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A B S T R A C T

A generalized finite element beam with an embedded rotation discontinuity coupled with a 3D
macroelement is proposed to assess, till complete failure (no stress transfer), the vulnerability
of symmetrically reinforced concrete frame structures subjected to static (monotonic, cyclic) or
dynamic loading. The beam follows the Timoshenko beam theory and its sectional behavior
is described in terms of generalized forces and generalized strains. The beam response up to
the peak is described by a macroelement, based on plasticity theory, that adopts a 3D failure
criterion expressed in terms of axial force, shear force and bending moment. The Embedded
Finite Element Method is then adopted to reproduce bending dominated failure, with a global
cohesive model that links the cohesive moment to a rotational jump. The formulation allows
for remedy of localization phenomena and significant reduction of the necessary computational
time. The performance of the proposed simplified strategy is illustrated by comparison with
experimental results.

1. Introduction

Numerical simulation is nowadays a powerful tool which allows conducting numerical experiments and predicting the behavior
of reinforced concrete (RC) structures. This is not only essential for the design of a new structure, but also for evaluating the response
of an existing one subjected to static (monotonic [1] or cyclic [2]) or dynamic excitations (e.g. earthquakes, see for instance [3]).
Given the significant developments in the constitutive description of concrete and steel and the numerical methods over the last five
decades, the Finite Element Method (FEM) and enriched formulations such as the Embedded Finite Element Method (E-FEM) [4] are
capable of assessing the vulnerability of RC structures till failure. Numerical simulations may however exhibit prohibitive calculation
times, and therefore they are not always suitable for industrial design applications. To overcome this drawback a simplified approach
is proposed hereafter based on (1) the original macroelement concept introduced by Nova et Montrasio [5] and (2) the kinematically
enhanced formulation introduced by Armero and Ehrlich [6–8] for generalized finite element (FE) beams.
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Introduced in geomechanics by Nova and Montrasio [5] for soil structure interaction problems, the macroelement considers the
global behavior of a foundation and of the soil volume interacting with it merged into a single, 3D stress-resultant constitutive equa-
tion relating the forces/moments on the foundation with the corresponding displacements/rotations. Subsequent developments of
macroelements for soil structure interaction problems can for example be found in the work of [9–11] for shallow foundations, [12–
15] for piles and [16] for caisson foundations respectively, following either the elasto-plasticity or the hypoplasticity computational
framework. In structural engineering, the macroelement concept has been applied to study the nonlinear response of RC elements
in terms of forces/moments - displacements/rotations [17,18] The word macroelement is sometimes used in the literature to
describe uniaxial (uncoupled) nonlinear springs [19,20]. In such cases, the behavior of each uniaxial spring is independent of the
other springs. In the following however, the word macroelement is used in accordance with the original definition of Nova and
Montrasio [5], i.e. a (coupled) 3D stress-resultant constitutive equation.

In order to simulate the behavior up to complete failure (no stress transfer), kinematically enhanced formulations coupled
with cohesive models were first introduced by Armero and Ehrlich [6–8] for generalized Euler–Bernoulli and Timoshenko beams,
initially for steel structures. Their work is based on E-FEM, initially developed by [4] and inspired by the Mixed Assumed Strain
Approach [21]. The main idea is that a crack can pass through the FE, while the enhanced variables are defined at the element and
not at the nodal level. More specifically:

Pham et al. [22,23] used the FE Timoshenko beam presented in Section 2 for RC structures. The authors adopted uncoupled
(1D) stress-resultant constitutive models for the continuous part and a linear generalized cohesive model describing the relation
between moment and rotation jump to represent the bending behavior until complete failure. The parameter identification of the
generalized bending cohesive law was carried out via kinematically enhanced multi-fiber Timoshenko FE beams, enriched by axial
displacement discontinuity at the fiber level. The longitudinal dimension of the beams was relatively small with respect to the
transversal dimensions in order to represent a sectional analysis. In their formulation, different constitutive laws (continuum and
cohesive, the latter given in terms of a stress-axial displacement jump) at a local level were assigned to each fiber to represent the
1D concrete and steel behaviors.

Jukić et al. [24] proposed a stress-resultant Euler–Bernoulli beam with linear shape functions for the axial component and high
order shape functions for the transversal and rotational components for the continuous part of the finite element formulation. The
enhanced formulation integrated the discontinuity of the rotational component. The constitutive description at the discontinuity
was given by a linear cohesive model in terms of moment–rotation jump. Jukić [25] developed a multi-fiber Euler–Bernoulli beam
and with co-authors [26] a multi-fiber Timoshenko beam for the analysis of RC beams and frames until failure. In both works, the
axial kinematical field of the fibers was enriched by discontinuities. The continuous constitutive description of the concrete layer
was given by a damage model while for the discontinuity a softening-damage traction-separation cohesive model was adopted.
An elasto-plastic model and a softening-plasticity traction-separation cohesive law were used to describe the continuous and the
discontinuous part of the steel.

Bui et al. [27] investigated the response of RC beam–columns by considering two modes of failure: bending and shear. A
generalized Timoshenko beam element enriched by two discontinuity variables (transversal displacement and rotation jumps) was
used. The results of the numerical simulations of a four-point bending test were presented by considering only shear failure, only
bending failure and both shear and bending failures The authors showed that when considering only shear failure, with the bending
response remaining elastic, the overall resistance was highly overestimated and the response was brittle. When considering only
bending failure or both shear and bending failures, the obtained results were quite similar, more realistic and the response was
more ductile. The authors explained that the type of failure depended on the peak resistances of the generalized shear and bending
models. The dominant failure mechanism is therefore mainly driven by the geometrical and mechanical properties of the RC element.
This conclusion is the basis of the assumptions of the enhanced formulation presented in Section 4.1.

Bitar and co-authors [28–30] used a high-order Timoshenko beam finite element as the basis of the enhanced formulation. This
beam was initially developed by [31] and presents the advantage that it is free of shear locking and that only one element provides
the exact displacements at the nodes for whatever loading in linear elasticity. In the first part of their work [28,29], a generalized
beam was considered and uncoupled 1D stress-resultant models for the continuous part, while a rotational jump was introduced
to account for bending failure. In [28,30], the same authors presented the enhanced formulation of a multi-fiber beam. The fibers
were enriched at the Gauss points by axial discontinuities whose behavior was described by a linear cohesive law linking the axial
stress with the displacement jump. The continuous part of the uniaxial behavior was expressed by a damage law for the concrete
fibers and an elasto-plastic law for the steel fibers, while the shear behavior was assumed elastic. The authors finally compared the
results of their enhanced high-order Timoshenko beam with the results of the FE Timoshenko beam presented in Section 2.

In the following, we propose to couple the macroelement approach with the kinematically enhanced formulation for a
Timoshenko beam in order to assess, with a simplified modeling strategy, the vulnerability of symmetrically reinforced concrete
frame structures subjected to static (monotonic, cyclic) or dynamic loading till complete failure (no stress transfer). The coupling
of the two approaches presents the following advantages: on one hand, the use of the macroelement permits to take into account
the various multidirectional couplings up to the peak. On the other hand, the enhanced formulation makes possible to simulate
the evolution of the plastic hinges even for extreme loadings, while providing a way to regularize the finite element results. More
specifically, the global behavior of a RC beam section is lumped into a single, integral, constitutive equation linking the evolution of
the stress-resultant forces on the sectional gravity center to the corresponding strain histories. The proposed macroelement (stress-
resultant model) is then implemented in a Timoshenko FE beam where the softening behavior till complete failure (no stress transfer)
is reproduced using a global cohesive model, within the framework of the E-FEM. The global cohesive model describes the response
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in terms of a cohesive moment - rotational jump, assuming that the RC structures under study are dominated by a bending failure
mode.

The outline of the article is the following: Section 2 briefly presents the adopted Timoshenko FE beam formulation and Section 3
the novel macroelement for RC beams and columns sections, based on the 3D failure surface introduced in [32,33] and the plasticity
theory. The procedure to identify its parameters is carefully detailed. Section 4 describes the way to simulate bending dominated
failure using an embedded rotation discontinuity and a global cohesive model. Finally, the performance of the proposed simplified
strategy is illustrated in Section 5, using the experimental results of a two-story RC frame subjected to monotonic and cyclic loads,
(Section 5.1), and a RC simply supported beam subjected to an earthquake, (Section 5.2).

In the following, the symbol
̄
𝐴 defines the vector 𝐴,

̄̄
𝐴 the matrix 𝐴, �̂� the variable 𝐴 in a standardized (dimensionless) space, �̇�

the derivative of 𝐴 with respect to time, 𝐴′ the derivative of 𝐴 with respect to the coordinate 𝑥 and 𝑇 the symbol of the transpose.
In Section 4, �̄� is a variable assigned to a continuous field while ̄̄𝐴 a variable assigned to a discontinuous field.

