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Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures,

where damage type, location and severity are to be estimated by applying sophisticated techniques to signals

measured by sensors. However, very localized damage detection algorithms applied to dynamics problems when

dealing with rigid structures at low-frequency range remains still a big challenge. The last due to the low

influence of very localized damage on the overall response of the structure (Saint-Venant principle). In this

context, in the present work, we propose a methodology for locally correcting the models from collected data for

elastodynamics problems at low-frequency range which is able to predict very localized damage. The proposed

technique consists in enriching the structural model in a sparse way and solving the identification problem in
the frequency domain, where the influence of damage over a large frequency band is exploited to improve the

prediction of the damage location. The advantages and potential of the proposed technique are illustrated for the

damage detection in a plate problem, demonstrating the advantages of the method in detecting very localized

damage. The proposed technique is limited to a methodological description, and further developments should be

considered to approach its applicability in an industrial scenario.

1. Introduction

Over the last decades, many techniques have been developed in the

field of Structural Health Monitoring in order to address damage detec-

tion [1]. Those techniques are non-destructive techniques and in par-

ticular, it is possible to classify the general used methods in frequency

and time domains. Frequency domain techniques [2–5] are based on

modal analysis, and this can represent a great advantage when a range

of frequencies to be analyzed is known a priori. Time domain tech-

niques on the other hand, are based on the study of vibration features

and signal processing techniques [6–11], additionally, one finds tech-

niques based on Matching Pursuit (MP) [12–15] applied to ultrasonic

Lamb Waves (LW) emitted and received by piezoelectric elements (PZT)

[16–19]. In those techniques damage detection is achieved by looking

at how the features of the MP decomposition applied to signals coming

from a healthy structure change with respect to a damaged one. Also
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one finds spatial techniques based on wavelet analysis applied to modal

basis [20–24].

However, dedicated techniques for the correct monitoring of very

stiff structures when dealing with very localized damage in low-

frequency range still remains a major challenge. This last, is principally

due to the fact that the perturbed effect due to the existence of damage

remains very localized, being very difficult the detection of damage lo-

cation from the measurement of few sensors far from the damaged zone,

which is known as the Saint-Venant principles in elastostatics. For this

reason, in our previous work [25], a model correction technique was

proposed in order to enrich a model and at the same time produce dam-

age identification. However, its applicability was limited to quasi-static

problems.

Here, this technique is extended from quasi-static analysis to the dy-

namic one, where richer information is available in the temporal and

frequency domain for the accurate enrichment and damage detection.

The proposed technique consists of finding a model correction based on
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Fig. 1. The mechanical domain under study.

the knowledge of data from a few sensors, these sensors measure the

time evolution of the displacements (or strain) of a real structure. The

model uses this information in the frequency domain of the measured

data to locally enrich a nominal model. Damage detection is enhanced

due to the enriched information on how damage influences the fre-

quency spectrum response of the nominal structure. This correction is
later used to identify the location and severity of the damage.

The present paper is structured as follows: Section 2 presents the ref-

erence problem, Section 3 presents the technique for local enrichment

of a model and its use in damage detection. Later Section 4 presents

different numerical examples showing the application of the proposed

technique for the identification of damage. Finally, Section 5 provides

conclusions and perspectives.

2. Reference problem

Let us consider the structure of Fig. 1 occupying the spatial domain

Ω ⊂ ℝ𝑑 with 𝑑 ∈ {1, 2, 3}, on a time domain 𝐼 = [0, 𝑇 ] and with con-

stant boundary 𝜕Ω = 𝜕𝑁Ω ⊕ 𝜕𝐷Ω over time, where 𝜕𝑁Ω and 𝜕𝐷Ω are 
the boundaries related to the imposed Neumann and Dirichlet condi-

tions respectively. This structure is submitted to: surface forces 𝐟𝑁 on 
𝜕𝑁Ω × 𝐼 (Neumann boundary conditions), imposed displacements 𝐮𝐷
on 𝜕𝐷Ω × 𝐼 (Dirichlet boundary condition) and volumetric forces 𝜌𝐟 on 
Ω × 𝐼 . In order to find the displacement field 𝐮(𝐱, 𝑡) of the structure we 
need to solve:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

div(𝝈) + 𝜌𝐟 = 𝜌�̈� in Ω× 𝐼

𝝈 ⋅ 𝐧 = 𝐟𝑁 on 𝜕𝑁Ω× 𝐼

𝐮 = 𝐮𝐷 on 𝜕𝐷Ω× 𝐼

𝐮(𝐱,0) =𝝍(𝐱) in Ω
�̇�(𝐱,0) = 𝜸(𝐱) in Ω
𝜺 = ∇𝐮+∇𝐮𝑇

2

(1)

with ∇ the gradient operator, 𝝈 the stress field and 𝜺 the strain. For 
what follows we assume that the stress tensor is composed by two com-

ponent:

𝝈 = 𝝈𝑣 + 𝝈𝑒, (2)

where 𝝈𝑒 represent the elastic contribution and 𝝈𝑣 the viscosity one.

