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A B S T R A C T

Sensory evaluation is an important aspect of food quality and control. However, even when carried out by a
group of experts, it is generally difficult to link the results of a sensory evaluation to physico-chemical or
technological measurements. This study is based on the premise that formalising the interpretation of sensory
observations in terms of the physical state of the product can help to link together sensory and physical prop-
erties. The main proposal of this paper is a methodological framework adapted from a diagnostic approach to
capture the relationships between sensory evaluations of a type of product, here wheat dough, and its physical
states called quality profiles. A probabilistic analysis is proposed to identify the quality profiles and their sig-
natures, i.e. the corresponding sensory observations that result from grouping the probabilities of the observa-
tions. This work is supported by the analysis of a large historical sensory evaluation dataset from the routine
application of the French baking standard to estimate the baking value of common wheat (Triticum aestivum L.)
flour. Application of the method to this dataset revealed two defective quality profiles for wheat dough,
Slackening (due to weakness of the gluten network) and Resistant (excessive strength of the gluten network),
along with their signatures in terms of sensory observations of the dough. Promising relationships were found
between the quality profiles attributed to the wheat samples and usual technological criteria of the wheat flour
quality: gluten index, (Ie) elasticity index and (W) dough strength. This methodological framework applied to
food opens up interesting perspectives for the use of sensory data for crop and food quality assessment using
computational approaches.

1. Introduction

In agri-food systems, the evaluation of crop or product quality often
includes a dose of sensory evaluation, in addition to measurements from
technological tests and compositional analysis. Sensory evaluation is
used, for example, for grading crops before primary transformation, as
in the Speciality Coffee Association of America (Lingle, 2011) standards
for grading coffee beans, or the Bread Baking Assay standard (NF
V03–716) for grading soft/common wheat in France. Among the various
types of measurements used to assess the quality of crop or food, sensory
evaluation is generally close to the perception of the end user but
difficult to relate to the physical properties and composition of the
product.

Ruan and Zeng (2004) distinguish two types of sensory evaluations
on industrial products, the one performed by trained experts for product

design and development (B2B) using analytical and neutral descriptors
and the one used for consumer and marketing research (B2C) by un-
trained consumer panels using analytical and hedonic descriptors. The
sensory evaluation of agricultural product quality using standards be-
longs clearly to the first type. The involvement of trained experts and the
use of neutral sensory descriptors, generally associated to the techno-
logical knowledge on the product, should reduce the intra-individual
variability and produce consistent evaluation over time compared to
hedonic evaluations. Even in these controlled conditions, the inter-
individual variability may be significant and the relations between
physical/chemical or technological features of the product and the
sensory criteria are complex (e.g. nonlinear) (Ruan & Zeng, 2004).
Moreover training expert to sensory evaluation is time and resource
consuming; not surprisingly, food technology has sought to replace
sensory evaluation with technological measurements (see (Bourne,
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2002) for a reference book on this topic). Establishing the relationships
between sensory data and the physical conditions of a food product is
critical for decision support, for example for monitoring physical
changes in the product (Baudrit, Sicard, Wuillemin, & Perrot, 2010;
Curt, Trystram, Nogueira-Terrones,& Hossenlopp, 2004). However, this
requires an appropriate method to exploit the data obtained from the
sensory evaluations of the food products, which is an additional
difficulty.

Classical statistics and factorial analysis methods have been used for
a long time to address the problem of physical interpretation of sensory
observations, but they are sometimes insufficient (Ruan & Zeng, 2004),
as for example MCA, which provides a low-dimensional representation
of the data that can lead to a loss of information. Intelligent computing
techniques (especially fuzzy logic) have been applied in the field of food
quality and control to mimic the reasoning of experts on sensory criteria
(Allais, Perrot, Curt, & Trystram, 2007a; Birle, Hussein, & Becker, 2013;
Mavani et al., 2022; Nunes et al., 2023). In particular, they have been
applied to sensory control of food transformations processes such as
cheese ripening (Baudrit et al., 2010; Curto et al., 2020; Perrot et al.,
2004), sausage drying and biscuit aeration (Allais, Perrot, Curt, & Try-
stram, 2007b), or the prediction of coffee bean sorting (Livio& Hodhod,
2018) or wheat dough condition (Kansou, Chiron, Della Valle, Ndiaye,&
Roussel, 2014; Ndiaye, Valle, & Roussel, 2009). Most of these models
were designed to compute sensory observations in order to support
decision in an industrial context, they did not integrate the physical
interpretation of these observations. An illustration of model relating
sensory observations to the product physical/chemical state is provided
by Baudrit et al. (2010)’s dynamic Bayesian network of the cheese
ripening. This model combines a model of the physical/chemical pro-
cesses and expert-based sensory indicators of the ripening phases. The
approach used to capture the sensory indicators is presented in Sicard,
Baudrit, Leclerc-Perlat, Wuillemin, and Perrot (2011); it is based on the
understanding of operator’s cognition during the process control.
Roughly experts learn with experience to relate characteristic groups of
sensory observations, called “chunks, with the product condition which
helps them to diagnose a process drift or a defective product for
example; main aspects of this theory are reported in Sect.2.1. Thus,
chunks helps experts to make the link between sensory observations and
the product physical state, therefore our first hypothesis is that the
identification of chunks can be used to relate the sensory observations
with the physical/chemical or technological measurements. However in
the food domain the relation between the product defective states and
the corresponding chunk of sensory observations is largely tacit
knowledge held by domain experts, making it difficult to capture
(Kansou et al., 2022). Our second hypothesis is that chunks can be
approximated by clusters of sensory observations obtained from an
appropriate analysis of sensory data. To assess these two hypotheses this
work is grounded on the analysis of sensory data collected through the
routine application of the bread baking test standard (NF V03–716) to
characterise the quality of soft wheat grain grown in France over the last
two decades, which amounts to more than 10,000 sensory evaluations.