2. A Timoshenko beam finite element

The reference configuration of a 2D beam is shown in Fig. 1 (left). According to the Timoshenko theory [34,35] the displacement
vector field

̄
𝑢𝑇𝑃 = (𝑢𝑥, 𝑢𝑦) of a point 𝑃 ≡ (𝑥, 𝑦) of the beam is expressed in terms of the displacement of the gravity center 𝐺 of the

section
̄
𝑈𝑇
𝐺 = (𝑈𝑥, 𝑈𝑦) and the rotation 𝛩𝑧 of the section as follows:

𝑢𝑥(𝑥, 𝑦) = 𝑈𝑥(𝑥) − 𝑦𝛩𝑧(𝑥), 𝑢𝑦(𝑥, 𝑦) = 𝑈𝑦(𝑥) (1)

Using the small strain assumption, the strain components are given by:

𝜕𝑢𝑥
𝜕𝑥

= 𝑈 ′
𝑥(𝑥) − 𝑦𝛩′

𝑧(𝑥),
𝜕𝑢𝑦
𝜕𝑥

+
𝜕𝑢𝑥
𝜕𝑦

= 𝑈 ′
𝑦(𝑥) − 𝛩𝑧(𝑥) = 𝛽𝑦 ≠ 0 (2)

Consider now a 2D FE beam of length 𝐿𝑒, with two nodes 𝑖 and 𝑗 and three degrees of freedom per node: axial displacement
(𝑈𝑥𝑖 and 𝑈𝑥𝑗 ), transversal displacement (𝑈𝑦𝑖 and 𝑈𝑦𝑗 ) and rotation (𝛩𝑧𝑖 and 𝛩𝑧𝑗 ), see Fig. 1 (right). The generalized displacement
vector

̄
𝑈𝑠 is function of the nodal displacement vector

̄
𝑈 as follows [34,35]:

̄
𝑈𝑠 =

̄̄
𝑁

̄
𝑈 (3)

⎡

⎢

⎢

⎢

⎣

𝑈𝑥

𝑈𝑦

𝛩𝑧

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑁𝑎
1 0 0 𝑁𝑎

4 0 0

0 𝑁 𝑡
2 0 0 𝑁 𝑡

5 0

0 0 𝑁𝜃
3 0 0 𝑁𝜃

6

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑥𝑖

𝑈𝑦𝑖

𝛩𝑧𝑖

𝑈𝑥𝑗

𝑈𝑦𝑗

𝛩𝑧𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (4)

𝑁𝑎
1 = 𝑁 𝑡

2 = 𝑁𝜃
3 = 1 − 𝑥

𝐿𝑒
, 𝑁𝑎

4 = 𝑁 𝑡
5 = 𝑁𝜃

6 = 𝑥
𝐿𝑒

(5)

with
̄̄
𝑁 the matrix of the linear shape functions, 𝑥 ∈ [0, 𝐿𝑒], while the upper indexes 𝑎, 𝑡, 𝜃 denote the axial, transversal and rotational

components respectively. By derivation of the displacement field and according to Eq. (2) the generalized strain vector
̄
𝜀𝑠 is obtained

as follows:

̄
𝜀𝑠 =

⎡

⎢

⎢

⎢

⎣

𝜀𝑥
𝛽𝑦
𝜅𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑈 ′
𝑥

𝛽𝑦
𝛩′
𝑧

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑈 ′
𝑥

𝑈 ′
𝑦 − 𝛩𝑧

𝛩′
𝑧

⎤

⎥

⎥

⎥

⎦

=
̄̄
𝐵𝑒𝑥𝑎𝑐𝑡 ̄

𝑈 (6)

⎡

⎢

⎢

⎢

⎣

𝜀𝑥
𝛽𝑦
𝜅𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

− 1
𝐿𝑒

0 0 1
𝐿𝑒

0 0

0 − 1
𝐿𝑒

−1 + 𝑥
𝐿𝑒

0 1
𝐿𝑒

− 𝑥
𝐿𝑒

0 0 − 1
𝐿𝑒

0 0 1
𝐿𝑒

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑥𝑖

𝑈𝑦𝑖

𝛩𝑧𝑖

𝑈𝑥𝑗

𝑈𝑦𝑗

𝛩𝑧𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(7)

with 𝜀𝑥, 𝛽𝑦 and 𝜅𝜃 the axial strain, the shear strain and the curvature at the beam axis that passes through the point 𝐺 respectively.
Considering that 𝛽𝑦 can be written as

𝛽𝑦 = (
𝑈𝑦𝑗 − 𝑈𝑦𝑖

𝐿𝑒
−

𝛩𝑧𝑗 + 𝛩𝑧𝑖

2
) + 1

2
(𝛩𝑧𝑖 − 𝛩𝑧𝑗 )𝜁 with 𝜁 = 2

𝐿𝑒
𝑥 − 1 (8)
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Fig. 1. 2D Timoshenko beam (left), 2-node FE Timoshenko beam (right).

and that Eq. (7) leads to shear locking,[36] proposed to solve the problem by neglecting the linear terms of Eq. (8). The strains are
therefore approximately calculated with the simplified matrix

̄̄
𝐵 below (see also [34,35]):

⎡

⎢

⎢

⎢

⎣

𝜀𝑥
𝛽𝑦
𝜅𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

− 1
𝐿𝑒

0 0 1
𝐿𝑒

0 0

0 − 1
𝐿𝑒

− 1
2 0 1

𝐿𝑒
− 1

2

0 0 − 1
𝐿𝑒

0 0 1
𝐿𝑒

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑥𝑖

𝑈𝑦𝑖

𝛩𝑧𝑖

𝑈𝑥𝑗

𝑈𝑦𝑗

𝛩𝑧𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
̄̄
𝐵

̄
𝑈 (9)

Using the following form of the principle of virtual work [34,35]

∫

𝐿𝑒

0

(

𝐹𝑥
𝑑
𝑑𝑥

𝛿𝑈𝑥 + 𝐹𝑦
𝑑
𝑑𝑥

𝛿𝛽𝑦 +𝑀𝜃
𝑑
𝑑𝑥

𝛿𝛩𝑧

)

𝑑𝑥 −𝑤𝑒𝑥𝑡 = 0 (10)

together with the constitutive description of the section in terms of generalized forces (see Section 3.2), the following expression is
obtained:

∫

𝐿𝑒

0
𝛿
[

𝑈 ′
𝑥 𝛽𝑦 𝛩′

𝑧
]

̄̄
𝐾𝑠

[

𝑈 ′
𝑥 𝛽𝑦 𝛩′

𝑧
]𝑇 𝑑𝑥 −𝑤𝑒𝑥𝑡 = 0 (11)

Combining expressions (6) and (11), the element stiffness matrix is given by:

̄̄
𝐾𝑒 = ∫

𝐿𝑒

0 ̄̄
𝐵𝑇

̄̄
𝐾𝑠

̄̄
𝐵 𝑑𝑥 (12)

with
̄̄
𝐾𝑠 the stiffness matrix of the section (see Section 3.2).

As usual for FE beams, the element mass matrix is

̄̄
𝑀𝑒 = ∫

𝐿𝑒

0 ̄̄
𝑁𝑇

̄̄
𝑀𝑠

̄̄
𝑁 𝑑𝑥 (13)

with
̄̄
𝑀𝑠 the mass matrix of the section given as:

̄̄
𝑀𝑠 =

⎡

⎢

⎢

⎢

⎣

𝜌𝑆 0 0

0 𝜌𝑆 0

0 0 𝜌𝐼

⎤

⎥

⎥

⎥

⎦

(14)

where 𝜌 the material density, 𝑆 the area and 𝐼 the quadratic moment of the section.
The element nodal forces due to the stress resultants at the beam section (gauss point) are finally calculated as

̄
𝐹𝑒 = ∫

𝐿𝑒

0 ̄̄
𝐵𝑇

̄
𝐹𝑠 𝑑𝑥 (15)

with
̄
𝐹𝑠 the vector of forces in the section (see Section 3.2).

The numerical integration of the above integrals is done considering one (1) Gauss integration point in the middle of the
beam [34]. A study on the performance of the FE Timoshenko beam introduced above can be found in [37].

Remark. The displacement based Timoshenko beam finite element of [34,35] is adopted in this article due to its numerical
performance (no shear locking, [37]) and its simplicity (linear shape functions, Eqs. (5)) that makes relatively easy the introduction
of the enhanced formulation of Section 4.1 to model up to failure. The enhanced formulation can be also used with higher-order
displacement based Timoshenko beam finite elements, as the one introduced by [31], where only one element in linear elasticity
suffices to recover the exact nodal displacements for whatever loading (see [28] or [30] in a multifiber beam context). One can
finally imagine the extension of the enhanced formulation to a flexibility based Timoshenko beam model, as the one introduced
by [38].
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3. A macroelement for RC beam and columns sections

A novel macroelement for RC beams and RC columns is introduced hereafter. The proposed macroelement is a 3D stress-resultant
constitutive equation linking the evolution of the resultant forces/moments to the corresponding generalized strains at the level of
a Timoshenko generalized beam section. The constitutive description of the RC section is built within the classical elasto-plastic
computational framework while the adopted failure criterion, developed for symmetrically reinforced concrete square sections,
was introduced by Doulgeroglou et al. [32]. The analytical convex polynomial expression of the failure surface is of degree six
(6), links the axial force, shear force, and bending moment and was numerically reproduced via 3D non-linear finite element
simulations [32]. As usual in the literature for macroelements, equations are written in a standardized space, that is first presented
hereafter (Section 3.1) . The elasto-plastic formulation of the macroelement at the FE beam section follows in Section 3.2.

3.1. Standardized space

A standardized (dimensionless) space is adopted such that under uniaxial loading conditions the stress-resultant forces are equal
to 1 for the positive loading direction, and −1 for the negative loading direction [32]. In the proposed standardized space, the
macroelement’s failure surface is symmetrical with respect to the origin while in the real (dimensional) space, the failure surface
presents an asymmetry with respect to the center of the axes for uniaxial loading conditions, see Section 3.2. The standardization
procedure requires therefore a reference parameter and a shift parameter for the axial component, while for the shear and bending
components only shift parameters are needed.

