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A B S T R A C T

Given the large amount of time we spend indoors, designing and operating buildings that are safe, comfortable,
and conducive to productivity and well-being is essential. To achieve this goal, in the past decades, research has
been conducted to investigate the influence of the indoor environment on occupants. Thermal comfort has been
the subject of most investigations in this field. However, despite being a consolidated research topic since the
1920s, statistical practices for analysing thermal comfort data often rely on simplified premises, which may be
due to several possible factors (e.g., limited computational capabilities and lack of training). Consequently,
important aspects of data analysis are often absent or overlooked. Recent statistics and statistical software ad-
vances have provided more options for effectively modelling complex issues. However, properly using these tools
requires a solid understanding of statistical analysis, increasing the risk of misuse in practice. This paper presents
ten questions highlighting the most critical issues regarding statistical analysis for thermal comfort research and
practice. The first four questions provide general perspectives concerning statistical data analysis, while the
remaining ones address specific problems related to thermal comfort research, but that can extend to all human-
centric research in the built environment. Additionally, the last five questions demonstrate the practical sig-
nificance of analysis pitfalls (i.e., sampling variability, selection bias, variable selection, clustered/nested ob-
servations, and measurement error) through examples with synthetic data. This study provides insights into the
current statistical ‘habits’ in thermal comfort research and, more importantly, help researchers better define and
conduct their statistical analyses.

1. Introduction

People in developed countries spend a significant portion of their
lives inside buildings. Therefore, it is necessary to design and operate
buildings that are safe, comfortable, conducive to productivity, and
aspire to improve occupants’ health and well-being. Several parameters
influence how the built environment affects its occupants. Among them,
thermal comfort has been the subject of numerous research in-
vestigations in the past century, leading to the compilation of interna-
tional standards (e.g., ASHRAE 55:2020 [1], ISO 7730:2005 [2] and EN

16798–1:2019 [3]) to guide professionals in designing and maintaining
thermally comfortable indoor climates. Evaluating thermal comfort in-
volves first defining the indoor thermal parameters and, subsequently,
quantifying their influence on the occupants, often through statistical
analyses.

In thermal comfort investigations, an often-used technique is
regression analysis. This kind of analysis can be tied back to the
approach introduced by Bedford’s research in the 1930s ([4] cited in
Ref. [5]). Bedford was the first to apply multiple regression to heating
and ventilating research to improve the prediction of subjective human
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thermal responses from environmental data. Several years later, probit
analysis, an approach for analysing binary data, was also applied to
thermal comfort data derived from laboratory experiments (e.g., in 1953
by Chrenko [6] cited in Ref. [5]) and field studies (e.g., in 1959 byWebb
[7] cited in Ref. [5]). This method can be easily applied to the ASHRAE
7-point thermal sensation scale, And, indeed, Fanger used a similar
approach to derive the predicted percentage of dissatisfied (PPD) [8].
However, before the advent of computers, probit analysis was a
time-consuming process, since each calculation had to be iterated until
the result converged on the final value. Additionally, based on McIn-
tyre’s work in 1978 [9], ordinal data measured on the ASHRAE scale has
been treated as a continuous variable, which is also legitimised in the
ISO 10551:2019 [10]. Even though the arguments used to justify this
approach are disputable (as discussed in Ref. [11]), linear regression is
still nowadays applied to subjective thermal comfort data (e.g., thermal
sensation vote) measured on an ordinal scale. This is an example of the
lack of updated practices, demonstrating that important aspects of data
analysis are often missing or overlooked. Recent developments in sta-
tistics and the increasing availability of statistical software have given
researchers more options to model complex issues. Examples of methods
are beta regression, which models continuous but bounded data, and
multilevel models, which deal with data with a hierarchical or clustered
structure (and therefore, dependent observations). However, to leverage
these tools effectively, it is crucial to have a robust understanding of
statistical analysis. If not utilised skilfully, these tools can pose a higher
potential for misuse. Stark and Saltelli [12], referring to the poor prac-
tice of statistics as ‘cargo-cult statistics’, emphasise that plug-and-play
data-analysis software encourages the ritualistic miming of statistics
rather than conscientious practice. They also state that many statistics
courses, especially those for non-specialists, teach mechanical calcula-
tions without due consideration for scientific context, experimental
design, assumptions, limitations, or interpretation of results. Statistics is
more than just tools and mathematical formulae; it is an evidence-based
way of thinking. While this discipline comes with a toolbox containing
many different tools, knowing the contents of a toolbox requires what
has been called statistical thinking, that is, ‘the art of choosing a proper tool
for a given problem’ [13].

Poor statistical practice can dramatically increase the probability of
incorrectly published findings [14]. Munafò et al. [15] highlighted
various threats to the efficiency of knowledge accumulation and sci-
ence’s ability to self-correct, such as lack of replication [16], hypothe-
sising after the results are known (HARKing) [17], poor study design,
low statistical power [18], analytical flexibility [19], p-hacking [20],
publication bias [21] and lack of data sharing [22]. The book by
Humphreys, Nicol and Roaf [5] offers valuable advice for statistical data
analysis related to thermal comfort, mainly focusing on the adaptive
approach. They discuss, among other topics, linear and probit regression
and the presence of measurement error in regression analysis. The au-
thors justify adding four chapters on statistical methods in their book by
stating that although many excellent books in the statistical literature
exist, in their experience, ‘highly intelligent people without a mathematical
education find them impenetrable’, highlighting a lack of statistical
training in the field. In our experience, this aspect is also reflected in the
thermal comfort literature —where statistical concerns are often rele-
gated to the limitations section of an article or overlooked altogether—
with only a few papers addressing statistical issues. For instance,
Humphreys and Nicol [23] discuss the impact of measurement and
formulation errors on thermal comfort indices, Sun et al. [24] demon-
strate how causal reasoning can reveal hidden assumptions and in-
terpretations of statistical analysis, while Pan et al. [25] explore
common methodological pitfalls for causal inference in the field of
cross-modal research (e.g., causal and predictive research, general-
isability, measurement error, and violation of statistical assumptions).
Moreover, the growing emphasis on personalised comfort models [26]
has driven an increase in the utilisation of machine learning (e.g.,
Ref. [27]) and data-driven algorithms (e.g., Ref. [28]) to predict

individual comfort responses. Therefore, as reliance on data-driven
models for guiding decisions related to environmental control systems
and user comfort grows, enhancing statistical learning in thermal com-
fort becomes imperative. However, while previous studies shed light on
individual statistical concerns in thermal comfort data analysis,
comprehensive guidance is lacking.

This paper aims to share critical insights from experts in human-
centric building research regarding improving statistical analysis in
the field. We focus our efforts on the statistical analysis of existing data,
that is, already available data. As such, while important, specific dis-
cussions about experimental design (e.g., sensor installation, HVAC
control, survey design and administration) and research methods at
large are outside this article’s scope. The ten questions answered here
are chosen to lead the reader through a holistic and critical reflection on
the current typical application of statistical analysis to thermal comfort
data, not prescribing statistical methods. The first three questions in the
manuscript provide an overview of the fundamental concepts of defining
and understanding the question being asked, choosing a framework to
answer the question, and (the ever-present but rarely considered) causal
thinking. The following two questions describe regression analysis and
how it can be extended to model different aspects of a data set. These
questions emphasise this powerful tool’s full utilisation and proper
application, especially in thermal comfort studies. Subsequently, the last
five questions demonstrate, through examples with synthetic data, the
tangible effects on data analysis of more specific issues, such as sampling
variability, selection bias, variable selection, clustered/nested observa-
tions, and measurement error. Although real-world data are available (e.
g., ASHRAE Global Thermal Comfort Database II), we decided to rely on
synthetic data as they allowed us to highlight the implication of selected
issues (and only one at a time) in the data analysis, which is impossible
to obtain with real data. Specifically, these examples use a ‘true’ model
to generate a synthetic data set, which is then analysed using a correctly
and incorrectly specified statistical model to highlight their implications
for results and conclusions. This could not have been accomplished with
real-world data, which is prone to being affected by multiple issues
simultaneously. To foster an understanding of the issues discussed in the
paper and the related simulation examples, we created a supplementary
online document.1 This document provides a step-by-step guide to the
simulated examples and offers more details on the problems addressed
in the paper.

2. Question 1: What is the data analytic question type?

Any data analysis starts with a question, which should be specific and
focused. In formulating the question, it is important to understand the
goal of answering it, as this plays a significant role in interpreting the
results. Although this statement seems trivial and obvious (especially in
a research context), improperly specifying the question is a common
error. According to Leek and Peng [29], the most common mistake in
data analysis is misidentifying the question being addressed. This
confusion is central to the replication crisis, distorted press releases
describing scientific results, and controversial claims of false research
findings. Leek and Peng broadly classified the different types of data
analysis into six types: (i) descriptive, (ii) exploratory, (iii) inferential,
(iv) predictive, (v) causal and (vi) mechanistic. Each of these six basic
types of data analysis has different goals, which are described along with
thermal comfort examples in Fig. 1. Some of the mistakes are so common
that Leek and Peng [29] coded them in standard phrases. For example,
‘correlation does not imply causation’ describes an inferential question
mistaken for a causal question or ‘data dredging’ to describe an

1 https://mfavero.quarto.pub/10q-simulation-examples/.
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exploratory question perceived as inferential.
To a similar view is Shmueli [30], who distinguishes three types of

modelling2 to reflect the distinct scientific goals they aim at. Specifically:
(a) descriptive modelling, (b) explanatory modelling, and (c) predictive
modelling. The author highlights that although explanatory and pre-
dictive modelling are often confused, their objectives differ and signif-
icantly impact each step of the statistical modelling process and its
consequences.

In thermal comfort research, it is not a trivial endeavour to determine
howmany times the misunderstanding of the data analytic question type
occurs, since it is uncommon for a thermal comfort study to indicate
precisely which type of analysis it performs. While identifying the
question being asked can sometimes be inferred by the analysis per-
formed, it can become a complex task, especially when numerous ana-
lyses are conducted within a single study or on the same data set.
However, in the current literature, it is possible to identify incorrect
interpretations of the data analytic question type (i.e., using language
and analysis tools for a different purpose than the intended one). For
example, it is common to see association-based statistical models (e.g.,
regression) applied to thermal comfort data (collected from either field

or lab studies), which are then interpreted using causal terminology (e.
g., x affects y). If the objective is not causal inference, it is inappropriate
to label regression coefficients as ‘effects’ (however, they can always be
interpreted as average comparisons (page 85 of Ref. [31]). This confu-
sion may arise because causal and associational concepts are sometimes
conflated. A helpful distinction between causal and associational con-
cepts can be found in Pearl [32].