This works led up to two contributions, for both the sensory evalu-
ation in food industry (Section 2) and the wheat quality (3). In Section 2
this article presents a novel method for modelling expert interpretation
of product quality based on a probabilistic analysis of historical sensory
data. In Section 3, a real-world application, which aims to better inte-
grate sensory evaluation in the determination of wheat quality, is fully
addressed. This includes the assignment of wheat quality classes and the
confrontation with the usual technological measurements of wheat
quality. Section 4 discusses the various results and possible extensions
that this work opens up for sensory analysis in general.

2. A diagnosis approach for the sensory evaluation of food

This section presents the formalisation of the diagnostic approach for
the use of sensory data. By way of illustration, the example of the wheat

dough kneading sensory evaluation is presented in the context of the
French Breadmaking Assay. The application to the other unit operations
of the bread-making assay is given in section.3.

2.1. Sensory-based diagnosis for food product

The act of diagnosis is the act of proposing a defect (the output) as a
plausible cause for a set of observations of a product (the input)
(Schreiber et al., 2001), denoted signature (Cordier, Travé-Massuyès,&
Pucel, 2006). In the case of a food quality, the state of the product,
denoted quality profile, is the output diagnosed from the analysis of
observations that are the results of technological tests or sensory eval-
uations (inputs).

Intuitively, the quality profile is based on the knowledge and un-
derstanding of the product’s behaviour, while the observation is based
on human perception. For Raufaste et al. (Raufaste, Eyrolle, & Mariné,
1998), medical diagnosis involves two processes, cognitive (knowledge
of the possible inputs and outputs of the diagnosis) and perceptual (how
the inputs are perceived). Perceptual processing in particular plays an
important role in sensory analysis, while cognitive knowledge is useful
in formulating a plausible causal explanation for the observations. Ex-
perts in particular are able to associate a set of observations with a piece
of knowledge: Ballester et al. (Ballester, Patris, Symoneaux, & Valentin,
2008) shows for example that trained experts are able to recognise and
characterise a wine better than novices. To explain this ability, Chase
et al. (Chase & Simon, 1973) introduce the concept of chunks through
the study of chess, where expert players identify patterns that allow
faster mobilisation of knowledge. Thus, chunks are typical configura-
tions of situations acquired by experts during their practice. Sicard et al.
(Sicard et al., 2011) apply this theory to capture expertise in the cheese
ripening process. In this study, chunks of sensory observations used by
experts to determine the main stages of ripening were made explicit, and
this knowledge was integrated into a predictive model of cheese
ripening dynamics (Baudrit et al., 2010).

As shown in Fig.1, baking experts associate quality profiles (the
output) with chunks (patterns within the observations, the inputs) when
making a diagnosis from sensory evaluations. Therefore, a food diag-
nostic model must rely on domain expertise to define the quality profiles
and then to associate the chunks of observations with the quality pro-
files. To elicit domain expertise, Sicard et al. (Sicard et al., 2011) con-
ducted interviews with experts in cheese making, but this approach is
time consuming and exhausting for domain experts because the know-
how of food experts, built up through experience, is often tacit knowl-
edge that is particularly difficult to put into words (Kansou et al., 2022;
Wooten& Rowley, 1995). In addition, human perceptions of probability
are known to be biased by prior knowledge or expectations (Kahneman

Fig. 1. Principle of food quality diagnosis based on sensory data. In green
(EXPERT KNOWLEDGE) the reasoning steps of a diagnostic process through chunks
(i.e. expert-based group of observations). In blue (DATA ANALYSIS) the approach
followed in this work, which uses the historical sensory data set to establish the
diagnostic process steps through the identification of signatures (i.e. data based
group of observations). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

M. Munch et al. Innovative Food Science and Emerging Technologies 96 (2024) 103771 

2 



& Tversky, 1973; Raufaste, da Silva Neves, & Mariné, 2003), making it
difficult to objectively associate quality profiles with observations.

As shown in Fig.1, our working hypothesis is that historical sensory
data (i.e. a large collection of test results) can be used to identify sig-
natures and bypass expert chunk elicitation using data analysis. This
hypothesis assumes that expert chunks are reflected by patterns in the
data set. The approach presented in this paper shows how expert
knowledge and data analysis of sensory data can be combined to build a
diagnostic model for the sensory evaluation of a food product.