The standardized axial force 𝐹𝑥, shear force 𝐹𝑦 and bending moment �̂�𝜃 are defined as:

𝐹𝑥 =
𝐹𝑥 − 𝐹𝑥0

𝐹 ∗
𝑥

, 𝐹𝑦 =
𝐹𝑦

𝐹 ∗
𝑦

, �̂�𝜃 =
𝑀𝜃
𝑀∗

𝜃
(16)

with 𝐹𝑥0 the reference parameter for the axial component and 𝐹 ∗
𝑥 , 𝐹 ∗

𝑦 , 𝑀∗
𝜃 the shift parameters for the axial, shear and bending

components respectively.
The reference parameter 𝐹𝑥0 is defined as the midpoint between the maximum axial force 𝐹 𝑡

𝑥,𝑚𝑎𝑥
(tensile force of positive sign)

and the minimum axial force 𝐹 𝑐
𝑥,𝑚𝑎𝑥

(compressive force of negative sign):

𝐹𝑥0 = (𝐹 𝑡
𝑥,𝑚𝑎𝑥

+ 𝐹 𝑐
𝑥,𝑚𝑎𝑥

)∕2 (17)

The shift parameter 𝐹 ∗
𝑥 is defined as:

𝐹 ∗
𝑥 = (𝐹 𝑡

𝑥,𝑚𝑎𝑥
− 𝐹 𝑐

𝑥,𝑚𝑎𝑥
)∕2 (18)

The following four (4) parameters remaining to identify are:

𝐹 𝑡
𝑥,𝑚𝑎𝑥

, 𝐹 𝑐
𝑥,𝑚𝑎𝑥

, 𝐹 ∗
𝑦 , 𝑀∗

𝜃

For this, the following characteristic states are introduced [33]:

3.1.1. Characteristic states
• 1st characteristic state: corresponds to the concrete elastic domain.
• 2nd characteristic state: corresponds to the peak values of the generalized forces-generalized displacement curves. The driving

idea is that steel response controls the behavior of the RC section when tension is predominant, while concrete crushing
controls compression. For the combined bending to tension area, failure is chosen to correspond to a maximum longitudinal
steel strain equal to 7.5%, as in the Eurocode [39]. For the combined bending to compression region, failure is considered
reached at the maximum (absolute value) axial force.

Remark. The use of a criterion in compression in terms of concrete crushing and not buckling is chosen in order to limit the buckling
risk. Furthermore, the use of a criterion in terms of concrete maximum compression stress proved to be highly conservative. Instead, a
failure criterion based on the maximum (absolute value) axial force is reached only after several material points attain their ultimate
resistance.

3.1.2. Parameter identification
The analytical computation of the maximum axial tensile force 𝐹 𝑡

𝑥,𝑚𝑎𝑥
of the RC section corresponding to the 2nd characteristic

state is not straightforward. Actually, the 3D numerical simulations [33] showed that the maximum axial tensile force in the RC
section corresponds to a point beyond the concrete elastic limit, where concrete undergoes softening and steel hardening. 𝐹 𝑐

𝑥,𝑚𝑎𝑥
can be analytically computed given the elastic modulus, the elastic limit, the ultimate strength and strain both for concrete and
steel. Finally the calculation of 𝐹 ∗

𝑦 and 𝑀∗
𝜃 is not obvious as compound bending is prevailing for RC beam and column sections.

The following simplified procedure is therefore proposed to calibrate 𝐹 𝑡
𝑥,𝑚𝑎𝑥

, 𝐹 𝑐
𝑥,𝑚𝑎𝑥

, 𝐹 ∗
𝑦 and 𝑀∗

𝜃 :
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Fig. 2. Normalized strength curves, adapted from [40], used to calculate 𝐹 ∗
𝑦 .

1. Maximum axial tensile force 𝐹 𝑡
𝑥,𝑚𝑎𝑥

: it is calculated considering the strength and number of the steel rebars:

𝐹 𝑡
𝑥,𝑚𝑎𝑥

= 𝑓 𝑢𝑙𝑡
𝑠 𝐴𝑠 (19)

where 𝑓 𝑢𝑙𝑡
𝑠 is the steel strength and 𝐴𝑠 the total area of the steel rebars. Numerical calculations [32] showed that this

assumption can underestimate the maximum axial tensile force. Nevertheless, tensile forces, especially of large magnitude,
are rarely expected in typical RC beams and columns. It can therefore be deduced that the adopted simplified approach does
not significantly affect the performance of the macroelement.

2. Maximum axial compressive force 𝐹 𝑐
𝑥,𝑚𝑎𝑥

: it is found according to the following formula

𝐹 𝑐
𝑥,𝑚𝑎𝑥

= 𝑓𝑐𝐴𝑐 + 𝑓 𝑐𝑢𝑟
𝑠 𝐴𝑠 (20)

where 𝑓𝑐 is the concrete compressive strength, 𝐴𝑐 the area of the concrete section and 𝐴𝑠 the total area of the steel rebars.
𝑓 𝑐𝑢𝑟
𝑠 is the current steel stress defined as follows:

𝑓 𝑐𝑢𝑟
𝑠 = 𝐸𝑠𝜀𝑐,𝑐𝑟𝑢𝑠ℎ if 𝜀𝑐,𝑐𝑟𝑢𝑠ℎ < 𝜀𝑠𝑡𝑒𝑒𝑙,𝑦𝑖𝑒𝑙𝑑 (21)

𝑓 𝑐𝑢𝑟
𝑠 = 𝑓 𝑢𝑙𝑡

𝑠 if 𝜀𝑐,𝑐𝑟𝑢𝑠ℎ ≥ 𝜀𝑠𝑡𝑒𝑒𝑙,𝑦𝑖𝑒𝑙𝑑 (22)

with 𝜀𝑠𝑡𝑒𝑒𝑙,𝑦𝑖𝑒𝑙𝑑 the steel yield strain, dependent on the steel type and 𝜀𝑐,𝑐𝑟𝑢𝑠ℎ the concrete crushing strain, taken either from
experimental data or from the Eurocode.

3. Shift parameter 𝑀∗
𝜃 : it is found from the moment-axial force interaction diagrams of Eurocode [39], without the security

coefficients, as this permits to better reproduce the 3D FE numerical simulations [32,33].
4. Shift parameter 𝐹 ∗

𝑦 : it is found using the method introduced by Rahal [40], based on a simplification of the Modified
Compression Field Theory [41] for pure shear. 𝐹 ∗

𝑦 is identified as the shear strength 𝜈𝑢 multiplied by the effective sectional
area (𝑏𝑤𝑑𝑣) and is provided by the graph of Fig. 2, given the compressive concrete strength 𝑓𝑐 and the dimensionless variables
𝜔𝐿 and 𝜔𝑡 calculated as follows:

𝜔𝐿 =
𝐴𝐿𝑓𝑦𝐿
𝑏𝑤𝑑𝑣𝑓𝑐

, 𝜔𝑡 =
𝐴𝑣𝑓𝑦𝑡
𝑏𝑤𝑠𝑓𝑐

(23)

with 𝑓𝑦𝐿 and 𝑓𝑦𝑡 the strengths of longitudinal and transverse steel bars respectively. 𝐴𝐿 is the total area of the symmetrical
longitudinal steel, 𝐴𝑣 the area of the shear reinforcement bars within distance 𝑠 (𝑠 being the spacing of the stirrups) and 𝑏𝑤
and 𝑑𝑣 the effective shear width and depth respectively.

3.2. Formulation

The stress-resultant plasticity model of the section (macroelement) is expressed in terms of generalized forces — generalized
strains and is built within the plasticity framework. The failure surface is taken from [32], the loading surfaces are deduced from
the failure surface and their convexity is guaranteed. Details are given hereafter:

3.2.1. Elastic behavior
The elastic behavior of the section is defined as:

̄
𝐹𝑠 =

̄̄
𝐾𝑒𝑙

𝑠 ̄
𝜀𝑠 =

̄̄
𝐾𝑒𝑙

𝑠 ̄
𝜀𝑒𝑙𝑠 (24)
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Table 1
Coefficients of monomials for the failure envelope expression of degree 6 [32] for a symmetrically RC section.
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7
1 0 14.03 0.03 12.26 0.02 1

𝑎8 𝑎9 𝑎10 𝑎11 𝑎12 𝑎13 𝑎14
0.01 −12.73 0 −17.97 −0.06 −3.34 8.29

𝑎15 𝑎16 𝑎17 𝑎18 𝑎19 𝑎20 𝑎21
−0.05 35.83 0.13 11.09 0 −22.46 −0.18

𝑎22 𝑎23 𝑎24 𝑎25 𝑎26 𝑎27 𝑎28
15.42 5.56 0.1 12.69 −0.02 −5.51 1

where
̄
𝐹𝑠 is the generalized force vector,

̄
𝜀𝑠 the generalized strain vector (Eq. (6)),

̄
𝜀𝑒𝑙𝑠 the generalized elastic strain vector and

̄̄
𝐾𝑒𝑙

𝑠
the elastic stiffness matrix of the section. They are given as follows:

̄
𝐹𝑠 =

⎡

⎢

⎢

⎢

⎣

𝐹𝑥

𝐹𝑦

𝑀𝜃

⎤

⎥

⎥

⎥

⎦

,
̄
𝜀𝑠 =

⎡

⎢

⎢

⎢

⎣

𝜀𝑥
𝛽𝑦
𝜅𝜃

⎤

⎥

⎥

⎥

⎦

,
̄̄
𝐾𝑒𝑙

𝑠 =

⎡

⎢

⎢

⎢

⎣

𝐾𝑥 0

0 𝐾𝑦 0

0 0 𝐾𝜃

⎤

⎥

⎥

⎥

⎦

(25)

with 𝐹𝑥, 𝐹𝑦 and 𝑀𝜃 the axial force, the shear force and the in-plane bending moment of the section respectively and 𝐾𝑥, 𝐾𝑦 and
𝐾𝜃 the axial, transversal and bending stiffness of the section.