Different data analysis questions have different objectives, which
affect statistical modelling and the conclusion that can be drawn.
Therefore, in future thermal comfort studies, it would be crucial to
accurately label each step according to its original purpose to depict the
data analysis precisely. In addition, unless one intends to collect the data
needed for the study (e.g., through a new experiment), the available data
determines the type of questions that can be posed. Consequently,
having data is not enough; having the right data for the question at
hand is imperative. This dependency may be especially relevant for
routinely collected data gathered without specific a priori research
questions or when analysing data from repositories and databases.

3. Question 2: Why does the interpretation of probability
matter?

An editorial in Science defined statistics as ‘the science of learning from
data, and of measuring, controlling, and communicating uncertainty’ [33], a
definition also used by the American Statistical Association (ASA), the

Fig. 1. – Broad classification of objectives for different analysis types (adapted from Ref. [29]). (Note. A ‘mechanistic’ model is a ‘causal’ model. Here, the two terms
are used to distinguish the goal of determining a deterministic (i.e., ‘mechanistic’) effect versus an average (i.e., ‘causal’) effect).

2 Shmueli [30] intentionally chose the term ‘modelling’ over ‘models’ to
highlight the entire process involved, from goal definition, study design, and
data collection to scientific use.
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world’s largest community of statisticians [34]. To understand and
quantify uncertainty, statisticians (and mathematicians) use probability.
Although they (largely) agree on what the laws of probability are, there
is far less agreement on what the term ‘probability’ actually means. In
his book ‘The Foundations of Statistics’, the mathematician and statis-
tician Leonard J. Savage (page 2 of Ref. [35]) stated that there is general
agreement on the purely mathematical properties of probability, but
controversy arises when interpreting the axiomatic concept of proba-
bility, that is, determining its extra-mathematical properties. Savage
referred to the well-known probability axioms introduced by the
mathematician Andrey Kolmogorov in 1933 [36], which defined the
properties of probability, but it did not address the questions of how
probabilities ought to be understood in the real world or where they
came from. According to the mathematician Aubrey Clayton (page 47 of
Ref. [37]), any method of assigning numbers to subsets of a sample space
that satisfies Kolmogorov’s axioms can be called a probability, and all
the mathematical properties follow automatically. Therefore, the
disagreement arises from the ‘freedom’ in interpreting probability.

In statistical inference, there are three main and distinct ‘branches’:
(i) likelihoodist, (ii) Bayesian and (iii) frequentist. These three ap-
proaches use the likelihood function,3 which is central to estimating
unknown parameters, but they use it differently and for different pur-
poses. The likelihoodist approach involves presenting data as evidence,
for pairs of simple statistical hypotheses. It does so by using the Law of
Likelihood: the evidence x (the data or observable variable) supports
one hypothesis θ1 (the parameter or unobservable variable) against
another θ2, if and only if the likelihood ratio (i.e., the ratio of their
likelihoods) is greater than 1 (and vice versa if less than 1). If this ratio is
1, the evidence is indifferent. On the other hand, the Bayesian approach
updates probabilities using the likelihood function rather than treating it
as a standalone object of interest. In light of the evidence x (the data or
observable variable), following Bayes’s theorem, the degree of a priori
belief in any proposition θ (the prior probability of the parameters or
unobservable variables) is updated. This results in a posterior proba-
bility: the probability of a hypothesis (the parameter or unobservable
variable) given the evidence (the data or observable variable). The
frequentist approach is quite different from the two previous ap-
proaches. The main objective is to create procedures with long-run
frequency guarantees. As such, they do not evaluate the epistemic
states of individual hypotheses but offer guidance regarding long-run
error rates on decisions about how to behave regarding hypotheses, no
matter what the truth may be. As Neyman and Pearson (page 74 of
Ref. [38]) stated, ‘without hoping to know whether each separate hypothesis
is true or false, we may search for rules to govern our behaviour with regard to
them, in following which we insure that, in the long run of experience, we
shall not be too often wrong’.

Royall (page 122 of Ref. [39]) makes a valuable distinction between
the three branches by comparing them in terms of answering three
separate questions:

1. ‘How should I interpret this body of observations as evidence?’
(likelihoodist)

2. ‘What should I believe?’ (Bayesian)
3. ‘What should I do?’ (frequentist)

The important aspect is that one approach cannot answer all these
questions. Several tools are available in the statistical toolbox, and no

tool is superior to the others.

3.1. A frequentist overview

The frequentist framework is commonly used in thermal comfort
research. As such, it will be further described here. Within the fre-
quentist branch, there are two frameworks: Fisher’s null hypothesis
testing (based on p-value) and the Neyman–Pearson decision theory
(based on statistical power, type I error (α), type II error (β)). These two
frameworks are different and entail distinct ideas —as clearly expressed
by the different views of their creators [40]. However, they have been
incongruently combined in what is nowadays known as ‘null-hypothesis
significance testing’ (NHST). For more details, the reader is referred to
Refs. [13,41].

Perhaps unsurprisingly, many misconceptions regarding p-values,
confidence intervals, and power can be found in the scientific literature.
Greenland et al. [42] summarise and clearly explain many false beliefs
concerning p-values, confidence intervals, and power in a guide to avoid
and spot misinterpretations. Concerning p-values, ASA released a
statement [43] including principles underlying its proper use and
interpretation. However, it is important to emphasise that criticisms of
the p-values (e.g., their dependency on the investigator’s sampling in-
tentions) are actual properties of the framework from which they orig-
inated. As such (valid) p-values behave exactly as they should [44]. In
addition, mistakes in what can be concluded from p-values (e.g., by
setting the p-value threshold at .05 as sufficient evidence to reject hy-
potheses), are not properties of p-values but a researcher’s choice. As
Fisher (page 42 of [45]) stated, ‘no scientific worker has a fixed level of
significance at which from year to year, and in all circumstances, he rejects
hypotheses; he rather gives his mind to each particular case in the light of his
evidence and his ideas’. No tool is immune to misinterpretation and
misuse, and regardless of the specific tools chosen, it is its inappropriate
or erroneous application that harms science.

In thermal comfort research, as for the data analytic question type,
understanding whether the framework used (e.g., frequentist) is a
conscious choice or ‘cargo-cult statistics’ is hard to define. However, it is
the researcher’s responsibility to select and justify the framework
used to answer the specific question(s) of interest. Given all the is-
sues above, a general suggestion in thermal comfort research may be to
shift the focus from tests to estimates. This would involve using point
estimates, such as effect size, and interval estimates, such as confidence
intervals, along with precise p-values (not whether p-values are above or
below some thresholds). Importantly, the selection of effect size should
not be based on statistical significance. Especially in low-power studies
(i.e., low signal and high noise), statistically significant results are
subject to type M (‘magnitude’) and type S (‘sign’) errors, where type M
error is the factor by which the magnitude of an effect might be over-
estimated, and type S error is the probability of an estimate being in the
wrong direction [46]. In addition, statistics terminology can be highly
confusing, often using common words in technical ways that bear little
resemblance to their conventional meanings. Words like likelihood,
significant, and confidence have vastly different connotations in statis-
tical contexts. To avoid inappropriate use of terminology, it is advisable
to refer to a (valid) glossary of statistical terms (e.g., Refs. [47,48]).

3 The likelihood function L (θ|y) (often denoted as L (θ) or L (y|θ)) is a
function of θ (the parameter or unobservable variable) with y (the data or
observable variable) fixed. This function, evaluated only for the specific y
observed, is examined to see how it varies as θ is changed. It is essential to
mention that the likelihood is not a probability —Fisher called it ‘likelihood’ to
emphasise this critical distinction— since it does not obey Kolmogorov’s axioms
(e.g., it does not need to integrate/sum to 1).
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4. Question 3: What is ‘causal thinking’, and why should it not
be overlooked?

The phrase ‘correlation does not imply causation’4 is well-known in
research. An inflated mention of this sentence has led to a virtual ban on
causal talk over the years. Fortunately, the ‘causal revolution’ instigated
(in large part) by Judea Pearl completely reshaped the causality debate,
and now the use of causal inference can also be found in the building
design process (e.g. Ref. [50]). Recently, Sun et al. [24] have shown how
causal thinking can be used to uncover hidden assumptions and in-
terpretations of statistical analysis in building science, which echoes the
importance of causality discussed in the related field of cross-modal
research by Pan et al. [25]. Indeed, causal thinking —the process of
identifying the relationship between a cause and its effect— is not
limited to causal inference but underlies all types of data analysis. Even
seemingly straightforward descriptive analysis (which aims to summa-
rise the data without interpretation, see Fig. 1) requires it. Generally, in
a descriptive question, the sample is not the target; the population is.
Understanding how the sample differs from the population might allow
for extrapolation from one to the other. However, to do so, one needs to
understand certain aspects of the sample, such as what produced the
data and whether the process was biased, which was the missing data
process (if any), etc. Identifying biases and the causes of missingness
requires causal thinking, even though the goal is not causal inference. In
addition, it is common to hear researchers refer to ‘modelling the data’
instead of ‘modelling the data-generating process’. Ideally, the ultimate aim
of science is to model the phenomenon under scrutiny and not fitting
curves to data. The data are a means of obtaining information about
that phenomenon. Keeping causality in mind can be one way to
remember this.