Example 2.1. A simple test to characterise a sample of bread during
kneading is considered. It consists of five sensory attributes (Dough
Stickiness, Slackening, Consistency, Extensibility and Elasticity)
extracted from the sensory Bread Making test (Sec.3 details more in-
depth results). Three values are defined: Normal and either Insuffi-
cient or Excessive, the two latter being problematic. In this small
example, only five defects are considered: Excessive Dough Stickiness,
Slackening, Consistency and Elasticity, and Insufficient Extensi-
bility. According to experts, three dough quality profiles can be diag-
nosed: a gold standard one (i.e. no defect is observed) and two defective
dough behaviours, slackening dough due to weak gluten network (WG)
and resistant dough due to strong gluten network (SG). The test principle
is to assess deviations from the Normal value for the five attributes. The
signature of the gold standard profile is the normal value for the five
attributes. The quality profiles WG and SG have no defined signatures.
The aim of this example is to show how the signatures can be identified
from sensory data.

2.2. Probabilistic analysis of the observations

In order to reason on a probability basis, this section introduces the
formal notation of sensory tests. Be a test with n attributes denoted Xi
(i ∈ [1; n]), and Xi(v) an observation of this attribute taking the value v.
Following the probabilistic notation, each observation Xi(v) is associated
to its probability of happenstance, denoted P(Xi(v)). For instance, P
(Xi(v))= 0.4 means that Xi has a probability of 0.4 to take the value v. By
extension, given i ∕= j, P(Xi(vi)∣Xj

(
vj
)
) denotes the probability of

observing Xi(vi) knowing that Xj
(
vj
)
is known.

Example 2.2. Table 1 shows the conditional probability table between
the Consistency and Elasticity defects. The first table shows the
observation of Consistency when Elasticity is known, the second the
observation of Elasticity when Consistency is known. These two ex-
amples show the non symmetry of conditional probabilities: P(Consis-
tency(I)∣Elasticity(I)) = 0.11 while P(Elasticity(I)∣Consistency(I)) =
0.79. In other words, this means that an insufficiency in Elasticity is
highly probable (p = 0.79) when an insufficiency in Consistency is
known; but knowing there is an insufficiency in Elasticity doesn’t

guarantee (p = 0.11) to observe an insufficiency in Consistency.

While this approach is not causal (one cannot say from P
(Xi(vi)∣Xj

(
vj
)
) that observation Xj

(
vj
)
caused Xi(vi)), it gives an overview

of the correspondences between pairs of observations: “When Xj
(
vj
)
is

known, the probability of observing Xi(vi) is low/high”. This approach
helps to discover patterns (groups of observations that occur together)
that could constitute potential signatures.

2.3. Signatures identification

This section shows how naive Bayes network models (Zhang, 2004)
are used to identify patterns and associate them with signatures. We
consider a food product with different quality profiles d, and a test with
m boolean observations ok (k ∈ [1,m]), each representing whether or not
an attribute took a specific value. A naive Bayes model is proposed
(Fig.2), whose simple structure makes it easy to understand how each
feature contributes to the final diagnosis. It is composed of (a) each
observation ok (boolean variables indicating whether a value is observed
or not) and (b) the variable Quality Profile (taking its value within the
set of all possible quality profiles d). The relations are such that:

1. Knowing the value d ofQuality Profile gives total information about
each observation ok.

2. Each observation ok is independent of the others when Quality
Profile is known. This is due to the independence property of naive
Bayes: when Quality Profile is known, information does not flow
between observations: knowing oi has no effect on oj if their common
cause Quality Profile is defined.

To uncover potential signatures, a conditional probability table, i.
e.mxm matrix is constructed so that, given a row i and a column j, the
probability P(oj∣oi) is given. The matrix is then clustered in row and
column, using the Ward pairwise distance method:

1. Horizontal clusters (Behaviour clusters) between observations when
their value is KNOWN, to study how they affect the remaining ones.
This cluster describes groups of observations that can be used as
potential signatures for quality profiles. If observations Xi(v) and
Xj(k) are clustered together, it suggests that other defects will have
the same probability of happening when one of the both is known;

2. Vertical clusters (Accuracy clusters) between the remaining OBSERVED

defects when another one is known, to study their frequency. This
cluster helps refine potential signatures by trimming observations

Table 1
Example of a conditional probability tables describing relationships between
Consistency and Elasticity defects.

P(Consistency∣Elasticity) Consistency(I) Consistency(E)

Elasticity(I) 0.11 0
Elasticity(E) 0 0.03

P(Elasticity∣Consistency) Elasticity(I) Elasticity(E)

Consistency(I) 0.79 0
Consistency(E) 0.17 0.39

For instance, P(Consistency(I)∣Elasticity(I)) (0.11) represents the probability
of having an insufficiency of Consistency when an insufficiency in Elasticity is
already known. Conversely, P(Elasticity(I)∣Consistency(I)) (0.79) represents
the probability of having an insufficiency of Elasticity when an insufficiency in
Consistency is known. Bolded probabilities represent the maximum likelihood.

