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ABSTRACT

This paper presents a new method to deal with thermomechanical topology optimisation (TO) problems based on
a pseudo-density algorithm reformulated in the context of Non Uniform Rational Basis Spline (NURBS) entities,
Specifically, a NURBS entity is used to represent the topological descriptor, providing an implicit filtering effect
thanks to the local support propriety. The problem is formulated in the most general case of inhomogeneous
Neumann-Dirichlet boundary conditions and design-dependent thermal sources and thermomechanical loads.
In this context, a study on the combined effect of design-dependent heat sources, thermomechanical loads and
applied forces and displacements on the optimal topologies is carried out. Furthermore, the influence of the
penalisation schemes involved in the definition of the stiffness matrix, conductivity matrix, thermal loads and
thermal sources on the optimised topology is investigated through a wide campaign of sensitivity analyses, Finally,
sensitivity analyses are also conducted to investigate the influence of the integer parameters of the NURBS entity

on the optimised solution. The effectiveness of the approach is tested on 2D and 3D benchmark problems.

1. Introduction

Topology optimisation (TO) methods constitute innovative ap-
proaches to design products and components due to their intrinsic ability
to find unconventional optimised solutions by starting from scratch. The
vast majority of works on TO available in the literature focuses on struc-
tural problems subjected to external design-independent loads. In this
framework, the goal is to maximise the structural stiffness while re-
specting a design constraint on the volume: the merit function used to
evaluate the stiffness is usually related to the work of external forces,
which is equal to twice the strain energy. In the last decades, several ap-
proaches for TO have been formulated, but the density-based methods
[1,2] and the level set method (LSM) [3-5] constitute the most known
and used.

This work focuses exclusively on the former class of methods.
Density-based TO algorithms are based on a fictitious density function
which varies in the range ]0, 1], where the two bounds represent the ab-
sence (void phase) and presence (solid phase) of the material within the
design domain. In the context of density-based TO algorithms, the con-
vergence towards black and white designs is guaranteed through the
introduction of a dedicated penalisation scheme, which aims to avoid
meaningless intermediate values of the pseudo-density field, like the
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solid isotropic material with penalisation (SIMP) [6] or the rational ap-
proximation of material properties (RAMP) [7] ones. The success of this
method is due to its compactness and efficiency, but some drawbacks
have to be considered. Firstly, the topological descriptor relies on the
mesh of the finite element (FE) model, hence the boundary of the topol-
ogy is not available in a computer-aided design (CAD) compatible form
at the end of the process. To recover the boundary of the topology, a
time-consuming process of reconstruction/reassembly is thus needed.
Secondly, dedicated filtering techniques or projection methods must
be introduced in the problem formulation to reduce the well-known
checkerboard effect and the mesh-dependency of the solution [8,9].
Some of the above issues can be overcome by reformulating the
classic density-based TO algorithm in the context of the non-uniform
rational basis spline (NURBS) entities [10-12], as done in [13,14]. This
method is characterised by some interesting features corresponding to
just as many advantages. Firstly, the pseudo-density field is described by
a continuous NURBS entity of dimension D + | (where D is the dimen-
sion of the numerical model of the structure), i.e., a purely geometrical
entity, which avoids the dependence of the topological descriptor on
the mesh of the FE model. In addition this method is fully compati-
ble with CAD software since the topology boundary is available at each
iteration, limiting/avoiding post-processing operations to recover the
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Nomenclature

Acronyms
BC boundary condition
BP benchmark problem

B-spline basis spline
CAD computer-aided design

CNLPP  constrained non-linear programming problem
CcP control point
DC design case

DDL design-dependent load

DOF degree of freedom

FE finite element

GCMMA globally-convergent method of moving asymptotes
LSM level set method

NURBS non-uniform rational basis spline

RAMP  rational approximation of material properties
SIMP solid isotropic material with penalisation

TO topology optimisation

solution boundary [14,15]. Furthermore, the checkerboard effect can be
reduced/avoided by exploiting the local support property of the NURBS
basis function [12], which constitutes an efficient implicit filter associ-
ated with the definition of the NURBS entity.

Nowadays, modern engineering applications in different sectors, such as
aerospace, energy and biomedical fields, often require multiphysics (or
multi-field) analyses. However, when considering multiphysics analy-
ses, such as thermomechanical, electromechanical or aeroelastic sim-
ulations, the loads applied to the structure implicitly depend on the
current topology: this aspect significantly increase the complexity of
the TO problem. The works on TO problems involving design-dependent
loads (DDLs) are scarce and they were initially carried out by Bruyneel
and Duysinx [16], who focused on self-weight, pointing out that the
problem formulation does not correspond to a natural extension of the
classical TO problem with prescribed external loads.

In this context, a class of TO problems involving DDLs is constituted
by the thermomechanical problems [17-20]. Thermal strains can be a
source of failure for mechanical components operating at high tempera-
tures, requiring structural designs able to reduce the associated effects.
An efficient TO framework is hence fundamental for several devices,
such as semi-conductors electronics, heat exchangers, turbine blades,
cooling systems. In thermomechanical problems, the DDLs depend on
the topological descriptor both implicitly and explicitly. Specifically,
thermal sources and inertial loads depend explicitly on the topological
variables, whereas thermal loads derived from thermal strains depend
implicitly on the topological descriptors through the temperature field,
which is the outcome of the thermal analysis. Indeed, two different equi-
librium systems, one for the thermal problem and one for the structural
problem [21-24] are solved by usually considering a weak coupling be-
tween the different physics.

The steady-state heat conduction problem constitutes the most sim-
ple case in this class of problems and it is examined in different works
[25-29]. Zhuang and Xiong [30] have discussed the case with a temper-
ature constraint for transient-state heat conduction. Among the above
studies, in [31,32] it is highlighted that the presence of thermal loads
increases the complexity of the TO problem. This is related to the choice
of the correct penalisation scheme for the tensor describing the physics
at the basis of thermomechanical analyses, i.e., elasticity tensor, thermal
conductivity tensor and tensor of the coefficients of thermal expansion.
Indeed, if the different penalisation schemes are not accurately defined,
it is difficult to avoid intermediate density values in the final design
because the volume constraint is not active for minimum compliance
problem when considering thermomechanical analyses, thus the solu-
tion is not located on the boundary of the feasible region. To overcome
this problem, Gao and Zhang [33] have introduced a thermal stress coef-
ficient, which can be penalised to control simultaneously the structural
stiffness and the DDLs, simplifying the definition of thermomechani-
cal problems. In the same work, a comparison between SIMP and RAMP
schemes is performed, demonstrating that better results can be achieved
with the latter scheme. Pedersen and Pedersen [34,35] demonstrated
the substantial difference between minimum compliance designs and
maximum strength designs when thermomechanical analyses are con-

