acta Metall. (ISSN: 0001-6160) 30 (6),
1087–1119. http://dx.doi.org/10.1016/0001-6160(82)90005-0.

Press, W.H., 2007. Numerical Recipes: the Art of Scientific Computing, third ed.
Cambridge University Press, Cambridge, UK, ISBN: 978-0-511-33555-6, OCLC:
748025266.

Rouwane, A., Texier, D., Périé, J.N., Dufour, J.E., Stinville, J.C., Passieux, J.C.,
2024. High resolution and large field of view imaging using a stitching
procedure coupled with distortion corrections. Opt. Laser Technol. (ISSN: 0030-
3992) 177, 111165. http://dx.doi.org/10.1016/j.optlastec.2024.111165, URL https:
//www.sciencedirect.com/science/article/pii/S0030399224006236.

Roux, S., Réthoré, J., Hild, F., 2009. Digital image correlation and fracture: an advanced
technique for estimating stress intensity factors of 2D and 3D cracks. J. Phys.
D: Appl. Phys. 42 (21), 214004. http://dx.doi.org/10.1088/0022-3727/42/21/
214004.

Salvini, M., Grilli, N., Demir, E., He, S., Martin, T., Flewitt, P., Mostafavi, M.,
Truman, C., Knowles, D., 2024. Effect of grain boundary misorientation and carbide
precipitation on damage initiation: A coupled crystal plasticity and phase field
damage study. Int. J. Plast. (ISSN: 0749-6419) 172, 103854. http://dx.doi.org/
10.1016/j.ijplas.2023.103854, URL https://www.sciencedirect.com/science/article/
pii/S0749641923003388.

Sperry, R., Harte, A., Quinta da Fonseca, J., Homer, E.R., Wagoner, R.H., Full-
wood, D.T., 2020. Slip band characteristics in the presence of grain boundaries
in nickel-based superalloy. Acta Mater. (ISSN: 1359-6454) 193, 229–238. http:
//dx.doi.org/10.1016/j.actamat.2020.04.037, URL https://www.sciencedirect.com/
science/article/pii/S1359645420303025.

Stinville, J., Charpagne, M., Maaß, R., Proudhon, H., Ludwig, W., Callahan, P.,
Wang, F., Beyerlein, I., Echlin, M., Pollock, T., 2023. Insights into plas-
tic localization by crystallographic slip from emerging experimental and
numerical approaches. Annu. Rev. Mater. Res. (ISSN: 1545-4118) 53 (Vol-
ume 53, 2023), 275–317. http://dx.doi.org/10.1146/annurev-matsci-080921-
102621, URL https://www.annualreviews.org/content/journals/10.1146/annurev-
matsci-080921-102621.

Thiruselvam, N.I., Jeyaraam, R., Subramanian, S.J., Sankaran, S., 2021. Deformation
heterogeneity in copper oligocrystals using high-resolution stereo DIC. Materi-
alia (ISSN: 2589-1529) 18, 101164. http://dx.doi.org/10.1016/j.mtla.2021.101164,
URL https://www.sciencedirect.com/science/article/pii/S2589152921001678.

Thomas, R., Lunt, D., Atkinson, M.D., Quinta da Fonseca, J., Preuss, M., Barton, F.,
O’Hanlon, J., Frankel, P., 2019. Characterisation of irradiation enhanced strain lo-
calisation in a zirconium alloy. Materialia (ISSN: 2589-1529) 5, 100248. http://dx.
doi.org/10.1016/j.mtla.2019.100248, URL https://www.sciencedirect.com/science/
article/pii/S2589152919300444.

Vermeij, T., Peerlings, R.H.J., Geers, M.G.D., Hoefnagels, J.P.M., 2023. Auto-
mated identification of slip system activity fields from digital image correla-
tion data. Acta Mater. (ISSN: 1359-6454) 243, 118502. http://dx.doi.org/10.
1016/j.actamat.2022.118502, URL https://www.sciencedirect.com/science/article/
pii/S1359645422008795.