An example of the utility of causal thinking in thermal comfort is in
the prediction versus prevention of thermal discomfort. Identifying
whether a person is at risk of discomfort (i.e., prediction) is different
from identifying the (best) strategy to prevent a person from being un-
comfortable (i.e., prevention). The two are both forms of prediction, but
while the latter requires causality (to prevent thermal discomfort, it is
necessary to intervene on its causes), the former does not (to predict
thermal discomfort, it is sufficient to use variables associated with it). In
a building control logic that aims to maintain thermal comfort
conditions, it is paramount to have a model designed for preven-
tion and not just prediction. In other words, a causal model is
needed for building control logic. This is based on the fact that causes
are not in the data (i.e., data cannot speak for themselves) but derive
from external knowledge, and any causal conclusion (e.g., an answer to
a ‘what if?’ question) must be based on some causal assumption —‘no
causes in, no causes out’ [51]. For example, this is how any building
performance simulation (BPS) tool works. BPS tools are computer-based
mathematical models in which fundamental physical principles encode
causality. As such, they can answer ‘what if?’ questions (e.g., if the
thermal transmittance of a building’s roof is changed, what will the
building’s energy consumption be?).

One effective way to imbue causal thinking into a problem is to use
graphical models [52]. Directed acyclic graphs (DAGs) are examples of
graphical models in which letter-and-arrow pictures summarise our
existing scientific knowledge. The letters represent the variables (the

quantities of interest), while the arrows indicate the established or
suspected causal linkages between these variables —namely, which
variable ‘listens’ to which others [53]. Fig. 2 shows, in a DAG format,
three elemental relations that form the building blocks of a DAG [54].

The uses of DAGs are manifold. To begin with, they are an excellent
tool for communication. DAGs help to organise the expert knowledge
visually, clarifying conceptual problems, thus enhancing communica-
tion among researchers. For example, an omitted arrow between two
variables means no direct influence of one variable on another (e.g.,
from X to Y in Fig. 2), while a present arrow remains totally agnostic
about the magnitude of the effect and its functional form. Additionally,
by exposing the chosen scientific model to criticism, a DAG compels
researchers to justify the scientific model’s choice, be specific in the
question they pose, and be open about the assumptions they are willing
to make. Clarifying thesematters upfront can enable a productive debate
among anyone with domain knowledge, even without the relevant
specific statistical knowledge. Translating the scientific model into a
statistical model comes later and requires additional/different expertise.
Finally, researchers can use DAGs as an inferential tool, allowing them
to (i) estimate effect sizes even when working with non-experimental
data [55–59], (ii) derive testable implications from the assumptions
they make [55,60,61], and (iii) test for external validity (i.e., general-
isability) [62]. In addition, DAGs have been useful in describing typical
biases (e.g., Refs. [63,64]), finding adjustment variables (e.g.,
Ref. [65]), and elucidating apparent paradoxes (e.g., Simpson’s paradox
in Refs. [66,67]).

Causal thinking is ever present in scientific and thermal comfort
research, even if the goal of the work is not causal inference. Being
clear about one’s scientific model, in a way that clearly represents causal
influence, helps to avoid statistical pitfalls in subsequent analysis.

5. Question 4: What is regression analysis, and how to properly
apply it in thermal comfort studies?

Regression analysis is ‘the blanket name for a family of data analysis
techniques that examine relationships between variables’ [68], which can be
called, in general and ‘neutral’ terms,5 regressand(s) —Y(s)— and re-
gressor(s) — X(s). Here, regressand can be plural because it is possible to
model more than one Y (e.g., thermal preference and thermal accept-
ability) simultaneously in the same regression model. Models with
multiple regressands are known as multivariate, and models with mul-
tiple regressors are known as multivariable. Regression analysis is a
widely adopted technique in thermal comfort studies. It has been used,
for example, to establish a relationship between the thermal environ-
ment and human response (in both laboratory and field studies) and to
derive thermal comfort models (e.g., the adaptive thermal comfort
models [69]). In addition, it is a powerful, flexible, transparent and
multipurpose method which, in the context of data analysis (see Fig. 1),
can be used to answer diverse data analytic question types (e.g.,
descriptive, exploratory, prediction, and causal). Certainly, various
methods can be used to answer a question of interest, not just regression
analysis. Different approaches in the thermal comfort literature, some of
which belong to machine learning (ML), can be found. However, given
the popularity of regression analysis in thermal comfort research and the
fact that it can also be used in some ML approaches (e.g., support vector
regression and decision tree regression), improving its understanding

4 In general, correlation implies association, but not causation; conversely,
causation implies association, but not correlation [49]. Although correlation
and association are often used interchangeably in everyday speech, they have
different meanings in statistical terms. Association is a very general relationship
where one variable provides information about another. Instead, correlation
implies a specific type of association, that is, an increasing or decreasing trend.
For continuous data, Pearson’s correlation (which measures linear trends) is an
example, while for ordinal data, Spearman’s (rank) correlation (which mea-
sures monotonic trends) is an example.

5 In the literature, there are many terms to refer to the Y and X, such as,
‘explained’ and ‘explanatory’ variables, ‘outcome’ and ‘covariate’, ‘dependent’
and ‘independent’ variables, ‘output’ and ‘input’ variable, ‘predicted’ and
‘predictor’ variable, etc., and some of them can be confusing/poor terminology.
For example, ‘explanatory’ may imply inappropriate causation; ‘covariates’
may mean that the variables co-vary, which may or may not be the case; ‘in-
dependent’ variables are not assumed to be independent of anything, so the
term can be misleading, etc.
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and correct application can undoubtedly benefit the field.
In thermal comfort, there is generally a narrow view of regression

analysis, which can hinder the full utilisation and proper application of
its potential. For example, regression analysis is commonly thought of as
‘just’ linear regression or its many special cases (e.g., ANOVA, ANCOVA,
t-test, etc.). Linear regression is the simplest form of regression and
belongs to the general linear models (see Fig. 3), where the regressand Y
(a continuous and unbounded variable) is modelled given some re-
gressors X, generally assuming a conditional normal distribution of the
regressand:

Yi ∼ Normal
(
μi, σ2)

μi = ηi
ηi = xT

i β
Eq. (1)

where μi is the mean, σ is the standard deviation, and ηi is the predictor
term function of some regressors xTi β. The subscript i is to stress the
dependency on the ith observation.

Linear regression analysis relies on various assumptions, which are
listed in decreasing order of importance by Gelman et al. (pages
153–155 of Ref. [31]): (i) validity, (ii) representativeness, (iii) additivity
and linearity, (iv) independence of errors, (v) equal variance of errors,
and (vi) normality of errors. When these assumptions break down, what
steps should be taken? While there is no single answer to this question,
perhaps the most direct approach is to extend the model. An example
would be adding interactions to expand the model to be non-additive or
adding splines to capture non-linearities. The extension may sometimes
involve a change of model, as shown schematically in Fig. 3. For
example, if the independence of errors is not verified in linear regression
(e.g., for longitudinal data), the latter can be extended to a linear mixed
model. Or, if the regressand Y is measured as an ordinal variable
(violating linear regression requirement to have continuous and un-
bounded data), for example, an ordered multinomial model should be
used. Failing to consider dependent errors and using linear regression to
analyse either ordinal data or continuous but bounded data are typical
issues in thermal comfort, which will be discussed in Q.9 and Q.5,
respectively. In general, the assumptions underlying any method are
never confirmed, making it vital to identify significant violations.
However, while understanding the ideas behind a model is important, it
is also essential to recognise that some assumptions may rely on the
researcher’s knowledge of the subject area and cannot be verified solely
through data analysis [31]. As such, engaging with data and under-
standing its intended use is irreplaceable.

In a regression analysis, the regression coefficients can be con-
ceptualised as effect sizes. Generally, (any) effect size measure should
have an intuitive interpretation that provides a ‘sense’ of the degree of
an effect. To enhance the interpretability of regression coefficients, it
may be helpful to centre regressors that lack a meaningful zero. This can
be achieved by subtracting the mean of the data or selecting a reference
point (e.g., 22 ◦C for air temperature). Centring makes it easier to
interpret the term intercept in a context where it makes no sense to
consider the regressors set to zero. Standardisation using z-scores is
another approach, which involves standardising the regressors by

subtracting the mean and dividing by the standard deviation (sometimes
it is preferable to divide by two times the standard deviation; see page
187 of Ref. [31]). However, standardisation may not always be advis-
able [70]. It is fundamental to remember that a direct interpretation of
the regression coefficient on the scale of the data is not always possible.
In linear regression, a coefficient β is the expected difference in the
regressand Y, by comparing two observational units (e.g., people) that
differ by one unit in the regressor x with all other regressors held con-
stant. This interpretation is not possible when the functional form (i.e.,
the relationship between regressand and regressors) is non-linear. This is
the case for generalised linear models (GLMs) because, on the regressand
scale Y, all regressors interact with each other (also with themselves)
even if the interaction term is absent. An example is logistic regression,
which is linear in the parameters (i.e., the logit scale) but non-linear in
the functional form (i.e., the probability scale). As such, a specified
difference in one of the regressors x does not correspond to a constant
difference in Pr(y = 1). A different approach to interpreting logistic
regression coefficients is by using odds ratios. However, the notion of
odds can be tricky to comprehend, and odds ratios can be even more
confusing. Graphing the fitted model (by making separate plots as a
function of the regressors of interest and holding the other regressors
constant at different representative values) is a good strategy to over-
come potential interpretation issues.

Sometimes, the same (or very similar) regression models can be
referred to by very different names (e.g., ordered multinomial model
with the logit link is known as multinomial logistic regression, polyto-
mous logistic regression, multinomial logit, softmax regression, etc.),
hindering their use and comprehension. To deal with this ambiguity,
including amathematical (or algorithmic) description of the model (e.g.,
Eq. (1) for the linear regression) may be helpful. Being transparent and
specific about the model formulation and modelling steps is
essential. In the context of thermal comfort, it is common only to pre-
sent the final model, but doing so may result in overlooking statistical
and modelling issues. A possible solution is to include all the modelling
steps as an appendix or supplementary material.

For applied and conceptual issues in regression, the reader is referred
to Harrell’s book [71]. For a non ‘conventional’ book on regression (i.e.,
a non-mix of cookbook instruction and mathematical derivation), the
reader is referred to Gelman et al. [31], which also provide, in its Ap-
pendix B, ‘Ten quick tips to improve your regression modelling’. For an
application of probit regression to analyse thermal comfort data, the
reader is referred to Ref. [5].