sidered, proposing an alternative method to overcome this discrepancy
based on the von Mises stress minimisation. In [36], a thermomechan-
ical TO problem with stress constraints is presented, while a study on
the penalisation method of a linear transient thermomechanical prob-
lem is proposed in [37]. Takezawa et al. [38] conducted a study on
topology optimisation of thermoelastic structures with optimisation con-
straints on both stress and thermal conductivity using the volume of the
continuum as a cost function to minimise. A similar study considering
von Mises stress constraints is presented by Deaton and Grandhi [36].
Moreover, the evolutionary structural optimisation method has been
applied to thermoelastic and heat transfer problems to investigate com-
bined thermal and structural criteria and heat conduction [26], while in
[33,39] the bi-directional evolutionary structural optimisation method
is used to design heat conducting structures in presence of DDLs. In
[40,41], the LSM is used to perform a stiffness design on a structure
subjected to an uniform temperature loading. In this context, Liu and
Tovar [42] compared two different formulations of the thermoelastic
TO problems: compliance minimisation with a constraint on the volume
and mass minimisation with a constraint on the maximum displacement.
In a recent work, Zhang [43] introduced, firstly, a formulation of the
TO problem including a stress constraint, and secondly, a reliability-
based method to overcome the issues related to the first formulation,
i.e., singularity, local nature of the stress and nonlinear behaviour of
stress constraints [44]. The moving morphable void approach has been
introduced by Fang et al. [45] to deal with thermoelastic TO problems
using basis spline (B-spline) to describe the boundary of the “void” phase
in the design domain and its evolution during the optimisation process.
Inspired by the aforementioned works, thermomechanical TO problems
are formulated and addressed in the framework of the NURBS-density-
based TO method in this paper. Specifically, they are formulated, for the
first time to the best of the authors’ knowledge, by considering the most
general case of inhomogeneous Neumann-Dirichlet boundary conditions
and the presence of thermal sources depending on the topological de-
scriptor during the thermal analysis. The generalised compliance [46]
is considered as a cost function subject to an equality constraint on the
volume. To this purpose, suitable interpolation schemes are used to pe-
nalise the elasticity matrix, the thermal conductivity matrix, the thermal
sources and the vector of the thermal loads. In this context, a wide cam-
paign of sensitivity analyses is carried out to study the influence of the
different penalisation schemes and of the integer parameters involved
in the definition of the NURBS entity on the optimised topology. More-
over, the numerical framework presented in this paper is coupled with
a commercial FE code in order to show its potential and versatility.
The effectiveness of the proposed method is tested on both 2D and 3D
benchmark structures.

The paper is organised as follows. An overview on the NURBS density-
based method and the mathematical formulation of the thermomechan-
ical TO problems are introduced in Section 2. The penalisation schemes
used in this work are presented in Section 3. Numerical results are shown
and discussed in Section 4, while Section 5 ends the paper with some
concluding remarks and prospects.



Notation Upper-case bold letters and symbols are used to indicate ma-
trices, while lower-case bold letters and symbols indicate column vec-
tors.

2. The NURBS-density-based method

The mathematical background of the NURBS-density-based method
in the framework of TO problems of structures subjected to design-
independent load is described in detail in [13,46,47]. The main features
concerning the approach are summarised in the most general case of 3D
problems in the following.

2.1. Design variables

Let D := {(x;.x;.x3) €R? | x; € [0,L;]. j = 1.2,3.] be a com-
pact Euclidean space, equipped with the Cartesian orthogonal frame
O(x).x;.x3), representing the design domain, wherein L; is the char-
acteristic length of the domain along the x; axis. In the context of the
NURBS-density-based method, for a 3D problem, the topological vari-
able, i.e., is the pseudo-density, is represented by a 4D hyper-surface.
The first three coordinates of the hyper-surface are used to represent
the design domain, whilst the latter is the pseudo-density, which reads:

nomom

PG = 2 D D Ry, (€1 60 P 1
1 =0iy=lti;=l

In Eq. (1), Piyiyiy 15 the value of the pseudo-density at the generic control

point (CP) of the NURBS entity, while R, , ; is the piece-wise rational

basis function that depends on the Berstein’s polynomials N ) of

degree p, (k= 1....,3) through the relationship:

@i igiy nk\zl Ni.py (k)

R; i, =
(L] "y N N > N
zh =0 ZIx\<=l) k=1 Nh RS (€ )wll 1213

(2)

where @, i, represents the weight associated with each CP and {, €

[0, 1] is the k-th parametric coordinate, which reads:
N =123 3)
;1 - L_)' J=1403. (

The Berstein’s polynomials along each parametric direction N; . (5})
are recursively defined over the knot vector v'*', and their mathematical
form together with the associated algorithm can be found in [12]. For
more details on the meaning of the different parameters involved in the
definition of NURBS hyper-surface, the interested reader is referred to
[12,46].

The set of CPs forms the control hyper-net [12], which is composed
of a total number of CPs equal to:

N

nep = H("‘ + l). (4)
1=l

The shape of the NURBS entity is influenced by several parameters, of

which only the pseudo-density values at the CPs and the associated

weights are considered as design variables and stored in the arrays &,

and &,:

&l = 1P000s o+ Py mymy 1 &3 2= (000 s O o ). E1.E2 ER™FL ()

According to Eq. (5), the number of design variables is at most n, =
2ncp in the case of NURBS hyper-surfaces. The remaining parameters are
referred to as design parameters and are set a priori at the beginning of
the optimisation process, These parameters consist of the degrees of the
Bernstein polynomials, the number of control CPs and the knot vector
components. Some general rules have been provided in [13,14,46] to
define these quantities, specifically, the inner components of the knot
vectors are evenly distributed in the interval [0, 1]. The degree and the
number of CPs along each parameter direction of the NURBS entity are

defined to satisfy the minimum length scale constraint (imposed by the
minimum dimension that can be manufactured with the chosen process)
according to the guidelines provided in [48]. Basically, the higher the
number of CPs (or the lower the degrees), the smaller the local support
of the NURBS entity, and thus thin topological features can be obtained.

For TO problems, the number of variables is usually high, so perform-
ing a numerical evaluation of the gradient of objective and constraint
functions through finite differences is not recommended. Thus, deriving
the formal expression of the gradient of physical requirements included
in the problem formulation is a mandatory task to accelerate the opti-
misation process, In the context of the NURBS density-based method,
the derivation of the formal expression of the gradient of the physi-
cal requirements is achieved by exploiting the local support property
of Bernstein's polynomials [12,46]. The local support of the generic CP
reads:

S, =585, =P WY
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where v/’ is the generic component of the knot vector along the j-th
parametric direction and the triplet (i, ,, ;) identifies a CP or a weight
and can be replaced by a linear index r defined as:

r=14+ip+ (i, = Ding+ 1)+ 05 = Ding + Diny + 1), (7)
2.2. Cost function

When thermomechanical loads are applied to the structure in the
general case of non-zero Neumann-Dirichlet BCs [46], two governing
equations are involved in the formulation of the TO problem. Specif-
ically, this paper considers only weak coupling between thermal and
structural analyses. In this context, the thermal problem is solved first
and the resulting temperature field is then imported into the structural
analysis to evaluate the thermal strains and to determine the displace-
ment field. Regarding the thermal problem, only heat conduction prob-
lems in steady state regime are considered. The governing equation of
the thermal equilibrium reads:

K,0=w. 0.9 eRrNwor K, e RVowor< Vo (8)
where Nypop is the overall number of thermal degrees of freedom
(DOFs), i.e., the nodal temperatures, before the application of BCs, K,
is the non-reduced thermal conductivity matrix, while & and y are the

vectors of nodal temperatures and the nodal thermal loads, respectively.
After applying BCs and reordering DOFs, Eq. (8) can be rewritten as:

& ()
K. K Oy ¥ie
with:

6 :=SR(9.1,,M-) Y =M (W.I@n()

Oge =R (0.15). wyc =R (. 14).

K, :=9‘(Ro~1mc-lasc)- Kspe :=9‘(Re~lasc-la)-

Kg :=‘:R(R0'IG'IU)' (10)
0. yeE RN’“"‘. OBC' Yae € [RN”'CXNHBC.