Vermeij, T., Slokker, G., Mornout, C., König, D., Hoefnagels, J., 2024. + SSLIP:
Automated radon-assisted and rotation-corrected identification of complex HCP slip
system activity fields from DIC data. arXiv preprint arXiv:2408.01087.

Wang, L., Zheng, Z., Phukan, H., Kenesei, P., Park, J.-S., Lind, J., Suter, R.,
Bieler, T., 2017. Direct measurement of critical resolved shear stress of pris-
matic and basal slip in polycrystalline Ti using high energy X-ray diffraction
microscopy. Acta Mater. (ISSN: 1359-6454) 132, 598–610. http://dx.doi.org/10.
1016/j.actamat.2017.05.015, URL https://www.sciencedirect.com/science/article/
pii/S1359645417303920.

Yaghoobi, M., Ganesan, S., Sundar, S., Lakshmanan, A., Rudraraju, S., Allison, J.E.,
Sundararaghavan, V., 2019. PRISMS-plasticity: An open-source crystal plasticity
finite element software. Comput. Mater. Sci. (ISSN: 0927-0256) 169, 109078. http:
//dx.doi.org/10.1016/j.commatsci.2019.109078, URL https://www.sciencedirect.
com/science/article/pii/S0927025619303696.

Zecevic, M., Beyerlein, I.J., Knezevic, M., 2018. Activity of pyramidal I and II <c+a>
slip in Mg alloys as revealed by texture development. J. Mech. Phys. Solids
(ISSN: 0022-5096) 111, 290–307. http://dx.doi.org/10.1016/j.jmps.2017.11.004,
URL https://www.sciencedirect.com/science/article/pii/S0022509617307779.