6. Question 5: Should distinct types of response variables be
handled differently?

One of the goals of thermal comfort research is to increase knowl-
edge of the relationship between the thermal environment and human
response. The human response is typically assessed by a subjective
evaluation of the thermal environment using rating scales (e.g., thermal
sensation votes, TSVs). The ordinal scale is commonly employed, which
will result in ordinal data. Ordinal data is categorical data that have
naturally ordered categories (e.g., ‘cold’ < ‘cool’ < … < ‘warm’ < ‘hot’),

Fig. 2. – DAGs for the three elementary relations: (a) patterns of the form X⟶Z⟶Y are called ‘chains’ (or mediators); (b) patterns of the form X⟵Z⟶Y are called
‘forks’ (or common causes); (c) patterns of the form X⟶Z⟵Y are called ‘colliders’ (or common effects).
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but the distances between these categories are unknown (examples in
thermal comfort can be found in Fuchs et al. [72] and Schweiker et al.
[73]). Despite this, it is common in the literature to consider ordinal data
as continuous (i.e., ordinal-as-metric) and analyse it with methods that
require continuous data (e.g., linear regression). However, this practice
may lead to severe errors in inference, such as inflated error rates, dis-
torted effect-size estimates and other issues [74]. As mentioned in Q.4, a
suitable approach to model ordered categorical data is to use, for
example, an ordered multinomial logit or probit model. These are GLMs
and, specifically, they are extensions of logistic and probit regressions
for (ordered) categorical data with more than two options. These models
generally have a ‘latent’ interpretation. The idea is that the regressand is
the categorisation of a latent (not observable) continuous variable,
which is assumed to follow a specific distribution. For example, if a lo-
gistic distribution is taken, this implies an ordered multinomial model
with a logit link. Mathematically, this can be expressed as follows:

Yi ∼ Multinomial(n, πi)

logit
(
γk,i

)
= τk − ηi

ηi = xT
i β

Eq. (2)

where, for the ith observation, πi is the probability vector
{

π1,i,…,πk,i
}
,

γk,i is the cumulative probability for the k category
(
γk,i = π1,i + … +

πk,i
)
, {τk} are the strictly ordered threshold parameters, and ηi is the

predictor term (without an intercept), a function of some regressors xTi β.
If, instead, a normal distribution is assumed for the latent variable, this
implies an ordered multinomial model with a probit link. In Eq. (2), the
probit function will replace the logit function. For a general discussion of
the issue of analysing ordinal data as metric, the reader is referred to
Liddell and Kruschke [74]; for a specific treatment of this issue in the
context of thermal comfort research, the reader is referred to Favero
et al. [11]. For further insight on categorical data analysis, the reader is
referred to Agresti’s book [75].

Subjective thermal comfort data are also measured using rating
scales that are continuous but bounded. This type of data can be affected
by ceiling or floor effects. Ceiling and floor effects occur when an
observation (or measurement) reaches its scale’s highest or lowest point.
This means that the observation is censored because the exact value is
unknown. The only information available is that the true value is at or
above the upper threshold, or at or below the lower threshold. Linear
regression is not appropriate in this case because it will overlook the fact

that there is an upper/lower limit and treat all observations as actual
values. As a result, it will produce biased parameter estimates (see Fig. 4
for an example).

In addition, independently of the presence of ceiling/floor effects,
linear regression can produce impossible predictions (i.e., predicted
values outside the observable limits) when used to predict subjective
thermal comfort data. Nevertheless, this statement does not mean linear

Fig. 3. – Schematic overview of different model categories for regression analysis.

Fig. 4. – Schematic view of ceiling and floor effects. The green and orange lines
represent the data-generating function and a fitted linear regression, respec-
tively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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regression cannot generally be applied to bounded data.6 A suitable
approach to model continuous but bounded data is beta regression, a
GLM where the conditional distribution of the regressand (i.e., Y|μ) is
assumed to follow a beta distribution. The choice of this model is
motivated primarily by the flexibility that the assumed beta distribution
provides. Depending on the values of the parameters, the beta density
can take on a variety of shapes, such as left-skewed, right-skewed, or the
flat shape of a uniform density. However, since the probability density
function of a beta distribution is defined only on the interval (0,1), the
regressand needs to be rescaled. For an application of beta regression to
analyse subjective thermal comfort data, the reader is referred to Favero
et al. [76]. Another appropriate approach to model bounded data is
censored regression. The censored regression model is a generalisation
of the Tobit model, proposed by Tobin in 1958 [77], and very popular in
econometrics (e.g., Ref. [78]).

Different responses of interest can be measured in several ways (e.g.,
continuous or categorical), each of which may have a specific set of
characteristics (e.g., a lower and/or upper measurement bound). For
instance, one could model clothing insulation by assuming a log-normal
(or gamma) distribution, which is appropriate since clothing insulation
cannot be negative. Considering the characteristics of the regressand
(s) during data analysis is essential to have reasonable estimates of
parameters and/or predictions.

7. Question 6: How does sample size influence thermal comfort
studies?

Statistical inference is used to gain insights from incomplete or
imperfect data. Typically, a data set is just a sample of the process or
population of interest, and the observed data set would differ if the data
collection process were redone. The set of possible data sets that could
have been observed, along with the probabilities of these possible
values, is called a sampling distribution.7 The sample is assumed to be
obtained by randomly sampling data from the process or population,
usually as a simple random sample, but other random sampling tech-
niques are possible (e.g., stratified random sample and cluster random
sample). For example, multistage cluster sampling (an extension of
cluster sampling) could be used for a field study. Assuming that the
target population consists of office workers, this sampling strategy will
first involve randomly selecting clusters (i.e., office buildings). Sec-
ondly, the sample units (i.e., office workers) within the selected clusters
will be randomly selected. In practice, buildings and people are seldom
selected randomly due to practical constraints, such as geographical
proximity, availability at a given time, or willingness to participate in
the research. Random samples are important because they possess
desirable statistical properties that non-random samples do not have.
Examples of a non-random sample are convenience and voluntary
response samples (see Q.7).

As mentioned above, an observed data set would differ if the data
collection process were redone. As a result, (random) samples are

inherently variable. Concerning sampling variability,8 Cumming (page
143 of Ref. [79]) states that there are two commonmisconceptions when
analysing data or reading research results, specifically:

1. The lack of understanding of the irregularity of randomness in the
short term and its high predictability in the long term;

2. The underestimation of the extent of sampling variability.

As a result, it is common to overinterpret aspects of sample data due
to sampling variability and underestimate the extent to which results
might differ if an experiment is repeated (or if the results of several
similar experiments are compared). Tversky and Kahneman ([80] cited
in Ref. [79]) conducted a statistical cognition experiment and discov-
ered that researchers tend to underestimate sampling variability and
overestimate the chance that repeating an experiment will yield a
similar result. They called these misconceptions of randomness and
variability the ‘law of small numbers’ to highlight the wrong idea that
small samples behave like very large samples.9 One example in thermal
comfort is the tendency to interpret studies with p-values on opposite
sides of .05 (i.e., ‘statistically significant’ vs ‘nonsignificant’) as con-
flicting. It is never appropriate to compare p-values. To assess differ-
ences between studies’ results, it is necessary to conduct a formal
evaluation, such as estimating and testing those differences (e.g., test of
heterogeneity) [81]. It is important to recognise that sampling
variability can affect all studies, even ‘well-designed’ laboratory
experiments. In general, the advantage of lab over field studies is that
the former can greatly reduce different sources of external variability,
for example, by randomisation10 and holding factors constant (e.g., two
groups should be made as similar as possible except for the tested con-
dition). Nevertheless, sampling variability will always be present and
can be reduced by increasing the sample size. Larger samples will
contain less sampling variability, offering a more precise point estimate,
and are more likely to be closer to the true population value (assuming
no bias). However, it is essential to remember that sample size greatly
influences statistical significance, as an inverse relationship exists be-
tween sample size and the standard error (i.e., the standard deviation of
the sampling distribution). When the sample size is large, even tiny
differences in the compared parameters (e.g., the mean of two groups)
will be statistically significant. An example can be found in Altomonte
et al. [82], where a negligible effect size of air temperature on satis-
faction was found to be statistically significant. Therefore, assessing
practical significance (e.g., effect sizes) alongside statistical sig-
nificance is crucial, as the former is not affected by sample size.
This good practice is still underused in thermal comfort research.

There is often confusion between inferential uncertainty (e.g., un-
certainty in the estimate of a population average) and outcome vari-
ability (e.g., variation across the population). A high level of confidence
that the average outcome for one group is greater than the average for
the other should not be considered a statement about the entire distri-
bution of outcomes. Zhang et al. [83] explored this confusion and
concluded that researchers often confound the two concepts, which have

6 An example would be the height of adult humans. Human height has a
lower bound at 0, but using linear regression to model adult height can be
appropriate because all the observations are ‘far’ from the lower bound.
However, this will not be the case if one is interested in modelling human
height at large, which includes infancy, childhood and puberty, not just
adulthood.

7 The sampling distribution is an abstract concept and should not be confused
with the sample distribution, that is, the distribution of the observations in the
data set.

8 Sampling variability should not be confused with random sampling.
Random sampling refers to selecting a sample from a process or population. In
contrast, sampling variability refers to the fact that the statistical information
from a sample (i.e., a statistic, such as the mean) will vary as the random
sampling is repeated. As the sample size increases, sampling variability
decreases.

9 The law of large numbers assures that the distribution of sufficiently large
random sample match the distribution of the underlying population closely.
10 Randomisation (i.e., random allocation) should not be confused with
random sampling. Random sampling is a way of selecting population members
for a study’s sample. In contrast, random assignment is a method used to place
participants into groups, such as control and treatment groups, in an experi-
mental study. The former affects external validity (or generalisation), whereas
the latter affects internal validity.
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previously been observed among laypeople [84]. In thermal comfort
research, for example, a highly precise estimate of the average TSV for
two groups (e.g., males and females) can be obtained when the sample
size is large enough. However, there will generally be significant
outcome variability as individual TSVs within each group will exhibit
substantial variability around their respective averages. Outcome vari-
ability does not systematically decrease when sample size increases.

Discussions about sample size calculation are outside the scope of
this article since its focus is on data analysis and not experimental
design. For design and sample size decisions, the reader is referred to
chapter 16 of Ref. [31] and, for examples within thermal comfort, Refs
[85,86].