K, € RNmwor*Nar | Konc € R Veor* NepcXNope |
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where R is the operator introduced in [46] which returns the matrix
M =0 (M, R,C) obtained by deleting the rows corresponding to the
indices belonging to the set R and the columns corresponding to indices
belonging to the set C. In the above formula, the sets I, C {i |1 £/ <
Nopor) and Type € {i| 1 €i < Nypop) are two generic sets of indices
such that: I, Iyge =@, meas (I, ) = Ngpop, meas (Iype ) = Ngpe and
Nopor + Nage = Napor (1-€., Nyge is the number of imposed tempera-
tures, whilst Nypop is the number of unknown temperatures).



In Eq. (9), 0 and O are the unknown and prescribed temperatures,
respectively, y is the vector of external thermal loads, whilst y g is the
vector of nodal thermal reactions on the nodes where temperatures are
imposed. K;, Ky and K; are the thermal conductivity matrices of the
FE model after applying BCs and reordering DOFs.

In the context of the TO method, based on the pseudo-density, the
latter affects the element thermal conductivity matrix and, accordingly,
the global thermal conductivity matrix of the structure as follows:

N, Ne
K{l = Z¢Ka (pe)LZchtL0‘= ZLZ"KGGL‘“. (11)
-l ew|

K"‘. K, € R NVDOF X NDOF e | i‘w e R"’mnﬁ.""umf_

where p, is the pseudo-density of Eq. (1) computed at the centroid of the
generic element, whilst ¢, (p, ) isa suitable interpolation function used
to penalise the element thermal conductivity matrix (see Section 3). N,
is the total number of elements and Ny, is the number of thermal
DOFs of the generic element. In Eq. (11), K:," and K, are the non-
penalised and the penalised thermal conductivity matrices of element ¢,
expressed in the global reference frame of the FE model, whilst L,,, is
the connectivity matrix of element ¢ relating the nodal temperatures at
the element-level to their counterparts at the structure-level:

0, =1,0. (12)

where 6, € R Nore js the vector of nodal temperatures of the generic
element. The vector of the external thermal loads, in the most general
case, can be expressed as:

W i=y, + Wpp (X)), (13)

where y, represents the vector of design-independent thermal loads,
while yryp, (p(x)) is the vector of design-dependent thermal loads, which
reads:

N,
- T .0 o

Yonlp) = ¢=21 by (0 ) Ly Wppe Lo =R (L{h-' @, Ian(‘) ’ (14)
L,. € RNworeXNopor

where 'V(r.)n . € [ Nonor« js the vector of design-dependent thermal loads
of the element and ¢,, (p,) is the associated penalisation function (see
Section 3). Regarding the structural analysis, the governing equation of
the static equilibrium reads:

Ki=f, a,f e RVoor, K € R¥oosx oo, (15)

where Npop is the overall number of structural DOFs before the appli-
cation of BCs, K is the non-reduced (singular) stiffness matrix of the FE
model, while f and @ are the vectors of the generalised external nodal
forces and displacements, respectively. After applying BCs and reorder-
ing DOFs, the above formula can be expressed as:

[ St = {0 a9
with:

wi=9% (i Zpc), £ :=%(F. Iyc )

upe =R (. 7y). =R (f.7y).

K :=% (K. Zgc.Tnc ). Koe =% (K. Tge Iy ). an
K :=R(R.IU.IU). u.f e RYoor g re RN

Ke RNDOI‘XNI)OF‘ Kﬂ(‘ c RNDOPX'\'BC‘ l'( e RNBCXNBC,

In Eq. (16), u and upe are the unknown and prescribed displacements,
respectively, [ is the vector of generalised external nodal forces, whilst r
is the vector of nodal reactions on the nodes where BCs on generalised

displacements are imposed. K, Ky and K are the stiffness matrices
of the FE model after applying BCs and reordering DOFs. I, C [i| 1 <
(€ Npo) and Tye € {i| 1 <4 < Ny ) are two sets of indices such
that: 7y, N Ige = @, meas (1) = Npop, meas (Ize) = Nge and Npop +
Nge = Npor (i.e., Ny is the number of imposed displacements , whilst
Npop is the number of unknown DOFs).

The global stiffness matrix of the FE model reads:

N,

. N,
K=Y ¢x (o) LIKIL, = Y LIK L,
e=1 e=]

(18)

K((" K, € RNvor*Npog.e i" c R-quxs'now‘

where ¢ (p, ) is the penalisation function used for the element stiffness
matrix (see Section 3) and Npqp . is the number of DOFs of the generic
element. In Eq. (18), K” and K, are the non-penalised and the penalised
stiffness matrices of element ¢, expressed in the global reference frame of
the FE model, whilst L, is the connectivity matrix of element ¢ relating
the DOFs at the element-level to their counterparts at the structure-level:

u, =L.0, (19)

where u, € RNvors is the vector of nodal displacements of the generic
element.

When considering thermomechanical analyses with weak coupling,
the vector of applied nodal forces implicitly depends on the topologi-
cal descriptor through the temperature field, i.e., @ = 0(p(x)). There-
fore, for TO problems including thermomechanical analysis the vector
f reads:

f=10,+1;(0). (20)
where f;, and f; are the design-independent and design-dependent
forces, respectively.
The design-dependent term can be rewritten as:
N,
fy= Y dolo.) LI £, €RNoow, (21)
e=l

where ¢, (p,) is the function used to penalise the thermomechanical
load (see Section 3), while f;, is defined as:

£ = / BT Cedv, (22)
Ve
where B € R*"oor and V, are the matrix of partial derivatives of the

element shape functions, and the volume of the element, respectively.
C € R is the elasticity matrix, of the material (Voigt's notation), while
£,, € R® is the thermal strain vector defined as follows:

Ethe = XC(o(x) —ord) =X (Nar —orcf)

= . (NLy,0- o,d). x. RS, 23

where 8, is the reference temperature used in the analysis, y, is the
vector of thermal expansion coefficients of the material (Voigt's nota-
tion) for the generic element, whilst N € '*Nmot« js the matrix of the
element shape functions (for the thermal analysis). Injecting Eq. (23) in
Eq. (22), f;, can be expressed as:

f;.=a,0+b,, (24)

where

i, = / BTCyNdQL,,. &, e RNoorNevor (25)
Q,

and:



b, =0, / BTCxd, b, € RNk, (26)
Ql

The formulation of the TO problem considered in this paper deals with
the maximisation of the structural stiffness subject to a constraint on
the total volume of the design domain [2,6]. In the literature, the work
of external forces is often used as a measure of the structural stiffness.
As pointed out in [46], under inhomogeneous Neumann-Dirichlet BCs,
the work of external forces cannot be used as a measure of structural
stiffness, but the generalised compliance must be considered, which can
be expressed as follows:

C=fTu- “;c'“ (27)

Regarding the gradient of C, consider the following proposition.

Proposition 2.1. Consider a deformable continuum subject to given bound-
ary conditions, in terms of temperature field, thermal loads, forces and dis-
placement fields. If the prescribed temperatures and displacements do not
depend on the pseudo-density field, the gradient of the generalised compli-
ance reads:

(¢ _ dp.[ d¢«, ot L0k
d‘flr ¢ES, d‘flr ¢04‘ o ¢A 0[’..

1 d¢k’,,n‘ a¢wc 0 ]
+aT - . (28)
¢ (¢Kgc dpc v dpc wl)l)r

i=1.2, r=1..nep
‘K,,). =d,
where the internal work of the generic element, i.e., w,, and the work of the

thermomechanical forces acting on the generic element, i.e., u"‘ ', are defined
as

A

w, =u'K,u,, (29)

wi = yulfy, (30)

whilst y, represents the vector of thermal reactions of the generic element
that reads

L ¢KncK0r0r' (31

A proof of Proposition 2.1 is provided in Appendix A.