3.2.2. Plastic behavior
The total generalized strain vector is split into an elastic and a plastic part:

̄
𝜀𝑠 = ̄

𝜀𝑒𝑙𝑠 +
̄
𝜀𝑝𝑙𝑠 (26)

Using Eqs. (24) and (26) the rate form of the generalized force vector is deduced:

̄
�̇�𝑠 =

̄̄
𝐾𝑒𝑙

𝑠 (
̄
�̇�𝑠 − ̄

�̇�𝑝𝑙𝑠 ) (27)

3.2.3. Failure surface
The failure surface 𝑓𝑈 is a homogeneous polynomial expression of degree 6 and it is written in the standardized (dimensionless)

space defined in Section 3.1:

𝑓𝑈 =
6
∑

𝑖,𝑗,𝑘=0
|𝑖+𝑗+𝑘|=6

𝑎𝐼(𝑖,𝑗,𝑘)𝐹𝑥
𝑖𝐹𝑦

𝑗�̂�𝜃
𝑘 − 1 (28)

equivalent to:

𝑓𝑈 = 𝑎1𝐹𝑥
6 + 𝑎2𝐹𝑥

5�̂�𝜃 + 𝑎3𝐹𝑥
4�̂�𝜃

2 + 𝑎4𝐹𝑥
3�̂�𝜃

3 + 𝑎5𝐹𝑥
2�̂�𝜃

4 + 𝑎6𝐹𝑥�̂�𝜃
5 + 𝑎7�̂�𝜃

6+

𝑎8𝐹𝑥
5𝐹𝑦 + 𝑎9𝐹𝑥

4�̂�𝜃𝐹𝑦 + 𝑎10𝐹𝑥
3�̂�𝜃

2𝐹𝑦 + 𝑎11𝐹𝑥
2�̂�𝜃

3𝐹𝑦 + 𝑎12𝐹𝑥�̂�𝜃
4𝐹𝑦 + 𝑎13�̂�𝜃

5𝐹𝑦+

𝑎14𝐹𝑥
4𝐹𝑦

2 + 𝑎15𝐹𝑥
3�̂�𝜃𝐹𝑦

2 + 𝑎16𝐹𝑥
2�̂�𝜃

2𝐹𝑦
2 + 𝑎17𝐹𝑥�̂�𝜃

3𝐹𝑦
2 + 𝑎18�̂�𝜃

4𝐹𝑦
2 + 𝑎19𝐹𝑥

3𝐹𝑦
3+

𝑎20𝐹𝑥
2�̂�𝜃𝐹𝑦

3 + 𝑎21𝐹𝑥�̂�𝜃
2𝐹𝑦

3 + 𝑎22�̂�𝜃
3𝐹𝑦

3 + 𝑎23𝐹𝑥
2𝐹𝑦

4 + 𝑎24𝐹𝑥�̂�𝜃𝐹𝑦
4 + 𝑎25�̂�𝜃

2𝐹𝑦
4+

𝑎26𝐹𝑥𝐹𝑦
5 + 𝑎27�̂�𝜃𝐹𝑦

5 + 𝑎28𝐹𝑦
6 − 1

(29)

where 𝑖, 𝑗, 𝑘 are the exponents of every component of the monomials and 𝑎𝐼(𝑖,𝑗,𝑘) the coefficients of the monomials calculated in [32]
via the resolution of a convex optimization problem. They are provided in Table 1:

3.2.4. Loading surfaces and hardening evolution laws
The loading surfaces have the same form with the failure surface:

𝑓𝐿 =
6
∑

𝑖,𝑗,𝑘=0
|𝑖+𝑗+𝑘|=6

𝑎𝐼(𝑖,𝑗,𝑘)

(

𝐹𝑥
𝑟𝑥

)𝑖 (𝐹𝑦

𝑟𝑦

)𝑗 (
�̂�𝜃
𝑟𝜃

)𝑘

− 1 (30)

with 𝑟𝑥, 𝑟𝑦, 𝑟𝜃 the different uncoupled hardening parameters for each loading direction (𝑥, 𝑦, 𝜃).
The proposed hardening evolution laws are exponential functions which tend asymptotically to unity. This choice presents

two advantages: it correctly represents the global response of a typical RC section up to the peak, and it guarantees the
non-interpenetration of the failure surface by the loading surface. The proposed hardening evolution laws are given by:

̄
𝑟 =

⎡

⎢

⎢

⎢

⎣

𝑟𝑥
𝑟𝑦
𝑟𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 + (𝑟𝑥0 − 1)𝑒−𝑎𝑥𝑝𝑥

1 + (𝑟𝑦0 − 1)𝑒−𝑎𝑦𝑝𝑦

1 + (𝑟𝜃0 − 1)𝑒−𝑎𝜃𝑝𝜃

⎤

⎥

⎥

⎥

⎦

(31)
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with 𝑟𝑥0, 𝑟𝑦0, 𝑟𝜃0 (see Section 3.2.7) parameters that define the initial elastic domain in the standardized space while the 𝑎𝑥, 𝑎𝑦, 𝑎𝜃
(see Section 3.2.7) parameters that control the hardening rate. 𝑝𝑥, 𝑝𝑦, 𝑝𝜃 are the internal hardening variables, non-negative functions
of the cumulative plastic flow of each loading direction, defined as:

̄
𝑝 =

⎡

⎢

⎢

⎢

⎣

𝑝𝑥
𝑝𝑦
𝑝𝜃

⎤

⎥

⎥

⎥

⎦

,
̄
�̇� =

⎡

⎢

⎢

⎢

⎣

�̇�𝑥
�̇�𝑦
�̇�𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

|�̇�𝑝𝑙𝑥 |

|�̇�𝑝𝑙𝑦 |

|�̇�𝑝𝑙
𝜃 |

⎤

⎥

⎥

⎥

⎦

(32)

The proposed formulation does not adopt a kinematic hardening law, as this could lead to interpenetration of the failure surface
by the loading surface without the appropriate tangent rule. A tangent rule [42] has been used in the previous works of [43,44],
where the failure surface was of 2nd degree and by a change of variables the surfaces reduce to circles. In this work however,
given the complexity of the failure surface, the tangent rule is not obvious and therefore an isotropic formulation is adopted in the
following.

3.2.5. Plastic potential function and normality condition
An associative flow rule is assumed and therefore the plastic generalized strain evolution is computed as:

̄
�̇�𝑝𝑙𝑠 = �̇�

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠

⇔

⎡

⎢

⎢

⎢

⎣

�̇�𝑝𝑙𝑥
�̇�𝑝𝑙𝑦
�̇�𝑝𝑙
𝜃

⎤

⎥

⎥

⎥

⎦

= �̇�

⎡

⎢

⎢

⎢

⎢

⎣

𝜕𝑓𝐿
𝜕𝐹𝑥
𝜕𝑓𝐿
𝜕𝐹𝑦
𝜕𝑓𝐿
𝜕𝑀𝜃

⎤

⎥

⎥

⎥

⎥

⎦

(33)

Combining Eqs. (31) and (33) the 1st order differential equations of the different hardening evolution laws are:

̄
�̇� =

⎡

⎢

⎢

⎢

⎣

�̇�𝑥
�̇�𝑦
�̇�𝜃

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑎𝑥(1 − 𝑟𝑥)�̇�𝑥
𝑎𝑦(1 − 𝑟𝑦)�̇�𝑦
𝑎𝜃(1 − 𝑟𝜃)�̇�𝜃

⎤

⎥

⎥

⎥

⎦

= �̇�

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎𝑥(1 − 𝑟𝑥)
|

|

|

|

𝜕𝑓𝐿
𝜕𝐹𝑥

|

|

|

|

𝑎𝑦(1 − 𝑟𝑦)
|

|

|

|

𝜕𝑓𝐿
𝜕𝐹𝑦

|

|

|

|

𝑎𝜃(1 − 𝑟𝜃)
|

|

|

|

𝜕𝑓𝐿
𝜕𝑀𝜃

|

|

|

|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

̄
ℎ𝐿(̄

𝐹𝑠 ,̄
𝑟)

(34)

where
̄
ℎ𝐿( ̄

𝐹𝑠, ̄
𝑟) is the vectorial expression of the hardening evolution laws.

3.2.6. Persistency condition
The persistency condition ensures that for nonzero

̄
�̇�𝑝𝑙𝑠 , �̇� is positive and the actual stress point remains on the boundary of the

loading surface, i.e. 𝑓𝐿 = 0 [45]:

�̇� ̇𝑓𝐿 = 0 (𝑖𝑓 𝑓𝐿 = 0) (35)

Eq. (35) implies:

̇𝑓𝐿 = 0 ⇔
𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄

�̇�𝑠 +
𝜕𝑓𝐿
𝜕
̄
𝑟 ̄
�̇� = 0 (36)

Combination of Eqs. (36) and (27) permits to calculate �̇� as follows:
𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 (

̄
�̇�𝑠 − ̄

�̇�𝑝𝑙𝑠 ) +
𝜕𝑓𝐿
𝜕
̄
𝑟 ̄
�̇� = 0 ⇔

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 ̄
�̇�𝑠 −

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 ̄
�̇�𝑝𝑙𝑠 +

𝜕𝑓𝐿
𝜕
̄
𝑟 ̄
�̇� = 0 ⇔

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 ̄
�̇�𝑠 −

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 �̇�

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠

+
𝜕𝑓𝐿
𝜕
̄
𝑟
�̇�
̄
ℎ𝐿 = 0 ⇔

⋅
𝜆 =

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠 ̄
�̇�𝑠

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠 ̄̄

𝐾𝑒𝑙
𝑠

𝜕𝑓𝐿
𝜕
̄
𝐹𝑠

− 𝜕𝑓𝐿
𝜕
̄
𝑟 ̄
ℎ𝐿

(37)

3.2.7. Parameter identification
In order to illustrate the influence of 𝑟𝑥0, 𝑟𝑦0, 𝑟𝜃0 and 𝑎𝑥, 𝑎𝑦, 𝑎𝜃 , see Eq. (31), a parametrical study on a RC cantilever beam

subjected to a shear (transverse) load has been presented in [33]. In particular, the force–displacement curves are obtained for
different values of 𝑟𝑥0, 𝑟𝑦0, 𝑟𝜃0 and 𝑎𝑥, 𝑎𝑦, 𝑎𝜃 (see Fig. 3). Following the results of the 3D FE numerical simulations for different RC
sections [33] and comparison with experimental data lead us [33] to select the values of 𝑟𝑥0, 𝑟𝑦0, 𝑟𝜃0 in the range of 0.35–0.8 and
𝑎𝑥 = 500, 𝑎𝑦 = 250, 𝑎𝜃 = 250.
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Fig. 3. Influence of 𝑟𝑥0, 𝑟𝑦0, 𝑟𝜃0 and 𝑎𝑥, 𝑎𝑦, 𝑎𝜃 on the global response of a RC cantilever beam subjected to a transverse load.