7.1. Simulation example: sampling variability

In this simulation example, the highlighted data analysis pitfall is
sampling variability. Specifically, it shows the influence of random
sampling variability on the results of data analysis. The data is generated
based on the process outlined in Fig. 5. This data-generating mechanism
simulates the population of interest (constituted by one million
observations).

From this population, we obtained three thousand data sets with
three different sample sizes using simple random sampling
—specifically, one thousand data sets each with sample sizes of 30, 300
and 900. We assumed that the objective of the data analysis is to answer
the following inferential question: ‘Is there a direct association between
biological sex and TSV?’. To address this data analytic question, the
synthetic data sets are analysed using ordinal regression within a fre-
quentist framework. For more details, the reader is referred to the online
document; here, only a summary is provided (see Table 1).

Fig. 6 shows the first 100 estimates (point estimate and confidence
interval) of the coefficient for sex for the three different sample sizes.
The inferential uncertainty shrinks (i.e., narrow confidence intervals)
when the sample size increases from 30 to 900 observations. However, it
can be seen that, independently of the sample size, some confidence
intervals (the ones in red) do not overlap the data-generating parameter
(the dashed blue line). If all the thousand simulations are considered, the
frequency of the coverage of the calculated confidence intervals (i.e.,
how many times the confidence intervals overlap the data-generating
parameter) is 92.4 %, 95.7 % and 95.8 % for the 30, 300 and 900 ob-
servations, respectively. This result is expected because it is a property11

that a 95 % confidence interval has. However, once a specific confidence
interval has been calculated (in our case, the result of one simulation), it
is impossible to make any conclusions about the probability of it con-
taining the data-generating parameter. As discussed in Q.2, probability
refers to frequency in the frequentist approach. The data-generating
parameter is a fixed constant, and a calculated confidence interval is
also fixed. Therefore, a given confidence interval either includes the
parameter or does not, with no frequency involved. Confidence intervals
only quantify the uncertainty due to random error (i.e., sample vari-
ability), not systematic error (i.e., bias). According to Gelman et al.
(pages 56 of Ref. [31]), the ways to account for sources of errors that are
not in the statistical model are: (i) improving data collection, (ii)
expanding the model, and (iii) increasing the stated uncertainty. Con-
cerning the last point, some authors (see Ref. [88] and chapter 19 of
Ref. [89]) recommend the application of quantitative bias analysis to
produce intervals around the effect estimate, taking into account
random and systematic sources of uncertainty.

When conducting a study, it is important to recognise that (gener-
ally) only uncertain conclusions can be drawn from data, even if sta-
tistical significance is achieved. In thermal comfort, claims on data tend
to be stated deterministically by placing the results into the ‘significant’
or ‘nonsignificant’ bins. However, this practice, called dichotomania
[90], is harmful because it overlooks the inherent variation in the
human response (but more generally in the topic under study) as well as
the uncertainty involved in statistical inference. Instead, focusing on
uncertainty quantification is likely to result in a reduction of overly
confident assertions that, upon further examination, may lack support
from the data. Practical examples of this suggestion can be found in
Vasishth and Gelman [91].

8. Question 7: Why does participant selection matter in thermal
comfort studies?

In laboratory and field studies, defining the population of interest is
necessary. A population (or population of inference) refers to a group of
individuals who share at least one common characteristic, like
geographic location. The subset of such a population with more specific
attributes that researchers want to draw conclusions about is the target
population. The study population is the portion of the target population
who will actively participate in the research [92,93]. In thermal comfort
research, for example:

− Population: individuals living in Copenhagen.
− Target population: office workers (20–67 years of age) with no

health issues.

Fig. 5. – Graphical representation via DAG of the data-generating process.
Indoor air temperature (T) and biological sex (S) influence TSV (V) both
directly and indirectly, passing through clothing insulation (C).

Table 1
Summary description of the simulation example.

Pitfall Forgetting the influence of sampling variability on the results and
interpretation of a data analysis.

Type of
analysis

Inferential.

Framework Frequentist.

Assumptions Random sample (simple random sampling): everyone in the
population has an equal chance of being selected into the sample.
Independence of observations: each observation represents
independent bits of information.
No confounding: the DAG includes all shared causes among the
variables.
No model error: perfect functional form specification.
No measurement error: all variables are measured perfectly.

Variables Indoor air temperature (T): continuous variable [unit: ◦C]
Thermal resistance of clothing (C): continuous variable [unit: clo]
Sex (S): categorical variable [‘1’ male; ‘2’ female]
Thermal sensation vote (V): ordinal variable [‘1’ cold; ‘2’ cool; ‘3’
slightly cool; ‘4’ neutral; ‘5’ slightly warm; ‘6’ warm; ‘7’ hot]

11 To calculate the 95 % confidence interval, we used the 95 % Wald confi-
dence interval, which is a common way to do this. However, the Wald confi-
dence interval is only guaranteed to be valid in large samples. When the sample
size is small, the interval calculated this way may not be valid. In our example,
with a sample size of 30, the coverage does not reach its nominal level (i.e., 95
% for a 95 % confidence interval) but is lower (i.e., 92.4 %). There are many
alternatives to the Wald interval (e.g., Ref. [87]); however, an in-depth treat-
ment of this issue is beyond the scope of this article. Nevertheless, for a data
analysis, this should be considered.
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− Study population: participants with chosen characteristics.

Generally, once the population has been selected, two approaches
can be followed: (i) include the entire target population in the study
(census) or (ii) select a sample of it [94]. Census-based research should
be preferred whenever possible in scientific studies [95]; however, due
to its cost or other practical constraints, sampling is the common (if not
unique) procedure in thermal comfort research. A selection process to
obtain the sample (i.e., the study population) is ubiquitous and can lead
to accuracy and/or precision biases. The accuracy bias occurs when the
selected participants do not represent the target population [94]. Hence,
the results derived from the sample are not consistent with those that
would have been obtained from the entire population [93]. However,
caution should be exerted since statistical inference, linked to repre-
sentativeness, does not imply scientific inference12 [95]. Precision
(and/or statistical power) bias can occur when the number of partici-
pants is less than the minimum necessary [92]. Increasing the number of
participants without ensuring the representativeness of the target pop-
ulation will not improve the accuracy of the results; it will only increase
the precision (e.g., getting a more precise estimate with a narrower
confidence interval) of an inaccurate response [94] or, in other words, a
more precise incorrect answer. As discussed in Q.6, increasing the
sample size reduces only sampling variability, not bias.

A lack of representativeness can be the result of selection bias. There
can be multiple causes for selection bias, as illustrated by Hernán et al.
[64], who differentiate it from confounding (i.e., when the factor
investigated and the outcome share a common cause). Examples of se-
lection bias include sampling bias, volunteer bias, inappropriate

selection of controls in a case-control study, frame coverage bias, size
bias and non-response bias [64,93,94,96]. In thermal comfort research,
selection bias can be quite common, considering that participant selec-
tion is mainly based on voluntary response and convenience sampling.
Voluntary response and convenience sampling, together with purposive,
quota and ‘snowball’ sampling, are considered nonprobabilistic (or
non-probability) sampling. In this kind of sampling method, in contrast
with the probabilistic one in which all participants are equally likely to
be selected (i.e., random sampling), the study population does not
represent the target population, and the results cannot be generalised
[94]. Many thermal comfort studies involve the participation of students
or researchers’ colleagues due to their convenient accessibility. Volun-
tary bias could also arise in this context, as people might decide to sign
up for a study for specific reasons but might not be representative of the
target population [97]. For example, office workers might join a survey
of the indoor environment to complain about the temperature in the
building. When a single-blind experimental design is sought, it is
imperative to ensure that response bias is minimised (e.g., students and
colleagues must not be fully aware of the end goal of the research to
avoid giving responses that seem correct to them to please the re-
searchers). Even when response bias is avoided, the selection bias
due to convenience sampling can lead to inaccurate responses. For
example, when the target population includes healthy office workers,
but only young individuals participate in the study. In this case, it is
crucial to define how the study population differs systematically from
the target population (e.g., in terms of age, metabolic activity, and
clothing preferences) and how these systemic differences can be
measured or at least considered. A discussion on inverse probability
weighting, a method suggested to correct selection bias in longitudinal
studies, can be found in Hernán et al. [64]. Multilevel regression and
poststratification, a technique used to adjust for non-representativeness
by correcting the results from non-representative samples to the target
population for known systematic differences, is discussed by Kennedy
and Gelman [98] and applied by Wang et al. [99].

Fig. 6. – Estimates of the coefficient of sex (only the first hundreds of the thousand simulations are shown). The black dots represent the point estimate, and the black
lines represent the 95 % (Wald) confidence intervals. In red are highlighted the confidence intervals that do not overlap the parameter used to generate the data
(dashed blue line). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

12 In their work, Rothman et al. [95] distinguish between the scientific
objective of comprehending a phenomenon (scientific inference) and the
practical aim of utilising that knowledge for specific populations (statistical
inference). The former purpose is not improved by representativeness but
rather relies on rigorously regulated comparisons made across various pertinent
scenarios. It is the latter purpose, the practical application of science, that may
require representative sampling.
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8.1. Simulation example: selection bias

In this simulation example, the highlighted data analysis pitfall is
selection bias. Specifically, it shows the implication of selection bias on
the result of the data analysis. The data is generated based on the process
outlined in Fig. 7. This data-generating mechanism simulates the pop-
ulation of interest (constituted by one million observations).

From this population, we obtained two data sets of ten thousand
observations each: one using simple random sampling and the other
using non-random sampling. In the non-random sample, participation
(P) in the survey is affected by the TSV (V) by assuming that people with
lower and higher TSVs are more likely to answer the survey. As a result,
the sample obtained is biased. We assumed that the objective of the data
analysis is to answer the following inferential question: ‘What is the
(population’s) expected average TSV for males exposed to air temperatures
between 16◦ C and 30◦ C with a clothing insulation value of 0.5 clo?’. To
address this data analytic question, the two synthetic data sets are
analysed using ordinal regression within a Bayesian framework. For
more details, the reader is referred to the online document; here, only a
summary is provided (see Table 2).