Remark 2.1. The generalised compliance is not a self-adjoint functional
when thermomechanical analyses (with or without design-dependent
thermal loads) are considered. To this end, to assess its gradient, the
adjoint system (thermal analysis) of Eq. (28) must be solved, wherein
the expression of vector d is:

N,

d=-2 Z Bpalu,. (32)
e=1

where a, can be derived from Eq. (27) as follows

a,=N(4,.0,Ipc) = / BT CaNdQL,,. (33)
Q,

Remark 2.2. In Eq. (28), the terms ¢, ¢ x.. Drye and ¢, are the pe-
nalisation functions used for thermomechanical forces, stiffness matrix,
thermal conductivity stiffness matrix and thermal loads of the element,

can be found in [46]'.r

2.3. Constraint function

In this work, the lightness of the structure is considered as a design
requirement, which is expressed by a constraint on the volume of the
structure. The volume of the continuum is penalised as follows:

V=3 oV, (34)

Its gradient is obtained by differentiating Eq. (34):

av y 9%

— — i=|.2. j= l.--..ncp. (35)
df’) PES, ro{U

Thus, the associated constraint function reads:

N A
8(§l.§2) = % Y. (36)

ref

where V,, is a reference value of the volume and y is the prescribed
volume fraction.

2.4. Problem formulation

The TO problem under thermomechanical loads can now be correctly
formalised as a constrained nonlinear programming problem (CNLPP)
as follows:

Kia="f,
C(&,.&) Rof=v.
in ——— , subject to: {g(£,.£,)=0, (37)
&4 |Crl -
&1y Elpp.pugls & € o g oggl.
J=1nep

where C, is the reference value of the compliance of the structure (the
absolute value is considered in the above formula because the compli-
ance is not a positive definite function when considering inhomogeneous
Neumann-Dirichlet BCs), p; g and pyz are lower and upper bounds for
the pseudo-density evaluated at each CP, while w g and @y are the
bounds for the weights,

In order to prevent singularity problems related to the thermal conduc-
tivity and stiffness matrices of the structure, the lower bound of the
pseudo-density must be strictly positive.

3. The penalisation schemes

An essential step in the problem definition is the choice of the penali-
sation scheme for the thermomechanical forces, the distributed thermal
loads, the thermal conductivity matrix and the elasticity matrix, The
choice of the penalisation scheme influences the optimised designs, the
convergence of the problem and can affect the problem through para-
sitic effects and singularity phenomena [31,32]. However, choosing the
right combination of appropriate penalty schemes is not a trivial task.

The first penalisation scheme considered in this work is the well-
known SIMP scheme [2,6,49], which reads:

ad,(p,) = apt!
o,

where a is the penalty parameter: the higher a, the stronger the pe-
nalisation of intermediate pseudo-density values. In this study it varies
between () and 3, depending on the vector/matrix to which the penal-
isation is applied. The second penalty scheme is the RAMP, which was
introduced by Stolpe and Svanberg [7] and guarantees finite value of
the partial derivative when the pseudo-density goes to zero. The RAMP
scheme can be expressed as:

¢l(pt) = P: Li=K, Kl)’ e, w. (38)



Table 1
GCMMA algorithm parameters.

Parameter Value
move 0.1
albefa 0.1
Stop Criterion Value
Maximum n. of function evaluations 10000
Maximum n. of iterations N
Tolerance on objective function I(bl"
Tolerance on constraints 10-%
Tolerance on input variables change 104
Tolerance on Karush -Kuhn -Tucker norm 107%
[ ag,(p,) l4g
¢,(.a,)=l+ “’ X a‘ <= —. i=K.Ky.0.p.
q Pe Pe [|+q(|—p._)]
(39)

where g is the penalisation parameter, which varies between 4 and 8
in this study. The last penalisation scheme considered in this paper is a
modified version of the linear penalisation scheme, which reads:

- # o (p ) _ -1
) — Pe— LB i \Fe — ﬂ (Pe pLB)
¢ (p.) ( I-pp ) T dp, l=pg \ 1 =pp

i=K.Kg.0.y.

(40)

This scheme has been introduced in [50] to avoid singularity of the so-
lution when considering inertial loads. In fact, at low pseudo-density
values, the standard linear penalty scheme cannot be used in combina-
tion with a SIMP penalty scheme on the stiffness matrix of the element.
This occurs because, as p tends to zero, the penalised stiffness matrix of
the generic element goes to zero faster than the DDLs of the element.

Conversely, using the penalty scheme of Eq. (40), when p, = p;  the
DDLs are exactly zero, regardless of the penalisation scheme used for
the stiffness matrix. For the numerical analyses presented in this paper,
the parameter /i has been set as fi = 1.

4. Numerical results

In this section, the effectiveness of the method is tested on 2D and
3D benchmark structures by considering thermomechanical analyses.

The results presented in the following are obtained using the NURBS-
density-based algorithm developed in previous works [13,14]. The
globally-convergent method of moving asymptotes (GCMMA) algorithm
[51] is used to solve the CNLPP of Eq. (37). The parameters tuning the
behaviour of the GCMMA algorithm are listed in Table 1.

The pseudo-density value at CPs varies between p; i = 1077 and
pup = 1, whilst the weights take values between w g =0.5 and w3 =
10. The inner components of the knot vectors are evenly distributed
in the interval ]0, 1[. The post-processing operations are performed in
ParaView™ and ANSYS™ environments.

The main purpose of the analyses presented in the following subsec-
tions is to validate the proposed framework when dealing with thermo-
mechanical TO problems through a comparison with the results avail-
able in the literature, Furthermore, several sensitivity analyses are per-
formed to investigate the following aspects:

1. The influence of different penalisation schemes and their parame-
ters on the optimised topologies;

2. The influence of the entity used to describe the pseudo-density
field, i.e., B-spline or NURBS (only for 2D problems for the sake
of brevity);

3. The influence of the number of CPs and degrees of Bernstein's poly-
nomial on the optimised solution (only for 2D problems for the sake
of brevity);

4. The combined effect of inhomogeneous Neumann-Dirichlet BCs and
thermomechanical DDLs on the optimised topology (only for 2D
problems for the sake of brevity);

5. The effect of a design-dependent heat sources on the optimised
topologies (only for 2D problems for the sake of brevity).

4.1. 2D benchmark structures

The first benchmark problem (BP), taken from [32] and shown in

Fig. 1, deals with the Messerschmitt Bélkow Blohm beam submitted to
thermomechanical loads.
The geometrical parameters defining the first 2D BP (BP1-2D) are:
L, =1200 mm, L, =400 mm and ¢ = 10 mm (thickness of the plate).
The FE model is constituted of N, = 120 x 40 plane elements with four
nodes with two mechanical DOFs and one thermal DOF per node and
plane stress hypothesis [52]. This element type is used for all the 2D
BPs illustrated in this section. The FE model is subjected to the follow-
ing BCs:

u; =0 is set on the nodes located at x; =0;

uy =0 is set on the node located at (x|, x,)=(L,,0);

A concentrated load of magnitude F,, = 10 kN is applied on the
node (x;,x3)=(0,L,);

A temperature @, = 273.15 K is imposed on the nodes located at

X, =L,
+ A temperature 8, = 1073.15 K is imposed on the nodes located at
Xy = 0;

6,..; = 273.15 K is considered as reference temperature for the cal-
culation of the thermal strain vector, whilst adiabatic condition is
imposed on the rest of the boundary.