Fig. 4. Number of necessary iterations per step for the convergence of the global Newton algorithm using the elastic matrix and the numerical stiffness matrix
with strain perturbations.

3.2.8. Numerical integration
A classical backward (implicit) Euler scheme of the Return Mapping Algorithm is used for the numerical implementation of the

macroelement [45,46]. The generalized forces are calculated for a given history of generalized strains at the section level. During
each load increment, a trial elastic prediction of the sectional response is considered and a plastic correction is carried out if the
predicted stress point is situated beyond the loading surface, to bring it back to the current loading surface according to 𝑓𝐿𝑛+1 = 0,
a non-linear equation that it is solved using the Newton–Raphson algorithm.

3.2.9. Convergence rate
In order to improve the numerical performance of the proposed macroelement, a numerical tangent stiffness matrix is adopted,

inspired by the approach implemented in the finite element code LAGAMINE (University of Liège) [47–49], where the terms of
the compliance matrix are numerically calculated by finite differences between a perturbed state and a non-perturbed state. More
specifically, the sectional stiffness matrix is updated applying strain perturbations successively for each loading direction. The
magnitude of each directional strain perturbation is fixed at 1.𝑒−8. A new state is calculated for each perturbation by applying
the resolution algorithm of Section 3.2.8. The updated (at each iteration) sectional stiffness matrix

̄̄
𝐾𝑝𝑒𝑟

𝑠 is given as:

̄̄
𝐾𝑝𝑒𝑟

𝑠 (𝑖, 𝑖) = ̄
𝐹 𝑝𝑒𝑟
𝑠 (𝑖) −

̄
𝐹 𝑐𝑜𝑛𝑣
𝑠 (𝑖)

𝑑
̄
𝜀𝑝𝑒𝑟𝑠 (𝑖)

(38)

where 𝑖 = 1, 2, 3 are the loading directions,
̄
𝐹 𝑝𝑒𝑟
𝑠 the pertubated force vector,

̄
𝐹 𝑐𝑜𝑛𝑣
𝑠 the converged force vector and 𝑑

̄
𝜀𝑝𝑒𝑟𝑠 the applied

strain perturbation vector in the loading direction 𝑖.
Numerical simulations of a cantilever beam subjected to a transversal monotonic displacement at its free edge are conducted

hereafter to illustrate the performance of the adopted strategy. One Timoshenko beam FE is used for the spatial discretization and the
load is divided in 1000 steps. Fig. 4 presents the number of necessary iterations per step using the elastic matrix and the numerical
stiffness matrix obtained through strain perturbations. It can be observed that the numerical performance is significantly improved.
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Fig. 5. Comparison of the global responses of a cantilever beam subjected to a cyclic transversal load of constant sign using the elastic stiffness and the modified
stiffness, Eqs. (39) and (40) and of alternate sign, using the elastic stiffness and modified stiffness, Eq. (42).

Table 2
Macroelement parameters and proposed identification procedures.
Description Parameter Identification

Linear elastic behavior

Axial stiffness 𝐾𝑥 Geometrical &
Shear stiffness 𝐾𝑦 mechanical
Bending stiffness 𝐾𝜃 properties

Axial elastic limit 𝑟𝑥0 Selected
Shear elastic limit 𝑟𝑦0 in the range
Bending elastic limit 𝑟𝜃0 0.35 to 0.8

Standardization

Maximum axial tensile force 𝐹 𝑡
𝑥,𝑚𝑎𝑥

From material
Maximum axial compressive force 𝐹 𝑐

𝑥,𝑚𝑎𝑥
strength formulas

Shear shift parameter 𝐹 ∗
𝑦 MCFT [40]

Moment-axial force
Bending shift parameter 𝑀∗

𝜃 interaction diagram
[39]

Hardening evolution laws

Axial rate of hardening 𝑎𝑥 𝑎𝑥 = 500, 𝑎𝑦 = 250, 𝑎𝜃 = 250
Shear rate of hardening 𝑎𝑦 or calibration by numerical simulations
Bending rate of hardening 𝑎𝜃 or experiments.

Stiffness degradation
(cyclic loading of constant sign)

Axial stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝑥 Geometrical &

Shear stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝑦 mechanical

Bending stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝜃 properties

Stiffness degradation
(cyclic loading of alternate sign)

Geometrical property of the rebars 𝑐1 Found in the technical
Mechanical property of the steel 𝑐2 report of [50]

3.2.10. Cyclic loading conditions
The proposed model is built within the elasto-plasticity framework and therefore, the unloading response is considered elastic.

This does not provide a realistic response for earthquake loading as the model cannot capture different phenomena appearing during
cyclic loads, such as stiffness degradation and pinching. Two simplified strategies are proposed hereafter to improve the performance
of the model: the former for loading cycles of constant sign and the latter for loading cycles of alternate sign; the driving idea being
that the response of the reinforced concrete element beyond a certain level of concrete damage is mainly controlled by steel.

• Cyclic loads of constant sign A limit value (equal to 0.8) is assigned to each hardening variable 𝑟𝑙𝑖𝑚𝑥 , 𝑟𝑙𝑖𝑚𝑦 , 𝑟𝑙𝑖𝑚𝜃 , such as if one
or more of the following conditions are satisfied:

𝑟𝑥 = 𝑟𝑙𝑖𝑚𝑥 , 𝑟𝑦 = 𝑟𝑙𝑖𝑚𝑦 , 𝑟𝜃 = 𝑟𝑙𝑖𝑚𝜃 (39)
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then, accordingly, the axial, shear, and bending components of the sectional stiffness matrix equal the steel stiffness for loading
and unloading conditions, introducing thus a stiffness degradation during unloading:

𝐾𝑥 = 𝐾𝑠𝑡𝑒𝑒𝑙
𝑥 , 𝐾𝑦 = 𝐾𝑠𝑡𝑒𝑒𝑙

𝑦 , 𝐾𝜃 = 𝐾𝑠𝑡𝑒𝑒𝑙
𝜃 (40)

The global response of a cantilever beam subjected to a cyclic transversal load of constant sign is presented in Fig. 5 (left) for
two cases; using the elastic stiffness and the modified stiffness (Eq. (40)). It can be observed that when the modified sectional
stiffness is adopted for important applied displacements, the unloading slope decreases.

• Cyclic loads of alternate sign
For the case of cyclic loads of alternate sign, the method to introduce stiffness degradation is based on the well-known steel
constitutive model developed by Menegotto and Pinto [51]. This model provides Eq. (41) to describe the evolution of the steel
elastic modulus at the semi-cycle under tension:

𝐸 = 𝐸0(𝑐1 + (1 − 𝑐1)𝑒−𝑐2𝑝
2
) (41)

where 𝐸0 is the steel Young modulus, 𝑝 the plastic strain and 𝑐1 and 𝑐2 two material constants, the former depending on the
geometric properties of the rebars and the latter on the steel mechanical properties. The values assigned to these constants
can be found in the technical report of [50].
Eq. (41) is also adopted for the proposed macroelement, for each component independently, as:

̄̄
𝐾𝑒𝑙

𝑠 (𝑖, 𝑖) =
̄̄
𝐾𝑒𝑙

𝑠0(𝑖, 𝑖)(𝑐1(𝑖) + (1 − 𝑐1(𝑖))𝑒−𝑐2(𝑖)𝑝
2(𝑖)) (42)

where
̄̄
𝐾𝑒𝑙

𝑠0 is the initial sectional stiffness matrix.
The global response of a cantilever beam subjected to a cyclic transversal displacement of alternate sign is presented in Fig. 5
(right), for two cases: using the elastic stiffness and the modified stiffness according to Eq. (42). It can be observed that Eq. (42)
provides a simple way to introduce unloading stiffness degradation and pinching effects for the case of cyclic loads of alternate
sign. This simplified approach was also validated through comparison with experimental results in [33].

3.2.11. Synopsis of the macroelement parameters
A synopsis of the eighteen (18) macroelement parameters and the proposed identification procedure that can be used by

practitioners is presented in Table 2.

4. Modeling up to failure

The purpose of this article being the simplified evaluation of the response of RC beams and columns up to failure, the axial failure
mode is excluded as it is the least probable to happen. Furthermore, as already stated, the dominant failure mechanism depends on
the geometrical and mechanical properties of the RC element under study [27]. Considering that the design of typical RC members
is carried out by preventing shear failure (using an adequate number and spacing of stirrups), it is assumed in the following that
bending is the dominant failure mode. The displacement field is therefore hereafter enhanced only by a strong discontinuity at the
rotational component. The standard interpolation functions of the FE Timoshenko beam of Section 2, Eqs. (4) and (5), are used for
the other components of the displacement field. Upon activation of the cohesive part, the behavior is no longer described by the
macroelement; the bending component is described by the relation between cohesive moment and rotational jump, while the other
two components are defined by linear elastic uniaxial relations.