An ordinal model has as its outcome a vector of probabilities, one for
each category (i.e., seven in this case). However, we are interested in the
average outcome. The mean of the probabilities can be calculated as:

Mean Pr=
∑K

1
πkk Eq. (3)

where πk is the probability of a specific category k, k ∈ {1,…,K}.
Fig. 8 displays the average of posterior probabilities (and 95 %

credible intervals) across varying air temperatures for males with a
clothing insulation value of 0.5 clo. The orange line indicates the
calculated mean probability from a biased sample (left side), while the
green line represents the mean calculated using a random sample (right
side). The black line displays the mean of the probabilities of the pop-
ulation, which is determined using the data-generating mechanism. This
figure shows that the mean probability from the biased sample does not
match the mean probability of the population. This discrepancy arises
because the biased sample contains a disproportionate number of people
who voted with lower and higher thermal sensations. However, the
mean probability calculated from the random sample is almost a ‘per-
fect’ match with the population. The random sample can accurately
recover the population mean. For both the biased and random samples,
narrow 95 % credible intervals are observed due to the large sample size
(i.e., ten thousand observations). Increasing the sample size will only
improve precision and not accuracy. This is evident in the biased sample,
where a larger sample size provides a more precise but incorrect answer.

9. Question 8: What is variable selection, and when is it useful?

Generally, variable (or feature) selection primarily focuses on
removing non-informative or redundant variables from a larger set of
potential regressors. Heinze et al. [100] provided an overview of various

available variable selection methods that are based on significance cri-
terion, change-in-estimate criterion, information criteria, penalised
likelihood and background knowledge. These criteria can be imple-
mented in variable selection algorithms such as backward elimination,
forward selection, and stepwise selection. However, it is essential to
highlight that including/excluding variables in/from a model (i.e.,
performing variable selection) and the specific approach used is
closely tied to the data analytic question type. Hence, this topic has
different implications depending on causal or predictive purposes.

For causal (and inferential) aims, a fundamental aspect is statistical
adjustment (i.e., adjusting for a variable by including it in the model).
Assuming that no selection bias (see Q.7) and measurement error (see
Q.10) are present, bias can arise by including/excluding variables in/
from a (regression) model. Common issues are confounding, and
adjustment for mediators and colliders (see Fig. 2; for more details, the
reader is referred to Cinelli et al. [54]). In thermal comfort research, for
example, body mass index (BMI) is often included as a regressor.
However, BMI is only an arithmetic derivation (BMI = weight/height2);
as such, it may be associated with an outcome of interest (e.g., TSV) but
cannot influence the outcome because only weight and/or height can be
causal [101]. Furthermore, depending on the causal structure of the
data, conditioning on a variable can increase existing bias (i.e., bias
amplification) [102]. Consequently, statistical adjustment requires
causal thinking [65]. Since data are ignorant to causes, performing
(automated) variable selection based on any criterion that is not causal
thinking is very likely to produce misleading results. Although
convincing arguments exist for not using stepwise variable selection (e.
g., Refs. [103,104]), its use is widespread. For example, its use leads to
parameter estimates that are biased away from zero, producing too low
standard errors and p-values and narrower confidence intervals (page 68
of Ref. [71]).

For predictive purposes, there is no need to adjust for confounding. If
the aim is to develop a model for predicting Y, all regressors (Xs) that are
strong predictors of Y should be included. Since no causal interpretation
is assigned to parameter estimates, the concept of adjusting for con-
founding does not apply. This aspect ties directly into the issue of
collinearity. Collinearity is not a problem for predictive aims because it
does not affect predictive power. It only affects the association between
regressors and regressand, which is generally not of concern for pre-
diction, with one exception. Collinearity becomes problematic for pre-
diction if the level of collinearity in the sample does not reflect that of
the population. Variable selection can help reduce the number of vari-
ables to include in a prediction model (especially when having all of
them can be impossible for applicability in real-world scenarios [105] or
result in unstable predictions), but it is important to remember that
overfitting can be an issue. To solve this problem, cross-validation is an

Fig. 7. – Graphical representation via DAG of the data-generating process.
Indoor air temperature (T) and biological sex (S) influence TSV (V) both
directly and indirectly, passing through clothing insulation (C). Participation
(P) in the survey response is affected by TSV (V).

Table 2
Summary description of the simulation example.

Pitfall Ignore the implications of selection bias (e.g., case-control bias)
on the results and interpretation of a data analysis.

Type of
analysis

Inferential.

Framework Bayesian.

Assumptions Limited random variability: large sample size.
Independence of observations: each observation represents
independent bits of information.
No confounding: the DAG includes all shared causes among the
variables.
No model error: perfect functional form specification.
No measurement error: all variables are measured perfectly.

Variables Air temperature (T): continuous variable [unit: ◦C]
Thermal resistance of clothing (C): continuous variable [unit: clo]
Sex (S): categorical variable [‘1’ male; ‘2’ female]
Thermal sensation vote (V): ordinal variable [‘1’ cold; ‘2’ cool; ‘3’
slightly cool; ‘4’ neutral; ‘5’ slightly warm; ‘6’ warm; ‘7’ hot]
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option, which can take different forms, such as k-fold and leave-one-out
cross-validation. For exploratory and predictive purposes, data reduc-
tion methods can be an alternative approach to consider. Data reduction
methods reduce the original data size to represent it in a much smaller
space. There are many approaches to data reduction, with principal
component analysis (PCA) being one example. A detailed description of
variable selection and data reduction methods can be found in the books
by Harrell [71], James et al. [106] and Hastie et al. [107].

9.1. Simulation example: variable selection

In this simulation example, the highlighted data analysis pitfall is
variable selection. Specifically, it shows the implication of variable se-
lection on the result of the data analysis. The data is generated based on
the process outlined in Fig. 9. This data-generatingmechanism simulates
the population of interest (constituted by one million observations).

From this population, we obtained a data set of ten thousand ob-
servations using simple random sampling. We assumed that the objec-
tive of the data analysis is to answer the following causal question: ‘What
is the total causal effect of decreasing the indoor air temperature from 22◦C to
20◦C on the TSV?’. To address this data analytic question, the synthetic
data set is analysed using beta regression within a frequentist frame-
work. For more details, the reader is referred to the online document;
here, only a summary is provided (see Table 3). To estimate the effect of interest, we need to select the variables to

adjust for: the adjustment set. This selection is done in two ways: using
causal thinking and backward selection with the AIC criterion. Using
causal thinking, there are two possible adjustment sets to estimate the
total causal effect of indoor air temperature: add outdoor temperature
(Model 1) or add outdoor temperature and sex (Model 2). Adjusting for
(i.e., conditioning on) sex is optional. However, conditioning on sex can
help detect the effect of indoor air temperature by explaining some re-
sidual variations in TSV, thus improving precision. For this reason, we
selected the adjustment set of ‘Model 2’. Instead, if backward selection
with the AIC criterion is used, the selected variables are indoor air
temperature, clothing insulation and sex (Model 3). However, this is the

Fig. 8. – Average posterior probability (and 95 % credible intervals) across varying air temperatures for males with a clothing insulation value of 0.5 clo. The orange
line indicates the calculated mean probability from a biased sample (left side), while the green line represents the mean calculated using a random sample (right
side). The black lines display the mean of the probabilities of the population, which is determined using the data-generating mechanism. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. – Graphical representation via DAG of the data-generating process.
Indoor air temperature (T) and biological sex (S) influence TSV (V) both
directly and indirectly, passing through clothing insulation (C). In addition, TSV
(V) is influenced indirectly by outdoor air temperature (O) through indoor air
temperature (T) and clothing insulation (C).

Table 3
Summary description of the simulation example.

Pitfall Ignore the implications of variable selection on the results and
interpretation of a data analysis.

Type of
analysis

Causal.

Framework Frequentist.

Assumptions Random sample (simple random sampling): everyone in the
population has an equal chance of being selected forinto the
sample.
Limited random variability: large sample size.
Independence of observations: each observation represents
independent bits of information.
No confounding: the DAG includes all shared causes among the
variables.
No model error: perfect functional form specification.
No measurement error: all variables are measured perfectly.

Variables Outdoor air temperature (O): continuous variable [unit: ◦C]
Indoor air temperature (T): continuous variable [unit: ◦C]
Thermal resistance of clothing (C): continuous variable [unit: clo]
Sex (S): categorical variable [‘1’ male; ‘2’ female]
Thermal sensation vote (V): continuous but bounded variable
with interval (0, 1) [‘0’ cold; ‘1’ hot]
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wrong adjustment set,13 and it will not allow us to estimate the total
causal effect of indoor air temperature. The AIC criterion is a predictive
criterion and, as such, is a tool for pure predictive tasks (i.e., prediction
in the absence of intervention). Here, the question of interest is causal,
that is, prediction in the presence of intervention (i.e., an answer to a
‘what if?’ question). Table 4 compares the three models in terms of their
AIC: the model selected by backward selection has the best AIC (i.e., the
lowest value) and, as such, it is the best model for a pure predictive task.
However, it will be the wrong model to answer the question of interest.

Using ‘Model 2’, we can calculate the total causal effect of indoor air
temperature. To do so, we will use the potential outcomes framework
[108] using the g-computation algorithm formula (g-computation) first
described in 1986 [109] (see the online document for more details).
Applying this method, the estimate of the total causal effect of
decreasing the indoor air temperature from 22 ◦C to 20 ◦C is a reduction
of − 0.177 (95 % CI [− 0.181, − 0.173]) of the mean TSV.

The critical aspect to remember is that all the variables added as the
adjustment set are solely there to enable the estimation of the estimate of
interest. Here, outdoor air temperature and sex are selected to yield the
total causal effect of indoor air temperature, and nothing else. As such,
these variables should not be interpreted. The interpretation of such
variables is known as ‘Table 2 Fallacy’ [110].

10. Question 9: Why should the data structure be considered
during data analysing?

Many commonly used methods (both machine learning- and
statistics-based) assume that the errors are identically and indepen-
dently distributed (i.i.d.). This assumption is violated when observa-
tional units are clustered and/or nested within groups. The definition of
what constitutes a group depends on the context. For instance, when a
survey is conducted on occupants of several buildings, the observational
unit is the occupant, while the building is the group. On the other hand,
in a survey in which multiple measurements are carried out on each
occupant of a single building, the observational unit is the measurement,
and the occupant is the group.