For the elastic part Hooke’s constitutive law is considered so:

𝝈𝑒 = 𝖢 ∶ 𝜺, (3)

with 𝖢 the Hooke’s tensor, while the viscous term is given by:

𝝈𝑣 = 𝖣 ∶ �̇�, (4)

where 𝖣 corresponds to the viscosity tensor. This tensor is chosen in
order to obtain a specific damping behavior and, as will be seen later,

we will simply consider proportional damping. In addition since in this

paper we are dealing with damage detection, only isotropic damage

behavior will be considered and so in case the equation (3) becomes:

𝝈𝑒 = (1 − 𝑑)𝖢 ∶ 𝜺, (5)

with 𝑑 ∈ [0, 1] corresponding to the severity of the damage.

3. Local correction procedure

The continuous formulation of equation (1) is solved by discretizing

it in the spatial domain, this is classically done employing the FEM

method [26], where the following system of equations is obtained:

𝐌�̈�+𝐃 �̇�+𝐊𝐮 = 𝐟 , (6)

where 𝐌, 𝐃, 𝐊 represent respectively the mass, damping and stiffness 
matrix and �̈�, �̇�, 𝐮 are the acceleration the velocity and the displace-

ment field respectively. However, if we assume that both the nominal

model and the displacement field require correction, we should intro-

duce corrections for all matrices as well as the displacement, velocity,

and acceleration fields into the formulation (6), resulting in:

(𝐌+Δ𝐌)(�̈�+Δ�̈�) + (𝐃+Δ𝐃)(�̇�+Δ�̇�) + (𝐊+Δ𝐊)(𝐮+Δ𝐮) = 𝐟 . (7)

A simpler approach is to apply the Fourier transform to (6) before con-

sidering the need for any correction:

(−𝜔2𝐌+ 𝑖𝜔𝐃+𝐊)�̂� = 𝐟 , (8)

where the symbol ∙̂ represents the Fourier transform of ∙. Introducing 
then a correction, equation (8) becomes:

[−𝜔2(𝐌+Δ𝐌) + 𝑖𝜔(𝐃+Δ𝐃) + (𝐊+Δ𝐊)](�̂�+Δ�̂�) = 𝐟 . (9)

By assuming a proportional damping representation:

𝐃 = 𝛼𝐌+ 𝛽𝐊, (10)

where 𝛼 and 𝛽 are positive real number lower or equal to one, we have

that the correction of the damping becomes:

Δ𝐃 = 𝛼Δ𝐌+ 𝛽Δ𝐊. (11)

We can thus rewrite equation (9) as:

{−𝜔2(𝐌+Δ𝐌)+ 𝑖𝜔[𝛼(𝐌+Δ𝐌)+𝛽(𝐊+Δ𝐊)]+(𝐊+Δ𝐊)}(�̂�+Δ�̂�) = 𝐟 .

(12)

The linearized problem becomes:

(−𝜔2 + 𝑖𝜔𝛼)𝐌Δ�̂�+ (1 + 𝑖𝜔𝛽)(𝐊Δ�̂�+Δ𝐊 �̂�) = 0 (13)

where we assumed Δ𝐌 = 0, under the hypothesis that damage to the 
structure does not affect its mass.

In (13) two unknowns should be determined, the correction of the

stiffness matrix and displacement Δ𝐊 and Δ�̂� respectively. For a given 
Δ𝐊 the correction of displacement can be computed through classic 
FEM, however, given a displacement correction, the determination of

Δ𝐊 is not direct. In this, sense, in order to solve the correction of the 
stiffness matrix, one approach consists in adopting a parameterization

for Δ𝐊. A possible approximation is expressed as follows:

Δ𝐊 =
𝑁𝑒∑
𝑖=1

𝑎𝑖𝐊𝑒
𝑖

(14)

where 𝑁𝑒 is the number of elements in the mesh used to discretize the

domain Ω, i.e., Ω = ∪𝑁𝑒

𝑖=1Ω𝑖 and where 𝐊𝑒
𝑖

is the nominal stiffness matrix

with respect to element Ω𝑖. The expression (14), with 𝑎𝑖 < 0, represents 
a simple approximation method of diminishing the contribution of el-

ement Ω𝑖 to the structure’s stiffness matrix 𝐊. For elements located in 
the undamaged region there is no need for correction, and therefore
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Fig. 2. Problem configuration plate.

the associated coefficients will vanish. Thus, it is expected that only

the elements in the set  concerned by the elements covering the dam-

aged area will have non zero values of the 𝑎-coefficients. Therefore,

the minimization problem that enforces the expected sparsity of the a-

coefficients is described as follows:

⎧⎪⎪⎨⎪⎪⎩

min
{𝑎𝑖}

𝑁𝑒
𝑖=1

𝑁𝑒∑
𝑖=1

|𝑎𝑖|
subjected to: (−𝜔2 + 𝑖𝜔𝛼)𝐌Δ�̂�(𝜔) + (1 + 𝑖𝜔𝛽)(𝐊Δ�̂�(𝜔) + Δ𝐊 �̂�(𝜔)) = 0
& �̂�(𝜔)(𝐱𝑠𝑒𝑛𝑠,𝜔) + Δ�̂�(𝐱𝑠𝑒𝑛𝑠,𝜔) = �̂�𝑚(𝐱𝑠𝑒𝑛𝑠,𝜔)

(15)

where �̂�𝑚(𝜔) corresponds to the Fourier transform of the measured 
displacement data, �̂�(𝐱𝑠𝑒𝑛𝑠, 𝜔) and Δ�̂�(𝐱𝑠𝑒𝑛𝑠, 𝜔) to the nominal displace-

ment and its respectively correction on sensor locations 𝐱𝑠𝑒𝑛𝑠 respec-

tively.

Note from the expression (15) that there are as many expressions as

there are different measures of the displacement response at different

frequencies 𝜔 and for each of these frequencies, the numerical solution

of the nominal state of the structure must be calculated. The fact of

having as many expressions to verify as experimental frequency mea-

surements is of utmost importance, since this generates a large amount

of data to generate an effective and accurate detection of damage, which

does not happen in the case of quasi-statics, where only one experimen-

tal measurement is available to generate a detection of damage. Once

all the variables of problem (15) defined, this problem is solved using

convex optimization algorithms [27], implemented using the Matlab li-
brary CVX [28].

4. Case study analysis

4.1. Plate

In this section, we applied the proposed methodology to a plate of

dimensions 𝑑1 = 1 [𝑚], 𝑑2 = 2 [𝑚]. This plate is fully clamped on its 
bottom boundary, free on the other boundaries and subjected to a load

varying in time on its left side upper corner. The applied force (Fig. 2b)

is defined as a combination of sinusoids at different frequencies:

𝑓 (𝑡) = 2 ⋅ 108 ⋅
(
2𝜋2 (𝑡− 5)2

25
− 1

)
⋅ 𝑒
(
−𝜋2 (𝑡−5)2

25 −1
)
⋅ 𝑠𝑖𝑛(2𝜋 ⋅ 𝑡), (16)

in order to excite a wide spectrum of frequencies, which will be used

to identify the location of the damage by solving (15). However due to
computational burden only three frequencies have been chosen (2.95,

5.95, 11.95 Hz) to run the algorithm.

The plate is modeled under a plane stress condition and its behav-

ior is assumed to be elastic, characterized by a Young’s modulus of

𝐸 = 200 GPa and a Poisson’s coefficient of 𝜈 = 0.3. This configuration 
corresponds to the nominal structural system, while the reference sys-

tem is assumed to contain a damaged area. The plate is equipped with a
finite element mesh, depicted in Fig. 2a, which serves as support for the

approximation of various mechanical fields: displacement, strains and

stresses. The elements located in the damaged region are highlighted

in red in Fig. 2a. In this region, the Young’s modulus is reduced to

𝐸′ = 0.2 ⋅ 𝐸, i.e. 𝑑 = 0.8 as shown in (3). For the sake of simplicity, 
the locations of the sensors are assumed to coincide with some of the

mesh nodes, particularly the ones marked in blue in Fig. 2a. Figs. 3 - 4

c (x and y components) of the damaged and undamaged structures for

two different time steps (5.24 and 7.24 seconds). As we can see, since

the damage is localized, the difference between the two structures is
not significant. After solving the minimization problem, the elements

that underwent the most significant corrections are visually highlighted

in red in Fig. 5a, showcasing a successful identification of the damage

(Fig. 5b). To further validate this methodology, we addressed a scenario

where only one element is damaged (Fig. 6). Notably, in this case, the

algorithm shows remarkable accuracy in pinpointing the location of the

damage.

4.2. Plate with an hole

In order to show the validity of the presented method, another ge-

ometry is considered. In particular, let’s consider a plate with a hole

(Fig. 7a), with dimensions 𝑑1 = 2.5 m, 𝑑2 = 4 m, and a hole of ra-

dius 𝑟 = 0.25 m. The same configuration (boundary conditions, material 
properties, and force location) described in Sec. 4.1 has also been used

for this plate. However, for this case, a slightly different force (Fig. 7b)

has been applied to the structure:

𝑓 (𝑡) = −2 ⋅ 108 ⋅
(
2𝜋2 (𝑡− 5)2

25
− 1

)
⋅ 𝑒
(
−𝜋2 (𝑡−5)2

25 −1
)
⋅ 𝑠𝑖𝑛(4𝜋 ⋅ 𝑡). (17)

As already mention in Sec. 4.1 due to computational burden only two

frequencies have been chosen (19, 93 Hz) to run the algorithm (15).