The material properties used for BP1-2D are: E = 30 GPa (Young’s mod-
ulus), v = 0.3 (Poisson's coefficient), ¢ = 1 Kg.mm™, k = | W.(mK)"!
(thermal conductivity) and y = 12x 1079 K'! (coefficient of thermal ex-
pansion).

The second 2D BP (BP2-2D), shown in Fig. 2, has been deeply inves-
tigated in [23,45,53]. Its geometrical parameters are: L, = 720 mm,
L, =477 mm and 1 = 10 mm (thickness of the plate). The FE model
is constituted of N, = 100 x 80 plane elements and is subjected to the
following BCs:

* The nodes located at x; =0 and x, = L, are clamped;

+ A concentrated load of magnitude F = 10 kN is applied on the node
(x1.x7) =(%-0);

+ A temperature @, = 293.15 K is imposed on the nodes located at
xy=0and x,=L,;

+ A constant heat source of magnitude P = {0:0.5; 1] W is applied on
the node located at (x,x;) = (5,'-.0);

* 6,0 =293.15 K is considered as reference temperature for the cal-
culation of the thermal strain vector, whilst adiabatic condition is
imposed on the rest of the boundary.

The material properties used for BP2-2D are: E = 210 GPa (Young’s
modulus), v = 0.27 (Poisson’s coefficient), ¢ = 7.8 x 1097 Kg.mm~,
k=80x 1077 W.(mK)"' (thermal conductivity) and y = 11 x 107% K’
(coefficient of thermal expansion).

The third 2D BP (BP3-2D), shown in Fig. 3, is characterised by the same
geometrical parameters and the same mesh as BP2-2D. For this bench-
mark problem, the following BCs have been considered:

* uy =u, =0 is imposed on the node located at (x,,x,) = (0.0);

+ uy =0 is imposed on the node located at (x;.x;) = (L,,0);

+ Regarding the inhomogeneous BC of the Dirichlet’s type either u; =
4, is imposed on the node located at (x;.x,) = (L,.0) or u; =4,
is imposed on the node located at (x,.x,) = (L,,L,);
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Fig. 2. Geometry, mesh and boundary conditions of BP2-2D.
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Fig. 3. Geometry, mesh and boundary conditions of BP3-2D.

+ A point force F =10 kN is applied on the node (x,,x;) = (%’-.0);

+ A constant heat source of magnitude P = | Wisapplied on the node
located at (x,x,) = (5210)

+ A temperature . = 293.15 K is applied on the nodes located at
(x).x;) =(0.0) and (x,.x;) = (L,.0);

+ Adiabatic condition is imposed on the rest of the boundary

The imposed displacement 4, and &, take the following values 6, = 4, =
(=7.-3.5,0.3.5,7) x 10~ mm. The same material as BP2-2D is consid-
ered.

orel

q=0

Fig. 4. Geometry, mesh and boundary conditions of BP4-2D,

The last 2D benchmark (BP4-2D), shown in Fig. 4, is characterised by the
presence of design-dependent heat sources distributed over the domain,
which to the best of the authors' knowledge has never been studied up
to now when considering thermomechanical TO problems. The geomet-
rical parameters defining BP4-2D are: L = 20 mm (the design domain
is a square), @, =2 mm and ¢t = | mm (thickness of the plate). The FE
model is constituted of N, = 80 x 80 plane elements and is subjected to
the following BCs:

+ The nodes located at x; =0 and x; = L are clamped:

+ Adiabatic condition is imposed on the nodes located at x, = (;

* A temperature 6, = 293.15 K is imposed on the nodes located at
xy=0and x, = L;

+ A temperature 0 = @, is imposed on the nodes located at x; €

[L;-OL ﬂ x>=1L
PRI A
+ A temperature & = @, is imposed on the nodes located at x, €

L-a, L+a, B

[0, za ], x;=Landx, € [T",L]. x,=1L;

+ A heat source equal to ), = 0.001 W.mm™ is evenly distributed
over the whole design domain;

* 0,0 =293.15 K is considered as reference temperature.

The material properties used for BP4-2D are: E = 210 GPa (Young’s
modulus), v = 0.3 (Poisson’s coefficient), o = 7.8 x 1079 Kg.mm™, k = 80
W.(mmK)" (thermal conductivity) and 7 = 11 x 1079 K'* (coefficient of



Table 2
Design cases considered for BP1-2D.

&, DC1 DC2 Dea DC4 nes DCH

f; Fq.(38), a=3 Eq. (38), a=3 Eq. (38),a=3 Eq. (39),¢=4 Eq. (40), =1 Eq. (40), fi=1
K Fq.(38), a=3 Eq. (38), a=3 Eq. (38),a=3 Eq. (39),¢=4 Eq. (38),a=3 Eq.(39),q=4
K, Fq.(38), a=3 Eq. (38), a=1 Eq. (38),a=05 Eq. (39),¢=4 Eq. (38), a=05 Eq.(39),q=4

(a) C = 3.5991 x 10" Nmm, N = 256, DC1

(c) € = 1.0033 x 10° Nmm, Njpr = 299, DC3

(b) C = 4.9163 x 107 Nmm, Nj¢or = 299, DC2

(d) C = 3.6580 x 10* Nmm. Nior = 299, DC4

{e) C = 1.1717 x 107 Nmm, Niter = 209, DC5

(f) C = 4.9755 x 10" Nmm, Nitor = 299, DC6G

Fig. 5. BP1-2D: influence of the penalisation scheme on the optimised topology considering the DCs in Table 2.

thermal expansion). The imposed temperatures #, and @, take the fol-
lowing values: @, = (273.15: 146.575; 293,15} K (i = 1,2).

4.1.1. BP1-2D: sensitivity of the optimised topology to the penalisation
schemes

The goal of this first set of analyses conducted on BP1-2D is to study
the influence of the penalisation schemes used for the element stiffness
matrix, element thermal conductivity matrix and the element thermo-
mechanical DDLs in structural analysis on the optimised topology. The
numerical simulations are carried out considering a NURBS surface as
a descriptor of the pseudo-density field with degrees p, = p, = 3. The
number of CPs is equal to N¢p = 100 x 60. A volume fraction equal to
y = 0.4 and the design cases (DCs) listed in Table 2 are considered in this
campaign of analyses. The initial solution is characterised by a uniform
pseudo-density field fulfilling the constraint on the volume fraction. The
CNLPP of Eq. (37) has been solved by considering a maximum number
of iterations equal to N7"* = 300.

The optimal topologies obtained with the proposed approach, for
each design case, are shown in Fig. 5 in terms of compliance and num-
ber of iterations N, to achieve convergence. The optimised solution
available in the literature for the same benchmark problem presented
in [32] is illustrated in Fig. 6.

From the analysis of the results shown in Figs. 5 and 6, the following
remarks can be drawn.