Fig. 2. Naive Bayes model for diagnosis. The value of quality profile has in-
fluence over the different attributes’ observations. Knowing the quality profile
value guarantees independence between observations. Observations ok
(k ∈ [1,m]) are booleans representing whether or not an attribute takes a value.
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that are not sufficiently characteristic of a quality profile. If obser-
vations Xi(v) and Xj(k) are clustered together, it suggests that Xi(v)
and Xj(k) have similar behaviour when different defects are known;

Results are presented in a clustermap.

Example 2.3. Fig.3 presents the relations between different observa-
tions. It shows for instance that when Slackening(E) is KNOWN, the
OBSERVED attributes Dough stickiness(E) and Extensibility(I) both
happen with probabilities of respectfully 0.91 and 0.42. Looking at their
Behaviour cluster C1 shows that Dough Stickiness(E) has a similar
impact on OBSERVED defects. Being in the same Accuracy cluster CA, they
also roughly have the same probability of appearing when another
defect is KNOWN: for instance, Dough stickiness(E) and Extensibility(I)
have respectively probabilities of 0.09 and 0.05 when Consistency(E) is
known.

2.3.1. Behaviour clusters
In the map reported in Fig.3, rows are grouped as the Behaviour

clusters. Behaviour clusters group by similarity the observations that
condition the likelihood of the other observations, namely Xj

(
vj
)
in P

(Xi(vi)∣Xj
(
vj
)
), describing behaviours exhibited by the sample. Behav-

iour clusters thus represent potential signatures for quality profiles.

Example 2.4. The clusters of the example are shown in Fig.3. The
observations in C1 describe a dough with Stickiness(E) and Slackening
(E) happening together; while those in C2 describe a dough with Con-
sistency(E), Extensibility(I) and Elasticity(E) happening together.

This clustering is compatible with the two quality profiles expected by
the experts, where C1 describes a dough with a weak gluten network and
C2 a strong gluten network. Thus, in a first approach, both C1 and C2 are
assigned with signatures sWG and sSG for the weak and strong gluten
network defect profiles.

2.3.2. Accuracy clusters
In the map reported in Fig.3, columns are grouped as the accuracy

clusters. Accuracy clusters are used to trim potential signatures
described in Behaviour clusters; they convey information about the
probability of the observations, namely Xi(vi) in P(Xi(vi)∣Xj

(
vj
)
). More

formally, given a known quality profile d, a good signature sd is one
with.

• The highest sensitivity P(sd|d), which is the probability of observing
sd knowing that d is true (true positive).

• The lowest fall-out P(sd|¬d), which is the probability that sd is
observed knowing d is false (false positive).

The tolerance for both values depends on the expectations experts
have of the diagnostic tool. For example, a sensitivity of 0.5 may not be
high enough, as it means its associated quality profile, when true, would
be detected on average once out of two times. On the other hand, a low
fallout guarantees the absence of false alarms: a fallout of 0.5 might be
too high, as the signature would be observed once out of two times, even
if the quality profile is not true.

However, Quality Profile d is a hidden variable: its probability
cannot be computed directly and must be approximated to estimate

Fig. 3. Clustermap of probabilities for the reduced example. Each case (i; j) (row i, column j) indicates the probability P(j∣i), i.e. the probability of the OBSERVED defect j
when defect i is KNOWN. Probabilities between two identical observations are not indicated, since their value is 1 by definition. Behaviour clusters define C1 and C2.
Accuracy clusters define CA, CB, CC and CD.
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sensitivities and fallout. If d is true and sd is its signature (which has been
identified by Behaviour clusters), then the observations o ∈ {o1,K om}
that are true in sd must be observed. Given an observation o, we
approximate P(o|d) as

P(o|sd) =
1

|sd/o|
∑

oj∈sd/o

P
(
o|oj

)
(1)

Note that this approximation does not take into account the proba-
bility of the signature occurring, nor the possible interactions between
the observations. The aim of this calculation is only to highlight whether
o has a high (or low) average probability of occurring along sd’s
observations.

Example 2.5. Table 2 shows for each accuracy cluster the average
probability of its observations with respect to sWG and sSG. For example,
P(Stickiness(E)∣C2) is the average between 0.09, 0.22 and 0.06. Since
CA has high sensitivities and low fallout for sWG (0.91 versus 0.12 for
Stickiness(E), 0.25 versus 0.03 for Slackening(E)), and C1 = CA, we
keep sWG = C1 = {Stickiness(E), Slackening(E)}.

On the other hand, the observations of C2 are split between CB, CC
and CD. Both CC and CD have a low sensitivity (0.29 and 0.03), and CB
has a much too high fallout (0.42). The definition sSG = C2 ∩ (CC ∪ CD)

means that the diagnosis would be hard to get (since the highest sensi-
tivity is 0.29), but could be trusted (since the highest fallout is 0. 02);
sSG = C2 ∩ (CB ∪ CC ∪ CD), on the other hand, guarantees a better
detection of the associated quality profile (since Extensibility(I) has a
sensitivity of 0.92, making it certain to be observed if d = SG), but with
a higher risk of error if only Extensibility(I) is observed.

2.4. Conclusion

In conclusion, this approach aims at proposing a new way to look at
sensory data, and a method to actually determine the components of a
diagnostic model, summarised in Fig.4.