As mentioned in Q.4, independence of error is one of the assumptions
of linear regression and GLMs. If there is clustering in the data and it is
not considered during the analysis, the standard errors of the regression
coefficients will generally be underestimated. Consequently, confidence
intervals will be too narrow, and p-values will be too small, leading to an
overstatement of statistical significance. For example, consider 1000
individuals clustered in 10 groups where, for simplicity, each cluster
contains 100 individuals. The standard errors of a regression model that
assume independence of error are calculated on the assumption that
each individual in the sample provides independent pieces of informa-
tion (i.e., 1000 independent observations). However, there will be fewer
than 1000 independent observations when the data are clustered. The

number of independent information is called the effective sample size
and depends on the degree of clustering. In the extreme case that all
individuals in a group have the same value for the regressand (i.e., all
errors are perfectly correlated), each group provides only one inde-
pendent observation. In this case, the effective sample size will be equal
to 10 (i.e., the number of clusters) rather than 1000. As mentioned in
Q.6, there is an inverse relationship between sample size and standard
error, where a smaller sample size will lead to a larger standard error.
For a regression, coefficient estimates are labelled statistically signifi-
cant (at .05 level) if they are at least two standard errors away from zero.
Consequently, underestimated standard errors will lead to an over-
statement of statistical significance. However, for some models, the
underestimation of standard errors can generally be observed for vari-
ables measured at the group level (between-group variables). The
opposite can be observed for within-group variables: standard errors are
overestimated, leading to overly conservative p-values.

Multilevel models (also known as hierarchical or mixed models) are
an appropriate approach for analysing clustered/nested data and pro-
vide accurate standard errors. Marginal models14 (e.g., generalised
estimating equations, GEE) are another approach to explicitly model
dependency between observations in the same group, but the correlation
structure is then essentially regarded as a nuisance. Although the mar-
ginal model method yields correct standard errors, multilevel modelling
allows researchers to investigate the nature of between-group variability
and the effects of group-level characteristics on individual outcomes.

Multilevel models can represent complex data structures using three
primary forms: hierarchical (nested), cross-classified, and multiple
membership. Fig. 10 shows examples of each using classification dia-
grams (left side) and unit diagrams (right side). These three elemental
types of structures can also be combined to describe more complicated
real-world situations and research designs. It is important to note that
the multilevel structure is not an inherent feature of the model but rather
a characteristic of the experimental/study design, which is then re-
flected in the data and subsequently captured by the model. For
example, a situation in which multilevel modelling arises naturally is in
the analysis of data obtained by stratified or cluster sampling. Therefore,
it is impossible to determine the data’s structure simply by exam-
ining it, as this requires knowledge of the data and the experi-
mental design.

Other forms of non-independence arise from spatial and temporal
patterns. In thermal comfort research, spatial patterns emerge when
measurements are taken in non-homogeneous spaces (e.g., observations
in different points of an open-plan office), and temporal patterns arise in
longitudinal data with repeated measurements. In these situations, data
exhibit autocorrelation, meaning that observations that are closer in
space or time are more highly correlated. Examples of methods to model
these dependency structures are spatial correlation and time series. In a
multilevel model, it is possible to account for autocorrelation explicitly
by defining a variance-covariance matrix that incorporates a correlation
structure that approximates the patterns of dependency. An example of
modelling (simple) temporal autocorrelation could be using a first-order
autoregressive correlation structure, AR(1). However, if complex/gen-
eral temporal correlation structures are expected, they should be
handled by time series modelling tools.

Considering the many situations in which errors are dependent,
multilevel modelling could be considered the ‘default’ starting point. For
an application of multilevel regression to analyse subjective thermal

Table 4
– Models comparison.

Variable selection strategy Selected model dfa AIC

Causal thinking Model 1: V ~ T + O 4 − 16706.34
Model 2: V ~ T + S + O 5 − 16919.99

Backward selection Model 3: V ~ T + S + C 5 − 17352.15

a Df stands for degrees of freedom.

13 Given the DAG, assuming air temperature and sex are conditioned on (i.e.,
included in the model), conditioning on clothing will statistically remove any
association between indoor air temperature and TSV influenced by clothing
insulation. Stated analogously, it will block the indirect effect of indoor air
temperature (i.e., the mediating path).

14 For regressions with correlated outcomes, there are two main approaches:
marginal models (e.g., GEEs) and conditional models (e.g., LMMs and GLMMs).
One of their main differences is in the interpretation of the resulting coefficient
estimates. In a marginal model, the coefficients have a population-averaged
interpretation, whereas in a mixed model, they have a cluster-specific inter-
pretation. For LMMs, the two interpretations coincide, but they do not for
GLMMs.
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comfort data, the reader is referred to Favero et al. [76]. For more detail
on multilevel modelling, the reader is referred to Refs. [31,111].

10.1. Simulation example: clustered/nested observations

In this simulation example, the highlighted data analysis pitfall is
clustered/nested observations. Specifically, it shows the implication of
having clustered/nested observations on the result of the data analysis.
The data is generated based on the process outlined in Fig. 11. This data-

generating mechanism simulates the population of interest (constituted
by one million observations from twenty thousand buildings).

From this population, we obtain a data set of ten thousand obser-
vations using multistage sampling. We first randomly sampled 500
buildings; among the sampled buildings, we randomly sampled ten
thousand observations. We assumed that the objective of the data
analysis is to answer the following predictive question: ‘What is the
probability that the TSV for females at 25◦ C with a clothing insulation value
of 0.6 clo in a typical (i.e., average) building is lower than 0.5 (i.e.,
‘neutral’)?’. To address this data analytic question, the synthetic data set
is analysed using beta regression within a frequentist framework. For
more details, the reader is referred to the online document; here, only a
summary is provided (see Table 5).

To answer the question of interest, two beta regression models are
fitted: one that ignores the cluster present in the data (Model 1) and one
that considers it (Model 2).

Fig. 12 shows the predicted posterior distribution of the TSVs for
‘Model 1’ (orange) and ‘Model 2’ (green), respectively. The black line
and dot at the bottom of each distribution represent the highest pre-
dictive density (HPD) and the mean, respectively. These intervals (i.e.,
the black lines) are defined here to span over 95 % of the distribution,
representing the 95 % HPDs. Using ‘Model 1’, it is not possible to
calculate the predicted TSVs for an average building because the model

Fig. 10. – Examples of multilevel structures: hierarchical (a), cross-classified (b) and multiple membership (c) using classification diagrams (left-side) and unit
diagrams (right-side). (Note. LV = level).

Fig. 11. – Graphical representation via DAG of the data-generating process.
Indoor air temperature (T) and biological sex (S) influence thermal sensation
vote (V) both directly and indirectly, passing through clothing insulation (C). In
addition, thermal sensation vote (V) is influenced directly by some unmeasured
characteristics of the specific building (B).
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does not model the variability among buildings. Consequently, it is not
possible to answer the question of interest. The predicted probability of
16.0 % in Fig. 12 (left) could be thought of as that of females at 25 ◦C
with clothing insulation of 0.6 clo across buildings on average. ‘Model
2’, on the other hand, can calculate the predicted TSVs for an average
building. To do so, we need to hold the group-level residual (i.e., the
group random effect) at its mean of zero, calculate the predicted TSV for
the specific regressors-values (i.e., females at 25 ◦C with clothing insu-
lation of 0.6 clo) and then calculate the percentage of it that is lower
than 0.5 (‘neutral’). This results in a probability of 2.9 % (Fig. 12
(right)).

11. Question 10: What is measurement error, and how can it
affect the data analysis?

Measurement error is an essential concept in scientific research and
data analysis (it is an inherent part of any experimental or observational
process) and represents the discrepancy between the result of a mea-
surement and the true, unknown value (i.e., the measurand). Measure-
ment error should not be confused with ‘uncertainty’, which quantifies

doubt about the measurement result, or ‘accuracy’, which is a qualita-
tive description of the closeness of a measurement.15 Measurement error
can arise from multiple factors (e.g., the measuring instrument, the
measurement process, etc.) and take different forms (e.g., it can affect
continuous and categorical measurements). It is usually classified into
two types: (i) systematic errors and (ii) random errors. Systematic errors
are consistent and repeatable discrepancies between measurements and
the true value. They often result from flaws in measurement in-
struments, calibration, or experimental design. Random errors are un-
predictable variations in measurements that occur due to inherent
variability in the system or the measurement process itself. They result
from factors such as electrical noise in measuring instruments, short-
term fluctuations in the local environment and variability in the per-
formance of the person carrying out the measurement. There is another
category which is often referred to as error, namely gross error. Common
examples of gross errors are incorrectly applied corrections and tran-
scription errors. However, gross errors should be regarded as mistakes
and not as measurement errors. The reason is that mistakes cannot be
easily accounted for when evaluating uncertainty, and they should be
avoided by working carefully. The international standard ISO/IEC Guide

98–3:2008 [112] provides useful indications for expressing measure-
ment uncertainty.

In the answers to Q.7 and Q.8, we discussed two general issues that
can induce biased estimates: selection bias and confounding. Measure-
ment error is another issue that can introduce bias (specifically mea-
surement bias). However, there is a general distinction between these
biases. While there is a standard causal structure that can be used to
summarise selection bias (i.e., conditioning on common effects of re-
gressor and regressand, or of their causes) and confounding (i.e., the
presence of common causes of regressor and regressand), this is not the
case for measurement error. Hernán and Cole [114] provide a functional
distinction of the measurement error structure of a regressor (e.g., air

Table 5
Summary description of the simulation example.

Pitfall Ignore the implications of clustered/nested observations (i.e.,
dependent observations) on the results and interpretation of a
data analysis.

Type of
analysis

Predictive.

Framework Bayesian.

Assumptions Random sample (multistage sampling): everyone in the
population has an equal chance of being selected into the sample.
Limited random variability: large sample size.
No confounding: the DAG includes all shared causes among the
variables.
No model error: perfect functional form specification.
No measurement error: all variables are measured perfectly.