Firstly, when comparing the results obtained with the NURBS-
density-based method and those presented in [32], the former converge
better through black and white topologies for DCs 1 and 4 than the latter:
a quick glance to Figs. 5a, 5d and 6 suffices to understand this fact. More-
over, the optimised topology presented in [32], which has been found
using the classic density-based TO algorithm, has been determined by
considering the penalty schemes corresponding to DC1 in Table 2. By
comparing the solution found using the NURBS-density-based method

0 (lnsulation)

Fig. 6. BP1-2D: optimised topology taken from [32]; € = N.A., N, = 299, DC1.

for DC1 with that taken from [32] and shown in Fig. 6, two important
differences can be observed. On the one hand, the solution shown in
Fig. 5a converges towards a well-defined truss-like configuration in 256
iterations with intermediate values of the pseudo-density field occurring
only in the region on the bottom-right of the figure. This corresponds
to the formation of an oblique thin strut, which is due to the localised
support BCs. On the other hand, the solution found in [32] presents a
wide region characterised by intermediate values of the pseudo-density
field and the final topology, which has been found after 299 iterations,
does not correspond to a truss-like configuration. These differences are
mainly related to: a) the filtering strategy (which is not needed when
using a topological descriptor based on a NURBS entity), b) the gradient
calculation (which exploits the properties of the local support property
of the NURBS basis functions in our case) and ¢) the algorithm used to
carry out the solution search of problem (37), i.e., GCMMA in our case
vs. method of moving asymptotes in [32]. Unfortunately, the compli-
ance of the optimised solution shown in Fig. 6 is not provided in [32];
accordingly, a quantitative comparison between our results and that
found in [32] in terms of mechanical performances is not possible.
Secondly, regarding the first three DCs where the SIMP penalisation
scheme is used with different values of a, decreasing the value of @ when
penalising the thermal conductivity matrix leads to convergence issues,
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Design cases considered for BP2-2D,

@, DCl DC2 DC3 DC4 DCS DCo DCc7

f; Eq. (39), g=4 Eq.(38), a=3

K Eq. (39), g=8§ Eq. (39), g=4 Eq.(28), =3

K, Eq. (39), g=4 Eq. (39),g=8 Eq. (39), g=4 Eq.(39), q=8 Eq.(38), a=3 Eq. (39), a=1 Eq. (38), a =05
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Fig. 7. BP2-2D solutions with P = W when considering the DCs in Table 3.

This is related to the implicit penalisation of the thermal strain deriving
from the solution of the thermal equilibrium problem.

Thirdly, when comparing the solutions obtained with SIMP and
RAMP schemes, i.e., DCs 1-4 in Table 2, although the final compliance
and number of iterations are comparable, the optimised topologies are
substantially different and a clear black and white design can be ob-
tained only when using the RAMP scheme (DC4). This result is due to
the better behaviour of the RAMP scheme when the element pseudo-
density goes to zero.

Finally, the use of the modified linear penalisation scheme for DDL
does not allow obtaining clear black and white designs when consider-
ing thermomechanical analyses, unlike the case of inertial loads where
it allows to find the best solutions [50]. This discrepancy can be ex-
plained by examining the dependence of the design-dependent forces
of Egs. (20) and (21) on the pseudo-density field. In the case of iner-
tial loads, this dependence is solely explicit, whereas in the context of
thermomechanical analyses, the vector of design-dependent forces is im-
plicitly dependent on the pseudo-density field through the temperature
field. Accordingly, linear penalisation scheme does not represent a good
choice in this case.

4.1.2. BP2-2D: sensitivity of the optimised topology to the penalisation
schemes parameters

The focus of the first campaign of analyses conducted on BP2-2D is
the study of the influence of the SIMP and RAMP schemes parameters on
the optimised solution. The numerical simulations are carried out con-
sidering a NURBS surface as a descriptor of the pseudo-density field with
degrees p, = p, = 3. The number of CPs is equal to N¢p = 90 x 60. The
imposed volume fraction is y = 0.4 and the initial guess is a uniform
pseudo-density field satisfying the constraint on the volume fraction.
The DCs considered for this first campaign of analyses are listed in Ta-
ble 3. For each DC, the optimisation process is performed by considering
three values of the applied thermal load, i.e., P =0, 0.5, 1 W. The max-
imum number of iterations is set as J\':“;“ = 550.

The optimised topologies obtained for the multiple DCs are illus-
trated in Figs. 7, 8and 9 for P=0W, P=05Wand P=10W,
respectively.

The following remarks can be inferred from the analysis of these
results. Firstly, as expected, regardless of the considered penalisation
schemes, the higher P, the higher the cost function value. Secondly,
when the RAMP scheme is used for the stiffness matrix, thermal con-
ductivity matrix and design-dependent forces, i.e., DCs 1-4, the best
results, in terms of generalised compliance value and number of iter-
ations, are achieved for DC3, i.e., when g = 4 for all the penalisation
schemes. Moreover, regardless of the value of the applied thermal load
P and of the parameter ¢ used in Eq. (39), the final topology is almost
the same (except the case P = | where two small holes appear on the
left and right regions of the domain when considering DC3). Thirdly,
regarding the use of the SIMP scheme, i.e., DCs 5-7, the best results in
terms of generalised compliance are achieved for DC7. Moreover, the
greater P, the more significant the differences between the optimised
topologies for the considered DCs. However, a convergence towards a
clear black and white design is achieved only for DC5 when P =1 W, It
is noteworthy that when comparing the solutions obtained with RAMP
and SIMP schemes, lower values of the compliance are obtained when
considering the SIMP scheme, although the RAMP scheme allows reach-
ing the convergence in approximately the half of iterations.

Finally, to better understand and compare the results shown in
Figs. 8 and 9 a cross-check analysis has been performed. The idea is
to take the optimised pseudo-density field obtained in a given DC and
to evaluate its performance, in terms of the generalised compliance, by
considering the penalisation schemes used in the other DCs. Of course,
since the solutions found in the case P =0 W are almost identical, the
cross-check analysis is performed only for the solutions obtained in the
cases P=0.5 W and P =1 W. The results of the cross-check analysis
are reported in Tables 4 and 5 for the cases P=05 Wand P=1W,
respectively.

The following remarks can be drawn from the analysis of the results
reported in Tables 4 and 5. Firstly, for the case P = 0.5 W, the solution
found when considering the penalisation schemes used for DC7 is that
characterised by the lowest value of the generalised compliance when
checked by using the penalisation schemes used for the other DCs. Sec-
ondly, the same remark can be done for the case P =1 W, with the only
exception of the solution found when considering DC6 and checked with
the penalisation schemes used for DC1, which is characterised by the
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Fig. 8. BP2-2D solutions with P = (0.5 W when considering the DCs in Table 2
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Fig. 9. BP2-2D solutions with P = | W when considering the DCs in Table 3,

Table 4
Cross-check analysis for BP2-2D; values of the generalised compliance for the case
P=05W.
DC used to check the solution
DC1 DC2 DC3 DC4 DCS5 DC6 DC?
- DC1 359.48 364,00 359.67 360,65 362.75 366,26
i‘z DC2 360.61 364.84 360.80 361.61 364,32 368.73 §:
,»: DC3 356,23 360.83 356,29 7.37 357.66 361.23 37296
f DC4 357.36 361.67 357.39 358,32 359,20 363.65 376.85
f; DCs 356,43 361.13 356,35 357.51 356.61 360,27 37515
; DCs 353.48 358.83 353.51 355.01 353.64 355.46 361.48
- DC7 347.99 354.45 348.30 350.28 348.40 347.38 343.37
Table 5
Cross-check analysis for BP2-2D; values of the generalised compliance for the case
P=1W.
DC used to check the solution
DC1 DC2 DC3 DC4 DCS5 DC6 DC?
_ DC1 433.44 434,49 431.74 434,65 437.46 452.07 479.10
'; DC2 432,54 435.56 433.30 435.74 439.60 459,47 489.83
?f_ DC3 429,14 428,30 431.52 431.88 443.65 468.07
f DC4 430.13 432.63 429.85 432.60 433.99 450.83 478.46
'g DCS 429.69 432.19 428.53 431.96 430.89 440.93 474.40
7; DCs 375.71 428.97 424.67 428.82 427.23 429.71 439.69
- DC7 420,77 421.86 417.14 422,40 420.32 417.27 407.41
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Fig. 10. BP2-2D: optimised topologies and objective function values for B-spline entities.
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Fig. 11, BP2-2D; optimised topologies and objective function values for NURBS entities,