• Behaviour clusters highlight groups of KNOWN defects which have a
similar impact on the other OBSERVED defects conditional probabili-
ties. Associated with quality profiles, they represent potential sig-
natures for diagnosis.

• Accuracy clusters make it possible to visualise the sensitivity (the
odd of detecting a given profile) and the fallout (the odd of false
detections) of OBSERVED defects when a KNOWN defects is fixed. They
give an indication of the diagnostic performance of the signature. To
be noted however, the signature composition itself is a matter of
choice, one could choose to increase the sensitivity or, on the con-
trary, to keep low fallout to reduce false positive.

Example 2.6. Signature truncation can occur for a number of reasons.
In the example Table 2, Consistency(E) is a very rare observation, but it
is slightly more likely to be associated with a SG quality profile. For this
reason it could be included in the sSG signature, while keeping in mind
that the absence of Consistency(E) for a dough does not exclude a
strong gluten quality profile.

Finally, it is important to note that signatures only reflect how close a
food is to a quality profile: the more observations it shares with a
signature, the more confident the diagnosis is. Confidence can be
expressed in different ways: the next section presents an application
with an ad hoc score that illustrates how much a bread sample expresses
(or does not express) a quality profile.

3. Application to the bread making test

In this section, an application is developed to show how observation
clustering was used to determine signatures for new quality profiles. It is
composed of several steps:

1. Experts define the expected quality profiles (in this application,
slackening and resistant) they use to qualify wheat quality.

2. From a database of sensory observation, a matrix of conditional
probabilities is computed to reflect the defects relations. A clustering
in row and column is then applied to obtain the Behaviour and Ac-
curacy clusters.

3. Signatures are built from the clustering to reflect the two quality
profiles expected by experts. From these signatures a score is derived
to compute the closeness of a given sample and the two behaviours.

4. From the two scores derived from signatures seven new quality
profiles are designed using expert’s inputs. These profiles illustrate
the existing diversity of dough’s behaviours.

The seven new quality profiles are then evaluated by comparing their
correlation with technological measures.

3.1. Database description

The database used in this work has been developed to store the
measurements commonly used for wheat quality. It consists of two parts:

1. Breadmaking test results. This test, described in AFNOR standard
NF-V03–716, is widely used in the French context to assess the
baking value of common wheat. The dataset contains the results for
11,184 batches of wheat collected over the period 2002–2022 by
ARVALIS, the French applied agricultural research organization
dedicated to arable crops. The size and time range guarantee a good
representation of the different quality profiles likely to be encoun-
tered during the breadmaking test.

2. Technological measurements. In addition to the baking tests, the
assessment of wheat quality is also based on technological mea-
surements carried out on wheat (Haǰselová & Alldrick, 2003). For
10,897 wheat samples the measurements are non-systematic and
changing, for the 287 wheat lots measured during the period
2021–2022 the measurements are exhaustive and complete. In
contrast to the baking test, the technological measurements were not
performed systematically over the twenty years. The technological
data will be used to validate the method.

The remainder of this section presents in more detail (1) the char-
acteristics of the bread-making test and (2) the four technical measures
selected: protein content, gluten index and two measures from Chopin’s
alveograph, Ie and W.

3.1.1. Bread making test
The French Bread Baking Test describes the different operation units

of bread making and the associated sensory measurements used to
characterise the process and bread quality. It includes a rating scale with
a maximum of seven values (from Insufficiency to Excess,
1≺4≺7≺10≺7≺4≺1), with the reference value for a standard French
bread making process as the central value equal to 10. By definition, a
defect is characterized by a rating <10. Some attributes have only one
type of defect and are then rated on a four-point scale, e.g. stickiness can

Table 2
Average probability of each defect to appear along sWG and sSG (maximum
likelihood).

Accuracy Defect sWG = C1 sSG = C2

CA
Stickiness(E) 0.91 0.12
Slackening(E) 0.25 0.03

CB Extensibility(I) 0.42 0.92
CC Elasticity(E) 0.02 0.29
CD Consistency(E) 0.01 0.03
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only be excessive, never insufficient. The test assesses the main unit
operations of the breadmaking process, from kneading to baked bread
(including crumb and crust evaluation). In this article we focus only on
the diagnostic of the dough which involves the following operation
units:

• Kneading (K). After the mixing of the ingredients of common french
bread, six attributes are measured (such as the dough smoothing, the
stickiness, …).

• First Rising (FR). The dough is left to rise a first time. Only one
attribute (the slackening) is measured.

• Dividing (D). Once the dough has risen, dough pieces are formed to
shape the future breads. Four attributes (lengthening, tearing,…) are
measured.

• Second Rising (SR). Dough pieces are left to rise a second time. Two
attributes (rising level, tearing) are measured.

• Baking (B). Dough pieces are baked. Before being put in the oven,
two attributes are measured (stickiness and free standing).

• Bread analysis (Ba). While not directly about dough, experts have
underlined that dough’s behaviour and the size of the bread’s section
lengthwise (after being cut) could be strongly linked. That is why this
attribute is also added in the study.