Fig. 8 compare the displacement field (x and y components) of the

damaged and undamaged structures at 5.12 seconds. The result of the

identification procedure is shown in Fig. 9. Also in this case, the algo-

rithm identifies with good accuracy the location of the damage.
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Fig. 3. 𝑥 (top), 𝑦 (bottom) components of the displacement field associated with the nominal solution (left); reference solution that takes into account the real

damaged region (middle) and difference in absolute absolute between the two solutions (right) at time 𝑡 = 5.24 s.

Fig. 4. 𝑥 (top), 𝑦 (bottom) components of the displacement field associated with the nominal solution (left); reference solution that takes into account the real

damaged region (middle) and difference in absolute between the two solutions (right) at time 𝑡 = 7.24 s.

4.3. Cantilever

In this section, we consider a cantilever fully clamped on its left side,

free on the other boundaries and subjected to a vertical load on its right

side bottom corner. The force (Fig. 10b) applied to the structure is:

𝑓 (𝑡) = −107 ⋅
(
2𝜋2 (𝑡− 5)2

25
− 1

)
⋅ 𝑒
(
−𝜋2 (𝑡−5)2

25 −1
)
⋅ 𝑠𝑖𝑛(6𝜋 ⋅ 𝑡). (18)

The structure is modeled under a plane stress condition and its behav-

ior is assumed to be elastic, characterized by a Young’s modulus of

𝐸 = 200 GPa and a Poisson’s coefficient of 𝜈 = 0.3. This configuration 
corresponds to the nominal structural system, while the reference sys-

tem is assumed to contain a damaged area. The structure is equipped

with a finite element mesh (Fig. 10a), where the elements located in
the damaged region are highlighted in red. In this region, the Young’s

modulus is reduced to 𝐸′ = 0.2 ⋅𝐸. For this case due to computational 
burden only two frequencies have been chosen (33, 150 Hz) to run the

algorithm (15). Fig. 11 compare the displacement field (x and y com-

ponents) of the damaged and undamaged structures at 5.42 seconds.

The results of the identification procedure are displayed in Fig. 12, il-
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Fig. 5. Result of the identification.

Fig. 6. Result of the identification when only one element is damaged.

Fig. 7. Problem configuration plate with hole.
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Fig. 8. 𝑥 (top), 𝑦 (bottom) components of the displacement field associated with the nominal solution (left); reference solution that takes into account the real

damaged region (middle) and difference in absolute between the two solutions (right) at time 𝑡 = 5.12 s.

Fig. 9. Result of the identification on the plate with an hole.

Fig. 10. Problem configuration cantilever.
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Fig. 11. 𝑥 (top), 𝑦 (bottom) components of the displacement field associated with the nominal solution (left); reference solution that takes into account the real

damaged region (middle) and difference in absolute between the two solutions (right) at time 𝑡 = 5.42 s.

Fig. 12. Result of the identification on the cantilever.

lustrating that the algorithm accurately identifies the location of the

damage. The prediction of damage localization in the numerical ex-

amples presented in the last sections is mainly achieved due to the L1

regularization on the a-coefficients, which induces the model enrich-

ments to be very localized. The above property is reinforced by the fact

that the model determines the best local enrichment such that it can

better correct the frequency response of the experimentally measured

displacement, which makes the method even more robust.

5. Conclusions and perspectives

A local material enrichment algorithm for the identification of struc-

ture damage has been proposed. This method is robust in identifying

very localized damage despite being applied to very rigid structures in
the presence of few sensors, moreover, the method achieves damage

localization even if the sensors are far away from the damaged area,

which demonstrates the capabilities of the proposed method.

Since the present work focuses its attention mainly on the devel-

opment of ideas, its application is kept here for academic examples.

Thus, extensions should be carried out to be applied to realistic cases

and to bring its application closer to the industrial world. In this sense,

progress continues to be made in the direction of enriching the physical

model with more complex behaviors, in order to be able to identify cor-

rections in the model that take into account more complex phenomena,

such as anisotropic or nonlinear behavior. Another perspective to be

mentioned corresponds to the extension of the method in the case that

the experimental measurements do not correspond to displacements,

but rather to strains, and that these do not contain the measurement of

all the components of the strain tensor. The above perspectives, both for

the enrichment of the method for local correction taking into account

complex behaviors, as well as the extension of the methodology for

incomplete deformation tensor measurements, are considered as cru-

cial to provide the method with the capability to be widely used in an

industrial context. These developments will be presented in future pub-

lications.
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