lowest compliance. This can be explained by the fact that the penalty
schemes used for DC6 and DC7 allow the identification of local feasible
minima characterised by a lower cost function that cannot be accessed
when considering the penalty schemes used in the other DCs. Never-
theless, such solutions are still characterised by the presence of some
intermediate values of the pseudo density field, see Fig. 9 for instance.
Furthermore, by looking at the results reported in Tables 4 and 5, the
compliance of the optimised solutions found in DCs 1-4, which are char-
acterised by the use of the RAMP penalty scheme with different values
of the parameter ¢, increases when checked with the SIMP penalisation
scheme used in DCs5-7. The converse is not necessarily true (see for in-
stance the compliance of the optimised topologies found for the case
P =1 W when considering DCs5 and DCs6 and checked with DC1). This
means that the optimised topologies found by using the RAMP penalty
scheme tend always to underestimate the compliance when compared to
those found by considering the DCs employing the SIMP penalty scheme,
at least for this benchmark problem.

4.1.3. BP2-2D: sensitivity of the optimised topology to the integer
parameters of the topological descriptor

The goal of the second campaign of numerical analyses carried out
on BP2-2D is to study the influence of the integer parameters of the
B-spline/NURBS entity on the optimised topology. To this purpose, the
following values of the number of CPs and basis functions degrees have
been considered: ng-p = 60 x40, 80x 50,90 x 60 and p, = p, = 2. 3. Avol-
ume fraction y = 0.4 is used in the analyses presented in this section and
the initial guess has been chosen in the same way as in the above subsec-
tions. Regarding the penalisation schemes, the DC1 reported in Table 3
and a thermal load P = 1 W have been considered. The maximum num-
ber of iterations for the GCMMA algorithm has been set as N7* = 300.
The optimised topologies are reported in Figs. 10 and 11 for B-spline
and NURBS solutions, respectively. In the same figures, the dimension-
less compliance and number of iterations N, to achieve convergence
for each solution are also reported. Fig. 12 shows the trend of the di-
mensionless objective function vs. the number of CPs for the different
degrees for both B-spline and NURBS solutions. As expected, in line with
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Fig. 12. BP2-2D: objective function vs. number of control points for different degrees of the basis functions.

the results obtained for standard TO problems with design-independent
loads [46], the lower the degree and/or the higher the CPs number, the
lower the cost function value. As explained in [46], this result is due
to the local support property of the NURBS basis functions. Moreover,
compared to their B-spline counterparts, NURBS solutions have a lower
cost function and smoother boundaries, regardless of the number of CPs
and the degrees of the Bernstein’s polynomials.

4.1.4. BP3-2D: sensitivity of the optimised topology to mixed non-zero
boundary conditions

The aim of the numerical analyses conducted on BP3-2D is to eval-
uate the combined effect of thermomechanical DDLs and inhomoge-
neous Dirichlet boundary conditions, The numerical simulations are
carried out considering a NURBS surface as a descriptor of the pseudo-
density field with degrees p; = p, = 3. The number of CPs is equal to
Nep =90 x 60. The analyses presented in this section are carried out
considering both the RAMP and SIMP schemes characterised by the
parameters of DC3 and DCS5, respectively, as reported in Table 3. The im-
posed volume fraction is y = 0.4 and a feasible uniform pseudo-density
field is taken as initial guess. The CNLPP of Eq. (37) is solved by set-
ting N a8 = 300 as maximum number of iterations. Two scenarios are
consndered in the first one only the displacement &, in Fig. 3 is applied
by considering the following values &, = {~7,-3.5.0,3.5, 7} x 10~ mm,
whereas in the second one only the displacement 4, in Fig. 3 is applied
by considering the following values §, = {~7,-3.5.0,3.5,7) x 10~ mm.
The optimised solutions are shown in Figs. 13-16 in terms of generalised
compliance vs. the applied displacement. For each optimised topology,
the number of iterations to achieve convergence is also given in each
plot.

From the analysis of the results, the following remarks can be drawn.
Firstly, as illustrated in Figs. 13 and 14, the same trend of the gener-
alised compliance vs. the imposed displacement is found when &, is
applied to the structure. The penalisation scheme has a weak influence
on the optimised topology when varying the displacement &,. Specif-
ically, the most significant differences between optimised topologies,
obtained when considering DC3 and DCS in Table 3, can be observed
only for positive values of &,: the solutions obtained with the SIMP
scheme are characterised by a higher number of holes and one of them
is not symmetric. Moreover, the generalised compliance takes negative
values for 3, = =7 x 10~* mm and becomes positive increasing the ap-
plied displacement. Nevertheless, when the displacement is applied on
the top of the structure (4,), the trend of the generalised compliance vs.

Table 6
Design cases considered for BP4-2D,
DC1 DC2 DC3
G=0,0, =0, O, =0=0, 0 =00=0,2

the applied displacement is strongly affected by the penalisation scheme
used in the analysis. When the RAMP scheme is considered (DC3 in
Table 3), the trend is not monotone, as show in Fig. 15. Conversely,
when the SIMP scheme is used, (DC5 in Table 3) the trend is monotone.
Specifically, for 4, = =7 x 10~ mm, when using the RAMP scheme, the
GCMMA algorithm is able to find a feasible minimiser characterised by
a generalised compliance lower than that of the solution found when us-
ing the SIMP scheme, Moreover, it is noteworthy that, regardless of the
considered DC, the generalised compliance takes negative value only
when 6, =7 x 10~ mm. Finally, unlike the BPs discussed above, in this
case, the solutions obtained with the RAMP scheme outperform those
obtained with the SIMP scheme (in terms of generalised compliance)
regardless of the value of the applied displacement.

4.1.5. BP4-2D: influence of design-dependent heat sources on the optimised
topology

The aim of the numerical analyses performed on BP4-2D is to study
the effect of a design-dependent heat source distributed within the do-
main on the optimised solution. The pseudo-density field is described by
a NURBS surface characterised by ncp = 68 x 68 CPs and degrees of the
Bernstein's polynomials equal to p;, = p, = 2. A volume fraction equal to
y = 0.4 is considered and N "::" 500 has been taken as maximum num-
ber of iteration for the resolution of Eq. (37). As for the other benchmark
problems, the initial guess is an uniform pseudo-density field satisfying
the constraint on the volume fraction. Regarding the imposed tempera-
tures d; and 6, in Fig. 4, three DCs are considered, which are listed in
Table 6. For all DCs, the RAMP scheme with ¢ = 4 is used to penalise the
stiffness and thermal conductive matrices as well as the vector of design-
dependent thermal forces. Conversely, the distributed heat source y,
of Eq. (14) is penalised using the modified linear scheme in Eq. (40)
with f=1.