The results are presented in a specific evaluation grid from which
three scores are calculated as a weighted sum on a scale from 0 to 100,
one for the dough (denoted dough grade), one for the bread aspect and
one for the crumb. The sum of the three scores gives the overall score of
the baking test, widely used in the wheat production sector to distin-
guish between gold standard and defective quality products. A
maximum value (300) is reached when all the attributes score 10. As
such, the global score is a relevant and widely used indicator of the
distance between a given dough characteristic and gold standard qual-
ity. However, it does not provide any information about the defective
properties. Indeed, insufficiencies or excesses are penalized in roughly
the same way. To trace back the defects at the origins of a low score, it is
necessary to look at the sensory observations reported in the grid.
Diagnosing the physical state at the origin of the defects requires specific
knowledge of the baking test and the physical behaviour of the dough.

3.1.2. Technological measurements
The protein content is a widely accepted criterion used worldwide

for wheat quality. Roughly speaking, the protein content is a proxy for
the insoluble protein content, which is directly related to the ability to
form the gluten network of the dough. In the database, protein content is
measured using a near-infrared spectrometer (standard method NF EN
15948).

The Gluten Index is a measure of the strength of the gluten network.
It is determined by weighing the remaining quantity of gluten from a
dough after washing, using the Perten Glutomatic (NF EN ISO 21415-2).

The Chopin alveograph method (NF EN ISO 27971) is a wheat flour
characterisation method based on dough rheology (Dubois, Dubat, &
Launay, 2008) to provide information on dough extensibility and elas-
ticity. This study focuses on two measurements: W, widely used for flour
evaluation worldwide (Dobraszczyk, 2004), and Ie, a good predictor of
dough behaviour according to domain experts and highly correlated
with a critical rheological property (Strain Hardening Index) (Jødal &
Larsen, 2021).

3.2. Quality profiles signatures determination

In addition to the gold standard quality profile (no defect), two
consensual quality profiles for French bread making were elicited from
four domain experts. Based on their explanations, they can be defined as
follows:

(a) Slackening Profile SP describes a dough that is too sticky, lacks
consistency and elasticity and tends to flow. This quality profile is
associated with a weak gluten network.

(b) Resistant Profile RP describes a strong dough able to resist
intensive mechanical action. For French bread making, it is
difficult to handle as it retracts too much. In particular, it presents
an insufficient lengthening. This quality profile is associated with
a excessively elastic gluten network.

Similar to the example developed in section.2, the focus is on defects,
namely when the attribute value is either Excess or Insufficiency. Given
the quality profiles descriptions, the clustering is shown in Fig.5 for all
the selected breadmaking steps. The clusters C1 and C2 are easily
assigned to the quality profiles from the definitions provided by the
experts as follows: sSP = C1 and sRP = C2. In addition, the cluster map
shows a third cluster C3 which, according to the experts, does not
correspond to any known defect profile nor typical dough behaviour.

From the results shown in Fig.5, sensitivities are calculated using
Eq.1 and shown in Table 3. It shows that CD ∪ CE has the best sensitiv-
ities (0.60 and 0.29) and fall-out (0.06 and 0.02) for sSP. Since
(CD ∪ CE)⊂C1, this gives sSP = CD ∪ CE. The remaining observations
from C1, SR.Dough Tearing(E) and K.Smoothing(E), both in CB, are
rare events with low probability of occurrence and can be left out of SSP.
Similarly, only CA has a significant sensitivity (0.43) and fallout (0.04
and 0.18) for sRP. The only observation not in CA ∩ C2, K.Consistency
(E), is also too rare an event to be informative. The signature of RP is
thus defined as sRP = C2 ∩ CA.

Fig. 4. Overview of the historical sensory data analysis that allows signatures to be linked to quality profiles. Behaviour clusters are used to identify patterns
describing potential signatures; accuracy clusters trim the potential signatures to keep only observations with high sensitivity and low fallout for their assigned
quality profile.
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The remaining observations of C3 are either in CB or CC, two clusters
whose average probabilities are not significantly different in SSP, SRP or
C3. In a first approach, C3 is thus not a signature of a particular quality
profile, but rather a group of observations that are not typical for a
quality profile, either because they never happen (CB) or because they
happen too often (CC). However, CC has a high confidence interval
(around 0.1) compared to the other clusters. Looking at each individual
observation of CC, it appears that K.Extensibility(I) has an average
probability significantly higher for sRP (0.75±0.17) than for sSP
(0.4±0.07). This could be due to distinct evaluation practices, as already
noted for this assay in a previous paper (Kansou et al., 2014). Since

Table 3 shows that sRP has a low average sensitivity (0.43), including K.
Extensibility(I) to sRP improves the detection level of RP; while the risk
of false positives mirrored by the high fall out for sSP is compensated by
the relatively high number of observations that composes SSP (15
observations).

A signature-based scoring method is presented in the next section to
validate how signatures are mapped to quality profiles.