4.1. Enhanced formulation

The adopted enhanced formulation is the one introduced by [7]. In particular, among the four formulations introduced by the
authors [7], the 𝑁0𝑀0𝑆0 formulation is chosen as it corresponds to a constant axial, bending and shear finite element with one-point
integration. The plastic hinge is therefore considered activated at the center of the Timoshenko beam FE element of Section 2 (one
Gauss integration point in the middle of the beam).

The enhanced generalized rotational field of the beam section is given by:

𝛩𝑧(𝑥, 𝑡) = �̄�𝑧(𝑥, 𝑡) + ̄̄𝛩𝑧(𝑥, 𝑡) = ̄
𝑁𝜃(𝑥)

̄
𝑈𝑒(𝑡) + ̄

𝑀𝜃(𝑥) ̄̄
̄
𝑈 𝑒(𝑡) (43)

where 𝛩𝑧 is the total rotation of the section decomposed into a continuous part �̄�𝑧 and a discontinuous part ̄̄𝛩𝑧, ̄
𝑈𝑒 the element

nodal displacements and ̄̄
̄
𝑈 𝑒 the elementary displacement jumps defined as follows:

̄
𝑈𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑈𝑥𝑖

𝑈𝑦𝑖

𝛩𝑧𝑖

𝑈𝑥𝑗

𝑈𝑦𝑗

𝛩𝑧𝑗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
nodal displacements

, ̄̄
̄
𝑈 𝑒 =

⎡

⎢

⎢

⎢

⎣

̄̄𝑈𝑥
̄̄𝑈𝑦
̄̄𝛩𝑧

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟
elementary displacement jumps

(44)
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Fig. 6. Sketch of the plastic hinge mode: initiation of the plastic hinge (up) and fully opened hinge (bottom).

̄
𝑁𝜃 =

[

0 0 𝑁𝜃
3 0 0 𝑁𝜃

6
]

are the Timoshenko beam shape functions of the rotational field (see Eqs. (3), (4), (5)) and
̄
𝑀𝜃

the enhancement shape functions of the rotational field.
Given the singularity of the corresponding strain field

̄
𝑀𝜃 is decomposed into the two following terms:

̄
𝑀𝜃 =

[

𝑀𝜃
1 𝑀𝜃

2 𝑀𝜃
3
]

=
[

�̄�𝜃
1 �̄�𝜃

2 �̄�𝜃
3
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

̄
�̄�𝜃 (𝑥)

+
[

0 0 𝐻𝜃
𝑥𝑑

]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

̄
̄̄𝑀𝜃 (𝑥)

(45)

with 𝐻𝜃
𝑥𝑑

the Heaviside function and
̄
�̄�𝜃(𝑥) containing additional functions to ensure the continuity of the rotational field between

the finite elements. These functions are not a priori known. Their identification procedure is detailed in Section 4.1.1, based on the
kinematic assumptions describing the discontinuity for a zero hinge mode (fully opened plastic hinge, i.e. fully opened crack).

4.1.1. Identification procedure
The curvature field 𝜅𝜃(𝑥, 𝑡) of the Timoshenko beam’s section is obtained by derivation of the rotational field of Eq. (43):

𝜅𝜃(𝑥, 𝑡) = �̄�𝜃(𝑥, 𝑡) + ̄̄𝜅𝜃(𝑥, 𝑡) = ̄
𝐵𝜅 (𝑥)

̄
𝑈𝑒(𝑡) + ̄

𝐺𝜅
𝑟 (𝑥)

̄̄
̄
𝑈 𝑒(𝑡) (46)

where
̄
𝐵𝜅 (𝑥) contains the derivatives of the shape functions, with respect to 𝑥, for the curvature component of the Timoshenko beam

(see Eqs. (6), (9)) and
̄
𝐺𝜅
𝑟 (𝑥) is the matrix of the derivatives of the enhancement interpolation functions, with respect to 𝑥, of the

following form:

̄
𝐺𝜅
𝑟 =

[

𝐺𝜅
𝑟1 𝐺𝜅

𝑟2 𝐺𝜅
𝑟3
]

=
[

�̄�𝜅
𝑟1 �̄�𝜅

𝑟2 �̄�𝜅
𝑟3
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

̄
�̄�𝑟(𝑥)

+
[

0 0 𝛿𝜃𝑥𝑑
]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

̄
̄̄𝐺𝑟(𝑥)

(47)

with 𝛿𝜃𝑥𝑑 the Dirac function.
Using the above decomposition of

̄
𝐺𝜅
𝑟 into continuous and discontinuous parts, the curvature field corresponding to Eq. (46) is

rewritten as:

𝜅𝜃(𝑥, 𝑡) = ̄
𝐵𝜅 (𝑥)

̄
𝑈𝑒(𝑡) + ̄

�̄�𝜅
𝑟 (𝑥)

̄̄
̄
𝑈 𝑒(𝑡)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
regular part �̃�𝜃 (𝑥,𝑡)

+
̄
̄̄𝐺𝜅
𝑟 (𝑥)

̄̄
̄
𝑈 𝑒(𝑡)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
singular part

(48)

The
̄
�̄�𝜅
𝑟 functions are found considering the kinematics of the discontinuity at the final state. According to [7], at the zero hinge

mode (fully opened plastic hinge), the end nodal rotations of the Timoshenko beam finite element of length 𝐿𝑒 can be written as
(see Fig. 6):

𝛩𝑧𝑗 = 𝛩𝑧𝑖 + ̄̄𝛩𝑧 (49)

with 𝑥𝑑 the geometrical position of the discontinuity within the finite element (in our case 𝑥𝑑 = 𝐿𝑒∕2). Based on Eq. (49), the
rotational jump component is thus given as:

̄̄𝛩𝑧 = 𝛩𝑧𝑗 − 𝛩𝑧𝑖 (50)

At the final state, the complete opening of the discontinuity results in a rigid body mode and the regular part of the enhanced
curvature (see Eq. (48)) vanishes:

�̃�𝜃(𝑥, 𝑡) = ̄
𝐵𝜅 (𝑥)

̄
𝑈𝑒(𝑡) + ̄

�̄�𝜅
𝑟 (𝑥)

̄̄
̄
𝑈 𝑒(𝑡) = 0 (51)

Considering that
̄
𝐵𝜅 (𝑥) =

[

0 0 −1∕𝐿𝑒 0 0 1∕𝐿𝑒
]

, at the final state, the regular part of the curvature is expressed as:

�̃�𝜃(𝑥, 𝑡) =
1
𝐿𝑒

(𝛩𝑧𝑗 − 𝛩𝑧𝑖) + ̄
�̄�𝜅
𝑟 (𝑥)

̄̄
̄
𝑈 𝑒(𝑡) = 0 (52)

By introducing the rotational jump definition of Eq. (50) in Eq. (52),
̄
�̄�𝜅
𝑟 is deduced:

̄
�̄�𝜅
𝑟 (𝑥) =

[

�̄�𝜅
𝑟1 �̄�𝜅

𝑟2 �̄�𝜅
𝑟3
]

=
[

0 0 − 1
𝐿𝑒

]

(53)
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Fig. 7. Global cohesive model: cohesive moment — rotational jump for cyclic loading of constant (left) and alternate (right) sign.

4.2. Global cohesive model

The constitutive behavior of the discontinuity in the rotational field is described by means of a global cohesive model. This model
reproduces a softening behavior that associates the moment at the plastic hinge to the rotation jump, and it is activated when the
moment of the section reaches an ultimate value.

4.2.1. Activation and behavior
The curvature capacity threshold of the RC element, that will be used in Section 4.3 in the activation criterion (Eq. (58)), is

defined hereafter as :

𝜅𝜃 = 𝜅𝑎𝑐𝑡
𝜃 (54)

where the critical value assigned to the curvature is given as:

𝜅𝑎𝑐𝑡
𝜃 =

𝛩𝑎𝑐𝑡
𝑧

100𝐿
(55)

where 𝐿 is the length of the RC element and the denominator is multiplied by 100 in order to transform 𝛩𝑎𝑐𝑡
𝑧 given as a percentage

in Eq. (56). The identification procedure of 𝛩𝑎𝑐𝑡
𝑧 is given in Section 4.2.2.

Further increase of the applied loading results in decrease of the cohesive moment 𝑀𝑐𝑜ℎ
𝜃 and in increase of the rotational jump

̄̄𝛩𝑧. In particular, it is assumed that when the cohesive model is activated, the RC section has reached a high level of non-linearity
and its behavior is controlled by the behavior of the reinforcing steel bars only (and not of concrete). Stiffness degradation and
pinching effect are thus not taken into account by the cohesive model but by the modification of the unloading modulus of the
continuous model (Section 3.2.10). As the RC sections are symmetric, the cohesive model is supposed identical for positive and
negative bending. The behavior for a cyclic loading of constant sign is presented in the left part of Fig. 7, while for an alternate
sign in the right. A vertical unloading/reloading slope is adopted to take into account permanent jumps (Fig. 7).