The results are shown in Fig. 17 wherein the optimal designs are re-
ported for each DC in terms of generalised compliance and number of
iterations N, to achieve convergence. When 8, = 8, = @,, the ther-
mal strains are null, thus the material is put in the region located near
the top wall (Fig. 17) where such BCs are imposed. For DC1 one can
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Fig. 14, BP3-2D, DC5 in Table 3: generalised compliance vs. applied displacement 4,.
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Fig. 15. BP3-2D, DC3 in Table 3: generalised compliance vs. applied displacement 4,.
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Fig. 17. BP4-2D: influence of the boundary conditions and of a design-dependent distributed heat source on the optimised topology

see that the pseudo-density of the elements located near the region of
the top wall where #, = 0 is imposed, converges towards p; 5, while for
DC3, a “void strip” occurs near the top wall due to the imposed BCs,
which involve non-null thermal strains. In this case the convergence is
apparently reached in less iterations compared to the other two DCs, but
looking at the optimised design, it becomes clear that the topology does
not converge through a clear black and white solution, suggesting that a
local minimum has been reached. Finally, the mechanical interpretation
of the optimised solutions illustrated in Fig. 17 is quite immediate; to
minimise the compliance, the optimiser put the material in the regions
wherein the thermal strain tends to zero by minimising, simultaneously,

the intensity of the design-dependent distributed thermal source and by
fulfilling the equality constraint on the volume fraction

4.2. 3D benchmark structure

The geometry and the FE model of the 3D benchmark problem (BP-
3D) are shown in Fig. 18. The geometry of the design domain is a
parallelepiped with size L =720 mm, L, =50 mm and L, =477 mm

The material properties used in this case are the same used for BP2-2D
The FE model is subjected to the following BCs:

+ The nodes located at |x, =0, x, € (0, L,), x; € (

3¢ )l with e,,. =9 mm, are clamped and 6 = @, is imposed,;

* On the node located at (x;.x,,x3) = (L, /2, L, /2.0) both a concen-
trated load F = 10 kN and a heat source P =1 W are applied

Ls

I‘Iu
.

81 ef

Fig. 18. Geometry, finite element model and boundary conditions of the 3D
benchmark structure,

* 6,5 = 293.15 Kis considered as reference temperature and adiabatic
wall condition is imposed on the rest of the boundary

A mesh constituted of V, = 80 x 6 x 53 solid elements with eight nodes
with three structural DOFs and one thermal DOF per node is used [52]



(a) DC3 in Table 3: C = 6.34 x 10 Nmm,
Niter = 799.

(b) DC5 in Table 3: C = 6.34 x 10% Nmm,
Niter = T99.

Fig. 19. BP-3D: influence of the penalisation scheme on the optimised topology.

4.2.1. BP-3D: influence of the penalisation scheme on the optimised
topology

The results presented in this section aims to illustrate the effective-
ness of the proposed approach when dealing with a 3D benchmark prob-
lem. The analyses are conducted considering a volume fraction y = 0.4
and DCs 3 and 5 in Table 3. As in the case of 2D TO problems, an
uniform pseudo-density field satisfying the equality constraint on the
volume fraction is considered as initial guess. The CNLPP of Eq. (37)
has been solved by considering a maximum number of iterations equal
to N* = 800. The numerical simulations are performed considering
NURBS entities with degrees p, = p, = p, = 3 and a control net consti-
tuted of 65 x 5 x 45 CPs. The results are shown in Fig. 19,

It is noteworthy that both RAMP (DC3) and SIMP (DC5) schemes lead
to comparable values of generalised compliance, although the optimised
topologies are not exactly the same; in fact, the thickness variation oc-
curring in the centre of the domain affects a region of different size for
the two optimised solutions. Specifically, the thickness is reduced in the
region situated at the centre of the design domain on the elements lo-
cated on the outer boundary, i.e., at x, = ii‘}. because a significant
proportion of the heat flux is confined to the plane x; - x;. Accord-
ingly, the elements situated far from this plane do not contribute to the
gradient of the temperature and, consequently, do not contribute to the
thermal strains (hence to the generalised compliance). Finally, the same
comments already made for the 2D BPs also apply to this case.

5. Conclusions

In this paper, thermomechanical TO problems have been formulated
and solved in the framework of the NURBS-density-based TO algorithm.
Four main contributions can be identified.

Firstly, the influence of different penalty schemes on the opti-
mised topology is investigated by considering different combinations
of penalty functions. When considering thermomechanical problems,
better designs are achieved by using RAMP and SIMP schemes. Con-
sequently, a second investigation has been carried out for these pe-
nalisation schemes to determine the most efficient set of parameters.
Numerical results obtained on 2D benchmarks problems allow conclud-
ing that the best compromise in terms of cost function value and quality
of the optimised topology can be obtained when using the RAMP scheme
with g = 4 or the SIMP scheme with @ = 3 for the stiffness matrix, the
thermal conductivity matrix and the thermal load without major differ-
ences.

Secondly, a sensitivity analysis of the optimised solution to the inte-
ger parameters involved in the definition of the NURBS entity has been
performed, highlighting that the higher the number of CPs (or the lower
the degree of Bernstein polynomials), the lower the objective function.

Furthermore, NURBS solutions have a lower cost function and smoother
boundaries than B-spline solutions. These results are in agreement with
the trend observed for standard TO problems under design-independent
loads.

Thirdly, the combined effect of thermomechanical DDLs and inho-
mogeneous Dirichlet boundary conditions is studied for the first time,
bringing out that coherent results are obtained for RAMP and SIMP
schemes and that the former scheme allows finding optimised solutions
outperforming those found with the latter scheme.

Fourthly, the influence of a design-dependent distributed heat source
on the optimal solution has been investigated. The presence of a design-
dependent heat source distributed over the domain increases the prob-
lem complexity. However, the algorithm is capable to find physically
meaningful designs that are characterised by a distribution of the ma-
terial that minimise the thermal strains as well as the intensity of the
applied thermal source by fulfilling the constraint on the volume frac-
tion.

Prospects for the present approach include the extension to the si-
multaneous optimisation of the topology and anisotropy fields descrip-
tors, taking into account non-linear behaviours and fatigue phenomena.
Research on these aspects is ongoing.
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Appendix A. Gradient of the generalised compliance for
thermomechanical analyses

The logical steps to find the main result of Proposition 2.1 are pre-
sented in this section.

Proof. Considering both the thermal and mechanical equilibrium sys-
tems of Egs. (9) and (16), respectively, the generalised compliance of
Eq. (27) can be reformulated as:

C=fTu- ulT,Cr +n"(Ku+ Kgeuge — ) + {T(K;cu + Kuge

X (A1)
=)+ AT(Ky0 + KgpcOpe — w) + " (K 0+ KyOpe — wie).

where ne RVoor, & € RVsc, 1 e RV |y € RV are four arbitrary
vectors. Under the hypothesis that the prescribed temperatures 8- and
displacements ug- do not depend on the topological variables, i.e.,
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5C -0, < =, (A.2)
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the derivative of Eq. (A.1) reads:
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In the above equation the term —* can be computed by considering

Egs. (21) and (24):
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where a, can be obtained from Egs. (33) and (25). By injecting Eq. (A.4)
in Eq. (A.3) and by considering Eq. (30), the gradient of the generalised
compliance can be expressed as:
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The adjoint vectors n, £, A, u are chosen such that the terms multiplying
Ju 08 Or WBC yanih, i.e.,
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Kyi=-2 24,,, a'u, =d (from Eq. (32)).

By injecting Egs. (A.6)-(A.9) in Eq. (A.5), the generalised compliance
partial derivative becomes:
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As demonstrated in [46], the following equality holds:
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where w, has been defined in Eq. (29). Consequently, Eq. (A.10) can be
simplified to:
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In the above formula, the terms multiplying A7 simplifies to:
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where y, is provided in Eq. (31). By injecting Eq. (A.13) in Eq. (A.12)
one obtains Eq. (28) and this last passage ends the proof. i
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