3.3. Computing quality profiles scores

In total three quality profiles have been identified so far for wheat
dough from the baking test dataset: the slackening, the resistant and the
gold-standard (no defect) profiles. However the three profiles are rather
extreme. In practice the sensory evaluation of an actual wheat dough is
somewhere in-between the three profiles signatures, and samples could
display observations belonging to distinct signatures. For example, a
dough might behave mostly like gold-standard with only some slack-
ening traits. In addition, the severity of the defect is expressed by the
seven-level rating scale of the evaluation grid; an example of dough
evaluation using the baking test grid is provided in Fig.6 for illustration.
This is also important information to include in a diagnostic model
applied to the baking test.

To account for these two aspects, three scores are computed to

Fig. 5. Clustering over the probabilities P(Xj∣Xi), given two defects Xi (row) and Xj (column). Comparisons between identical or opposite defect are marked by a (.),
comparisons never observed in the database are marked by a (o).

Table 3
Average probability for each intersection of behaviours and accuracy clusters
(95% confidence interval computed over the set of all probabilities included in
the intersection). Bolded values represent the maximum likelihood.

CA CB CC CD CE

sSP =

C1
0.04
(±0.01)

0.10
(±0.02)

0.45
(±0.05)

0.60
(±0.02)

0.29
(±0.03)

sRP =

C2
0.43
(±0.13)

0.08
(±0.04)

0.64
(±0.11)

0.06
(±0.02)

0.02
(±0.01)

C3 0.18
(±0.07)

0.05
(±0.03)

0.52
(±0.19)

0.22
(±0.02)

0.07
(±0.02)
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quantify the distance between a sensory evaluation and the three sig-
natures. The score associated to the gold standard signature (all criteria
are rated 10, no defect is observed) is simply the dough grade obtained
from the application of the baking test procedure. It is roughly a
weighted sum giving a score between 0 and 100, which measures the
growing similarity between the sensory observations and the gold
standard. The dough grade involves all the attributes of the evaluation
grid. Each sensory observation affects more or less the dough grade
depending on the seriousness of the defects, e.g. a sticky dough is
strongly penalized.

Two similar scores are developed to quantify the similarity between
an evaluation and sSP and sRP. As shown in Fig.6, each signatures
observation are assigned the following value which reflects the
“severity” of the defect: 0 no defect, 0.2 mild, 0.8 strong, 1 extreme. This
corresponds to the rating scale, where 10 indicates no defect, 7 mild, 4
strong and 1 extreme. The final score for sSP (resp. sRP) is the mean of the
values assigned to all the observations of the signature. Hence 0 in-
dicates total dissimilarity and 1 observations that certainly corresponds
to the quality profile signature. A score of 0.5 indicates that about half of
the observations matches the quality profile signature. In the example
provided in Fig.6, the wheat produces a dough with strong defects such
as D.Lengthening(E), D.Elasticity(E), D.Stickiness(E), associated to
the Slackening profile, resulting in a score of 0.72 for sSP. The score of
0.16 for sRP is due to the defect K.Extensibility(I). However, as noted
previously this defect is prone to false positives.

To obtain a more progressive qualification of the wheat in-between
the three extreme profiles, four intermediary quality profiles are
defined, giving a total of seven quality profiles. These were defined using
expert inputs to reflect the transition between the different extreme
behaviours, so that each one is a unique combination of slackening and
resistant scores with respect to the dough grade. Fig. 7 shows this dis-
tribution among the quality profiles:

• Slackening (Sl.) and Resistant (Re.) profiles obtains respectively
the highest slackening and resistant average scores (0.6 and 0.4) for
the lowest average dough grades (respectively 25 and 60). The

difference between the low dough grade value for slackening is due
to the higher penalties for the observations of the slackening
signature.

• Slackening-No Defect (Sl.-ND) and Resistant-No Defect (Re.-Sl.)
obtains lower average slackening and resistant scores (0.35 and
0.38), for higher average dough grades (55 and 78). Compared to the
slackening and resistant profiles this indicates that certain defects are
less severe or missing, hence the higher dough grade.

• No Defect-Slackening (ND-Sl.) and No Defect-Resistant (ND-Re.)
have an average low score (0.1 and 0.18) and high average dough
grades (75 and 80). They still show a tendency towards SP or RP, but
the severity is less pronounced.

• No Defect (ND) is the gold-standard quality profile. It has the highest
possible average dough grade (90). Some observations from sSP or sRP
may be observed, but never with a high severity (e.g. no rating equal
to 1 in the evaluation grid).

3.4. Quality profiles evaluation

Fig.8 shows a detail of the average value of the evaluation grid at-
tributes across the seven quality profiles defined above. This first result
highlights the accuracy of some attributes over others. For example, D.
Lengthening is significantly better associated with the quality profiles
than K.Extensibility: this shows that, within the database, D.Length-
ening is the most informative attributes of the evaluation grid. This
analysis also shows that the seven quality profiles depict a progressive
and consistent evolution of several dough properties (stickiness, elas-
ticity, lengthening free standing, section) which demonstrates the con-
sistency of the profiles definition and assignment to the wheat lots.

Fig.9 shows the distribution of values for the four selected technical
attributes across the seven quality profiles. The figure shows that the
lowest mean values of Gluten Index are associated with quality profiles
with slackening tendencies. Similarly, both Ie andWmean values have a
tendency to increase along with the dough’s resistant behaviour: the
more resistant the dough is, the higher the mean values are.