4.2.2. Parameter identification
The ultimate rotational capacity 𝛩𝑎𝑐𝑡

𝑧 (in percent) of Eq. (55) is calculated from the empirical relation provided in [52], based
on regression analysis on experimental on RC rectangular sections:

𝛩𝑎𝑐𝑡
𝑧 (%) = 0.52(𝐿∕𝑑)0.93𝜌−0.27𝜌0.48𝑤 𝑛−0.48𝑜 𝑓−0.15

𝑐 (56)

with:

• 𝐿∕𝑑 the shear span ratio (𝐿 is the length of the RC element and 𝑑 is the depth of the RC section).
• 𝜌 the normalized steel ratio, defined as 𝐴𝑠

𝐴𝑐

𝑓𝑦
𝑓𝑐

(where 𝐴𝑠 is the area of the longitudinal reinforcement in tension and 𝐴𝑐 is the
cross-sectional area).

• 𝑓𝑐 the concrete compressive strength (in 𝑘𝑠𝑖).
• 𝑓𝑦 the steel yield limit (in 𝑘𝑠𝑖).
• 𝑛𝑜 the normalized axial force defined as 𝑃∕𝑃𝑜, with 𝑃 the axial force (positive for compression) and 𝑃𝑜 = 𝑏𝑑𝑓𝑐 (where 𝑏 is the

width and 𝑑 the depth of the RC element).
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• 𝜌𝑤 the confinement ratio (in percent), defined as 100𝐴𝑠𝑥
𝑏𝑠ℎ

(where 𝐴𝑠𝑥 is the area of the transverse steel parallel to the direction
of loading and 𝑠ℎ the spacing of the stirrups).

Finally, the softening modulus 𝑆 of the cohesive moment–rotational jump is chosen equal to −7% of the initial bending modulus
in Section 5, as proposed by [53]. It should be mentioned however that a value equal to −0.7% of the initial bending modulus seems
more suitable for certain cyclic loading tests, see for example [33].

4.3. Numerical integration

The 1D global cohesive model of Fig. 7 is numerically integrated using the classical computational plasticity framework [45,54].
As stated in [7], the enhanced by strong discontinuities approach is a tool for modeling localized dissipative mechanisms and allows
for capturing energy dissipation in large-scale problems. The displacement jump plays therefore a similar role to an internal variable
and a backward (implicit) Euler scheme of the Return Mapping Algorithm families can be used for the numerical integration. The
numerical implementation and the computational procedure (including static condensation at an elementary level) adopted are
inspired by [28,29]. The integration algorithm of the cohesive model is briefly presented hereafter (more detailed information can
be found in [29]).

The adopted cohesive model is a linear type plastic softening law (see Fig. 7) that describes the relationship between the cohesive
moment 𝑀𝑐𝑜ℎ

𝜃 and the rotational jump ̄̄𝛩𝑧:

𝑀𝑐𝑜ℎ
𝜃 = 𝑀𝑢

𝜃 + 𝑆 ̄̄𝛩𝑧 (57)

where 𝑆 is the softening modulus (of negative value). The activation criterion is given by:

𝑓𝑐 = |𝑀𝑐𝑜ℎ
𝜃 | − (𝑀𝑢

𝜃 + 𝑆 ̄̄𝛩𝑧) ≤ 0 (58)

where 𝑀𝑢
𝜃 corresponds to 𝜅𝑎𝑐𝑡

𝜃 and it is numerically calculated by the FE code.
It is assumed that when the rotational discontinuity is activated, it remains activated for the rest of the loading history and the

failure criterion is the same as the activation criterion 𝑓𝑐 . The evolution of the elementary variable of the rotational jump is given
by:

̇̄̄𝛩𝑧 =
̇̄̄𝜆𝑠𝑖𝑔𝑛(𝑀𝑐𝑜ℎ

𝜃 ) (59)

where ̇̄̄𝜆 is the plastic multiplier defining the magnitude of the rotational jump rate. The persistency condition expresses that once
the discontinuity is activated the plastic multiplier ̇̄̄𝜆 is positive and thus the failure criterion is satisfied. This implies that:

̇̄̄𝜆 ̇𝑓𝑐 = 0 ⇒ ̇𝑓𝑐 = 0 ⇒

|�̇�𝑐𝑜ℎ
𝜃 | − 𝑆 ̇̄̄𝛩𝑧 = 0 ⇒ |�̇�𝑐𝑜ℎ

𝜃 | − 𝑆 ̇̄̄𝜆𝑠𝑖𝑔𝑛(𝑀𝑐𝑜ℎ
𝜃 ) = 0 ⇒

̇̄̄𝜆 = 1
𝑆
|�̇�𝑐𝑜ℎ

𝜃 | ⇒
̇̄̄𝜆 = 1

𝑆
�̇�𝑐𝑜ℎ

𝜃 𝑠𝑖𝑔𝑛(𝑀𝑐𝑜ℎ
𝜃 )

(60)

and therefore the expression for the calculation of the plastic multiplier is known. The cohesive model internal variable ̄̄𝛩𝑧 is
computed at every time step (once the activation criterion is satisfied) for every Gauss point at every iteration 𝑘. The elastic predictor
of the current step 𝑛 + 1 is equal to the previous step 𝑛 value:

̄̄𝛩𝑡𝑟𝑖𝑎𝑙
𝑧𝑛+1

= ̄̄𝛩𝑧𝑛 (61)

and the trial cohesive moment is given by the following expression satisfying the local equilibrium at the discontinuity level within
the element:

𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

= −∫𝐿𝑒

�̄�𝜅
𝑟3(𝑥)𝑀

𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

(𝑥)𝑑𝑥 = −
𝐿𝑒
2

𝑛𝑝𝑔
∑

𝑝𝑔=1
�̄�𝜅
𝑟3(𝑥𝑝𝑔)𝑀

𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

(𝑥𝑝𝑔)𝑤(𝑥𝑝𝑔) (62)

where 𝑛𝑝𝑔 is the number of integration points of the beam element (in our case 𝑛𝑝𝑔 = 1) and 𝑤(𝑥𝑝𝑔) is the integration weight of the
Gauss point with coordinate 𝑥𝑝𝑔 (in our case the Gauss point is in the middle of the FE).

The expression of 𝑀 𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

(𝑥𝑝𝑔) is:

𝑀 𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

(𝑥𝑝𝑔) = 𝐾𝜃(𝑥𝑝𝑔)
(

̄
𝐵𝜅

̄
𝑈𝑘−1
𝑒𝑛+1

+ �̄�𝜅
𝑟3(𝑥𝑝𝑔)

̄̄𝛩𝑡𝑟𝑖𝑎𝑙
𝑧𝑛+1

− 𝜅𝑝𝑙
𝜃𝑛

)

(63)

The trial failure criterion is evaluated:

𝑓 𝑡𝑟𝑖𝑎𝑙
𝑐𝑛+1

= |𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

| − (𝑀𝑢
𝜃 + 𝑆 ̄̄𝛩𝑡𝑟𝑖𝑎𝑙

𝑧𝑛+1
) ≤ 0 (64)

If this condition (64) holds the discontinuity is not activated and thus the variables of the cohesive model are updated as:
̄̄𝛩𝑧𝑛+1 = ̄̄𝛩𝑡𝑟𝑖𝑎𝑙

𝑧𝑛+1

𝑀𝑐𝑜ℎ
𝜃𝑛+1

= 𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

(65)
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If discontinuity is activated the rotational jump at the current step is given by:
̄̄𝛩𝑧𝑛+1 = ̄̄𝛩𝑧𝑛 +

̇̄̄𝜆𝑠𝑖𝑔𝑛(𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

) (66)

The updated cohesive force at the step 𝑛 + 1 can be expressed as:

𝑀𝑐𝑜ℎ
𝜃𝑛+1

= −∫𝐿𝑒

�̄�𝜅
𝑣3(𝑥)𝑀𝜃𝑛+1 (𝑥)𝑑𝑥

= −∫𝐿𝑒

�̄�𝜅
𝑣3(𝑥)𝐾𝜃

(

̄
𝐵𝜅 (𝑥)

̄
𝑈𝑒𝑛+1 + �̄�𝜅

𝑟3(𝑥)
̄̄𝛩𝑧𝑛+1 − 𝜅𝑝𝑙

𝜃𝑛

)

𝑑𝑥

= −∫𝐿𝑒

�̄�𝜅
𝑣3(𝑥)𝐾𝜃

(

̄
𝐵𝜅 (𝑥)

̄
𝑈𝑒𝑛+1 + �̄�𝜅

𝑟3(𝑥)
̄̄𝛩𝑧𝑛 − 𝜅𝑝𝑙

𝜃𝑛

)

𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙

𝜃𝑛+1

− ∫𝐿𝑒

�̄�𝜅
𝑣 (𝑥)𝐾𝜃�̄�

𝜅
𝑟3(𝑥)𝑑𝑥

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐾𝑚

𝛥 ̄̄𝛩𝑧

(67)

and thus:

𝑀𝑐𝑜ℎ
𝜃𝑛+1

= 𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

−𝐾𝑚
̇̄̄𝜆𝑠𝑖𝑔𝑛(𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙

𝜃𝑛+1
) (68)

The above expression allows for the calculation of the plastic multiplier:

̇̄̄𝜆 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓 𝑡𝑟𝑖𝑎𝑙
𝑐𝑛+1

𝐾𝑚 + 𝑆
if |𝑆 ̄̄𝛩𝑧𝑛 | < 𝑀𝑢

𝜃

|𝑀𝑐𝑜ℎ,𝑡𝑟𝑖𝑎𝑙
𝜃𝑛+1

|

𝐾𝑚
if |𝑆 ̄̄𝛩𝑧𝑛 | = 𝑀𝑢

𝜃

(69)

and the cohesive tangent modulus is defined as:

𝑑𝑀𝑐𝑜ℎ
𝜃𝑛+1

𝑑 ̄̄𝛩𝑧

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

not defined if ̇̄̄𝜆 = 0

𝑆 if ̇̄̄𝜆 > 0 and |𝑆 ̄̄𝛩𝑧𝑛+1 | < 𝑀𝑢
𝜃

0 if ̇̄̄𝜆 > 0 and |𝑆 ̄̄𝛩𝑧𝑛+1 | = 𝑀𝑢
𝜃

(70)

5. Numerical applications

In order to validate the performance of the new generalized Timoshenko beam with embedded rotation discontinuity coupled
with the 3D macroelement, two case studies are presented in this section. A two story RC frame subjected to a monotonic and a
cyclic loading (Section 5.1), and a RC beam subjected to an earthquake (Section 5.2). In both cases, comparisons are made with the
experimental results.