International Journal of Solids and Structures 305 (2024) 113077 

http://dx.doi.org/10.1093/micmic/ozad002
http://arxiv.org/abs/https://academic.oup.com/mam/article-pdf/29/2/580/49764551/ozad002.pdf
http://arxiv.org/abs/https://academic.oup.com/mam/article-pdf/29/2/580/49764551/ozad002.pdf
http://arxiv.org/abs/https://academic.oup.com/mam/article-pdf/29/2/580/49764551/ozad002.pdf
http://dx.doi.org/10.1029/2004EO400002
http://dx.doi.org/10.1029/2004EO400002
http://dx.doi.org/10.1029/2004EO400002
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004EO400002
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004EO400002
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2004EO400002
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb31
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb31
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb31
http://dx.doi.org/10.1007/s11340-018-00469-w
http://dx.doi.org/10.1007/s11340-018-00469-w
http://dx.doi.org/10.1007/s11340-018-00469-w
http://dx.doi.org/10.1007/s11340-017-0303-1
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb34
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb34
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb34
http://dx.doi.org/10.1016/0001-6160(82)90005-0
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb36
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb36
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb36
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb36
http://refhub.elsevier.com/S0020-7683(24)00436-0/sb36
http://dx.doi.org/10.1016/j.optlastec.2024.111165
https://www.sciencedirect.com/science/article/pii/S0030399224006236
https://www.sciencedirect.com/science/article/pii/S0030399224006236
https://www.sciencedirect.com/science/article/pii/S0030399224006236
http://dx.doi.org/10.1088/0022-3727/42/21/214004
http://dx.doi.org/10.1088/0022-3727/42/21/214004
http://dx.doi.org/10.1088/0022-3727/42/21/214004
http://dx.doi.org/10.1016/j.ijplas.2023.103854
http://dx.doi.org/10.1016/j.ijplas.2023.103854
http://dx.doi.org/10.1016/j.ijplas.2023.103854
https://www.sciencedirect.com/science/article/pii/S0749641923003388
https://www.sciencedirect.com/science/article/pii/S0749641923003388
https://www.sciencedirect.com/science/article/pii/S0749641923003388
http://dx.doi.org/10.1016/j.actamat.2020.04.037
http://dx.doi.org/10.1016/j.actamat.2020.04.037
http://dx.doi.org/10.1016/j.actamat.2020.04.037
https://www.sciencedirect.com/science/article/pii/S1359645420303025
https://www.sciencedirect.com/science/article/pii/S1359645420303025
https://www.sciencedirect.com/science/article/pii/S1359645420303025
http://dx.doi.org/10.1146/annurev-matsci-080921-102621
http://dx.doi.org/10.1146/annurev-matsci-080921-102621
http://dx.doi.org/10.1146/annurev-matsci-080921-102621
https://www.annualreviews.org/content/journals/10.1146/annurev-matsci-080921-102621
https://www.annualreviews.org/content/journals/10.1146/annurev-matsci-080921-102621
https://www.annualreviews.org/content/journals/10.1146/annurev-matsci-080921-102621
http://dx.doi.org/10.1016/j.mtla.2021.101164
https://www.sciencedirect.com/science/article/pii/S2589152921001678
http://dx.doi.org/10.1016/j.mtla.2019.100248
http://dx.doi.org/10.1016/j.mtla.2019.100248
http://dx.doi.org/10.1016/j.mtla.2019.100248
https://www.sciencedirect.com/science/article/pii/S2589152919300444
https://www.sciencedirect.com/science/article/pii/S2589152919300444
https://www.sciencedirect.com/science/article/pii/S2589152919300444
http://dx.doi.org/10.1016/j.actamat.2022.118502
http://dx.doi.org/10.1016/j.actamat.2022.118502
http://dx.doi.org/10.1016/j.actamat.2022.118502
https://www.sciencedirect.com/science/article/pii/S1359645422008795
https://www.sciencedirect.com/science/article/pii/S1359645422008795
https://www.sciencedirect.com/science/article/pii/S1359645422008795
http://arxiv.org/abs/2408.01087
http://dx.doi.org/10.1016/j.actamat.2017.05.015
http://dx.doi.org/10.1016/j.actamat.2017.05.015
http://dx.doi.org/10.1016/j.actamat.2017.05.015
https://www.sciencedirect.com/science/article/pii/S1359645417303920
https://www.sciencedirect.com/science/article/pii/S1359645417303920
https://www.sciencedirect.com/science/article/pii/S1359645417303920
http://dx.doi.org/10.1016/j.commatsci.2019.109078
http://dx.doi.org/10.1016/j.commatsci.2019.109078
http://dx.doi.org/10.1016/j.commatsci.2019.109078
https://www.sciencedirect.com/science/article/pii/S0927025619303696
https://www.sciencedirect.com/science/article/pii/S0927025619303696
https://www.sciencedirect.com/science/article/pii/S0927025619303696
http://dx.doi.org/10.1016/j.jmps.2017.11.004
https://www.sciencedirect.com/science/article/pii/S0022509617307779

	Slip identification from HR-DIC/EBSD: Incorporating Crystal Plasticity constitutive laws
	Introduction
	Materials and methods
	Materials
	DIC measurements

	Theory
	The Schmid theory
	Work hardening

	Calculation
	Estimation of the plastic activity
	The L1 method
	The Energy method

	Crystallographic reorientation
	Evolution of the CRSSs
	Estimation of the stresses
	Implementation

	Results
	The L1 vs. the Energy methods
	Active slip systems
	Slip activity path
	Validity of the Schmid theory 
	Stress estimation

	Discussion
	3D representation of L1 and Energy methods
	Influence of the DIC window size
	Comparison with CPFEM simulations
	Computational performances

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Code and data availability
	Acknowledgements
	Appendix A. Toward a noise-independent criterion
	Appendix B. Gradient and Hessian of the cost and constraint functions
	The L1-norm
	The Energy function
	The Mahalanobis distance

	References