Variables Indoor air temperature (T): continuous variable [unit: ◦C]
Thermal resistance of clothing (C): continuous variable [unit: clo]
Sex (S): categorical variable [‘1’ male; ‘2’ female]
Building ID (B): index variable
Thermal sensation vote (V): continuous but bounded variable
with interval (0, 1) [‘0’ cold; ‘1’ hot]

Fig. 12. – Predicted posterior distribution of the TSVs ‘Model 1’ (orange) and ‘Model 2’ (green). The black line and dot at the bottom of each distribution represent
the highest predictive density (HPD) and the mode, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)

15 ISO/IEC Guide 98–3:2008 [112], which is based on JCGM 100:2008 [113],
defines (i) accuracy (of measurement) as ‘closeness of the agreement between
the result of a measurement and a true value of the measurand’ and (ii) un-
certainty (of measurement) as ‘parameter, associated with the result of a
measurement, that characterizes the dispersion of the values that could
reasonably be attributed to the measurand’.

M. Favero et al. Building and Environment 264 (2024) 111903 

15 



temperature) and a regressand (e.g., TSV). While this classification is
undoubtedly useful (see Ref. [114] for more details), it is very general in
that the structure of the measurement error would at least depend on
which variable is affected (in some settings, the magnitude of the
measurement error may be judged, or known, to be too small to matter),
and the relationship between the variables.

Humphreys and Nicol [23], using the data from the ASHRAE data-
base I [115], explored the nature of errors for thermal comfort indices,
distinguishing them in measurement error and formulaic error (i.e.,
error arising from an incorrect or incomplete formulation of an index).
Concerning the effects of measurement error in regression, they gener-
ally state that:

1. The effect of measurement error in a regressor variable is to weaken
the correlation and regression coefficients, causing them to fall
below their actual values (‘regression attenuation’).

2. Random errors in the regressand (e.g., TSV) reduce the correlation
coefficient, but the regression coefficient is not affected in a sys-
tematic manner.

However, there are some limitations to these statements. Consid-
ering the first one, Carroll et al. (page 41 of Ref. [116]) state that this
conclusion, generally derived focusing on simple linear regression (as
for Ref. [23]), must be qualified. Even for linear regression, the effects of
measurement error vary, and its effect can range from a simple attenu-
ation described earlier, (i) to cases in which real effects are concealed,
(ii) to instances where observed data displays relationships that are
absent in error-free data, and even (iii) to situations where the estimated
coefficients’ signs (±) are flipped compared to the scenario with no
measurement error. In non-linear models, the effects of measurement
error on the regressors are even more complicated. The second state-
ment is only valid for linear regression where there is ‘classical’ mea-
surement error16; however, different error structures are certainly
possible (see Ref. [114]). In addition, as discussed in Q.5, linear
regression is not appropriate for analysing subjective thermal comfort
data measured on a continuous but bounded scale, and other regressions
should be used. In logistic regression, for example, the error in the
regressand is called misclassification. The bias introduced by misclas-
sification is profound and can lead to a severe bias in parameter esti-
mates (pages 345–347 of Ref. [116]).

Measurement error should not be overlooked in statistical analysis as
it propagates uncertainty and can lead to significant consequences. For
example, Carroll et al. (chapters 3 and 10 of Ref. [116]) demonstrate
how measurement error can introduce bias in the estimation of regres-
sion coefficients and affect hypothesis testing. In addition, it will also
affect sample size determination [117,118] and automated variable
selection. However, Carroll et al. [116] state that when the purpose of
the study is predictive, it is generally unnecessary to model measure-
ment error, with one exception. When the aim is to predict a different
population than the one used to develop the prediction model, it is
crucial to account for the measurement error that can occur.

11.1. Simulation example: measurement error

In this simulation example, the highlighted data analysis pitfall is
measurement error. Specifically, it shows the influence of measurement
error on the results of a data analysis. The data is generated based on the
process outlined in Fig. 13. This data-generating mechanism simulates
the population of interest (constituted by one million observations).

From this population, we obtain a data set of ten thousand obser-
vations using simple random sampling. We defined the unobserved error
eT as normally distributed with zero mean and five different values for

the standard deviation (0.1 K, 0.2 K, 0.3 K, 0.4 K, and 0.5 K, respec-
tively). These different standard deviations reflect different random
fluctuations (i.e., random error). We then added the unobserved error to
the unobserved indoor air temperature (T) to obtain the observed indoor
air temperature (T*). We assumed that a 4-wire Pt100 resistance tem-
perature sensing (RTD) temperature probe (tolerance class DIN B) and a
transmitter that operates with a current output signal of 4–20 mA and a
temperature range of 0–200 ◦C were used. The combined standard un-
certainty uc(T) (hypothetical but realistic) of the programmable trans-
mitter with a Pt100 RTD is 0.23. This is used as the standard deviation
for the measurement error in air temperature (i.e., uc(T) = 0.23 = σT∗ ).
We assumed that the objective of the data analysis is to answer the
following inferential question: ‘What is the association between TSV and
sex, indoor air temperature and clothing insulation?’. To address this data
analytic question, the synthetic data set is analysed using beta regression
within a Bayesian framework. For more details, the reader is referred to
the online document; here, only a summary is provided (see Table 6).

Three models were considered:

− ‘Model 1’ is the model that uses the air temperature measured
without error, T. It can be considered the reference model.

− ‘Model 2’ is the model that uses air temperature measured with error,
T*.

Fig. 13. – Graphical representation via DAG of the data-generating process.
Indoor air temperature (T) and biological sex (S) influence thermal sensation
vote (V) both directly and indirectly, passing through clothing insulation (C).
The true indoor air temperature T cannot be observed, so it is circled as an
unobserved node. However, we do get to observe T*, which is a function of both
the true air temperature T and some unobserved error eT. The error itself is not
directly observable but could be roughly approximated by considering the
possible uncertainty in the measurement process.

Table 6
Summary description of the simulation example.

Pitfall Ignore the implications of measurement error on the results and
interpretation of a data analysis.

Type of
analysis

Inferential.

Framework Bayesian.

Assumptions Random sample (simple random sampling): everyone in the
population has an equal chance of being selected into the sample.
Limited random variability: large sample size.
Independence of observations: each observation represents
independent bits of information.
No confounding: the DAG includes all shared causes among the
variables.
No model error: perfect functional form specification.

Variables Unobserved indoor air temperature (T): continuous variable
[unit: ◦C]
Observed indoor air temperature (T*): continuous variable [unit:
◦C]
Thermal resistance of clothing (C): continuous variable [unit: clo]
Sex (S): categorical variable [‘1’ male; ‘2’ female]
Thermal sensation vote (V): continuous but bounded variable
with interval (0, 1) [‘0’ cold; ‘1’ hot]

16 Classical measurement error refers to additive error uncorrelated with the
regressors.
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− ‘Model 3’ is the model that uses air temperature measured with error,
T* but considering measurement error (using σT∗ = 0.23).

Fig. 14 shows the estimates of the regression coefficients for three
models and their 95 % credible intervals. Here, the estimated posterior
distributions of the regression coefficients for ‘Model 1’, ‘Model 2’ and
‘Model 3’ are shown by the black, orange and green lines, respectively.
With regard to the increment in measurement error (i.e., from ‘No error’
to sd = 0.5), the following comparison can be made:

− The bias of the sex coefficient is positive and very similar in
magnitude for both ‘Model 2’ and ‘Model 3’;

− The bias of the temperature coefficient is negative (i.e., regression
dilution) for ‘Model 2’ and ‘Model 3’ but overall higher in magnitude
for ‘Model 2’. However, in ‘Model 3’ considering measurement error
when it does not exist (i.e., ‘no error’) or is lower in magnitude than
the assumed one (i.e., σT∗ = 0.23 > sd = 0.1 and 0.2) undermines
the inference by overestimating the coefficient;

− The bias of the clothing coefficient is negative and very similar in
magnitude for both ‘Model 2’ and ‘Model 3’.

Considering measurement error in statistical modelling is
essential, but it is important to proceed cautiously as no ‘one-size-
fits-all’ solutions are applicable. The presence of measurement error
can lead to unpredictable effects; it can over- or underestimate the co-
efficients of interest depending on which variables are affected, how the

measurement error is structured and its magnitude. Although directly
modelling measurement error can be complicated, evaluating its im-
plications for the results and conclusions is always possible by per-
forming a sensitivity analysis.

12. Conclusions

In this paper, we have explored ten questions about statistical data
analysis in human-centric research focusing on thermal comfort.
Nonetheless, the issues highlighted in the paper are also relevant to
other domains of the indoor environment and beyond. For example, in
the recent review by Chinazzo et al. [119], problems of poor practice in
statistical analysis, among other issues, have also been identified in
multi-domain studies. This paper first covers an overview of the
fundamental concepts of statistical data analysis and then, through
synthetic data, highlights the tangible effects of various statistical pit-
falls applied to examples from thermal comfort research. We have shown
that statistical thinking is critical to avoid misleading results. Further-
more, while the diverse pitfalls are presented individually, they are
combined in ‘real-world’ data analysis, stressing the added importance
of statistical thinking.

Statistics are often perceived, selected, and reported based on
preferred causal stories; stories researchers, reviewers and editors want
to believe causally affect analysis choices and output interpretation.
However, in this ‘garden of forking paths’ [120], where this path ap-
pears predetermined, it is actually due to implicit choices made along

Fig. 14. – Posterior distributions for the regression coefficients for ‘Model 1’ (black), ‘Model 2’ (orange) and ‘Model 3’ (green). The lines and dots represent the 95 %
credible interval and the mean, respectively. The solid grey lines represent the values of the coefficients used to generate the data set. (Note. On the right-side label,
‘sd’ stands for standard deviation and represents the different random fluctuations (i.e., random error) of the unobserved error eT). (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the Web version of this article.)
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the way. Therefore, we advocate for greater attention by researchers to
justify and document all choices made in the statistical analysis of
human-centric building analysis data. Although it is certainly true that
much of the scientific work can be done with some details hidden in a
‘black-box’, it is important to be transparent and specific about all
modelling steps. Acknowledging the word limit in journals, we recom-
mend providing such details in the supplementary materials. To this
end, we have created an online document that offers a clear and prac-
tical explanation of the modelling process for the simulation examples
discussed in the paper. With human-centred approaches gaining more
importance, this paper and the online document will be a valuable
resource for experienced and inexperienced researchers and practi-
tioners who need to analyse the collected data from buildings and their
occupants with sound statistical methods.
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