A mesh convergence study can be found in [33] (not reproduced hereafter), where it can be seen that the proposed finite element
model provides the same results for a reinforced concrete cantilever column discretized with 4-8-16 and 32 beam elements.

5.1. A two story RC frame [55]

A two story RC frame was experimentally tested by [55]. Its geometry and reinforcement details are depicted in Fig. 8. All beam
and columns sections have the same geometrical and material properties, the only difference being the concrete cover (30 mm for
the beams and 20 mm for the columns).

This structure has often been used for validation purposes, see for example [23,26,27,29]. In these works, the researchers assigned
different material parameters to the beams and the columns, justified by the fact that the columns are subjected to significant axial
compressive loads resulting to higher bending resistances. This however is not necessary for the proposed new beam as the coupling
between the different stress-resultant components is explicitly taken into account via the 3D failure surface.

Thirty (30) finite elements of 0.5 m length are used for the spatial discretization (seven (7) for each beam and eight (8) for
each column). The columns are considered fixed at their base. Fig. 9 presents the FE mesh and the boundary conditions. Numerical
simulations are conducted for monotonic and cyclic (constant sign) lateral loads, the latter to reproduce the experimental conditions.
More specifically, equal constant axial loads are applied on top of the columns, while lateral displacements are incrementally imposed
at the top of the north column (displacement increments of 0.06 mm) (see Figs. 8 and 9). The model parameters are given in Table 3.

The numerical response is compared to the experimental one for monotonic and cyclic applied lateral loads in Figs. 10 and 11
respectively. Numerical simulations were done with Matlab [56]. Fig. 10 shows that the macroelement successfully captures the
peak of the response. Fig. 10 (right) provides the individual and total (sum) contributions of elements 8 and 16 (up to 0.3 m, as
no experimental data are available after this point). It illustrates that the cohesive model is activated for a displacement equal to
0.13 m for the element number 8, while for 0.19 m for the element number 16. Even though softening is not observed at the global
response in Fig. 10 (left), there are elements that exhibit softening.

Fig. 11 shows that for the case of a cyclic load without sign change, the model is also able to accurately reproduce loading and
unloading. The global response of the RC structure for severe loading is mainly controlled by the reinforcing steel. The modification
of the stiffness components such that they become equal to the reinforcement values near the peak, see Section 3.2.10, results
therefore to a realistic prediction of the cyclic response.
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Fig. 8. Two story RC frame: geometry and reinforcement details.
Source: Adapted from [55].

Fig. 9. Two story RC frame: FE mesh and boundary conditions, (left) node numbers, (right) element numbers.

Fig. 10. Two story RC frame: Numerical global response (left) and element’s contribution (right) (monotonic loading).
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Table 3
Model parameters for the two story RC frame.
Description Parameter Value SI unit

Linear elastic behavior

Axial stiffness 𝐾𝑥 3.92𝑒09 N
Shear stiffness 𝐾𝑦 1.62𝑒09 N
Bending stiffness 𝐾𝜃 5.67𝑒07 N m2

Axial elastic limit 𝑟𝑥0 0.5 –
Shear elastic limit 𝑟𝑦0 0.5 –
Bending elastic limit 𝑟𝜃0 0.5 –

Standardization

Maximum axial tensile force 𝐹 𝑡
𝑥,𝑚𝑎𝑥

1.50𝑒06 N
Maximum axial compressive force 𝐹 𝑐

𝑥,𝑚𝑎𝑥
−4.66𝑒06 N

Shear shift parameter 𝐹 ∗
𝑦 4.14𝑒05 N

Bending shift parameter 𝑀∗
𝜃 2.91𝑒05 N m

Hardening evolution laws

Axial rate of hardening 𝑎𝑥 500 –
Shear rate of hardening 𝑎𝑦 250 –
Bending rate of hardening 𝑎𝜃 250 –

Stiffness degradation
(cyclic loading of constant sign)

Axial stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝑥 4.84𝑒08 N

Shear stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝑦 1.86𝑒08 N

Bending stiffness of steel 𝐾𝑠𝑡𝑒𝑒𝑙
𝜃 1.09𝑒07 N m2

Cohesive model

Concrete compressive strength 𝑓𝑐 4.35 ksi
Steel yield limit 𝑓𝑦 60.63 ksi
Normalized axial force 𝑛𝑜 0.194 –
Normalized steel ratio 𝜌 0.146 –
Depth of the section 𝑑 0.40 m
Shear span ratio (beam & column) 𝐿∕𝑑 8.75 & 5 –
Confinement ratio in percent 𝜌𝑤 2.51% –
Softening modulus 𝑆 −3.97𝑒06 N m

Fig. 11. Two story RC frame: Numerical vs. experimental global response (cyclic loading with constant sign).

5.2. RC simply supported beam

5.2.1. A simply supported RC beam [57]
[57] experimentally studied an intermediate level beam, part of a two story RC frame, subjected to a vertical earthquake loading.

During the experiment, pivot connections of the beam with the adjacent columns were assumed, and thus the studied beam case
is similar to a three-point bending test. The geometry and reinforcing details of the beam are shown in Fig. 12 (left). The concrete
cover is 0.01 m.

In the following, the seismic loading is numerically reproduced under quasi-static conditions by applying the experimental
vertical displacement time history provided in Fig. 12 (right). The vertical displacements increments are of 0.06 mm. Four (4)
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Fig. 12. RC simply supported beam: geometry and reinforcement details (left), vertical displacement time history (right).
Source: Adapted from [57].

Fig. 13. RC simply supported beam: FE mesh and boundary conditions, node (left) and element numbers (right).

Table 4
Model parameters for the RC simply supported beam.
Description Parameter Value SI unit

Linear elastic behavior

Axial stiffness 𝐾𝑥 1.02𝑒09 N
Shear stiffness 𝐾𝑦 4.21𝑒08 N
Bending stiffness 𝐾𝜃 3.66𝑒06 N m2

Axial elastic limit 𝑟𝑥0 0.7 –
Shear elastic limit 𝑟𝑦0 0.7 –
Bending elastic limit 𝑟𝜃0 0.7 –

Standardization

Maximum axial tensile force 𝐹 𝑡
𝑥,𝑚𝑎𝑥

2.80𝑒05 N
Maximum axial compressive force 𝐹 𝑐

𝑥,𝑚𝑎𝑥
−1.13𝑒06 N

Shear shift parameter 𝐹 ∗
𝑦 8.67𝑒04 N

Bending shift parameter 𝑀∗
𝜃 3.86𝑒04 N m

Hardening evolution laws

Axial rate of hardening 𝑎𝑥 500 –
Shear rate of hardening 𝑎𝑦 250 –
Bending rate of hardening 𝑎𝜃 250 –

Stiffness degradation
(cyclic loading of alternate sign)

Geometrical property of the rebars 𝑐1 0.3 –
Mechanical property of the steel 𝑐2 620 –

Cohesive model

Concrete compressive strength 𝑓𝑐 4.49 ksi
Steel yield limit 𝑓𝑦 65.27 ksi
Normalized axial force 𝑛𝑜 0.001 –
Normalized steel ratio 𝜌 0.110 –
Depth of the section 𝑑 0.20 m
Shear span ratio 𝐿∕𝑑 4.25 –
Confinement ratio in percent 𝜌𝑤 1.064% –
Softening modulus 𝑆 −2.56𝑒05 N m

Timoshenko beam finite elements of 0.425 m length are used for the spatial discretization. In Fig. 13, the FE mesh and the boundary
conditions are presented and the model parameters are presented in Table 4.

Fig. 14 (left) compares the numerical response with the experimental data. Numerical simulations were again made using
Matlab [56]. The cohesive model was not found activated in this example. Although the elastic phase is well captured, the model at
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Fig. 14. RC simply supported beam: Numerical vs. experimental (left) and numerical (calibrated) vs. experimental load/time response (right).

certain moments over/underestimates the response and a calibration procedure is necessary to achieve a more satisfactory response.
In order to improve the response, the stiffness degradation parameter 𝑐1 is calibrated and taken equal to 0.1. Fig. 14 (right) shows
that by improving the unloading/reloading response, a better fit of the numerical response to the experimental curve is achieved at
late stages of loading.

6. Conclusions

A generalized finite element beam with an embedded rotation discontinuity coupled with a 3D macroelement is proposed to
assess, till complete failure the vulnerability of symmetrically RC frame structures subjected to quasi-static and dynamic loading.
Parameter identification procedures are discussed, based on simplified methods to ensure every day practice. The numerical
performance of this novel simulation tool is checked considering two case studies, a two story RC frame subjected to a monotonic
and a cyclic loading, and a RC simply supported beam subjected to an earthquake. The comparison with the experimental results
shows that the generalized finite element beam with an embedded rotation discontinuity coupled with the 3D macroelement captures
accurately the peak of the response, the initiation (or not) of the softening phase and it is able to reproduce the behavior till complete
failure. The new element can be used in design offices for fast calculations that take into account multidimensional complicated
actions in a simplified way.
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