According to Migliorini et al. (Migliorini et al., 2016), a Gluten Index
between 65 and 80 reflects an optimal gluten network condition. This
range corresponds mainly to the ND-Sl. quality profile in Fig.9, which is
slightly lower than the average value for the No Defect quality profile,
which is above 80. Furthermore, prior research has demonstrated a
positive correlation between the Gluten Index and Ie (Baudouin, 2012).
Additionally, W has been validated as an indicator of gluten strength, as

Fig. 6. Distribution of Bread Making Test observations between Slackening
Profile SP and Resistant Profile RP, and an example of score calculation. The
size of the patches (weight) indicates the relative importance of the intensity of
a defect in the evaluation of a score. Less weight was given to 7, as experts often
perceive this grade as not too problematic: when asked, they tend to classify as
gold standard quality a sample with no 1 or 4 but several 7 s. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Box plots of the distribution of slackening and resistant scores and
dough grade across the quality profiles. Quality profiles (Slackening, Sl.-ND, …)
are defined using experts inputs. Each is defined by an average slackening
score, dough grade and resistant score. For instance, the Slackening profile is
characterized by a mean slackening score of 0.6, a mean dough grade of 25 and
a mean resistant score of 0. (11,184 samples).
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it correlates with both the quantity and quality of gluten present in the
dough (Jødal & Larsen, 2021). Finally, Fig.9 shows that, apart from the
Re.ND and Resistant quality profiles, the protein content is on average

the same for all profiles. However, the protein content gives an indirect
indication of the quantity of insoluble proteins involved in the gluten
network and, unlike the other measurements, does not give an

Fig. 8. Distribution of mean attributes across quality profiles. Shaded areas represent 95% confidence intervals. The percentage in the legend indicates the per-
centage of profiles observed in the dataset (11,184 samples).

Fig. 9. Distribution of values the four technical attributes for each profile. Number of samples: Proteins Content (10566), Gluten Index (3733), Ie (1452), W (10395).

Fig. 10. Article contributions. METHODOLOGICAL CONTRIBUTION includes the clustering of conditional probabilities approach presented in Sec.2. Conditional Probability
tables are presented in Sec.2.2; clustermap in Sec.2.3. DOMAIN CONTRIBUTION includes the application to the wheat quality evaluation presented in Sec.3. Database is
presented in Sec.3.1; clustermap applied to the domain in Sec.3.2; grading grid in Sec.3.3; new quality profiles in Sec.3.4.
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indication of the quality of the gluten network, which can vary consid-
erably for the same protein content value.

The quality profiles, which represent a gradation of the expert’s
assessment of the strength of the gluten network, correspond to the
technical measures of the dough: slackening quality profiles are asso-
ciated with weak gluten quality (low gluten index, low Ie and low W)
and resistant quality profiles with strong gluten quality (high proteins
content, high gluten index, high Ie and high W). In conclusion, this
validates the signatures for identifying quality profiles and opens up new
ways of defining the quality of a wheat.

4. Conclusion

This article’s main contributions are summarised in Fig.10.
In this paper, we present a methodological framework for capturing

and modelling relationships between sensory evaluations of food prod-
ucts and their interpretations in term of product physical states, called
quality profiles. Based on the clustering of conditional probabilities
table, the method can reveal implicit expert practices reflected by the
sensory data and support the identification of the relationships between
the sensory observations and quality profiles, specific to the context. In
particular, in contrast to a more classical clustering method, this method
compute the accuracy of the defects, i.e. the amount of information they
convey. It also distinguishes rare from very frequent observed defects.
For stakeholders in the food industry, this methodological contribution
offers several key benefits:

• Clarification of the context of a sensory dataset by highlighting
expert practices;

• Integration of the tacit knowledge of the experts about the physical
interpretation of the sensory observations;

• Establishment of quality profiles that can be correlated with
analytical or technological measurements;

• Evaluation of the effectiveness of sensory testing in identifying
quality profiles.
In the case of wheat grain quality grading, the domain contribu-

tion is useful for.
• Formulating new quality profiles based on expert knowledge of
dough behaviour;

• Linking these quality profiles to established analytical/technological
measurements, which validates our hypothesis;

• Computing new features for wheat grading that can be used to feed
machine learning models.

A limit of this approach is is that it depends on the representativeness
of the dataset and on the clustering method chosen. Different sources of
sensory data or clustering algorithms will affect the quality profiles
signatures. Moreover, an untracked change in the context of the sensory
evaluation (e.g. a change in the sensory evaluation process, or the
introduction of a new evaluator) can hinder the clusters identification.
Finally, this approach relies on expert knowledge to identify quality
profiles. If a quality profile is not described in advance, then it cannot be
used to analyse the clusters.

Thus, this work presents a new method for exploiting sensory data
through the identification of food quality profiles. In particular, the good
correlations between wheat flour quality profiles and technological
measurements describing the wheat dough behaviour obtained for the
real case application of the method open up interesting perspectives for
development of a predictive machine learning model.
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